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Abstract: Recently, supersingular isogeny cryptosystems have received attention as a candidate of post-
quantum cryptography (PQC). Their security relies on the hardness of solving isogeny problems over super-
singular elliptic curves. The meet-in-the-middle approach seems the most practical to solve isogeny problems
with classical computers. In this paper, we propose two algebraic approaches for isogeny problems of prime
power degrees. Our strategy is to reduce isogeny problems to a system of algebraic equations, and to solve
it by Grobner basis computation. The first one uses modular polynomials, and the second one uses kernel
polynomials of isogenies. We report running times for solving isogeny problems of 3-power degrees on su-
persingular elliptic curves over I, with 503-bit prime p, extracted from the NIST PQC candidate SIKE. Our
experiments show that our first approach is faster than the meet-in-the-middle approach for isogeny degrees
up to 319,
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1 Introduction

Since Koblitz [25] and Miller [27] independently proposed elliptic curve cryptography (ECC) in 1985, elliptic
curves have been used in cryptography. Since 2000, pairings over elliptic curves have been an indispensable
tool to construct cryptographic protocols and functional encryption schemes. Since 2006, isogenies between
elliptic curves have began to be used in [9, 29, 34] for constructing several cryptosystems and hash functions.
In particular, supersingular isogeny graphs were first proposed in [9] for security, which introduced the su-
persingular isogeny graph path-finding problem as a hard problem in cryptography. Actually, there exists a
subexponential quantum algorithm [10] for computing an isogeny between ordinary elliptic curves since it
is reduced to solving the abelian hidden shift problem. (Recently, the key exchange protocol based on group
action [8] is regarded as a credible post-quantum system despite of the existence of a sub-exponential attack.)
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In contrast, the supersingular case is non-abelian and seems to be a promising candidate for PQC. (cf., The
security of ECC and pairing-based cryptography relies on the discrete logarithm problem over elliptic curves,
which could be solved in polynomial-time by Shor’s algorithm [31] using quantum computers.) In 2011, Jao
and De Feo [22] introduced the key exchange protocol using using supersingular isogenies as a post-quantum
candidate, based on pseudo-random walks in supersingular isogeny graphs. (See [11] for the connection be-
tween the hard problems in [22] and the path-finding problem in [9].) Other cryptographic functions were
subsequently developed in [14, 23, 35]. In 2017, Jao et al. [21] submitted algorithms of supersingular isogeny
key encapsulation, called SIKE, for the NIST PQC standardization process. It remains as a second-round can-
didate [28].

The template for the security of isogeny cryptosystems is the general isogeny problem [20]; Given two
elements j, of a finite field Fg, to find an isogeny ¢ : E — E, if exists, such that j(E) = j and j(E) = j,
where j(E) denotes the j-invariant of an elliptic curve E. In the supersingular case, it is sufficient to take I,
as the base field for a prime p since every supersingular curve over I, is isomorphic to one defined over
IFp2 [33]. A variant of this problem is when the degree of ¢ is known, and it arises from the cryptanalysis of
the hash function of [9], which requires computing isogenies of degree ¢§ for some small ¢, and large e. The
most cryptographically-interesting variant is the supersingular isogeny Diffie-Hellman (SIDH) problem [14],
assuring the security of 21, 22], in which supersingular elliptic curves over [, are chosen for a special prime
p = £5105*f = 1 and a lot of auxiliary information are given (see also [19]). The basic algorithm to solve the
general isogeny problem for ordinary curves is due to Galbraith [18]. His procedure is (1) to reduce the problem
to the case of elliptic curves E’ and E’ whose endomorphism ring is maximal, and then (2) to construct an
isogeny between E’ and E’ by building isogeny trees. The time complexity of step (1) for E is negligible when
the conductor [Og : End(E)] is smooth, where Og denotes the maximal order of the imaginary quadratic
field K = End(E) ®7 Q with endomorphism ring End(E). For step (2), a sub-exponential quantum algorithm
was discovered in [10]. In contrast, the meet-in-the-middle approach in [18] is applicable to the supersingular
isogeny graph by building isogeny trees from E to E directly. The best known quantum algorithm is due to
Biasse et al. [3] for the supersingular problem, and its time complexity is exponential. For the SIDH problem,
a faster quantum algorithm is given by Tani’s claw finding algorithm [36], but its time complexity is still
exponential. (See also [24].) In recent, several related computational problems have been discussed in [15]
for supersingular elliptic curves, their isogeny graphs, and their endomorphism rings.

Although time complexities of fast quantum algorithms has been discussed actively as described above,
we consider practical approaches for solving isogeny problems with classical computers. Here we focus on
the supersingular isogeny graph path-finding problem in [9] of prime power degree ¢ = ¢§ for small ¢,. The
meet-in-the-middle approach is a practical way to solve the isogeny problem with time complexity equal to
the square root of /. It seems the most practical way at least in the supersingular case. (It is reported in [1]
that van Oorschot and Wiener’s parallel golden collision search [38] can outperform the meet-in-the-attack
for solving isogeny problems with parallel computation. See also [12] for improvements of the parallel golden
collision search.) While the meet-in-the-middle approach is a generic way for solving graph problems, we
propose two algebraic approaches for solving the isogeny problem in this paper. (cf., Several algebraic ap-
proaches are considered in [26] to attack the SIDH/SIKE protocol.) Our basic strategy is to reduce the isogeny
problem to a system of algebraic equations. (It does not depend on the supersingularity.) Specifically, our first
approach uses the modular polynomial of prime level /5. We divide a system of equations of modular poly-
nomial into two parts like the meet-in-the-middle approach, and compute their Grébner bases to efficiently
find j-invariants of intermediate curves between given two isogenous elliptic curves E and E. In contrast, our
second approach takes an intermediate curve Ey between E and E, and consider kernel polynomials F(x) and
177(5() of two isogenies ¢ : E — Ep and ¢ : E— Ej. Since the curve Ej is unknown, we regard its Weierstrass
coefficients as variables, and also represent kernel polynomials F(x) and F(%) as certain multivariate polyno-
mials, based on Schoof’s work [30]. Furthermore, by using Vélu’s formulae [6, 39], we represent isogenies ¢
and @ as rational functions over multivariate polynomial rings, and set up algebraic equations to determine
the Weierstrass coefficients of Ey. Moreover, we report running times of our algebraic approaches for solv-
ing the isogeny problem of 3-power degrees on supersingular elliptic curves over F,. with 503-bit prime p,
extracted from SIKE-p503 parameters [21], to compare with the meet-in-the-middle approach in performance.
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2 Mathematical background

In this section, we review some basic definitions and properties of elliptic curves and isogenies, which shall
be required in Section 3 below.

2.1 Elliptic curves over finite fields

An elliptic curve E over a finite field Fy of characteristic p > 5 is defined by the (short) Weierstrass form
y* = X> + ax + b with a, b € Fq and discriminant A(E) = -16(4a> + 27b%) # 0. Its j-invariant is defined
as j(E) = —1728(2'(‘1,3)3 . Two elliptic curves are isomorphic over Fy if and only if they both have the same j-
invariant, where Fq denotes the algebraic closure of F;. Moreover, given an element j, of Fg, there exists an

elliptic curve over [Fy with j-invariant equal to jo. The set of F4-rational points

E(Fy) = {(x,y) c IF?I iy =P vax+ b} U{0g}

forms an abelian group, where O denotes the infinity point on E. (See [33, Chap. III] for the group law.) The
number of Fy-rational points on E, denoted by #E(Fy), is finite, and it is represented as #E(Fg) = g+ 1 - t
where t denotes the trace of the g-power Frobenius map (see [33, Chap. V] for the map). It satisfies |t| < 2,/
by Hasse’s theorem. An elliptic curve E over Fy is said supersingular if the characteristic p divides the trace
t. Otherwise E is said ordinary. Every supersingular elliptic curve over Fp, has its j-invariant defined over Fp.
[33, Thm. 3.1, Chap. V], and hence it is isomorphic (over Fy) to one defined over Fpa. Furthermore, there are
about £ isomorphism classes of supersingular elliptic curves over Fp.

2.2 Isogenies and Vélu’s formulae

Let E and E be two elliptic curves over a finite field Fq. Amorphism ¢ : E — E satisfying $(Og) = O3 is called
an isogeny. Two elliptic curves E and E are called isogenous if there is a non-zero isogeny between them. Tate’s
theorem [37] states that E and E are isogenous over Fq if and only if #E(F 4i) = #E(Fqk) for any positive integer
k. Everynon-zeroisogeny ¢ : E — E induces an injection of function fields (;b* : Fy (E) — Fy(E) (see [33, Chap.
IT1]). The degree of a non-zero isogeny is defined as deg ¢ = [F¢(E) : (;b*Fq(E)]. We say that ¢ is separable if
the finite extension Fy(E)/ gb*Fq(E") is separable. A non-zero isogeny is separable if its degree is not divisible
by the characteristic of the base field Fy.

A non-zero isogeny ¢ : E — E induces a (surjective) group homomorphism from E(F,) to E(Fq) [33,
Thm. 4.8, Chap. I11], and its kernel is a finite subgroup of E(F4), denoted by E[¢]. It satisfies deg ¢p = #E[¢]
if ¢ is separable. Conversely, given any finite subgroup S of E(Fy), there are a unique elliptic curve Eanda
separable isogeny ¢ : E — E with E [¢] = S [33, Prop. 4.12, Chap. III]. The curve E is denoted by the quotient
E/S. Vélu [39] showed how to explicitly represent the isogeny ¢ : E — E = E/S and the Weierstrass equation
for E. A non-zero isogeny ¢ :E— E is normalized if ¢*(a1E) = wg, where wg and wy denote the invariant
differentials of E and E, respectively (see [33, Chap. III] for the invariant differential of an elliptic curve). Vélu’s
formulae give a normalized separable isogeny, and its modified form is shown in [6] as below (the form was
given much earlier by Elkies [16]):

Modified Vélu’s formulae in [6]
LetE : y? = x> + ax+ b be an elliptic curve over a finite field F,; of characteristic p > 5. Let £ be an odd number,
and S a subgroup of E(F,) of order £. Set S™ = S\ {Of}. Then a normalized separable isogeny ¢ : E — E = E/S

of degree /¢ can be written as
(N (N
‘;b(X,)/) - (D(X)’ )’ <m) ) ’ (1)
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where D(x) is the polynomial defined as

D(x) = H (x—xg) = x" 1 —sx'2 4 5% —s3xth 4
Qes*

and N(x) is related to D(x) through the formula

N(x)
D(x)

=ix-s-03x*+ a)g((;:)) -2(x3 +ax+b) (I[))/(()):))> . 2

Here T’(x) denotes the derivative of a function T(x) and x the x-coordinate of a point Q € S”. With coefficients
s, 52, 53 of the polynomial D(x), set v = a(¢-1) +3(s? - 2s,) and w = 3as + 2b(¢— 1) + 5(s> - 3ss, + 3s3). Then
the Weierstrass equation for Eis given by y? = x> + ax + bwith & = a-5vand b = b - 7w. (Fast algorithms
are shown also in [6] to compute the isogeny ¢.)

Kernel polynomials
Partition the set S” into two parts S* and S~ such that S = S* US"and S~ = {-P : P € S*}. We consider the
kernel polynomial

F(x) = H (x=xg) =xT+tx¥ ™ + t) x4 1ty 3)

Qes*
with d = £52, and it satisfies D(x) = F(x)?. Schoof [30] studied the relatlon among coefficients t and t;’s of
F(x). Instead of working with E, he works with the isomorphic curve E: y:=x>+ax+ b with & = ¢“a and

b = ¢5b. To E, we associate the reduced Weierstrass p-function by p(z) = Z% + > cpz?® with ¢; = -£,
c=-2and ¢ = (k—Z)(BW Z}:lz ¢jCk-1-; for k > 3. Similarly, the function { for E is defined using & and b.
Then the polynomial F(x) satisfies

2" 1F(p(2)) = exp ( Zt7? - Z (Zkikl) l;(;<k+ Z)sz) . @

(This is by reduction of relations over C, and the characteristic p must be large enough to hold over Fy.) From
this equation, we can represent every coefficient ¢; with t, ¢;’s and &’s, and with ¢, a, b, @ and b since ¢;’s
and ¢;’s are obtained from a, b, @ and b. (See [4, Chap. VII] for the first few coefficients of F(x).) In particular,
every t; can be represented as an element of the multivariate polynomial ring Fy([t, a, b, a, b] when we regard
allt, a, b, @, b as variables.

2.3 Modular polynomials

For every integer ¢ > 2, there exists the modular polynomial @,(X, Y) € Z[X, Y] to parameterize pairs of
elliptic curves with a cyclic isogeny of degree ¢ between them. (See [32, Exercise 2.18, Chap. II].) For two elliptic
curves E and E over a finite field Fq, there is an isogeny of degree ¢ from E to E with cyclic kernel if and
only if @,(j(E), j(E)) = 0. Every modular polynomial @,(X, Y) is symmetric in each variable, and its integer
coefficients become very large as ¢ increases. In particular, for a prime ¢, the modular polynomial @,(X, Y) is
equal to the form

XH-XY ey e > agx'y )

i,j<t,i+j<24

with a;; € Z, since there are precisely £ + 1 subgroups of the ¢-torsion group of an elliptic curve E. (Such each
subgroup corresponds to an isogenous curve of degree ¢ with a j-invariant, which is a zero of the polynomial
D,(X, j(E)).)
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3 Algebraic approaches for isogeny problems

In this section, we propose several algebraic approaches. Before presenting our approaches, let us define our
setting of isogeny problem as below:

Problem 1. Let ¢ = ¢§ be a power of a small odd prime ¢y. Suppose that there exists an isogeny of degree ¢
between elliptic curves E and E over a finite field Fy. Given ¢, j = j(E) and j = j(E), find an isogeny ¢ : E — E
of degree /.

Compared to the general isogeny problem in [20], the isogeny degree / is restricted to a prime power and it is
given in our setting. Note that a solution of ¢ is not unique in general for the above problem. (In particular, the
kernel of ¢ is not necessarily cyclic.) There are also many (compact) representations of a solution ¢ such as a
chain of isogenies of low degrees, a sequence of j-invariants of intermediate curves, and a path in an isogeny
graph between E and E. The meet-in-the-middle approach is a practical way to solve isogeny problems. For
the above isogeny problem, it builds two trees of isogenies of prime degree ¢y from both the sides of E and
E, respectively, and it finds a collision between the two trees to find the shortest path from E to E. While the
meet-in-the-middle approach is a generic way for solving graph problems, we shall propose two algebraic
approaches for solving the above isogeny problem.

3.1 First approach using modular polynomials

In this subsection, we present our first approach. Consider a chain of isogenies ¢ of prime degree ¢, from E
to E as
b1 b2

3 o Pe-1 de -

E E; E, Eeq E.
Let j, denote the j-invariant of every elliptic curve E; for 1 < k < e - 1. In this approach, we regard j-invariants
ji’s as variables, and consider a system of equations using modular polynomials (cf., recall that j and j are
elements of Fy.)

®Zo(j)j1) = Oy
(Dfo(jk’j/ﬁl) =0 (1 <k<e- 2), (6)
q)éo(jeflyj) =0.

A solution of this system gives all j-invariants j;’s of intermediate curves Ej.

Here we propose a method to solve the system (6) efficiently by Grébner basis algorithms. (See textbooks
[2, 13] for Grobner basis computation.) We assume that the exponent e of the isogeny degree / is even with
e = 2e, for a positive integer e for simple discussion. We divide the system (6) into two parts like the meet-in-
the-middle approach. In terms of Grobner basis computation, we consider two ideals in different multivariate
polynomial rings

= <(D€0(j!j1)’ (Déo(jl9j2)’ ey ®Z0(jeo—1yj€0)> C Fq[jl, e 9j90]9

I
I= <®£0(jeo,jeo+1), (D£00e0+1’je0+2), ceey d)éo(je—l’j)> C IE‘q[]'ew LR ,je—l]-

Both ideals I and I are zero-dimensional since j,j € Fq. In particular, the dimensions of F4-vector spaces
Fqli1, .-« jeol/Tand Fyljeys - -« 5 je-1] /1 are both at most (4o + 1)¢° due to the form of the modular polynomial
(see Equation (5)). Moreover, the above generators give a Grobner basis for the ideal I (resp., the ideal I) with
the lex term order with respect to je, = -+ = j2 = j1 (r€sp., je, = * -+ = je-2 = je-1). Then we can efficiently
compute minimal polynomials g and g of the variable je, with respect to ideals I and 1, respectively, by using
the FGLM algorithm [17]. (In this case, simple linear algebra might be more efficient since degrees of g and g
are known. See Remark 3.1 and Appendix A.1 below for details.) By the GCD computation over the univariate
polynomial ring Fy[je,], we obtain a common root of two minimal polynomials g and g. Such a common root
gives a solution of je,.



36 =—— Y.Takahashietal DE GRUYTER

Once a solution of j,, is found, the isogeny problem is divided into two isogeny problems of smaller degree
e = V2 (i.e., a divide-and-conquer strategy). By repeating this procedure, we can solve the whole isogeny
problem.

Remark 3.1. Set g1 = @, (j, j1), and let g denote the minimal polynomial of the variable j; with respect to
the ideal (@4, (j, j1), - - . » P, Gx-1, jx)) for every 2 < k < eq. Putting G4 (X) := tDe(k)(j, X), we have generically

8xUi) = Gi-2() G (i)

for 3 < k < eq. (We verified by experiments that it holds in most cases.) For our target minimal polynomial
g = ey, it seems the best in performance to compute gy from g;_; and @y, (jy_1, ji) recursively for 2 < k < ey,
see Appendix A.l. In a similar way, we can compute another minimal polynomial g efficiently.

The time complexity of the first approach shall be analyzed in Appendix A.1. The complexity depends on an
algorithm for computing minimal polynomials, such as the FGLM algorithm and the GCD computation. Note
that our first approach is not better than the meet-in-the-middle approach in time complexity.

Possible improvement (3-section method)

We introduce a possible improvement for the first approach. Our idea is to divide the system (6) into three
parts. (cf., The original strategy is regarded as the “2-section method”.) With two parameters e; and e, sat-
isfying 1 < e; < ep < e; < eand e; = e — e;, consider two ideals in different multivariate polynomial rings

I[l;el] = <®€O(j’jl)’ (Déo(jl’jZ)’ R ®lo(j€1*l’j€1)> ’
7[32;3_1] = <q)éo(j€z)jez+1)’ @(Zo(jez+1,je2+2), R q)éo(je—laj)> .

As in the 2-section method, we use the lex term order with je, > -+ > jo = j1 (resp., je, > je,+1 > =** =
je-1) for the zero-dimensional ideal Ij;.,,; (resp., If,.._q)). Then the ideal I}, ) (resp., If,..-1}) includes a
polynomial g(je, ) (resp., &(je,)) such that the set of its roots contains the roots of @y (j, je,) of level ¢' = ¢¢!
(resp., @ (je,, ) of level 7 =~Eg‘ez). Namely, the polynomials g and g are minimal polynomials for zero-
dimensional ideals I}, .., and Ij,,.._1), Tespectively. We then consider a new ideal

][91192] = <g(j€1), (Dlo(j€1yjel+1)’ LR ®Eo(jez—1yjez)’ g(]ez)> .

For this zero-dimensional ideal, we use the grevlex term order with je, < je, < je,+1 < je,-1 < **+ < Je, to find
intermediate j-invariants from je, to je,. With these j-invariants, we obtain the other j-invariants ji, ..., je,-1
and je,+1,...,je-1 @s in the 2-section method. The time complexity of this 3-section method might be im-
proved so that it is better than that of the 2-section method.

3.2 Second approach using kernel polynomials

In this subsection, we present our second approach for solving the isogeny problem of prime power degree
£ = £§. As in the first approach, we assume that the exponent e of the isogeny degree is even with e = 2eg
for simple discussion. In this approach, we take an intermediate elliptic curve E, between E and E such that
there exist two normalized isogenies ¢ and @ of same degree ¢’ = (¢° as

E—% . E «% E

Let a, b (resp., &, i)) denote Weierstrass coefficients in Fy defining the initial curve E (resp., the final curve
E). These coefficients can be chosen with two j-invariants j and j of E and E. In contrast, we use two variables
ag, by as Weierstrass coefficients defining the intermediate curve Eq. (Thatis, Eg : y* = x> + aox + bo.)
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Like Equation (3), consider the kernel polynomial
FO) = xX™+ X"+ tox™ 2 4o vv t tm,

obtained from the isogeny ¢ : E — Eo with m = "/T’l Now we regard t as an additional variable. Then
we can represent the other coefficients t,, ..., tm of F(x) as elements of the multivariate polynomial ring
R = Fylt, ap, bo] by Schoof’s work [30], described in Subsection 2.2 (recall a, b € Fy). In other words, we
regard the polynomial F(x) as an element of R[x]. Furthermore, like Equation (1), we can reconstruct the
isogeny ¢ : E — E, with rational functions over R[x] as

_(Nx) _ (N®Y
‘P(X,)’)—<D(X)’Y(D(X)>)
N(x)

for any point (x,y) € E, by letting D(x) = F(x)?. Here the rational function T(x) = D0y € R(x) is given by

Equation (2). Since ¢(x, y) € Eq for any point (x, y) € E, we clearly have the relation
OC +ax+b)T'(x)* = T(x)> + agT(x) + bo. )

By expanding this relation with respect to x, we obtain a set of equations S defined over R. (Every coefficient
of x! in (7) corresponds to an equation in S.)
Similarly, we consider the kernel polynomial

FE) ="+ ™+ HA™ 4o 4

obtained from another isogeny ¢ : E — Ey. By regarding f as another variable, we can also regard F(®)
as an element of the polynomial ring R[x] with R = Fqlt, ag, bol. We can also reconstruct the isogeny @ as
Px,y) = (T(%), yT'(%)) for any point (%, y) € E, for some rational function T(X) € R(%). Similarly to the
previous paragraph, the relation (> + ax + BT (%)? = T(%)? + dp T(X) + b gives another set of equations S
defined over the ring R.

Finally, we solve the system of equations in the union set S U S by using Grobner basis algorithms over
the multivariate polynomial ring Fy[t, £, ao, bo]. (We used the grevlex term order with t > f > ao > bg in our
experiments.) A solution of (¢, , ag, bo) determines the Weierstrass equation for the intermediate curve Ej,
and also two kernels of isogenies ¢ and {.

Remark 3.2. While the first approach requires many variables as the exponent e increases, this approach al-
ways requires four variables t, , ag, bo. On the other hand, as e increases, total degrees of equations become
large in this approach, while total degrees do not change in the first approach due to the use of the modular
polynomial of same level 4. In contrast, one can consider several variants of this approach. As the simplest
variant, we directly consider the kernel polynomial of the isogeny ¢ : E — E (without taking any intermediate
curve between E and E). This variant requires only one variable, but total degrees of equations become very
large as e increases. On the other hand, we consider multiple intermediate curves as a variant. This variant
requires many variables as the number of intermediate curves increases. As a result, the meet-in-the-middle
type described in this subsection seems the best in performance from our preliminary experiments.

As in the first approach, the time complexity of the second approach shall be analyzed in Appendix A.2. In
particular, the analysis shows that the second approach can never be asymptotically faster than the first one.

4 Experiments

In this section, we report experimental results of our algebraic approaches for solving the isogeny problem
of prime power degrees (see Problem 1 for the problem).
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4.1 Experiment parameters

For Problem 1, we fix parameters p = 22°° .31 1, g = p? and E : y?> = X° + x, extracted from SIKE-p503
parameters [21]. (The extension field ). is represented as Fp[z]/ (2% +1).) The initial curve E is a supersingular
elliptic curve defined over F . having #E(F,.) = (p + 1)* = (22°° - 31°%)? and j = j(E) = 1728. We also take
3-powers ¢ = 3€ (i.e., £o = 3) as isogeny degrees for even exponents e = 2ey. (cf., SIKE uses a combination
of isogenies of degrees 2 and 3.) We follow [21] to generate the final supersingular curve E, isogenous to E of
degree /.

4.2 Implementation details

Here we describe details of implementation for our algebraic approaches and the meet-in-the-middle ap-
proach with MaGMaA [5], a computational algebra system.

For our first approach by 2-section and 3-section methods, we used a combination of the modular poly-
nomials @y(X,Y) for N = 3, 32, 33, which are pre-computed in MAGMA, in order to obtain the minimal
polynomials g, 8. For example, for ¢ = 3'°, we computed Grobner bases for I = (@53 (j, j3), P3:(i3, js5)),
I-= (@52(j5, j7), P33(j7,J)) with the MAGMA command GroebnerBasis to obtain g, § € Fj[js], then com-
puted the GCD of g, g with the MAGMA commands GCD for the 2-section method.

For our second approach, we used Equation (4) to represent two kernel polynomials F(x) and F(%) of
isogenies ¢ and @, described in Subsection 3.2, as polynomials over Fg[t, f, ao, bo]. (As an alternative of (4),
fast algorithms are introduced in [6] for computing the kernel polynomial of an isogeny, but they require very
fast exponentiation.) We also used the grevlex term order with t = = ag > bg to find a solution (¢, , ag, bo)
from the union set of equations S U S.

For the meet-in-the-middle approach, we construct two sets J and T of sequences (j, j1,...,je,) and
(G,71, .-, Je,) of j-invariants of elliptic curves Ej and E «» respectively. (Recall j = j(E) and j = j(E).) Here E -1
and Ey, (resp., E_; and E;) are isogenous of degree 3 for every 1 < k < ey, where we set Eq = E (resp., Eg = E)
for convenience. To construct sequences in J and 7, we use the modular polynomial of level 3. For example,
we add each solution of @3(j,_;, x) to a sequence (j, ji, . . . , jx1) of length k. (We used the MAGMA command
Roots to find a solution.) In constructing such sequences, we remove a sequence whose ending point al-
ready appeared in the other sequences, in order to reduce the sizes of two sets J and J.Inour experiments, it
terminates when we find a pair of two sequences of J andfsatisfying jeo = Je, (i-€., a collision).

4.3 Experimental results

In Table 1, we summarize average running times of our two approaches and the meet-in-the-middle approach
for solving the isogeny problem of degrees ¢ = 3¢ with even e from e = 6 up to 14. Specifically, we measured
the running time of every approach until it finds the j-invariant or the Weierstrass coefficients of an interme-
diate curve between two isogenous curves E and E. We also experimented 5 times for every parameter set.
All the experiments were performed using MAGMA 2.24-5 on 4.20 GHz Intel Core i7 CPU with 16 GByte mem-
ory. From Table 1, the first approach is the fastest for isogeny degrees up to ¢ = 3'°. In contrast, our second
approach is costly and it did not terminate in one day for degrees larger than ¢ = 38, For degrees larger than
¢ = 319, the meet-in-the-middle approach is faster than our algebraic approaches. With respect to the memory
usage, our first approach by the 2-section method requires about 64, 221 and 526 MByte for ¢ = 31°, 312 and
314, respectively, while the meet-in-the-middle approach requires about 24, 26 and 32 MByte for the same
isogeny degrees.
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Table 1: Average running times (seconds) of our two approaches and the meet-in-the-middle approach for the isogeny problem
of degrees £ = 3¢ on supersingular elliptic curves over F,,; with 503-bit prime p = 2250 . 3159 — 1 (These parameters are from
SIKE-p503 [21], and the initial curve E is given by y* = x> + x over F ,2)

Isogeny degrees Our first approach Our second approach Meet-in-the-middle approach

=3¢ 2-section 3-section
36-729 0.11 0.15 336.42 2.93
38 = 6561 0.19 0.45 > 1 day 9.61
310 = 59049 7.98 5.63 - 31.09
312 = 531441 287.77 159.39 - 96.75
31424782969 5071.16  2725.01 - 292.82

5 Concluding remarks

In this paper, we proposed two algebraic approaches for solving isogeny problems of prime power degrees.
The first one is a straightforward way using modular polynomials of small prime levels. The second one is a
more complex way, which uses kernel polynomials of isogenies based on [30] and reconstructs the isogenies
with Vélu’s formulae [6, 39]. From the analysis in Appendix A, our approaches are not asymptotically faster
than the meet-in-the-middle approach. However, our experiments showed that the first approach is faster
than the meet-in-the-middle approach for isogeny degrees up to ¢ = 31° over supersingular elliptic curves
of SIKE-p503 [21] with a single classical computer. On the one hand, our first approach is applicable in the
collision search step of the meet-in-the-middle approach. Such combination could make it faster in practice
and reduce the memory size of the meet-in-the-middle approach. As future work, we would like to use the
combination for solving isogeny problems of large degrees.
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A Time complexity analysis

In this appendix, we analyze time complexities of our algebraic approaches. Here we use the same notation
as in Section 3. In this complexity analysis, we assume that ¢ and ¢, are constants, and we set e and ey as
asymptotic parameters to estimate time complexities.

A.1 For the first approach
The first approach proceeds with the below two steps:

Step 1. Compute minimal polynomials g and g of the variable je, with respect to ideals I and I, respectively.
Step 2. By computing the GCD of g and g over the univariate polynomial ring Fg4[je,], we obtain a common
root in [Fy of the minimal polynomials.

There are several methods to compute Step 1, such as the FGLM algorithm and the GCD computation. In
the below, we estimate costs of the first approach using several different methods for Step 1.

Using the FGLM algorithm for Step 1

Applying the FGLM algorithm directly to the whole ideal

The cost of Step 1 by using the FGLM algorithm for the ideal I is estimated as O (eo((¢o + 1)90)3) =0 (eo(to + 1)380) ,
since dimg, Fqlj1, . . ., je,)/I < (o + 1)* and the number of variables is eo. Similarly, the FGLM algorithm for
another idealTrequires the same cost. Hence the complexity of Step 1is

0(2e0(£o + 1)) = O(eo(lo + 1°%) = O(e(to + 1°¢/) = 0(et2®).

Using the normal form computation and simple linear algebra only
Instead of directly using of the FGLM algorithm, we can compute minimal polynomials g and g based on the
below well-known fact:

Lemma A.1. Let K be a field, I a zero-dimensional ideal of S = K[X1, ..., Xnl, and G a Grobner basis of I with
respect to a fixed term order . Let f € S and g(t) € K][t] with leading coefficient 1. We denote by my(t) the
minimal polynomial of f with respect to the ideal I. Then g(t) = m(t) if and only if g(t) satisfies the following
two conditions:

1. NF;(g(f)) = 0, where NF(g(f)) denotes the normal form of g(f) € S with respect to G.
2. For any h(t) € K[t] with NF;(h(f)) = 0, we have deg(g) < deg(h).

Recall from Remark 3.1 that we have generically g = Gy_, Gy for 3 < k < e, where we set G (ji) := @u(j, ji)
for 1 < k < eq. (Until the end of this appendix, we assume this generic condition.) Since the degree of g
equals to d := deg(g) = deg(Ge,-2) + deg(Ge,) = (6o + 1)680‘3 + (b + 1)680’1 = 0(£5°), it suffices to compute
NF;(XK) for0 < k < d = 0(¢3°) with X := je,, and solve the linear equation NF;(X9) + g;é ckNF(XK) = 0
over Fg4, and then we have g = Z,‘LO cxX* by Lemma A.1. The cost of computing each normal form NF;(X¥)
is 0((¢y + 1)%®) = 0(63‘3"). Hence the cost of computing NF;(X*) for 0 < k < d is O((ES"ééeO)) = O(deo).
The cost of solving the linear equation is not higher than O(ége") since it is 0(d3) = O(Egeo) if one uses the
Gaussian elimination naively. Similarly, computing g requires O(ége"). Here we estimate that the cost of Step
1is 0(26330) = O(de‘)) = O(Eé ®). In contrast, the cost of Step 2 mainly depends on the computation of the GCD
of g and g over 4. Note that the complexity of computing the GCD of two univariate polynomials of degree at
most d over Iy is O(d?) arithmetic over Fy (if one uses classical polynomial arithmetic). Since both degrees of



42 = Y.Takahashietal. DE GRUYTER

g and g are equal to (4o + 1)680‘3 +(lo + 1)680‘1 = 0(£g°), we estimate that the cost of Step 2 is O(Z(z)e") = 0(£5).
Summing up, we roughly estimate that the complexity of the first approach is

3e e le
0(etz”™) + 0(¢5) = O(eli )
if the FGLM algorithm is applied. Moreover, the complexity becomes
063 + 0(e§) = 0(43°)

if only the normal form computation and simple linear algebra is used. For the parameter in our experiments
(i.e., £y = 3), the cost is O(eg33¢) or 0O(33¢).

Using sequential GCD for Step 1

As mentioned in Remark 3.1, it is practical to compute minimum polynomials g; together with G;(X) :=
D ok (j, X) sequentially for 2 < k < eg. (Note the target minimal polynomial g is given by ge,.) The minimal poly-
nomial gy is the lowest degree polynomial in j, belonging to the ideal generated by Gy_1 (jx_1) = Gbggfl G, jxk-1)
and @y, (-1, jx), thatis

(Gre1lik=1)> Pe, (k=15 Ji)) N Falind = (galix)) -

Once g, is computed, we obtain G, as the quotient of g; divided by G,_, since g;(X) = G;_,(X)G;(X). Here we
estimate the cost of computing G. Regarding Gy_; (jx_1) and @, (jx_1, ji) as polynomials in j;_; over Fg[jl,
the cost of computing G, can be upper-bounded by that of computing their greatest common divisor with re-
spect to j,_1 by the Euclidean algorithm with pseudo division. This is due to the following reason; In the below
steps (1) and (2), the target minimal polynomial can be computed by eliminating j,_; from G;_, (jx_1, ji) and
@y, (jx-1, jx)- The Euclidean algorithm with pseudo division corresponds to eliminating ji_; by using leading
coefficients as polynomials over Fy[j;], whereas the Grébner basis computation corresponds to eliminating
Jjik-1 by using head terms as polynomials in Fy[j;_1, ji] with respect to the lexicographical term order with
jk-1 = Jjk- In each elimination step of the Euclidean algorithm with pseudo division, the elimination of a
term is just the same as computing an S-polynomial (or its multiple by a monomial). To make our estimation
simple, we can use so called the subresultant GCD algorithm which is the Euclidean algorithm with pseudo
division and principal subresultant coefficient (PSC) and computes the resultant, that is, not the minimal poly-
nomial but the characteristic polynomial (Gx_,(ji))* Gi (i) of j, with respect to (Gy_; Gx-1), Dy, Gx-1, 1))

Now we estimate the cost of computing the resultant of G;_; and @, (ji_1, jx) with respect to j;_; by the
subresultant GCD, where we may assume that the remainder sequence is normal. Note that deg;,  (Gx_1(x-1)) =
(b + 1)e67% = 0(¢k™Y), and degj, (@, (ik-1,x)) = fo + 1. The final target G, is computed by conducting two
procedures below:

1. Using the division algorithm, compute G} _; Gix_1, ji) := Gi_1(x_1) mod @y, (jx_1, jx), where @y, (ix_1, jx)
is a monic polynomial over Fg[ji] of degree ¢y + 1 in j;_;. Note that G}_, is a univariate polynomial
over Fylj] in variable j,_; of degree < ¢y. More specifically, proceed with the following (we use simple
notation A, B, C for polynomials and N for degrees):

(1—1) Set A + (Dfo(jk—hjk)’ and B « Gk—l'

(12) Set N «+ deg;, (B), and C « (the coefficient of j_, in B).

(13) Compute B - ji’_’l(z"”)CA, andset B« B - jfcv_’l(&’”) CA.

(1-4) If N < 4o, stop the loop. Otherwise set N + deg;, , (B) and go back to (1-2).

The resulting polynomial B coincides with the target G;_;.
2. Compute the resultant of G;_; (jx_1, jx) and @y, (jx_1, jx) by the subresultant GCD, and then recover Gy
from the resultant.

We estimate the cost of the procedure (1). Let n be the number of times the loop executes, and let (Bs, Ns, Cs)
for 1 < s < n be tuples of the successive values Bs of B, Ns of N and Cs of C respectively. We denote by M
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the maximum degree of the coefficients of j}'{_l for 0 < i < Ns — 1in Bs. Note that By = Gy_1 € Fglji-1],
Ny =deg;, ,(Gi-1) = 0(5’5’1), C; € Fg ~ {0} and M; < 0. Recall from (2.5) that

A= Dy (i, i) = 125 = GO, + Yo @ik |+

i,i/<ly,i+i' <24y

and hence all the coefficients of j};_l for0 <i < Ns of jgji(z‘”l)

most deg(Cs)+¢o+1. From this, the degree of the coefficient of each ji, with 0 < i < Ny in Bsyq = Bs—jis; 0V CsA
is at most max{Ms, deg(Cs) + o + 1}, and thus both deg(Cs.1) and M, are < max{Ms, deg(Cs)+{o+1}. Since
M <0 < deg(Cy)+£y+1, successively we have Ms < (s—1)(¢p + 1) and deg(Cs) < (s—1)(¢p +1). Since A and Cs
have at most (¢ +1)%+2 = 0((¢p+1)?) and deg(Cs) terms respectively, computing CsA requires O((s—1)(¢p+1)?)
arithmetic in Fgq, which is clearly dominant in the n-th loop. It follows from n < deg(B;) - deg]-kil(A) +1 =
O(t™)and 31, (s - 1)(4o + 1)* = 0(¢3n?) that the total cost of the procedure (1) is

03 (es™)?) = 0(3").

CsA are polynomials over Fy[j] of degrees at

By the estimation of the cost of computing a resultant of two polynomials, we estimate the complexity of
the procedure (2). The procedure (2) requires O(¢3) arithmetic over Fgy[j;] since both G,_, and @y, (jx_1, ji)
have degree < ¢y + 1 = O((p). Since the degree of the resultant &, = (G;_,)* Gy is [ik = (g + 1)2515‘2 =
0(K), we may assume that all arithmetic over Fg[j;] in the procedure (2) are arithmetic of two polynomials of
degree O(éoﬁé) = O(Z’é) by considering pseudo division and PSC. Hence the complexity of the procedure (2)
is estimated as 0(¢3(¢%)?) = 0(¢3¥) if one uses classical polynomial arithmetic, and O(¢3(¢X)'*€) = O(Eg“e)k)
for some O < € < 1 if one uses fast polynomial computation (e.g., fast Fourier transform). Dividing the degree
0(¢k)-polynomial &, by (Gy_,)" provides Gy, and it is done in O (£§k> (or O(¢81*4)), which is equal to the
cost of (2). Summing up, we estimate that the total cost is

O(£8) + O((§) + -+ + O(£2%) = 0(£2%) = 0(¢§) = 0(¥)

or O(£51+€)e0) = (¢1+€)/2), For the parameter in our experiments (i.e., £o = 3), the cost is 0(32).

Remark A.1. For the meet-in-the-middle approach, we factorize the univariate polynomial @3(x, j) over .
for the j-invariant j = j(E) of an elliptic curve E to find j-invariants of all elliptic curves 3-isogeneous to E.
It costs roughly O(log p), and hence the total cost of the meet-in-the-middle approach is O(3°° log p). On the
other hand, the total cost of our first approach is 0(32¢) as discussed above, and hence we expect that our
first approach could be faster than the meet-in-the-middle approach when log p > 3€. This is a main reason
why our first approach is faster than the meet-in-the-middle approach in practice for small exponents eg.

A.2 For the second approach

We estimate the complexity of our second approach for solving the isogeny problem of prime degree ¢ = ¢
with e = 2ey. We use the same notation as in Subsection 3.2. To estimate the complexity, we calculate the
number of equations in the system, that is, #(S U E), and the maximum value of the total degrees of the
equations with respect to t, t, ag and by.

First, we bound the total degrees of t; and ; with respect to ¢, t, ag and b for 2 < i < m. The kernel
polynomial F(x) for E is written as F = x™ + txm Ly ka:’oz tm_kx". For each 2 < i < m, the total degree of
t; with respect to t, ao and by is i, and thus it is bounded by m. Similarly, the total degree of ¢; with respect
to t, ap and b is bounded by m. Next, we explicitly write down a polynomial G = Dok cxx* € R[x] such
that S = {c; : 0 < k < deg,G}, where the coefficient ring is R = Fy[t, ao, bol. Recall that we obtain S by
expanding (3.2) with respect to x. It follows from T = % and D = F? that we have T’ = %, and thus (3.2)
is rearranged as

(X3+ax+b)<N’F—2NF’)2 _ N (N

B ﬁ ﬁ) + bo. (8)
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Note that
N = (tx + 28)F? = 23x% + a)F'F - 4(x° + ax + b)(F"'F - (F')?)

by (2.2), and hence N is of degree 2m + 1 with respect to x. We also note that each coefficient of N is a poly-
nomial in R = Fy[t, ao, bo] of total degree < 2m + 1 = O(m). Multiplying by F ® the both side of (8), we have

(¢ + ax+ b) (N'F - 2NF')* = N> + aoNF* + boF®

and set
G := (0 + ax + b) (N'F - 2NF')* = N> - agNF" - boF®,

which is of degree 6m + 3 with respect to x. Writing G = Z,fi"o+3 cpx¥with ¢, € Rfor 0 < k < 6m+3, we clearly

have S = {c; : 0 < k < 6m+3}, and the total degree of each ¢y is equal to or less than 6m+3 = O(m). Similarly,
we can construct a polynomial G = >k XX € R[x] with R = Fqlt, ao, bo] such that S={Ck:0<ks= degxa}
with degxé = 6m + 3. The total degree of each ¢y is equal to or less than 6m + 3 = O(m).

Here we assume that we use the algorithm F,, which is default for computing Grobner bases in MAGMA,
to solve a system of (non-homogeneous) multivariate equations. Let I 5.3 denote the ideal defined by S US. Let
solv. deg(I 5u§) denote the solving degree of the ideal I 3 C Fqlt, t, ao, bo] with respect to the grevlex order.
To estimate the complexity of computing a Grobner basis of I =, we use the following proposition proved by
Caminata and Gorla:

Proposition A.1([7]). Let K be afield, and R = K[X1, . .., Xn] the polynomial ring of n variables. Let f1, .. ., f,
be (not necessarily homogeneous) polynomials in R, and I the ideal generated by f1, ..., f,. We denote by s =
solv. deg(I) the solving degree of I, that is, the highest degree of the polynomials involved in the computation of
a Grobner basis of I (we fix the grevlex order for Grobner bases). Let d; be the total degree of f; for 1 < i < ¢, and

Then the number of operations in K required to compute a Grébner basis of I is

() ()

w-1
n+s .
Olm ( s ) otherwise,

where 2 < w < 3 is the exponent of matrix multiplication.
Since the total degree of each ¢ € SU S is ~ 6m + 3 = O(m), we have
solv. deg(Isug) >6m+3=0(m),

where the solving degree is not less than the maximum degree of input polynomials. It also follows from
#SUS)=2(6m+3)=12m+ 6 = 0(m) and

<4 + solv. deg(ISU§)> _ <4 +solv. deg(ISUg)> > 0(m*)

solv. deg(I SUE) 4

that the number of operations in Fq required to compute a Grobner basis of I = in the second approach is
>0(m’) =0(())=0 (ng") by Proposition A.1, and so is the total complexity of the second approach.

For the parameter in our experiments (i.e., o = 3), the complexity is not less than 3°¢°,



	1 Introduction
	2 Mathematical background
	2.1 Elliptic curves over finite fields
	2.2 Isogenies and Vélu's formulae
	2.3 Modular polynomials

	3 Algebraic approaches for isogeny problems
	3.1 First approach using modular polynomials
	3.2 Second approach using kernel polynomials

	4 Experiments
	4.1 Experiment parameters
	4.2 Implementation details
	4.3 Experimental results

	5 Concluding remarks
	A Time complexity analysis
	A.1 For the first approach
	A.2 For the second approach


