
Open Access. © 2020 Y. Takahashi et al., published by De Gruyter. This work is licensed under the Creative
Commons Attribution 4.0 License

J. Math. Cryptol. 2021; 15:31–44

Research Article

Yasushi Takahashi*, Momonari Kudo, Ryoya Fukasaku, Yasuhiko Ikematsu, Masaya
Yasuda, and Kazuhiro Yokoyama

Algebraic approaches for solving isogeny
problems of prime power degrees
https://doi.org/10.1515/jmc-2020-0072
Received Jun 05, 2019; accepted Jul 01, 2019

Abstract: Recently, supersingular isogeny cryptosystems have received attention as a candidate of post-
quantum cryptography (PQC). Their security relies on the hardness of solving isogeny problems over super-
singular elliptic curves. Themeet-in-the-middle approach seems themost practical to solve isogeny problems
with classical computers. In this paper, we propose two algebraic approaches for isogeny problems of prime
power degrees. Our strategy is to reduce isogeny problems to a system of algebraic equations, and to solve
it by Gröbner basis computation. The first one uses modular polynomials, and the second one uses kernel
polynomials of isogenies. We report running times for solving isogeny problems of 3-power degrees on su-
persingular elliptic curves over Fp2 with 503-bit prime p, extracted from the NIST PQC candidate SIKE. Our
experiments show that our first approach is faster than the meet-in-the-middle approach for isogeny degrees
up to 310.
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1 Introduction
Since Koblitz [25] and Miller [27] independently proposed elliptic curve cryptography (ECC) in 1985, elliptic
curves have been used in cryptography. Since 2000, pairings over elliptic curves have been an indispensable
tool to construct cryptographic protocols and functional encryption schemes. Since 2006, isogenies between
elliptic curves have began to be used in [9, 29, 34] for constructing several cryptosystems and hash functions.
In particular, supersingular isogeny graphs were first proposed in [9] for security, which introduced the su-
persingular isogeny graph path-finding problem as a hard problem in cryptography. Actually, there exists a
subexponential quantum algorithm [10] for computing an isogeny between ordinary elliptic curves since it
is reduced to solving the abelian hidden shift problem. (Recently, the key exchange protocol based on group
action [8] is regarded as a credible post-quantum systemdespite of the existence of a sub-exponential attack.)
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In contrast, the supersingular case is non-abelian and seems to be a promising candidate for PQC. (cf., The
security of ECC and pairing-based cryptography relies on the discrete logarithm problem over elliptic curves,
which could be solved in polynomial-time by Shor’s algorithm [31] using quantum computers.) In 2011, Jao
and De Feo [22] introduced the key exchange protocol using using supersingular isogenies as a post-quantum
candidate, based on pseudo-random walks in supersingular isogeny graphs. (See [11] for the connection be-
tween the hard problems in [22] and the path-finding problem in [9].) Other cryptographic functions were
subsequently developed in [14, 23, 35]. In 2017, Jao et al. [21] submitted algorithms of supersingular isogeny
key encapsulation, called SIKE, for the NIST PQC standardization process. It remains as a second-round can-
didate [28].

The template for the security of isogeny cryptosystems is the general isogeny problem [20]; Given two
elements j, ȷ̃ of a finite field Fq, to find an isogeny ϕ : E → Ẽ, if exists, such that j(E) = j and j(Ẽ) = ȷ̃,
where j(E) denotes the j-invariant of an elliptic curve E. In the supersingular case, it is sufficient to take Fp2
as the base field for a prime p since every supersingular curve over Fp is isomorphic to one defined over
Fp2 [33]. A variant of this problem is when the degree of ϕ is known, and it arises from the cryptanalysis of
the hash function of [9], which requires computing isogenies of degree ℓe0 for some small ℓ0 and large e. The
most cryptographically-interesting variant is the supersingular isogeny Diffie-Hellman (SIDH) problem [14],
assuring the security of [21, 22], in which supersingular elliptic curves over Fp2 are chosen for a special prime
p = ℓe11 ℓe22 f ± 1 and a lot of auxiliary information are given (see also [19]). The basic algorithm to solve the
general isogeny problem for ordinary curves is due toGalbraith [18]. His procedure is (1) to reduce the problem
to the case of elliptic curves E′ and Ẽ′ whose endomorphism ring is maximal, and then (2) to construct an
isogeny between E′ and Ẽ′ by building isogeny trees. The time complexity of step (1) for E is negligible when
the conductor [OK : End(E)] is smooth, where OK denotes the maximal order of the imaginary quadratic
field K = End(E) ⊗Z Q with endomorphism ring End(E). For step (2), a sub-exponential quantum algorithm
was discovered in [10]. In contrast, themeet-in-the-middle approach in [18] is applicable to the supersingular
isogeny graph by building isogeny trees from E to Ẽ directly. The best known quantum algorithm is due to
Biasse et al. [3] for the supersingular problem, and its time complexity is exponential. For the SIDH problem,
a faster quantum algorithm is given by Tani’s claw finding algorithm [36], but its time complexity is still
exponential. (See also [24].) In recent, several related computational problems have been discussed in [15]
for supersingular elliptic curves, their isogeny graphs, and their endomorphism rings.

Although time complexities of fast quantum algorithms has been discussed actively as described above,
we consider practical approaches for solving isogeny problems with classical computers. Here we focus on
the supersingular isogeny graph path-finding problem in [9] of prime power degree ℓ = ℓe0 for small ℓ0. The
meet-in-the-middle approach is a practical way to solve the isogeny problem with time complexity equal to
the square root of ℓ. It seems the most practical way at least in the supersingular case. (It is reported in [1]
that van Oorschot and Wiener’s parallel golden collision search [38] can outperform the meet-in-the-attack
for solving isogeny problems with parallel computation. See also [12] for improvements of the parallel golden
collision search.) While the meet-in-the-middle approach is a generic way for solving graph problems, we
propose two algebraic approaches for solving the isogeny problem in this paper. (cf., Several algebraic ap-
proaches are considered in [26] to attack the SIDH/SIKE protocol.) Our basic strategy is to reduce the isogeny
problem to a system of algebraic equations. (It does not depend on the supersingularity.) Specifically, our first
approach uses the modular polynomial of prime level ℓ0. We divide a system of equations of modular poly-
nomial into two parts like the meet-in-the-middle approach, and compute their Gröbner bases to efficiently
find j-invariants of intermediate curves between given two isogenous elliptic curves E and ̃︀E. In contrast, our
second approach takes an intermediate curve E0 between E and ̃︀E, and consider kernel polynomials F(x) and̃︀F(x̃) of two isogenies φ : E → E0 and φ̃ : ̃︀E → E0. Since the curve E0 is unknown, we regard its Weierstrass
coefficients as variables, and also represent kernel polynomials F(x) and ̃︀F(x̃) as certain multivariate polyno-
mials, based on Schoof’s work [30]. Furthermore, by using Vélu’s formulae [6, 39], we represent isogenies φ
and φ̃ as rational functions over multivariate polynomial rings, and set up algebraic equations to determine
the Weierstrass coefficients of E0. Moreover, we report running times of our algebraic approaches for solv-
ing the isogeny problem of 3-power degrees on supersingular elliptic curves over Fp2 with 503-bit prime p,
extracted from SIKE-p503 parameters [21], to compare with themeet-in-the-middle approach in performance.
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2 Mathematical background
In this section, we review some basic definitions and properties of elliptic curves and isogenies, which shall
be required in Section 3 below.

2.1 Elliptic curves over finite fields

An elliptic curve E over a finite field Fq of characteristic p ≥ 5 is defined by the (short) Weierstrass form
y2 = x3 + ax + b with a, b ∈ Fq and discriminant ∆(E) = −16(4a3 + 27b2) ≠ 0. Its j-invariant is defined
as j(E) = −1728 (4a)3

∆(E) . Two elliptic curves are isomorphic over Fq if and only if they both have the same j-
invariant, where Fq denotes the algebraic closure of Fq. Moreover, given an element j0 of Fq, there exists an
elliptic curve over Fq with j-invariant equal to j0. The set of Fq-rational points

E(Fq) =
{︁
(x, y) ∈ F2q : y2 = x3 + ax + b

}︁
∪ {OE}

forms an abelian group, where OE denotes the infinity point on E. (See [33, Chap. III] for the group law.) The
number of Fq-rational points on E, denoted by #E(Fq), is finite, and it is represented as #E(Fq) = q + 1 − t
where t denotes the trace of the qth-power Frobenius map (see [33, Chap. V] for the map). It satisfies |t| ≤ 2√q
by Hasse’s theorem. An elliptic curve E over Fq is said supersingular if the characteristic p divides the trace
t. Otherwise E is said ordinary. Every supersingular elliptic curve over Fp has its j-invariant defined over Fp2
[33, Thm. 3.1, Chap. V], and hence it is isomorphic (over Fq) to one defined over Fp2 . Furthermore, there are
about p

12 isomorphism classes of supersingular elliptic curves over Fp.

2.2 Isogenies and Vélu’s formulae

Let E and ̃︀E be two elliptic curves over a finite field Fq. A morphism ϕ : E → ̃︀E satisfying ϕ(OE) = Õ︀E is called
an isogeny. Two elliptic curves E and ̃︀E are called isogenous if there is a non-zero isogeny between them. Tate’s
theorem [37] states that E and ̃︀E are isogenous over Fq if and only if #E(Fqk ) = #̃︀E(Fqk ) for any positive integer
k. Every non-zero isogenyϕ : E → ̃︀E induces an injection of function fieldsϕ* : Fq(̃︀E)→ Fq(E) (see [33, Chap.
III]). The degree of a non-zero isogeny is defined as degϕ = [Fq(E) : ϕ*Fq(̃︀E)]. We say that ϕ is separable if
the finite extension Fq(E)/ϕ*Fq(̃︀E) is separable. A non-zero isogeny is separable if its degree is not divisible
by the characteristic of the base field Fq.

A non-zero isogeny ϕ : E → ̃︀E induces a (surjective) group homomorphism from E(Fq) to ̃︀E(Fq) [33,
Thm. 4.8, Chap. III], and its kernel is a finite subgroup of E(Fq), denoted by E[ϕ]. It satisfies degϕ = #E[ϕ]
if ϕ is separable. Conversely, given any finite subgroup S of E(Fq), there are a unique elliptic curve ̃︀E and a
separable isogeny ϕ : E → ̃︀E with E[ϕ] = S [33, Prop. 4.12, Chap. III]. The curve ̃︀E is denoted by the quotient
E/S. Vélu [39] showed how to explicitly represent the isogeny ϕ : E → ̃︀E = E/S and the Weierstrass equation
for ̃︀E. A non-zero isogeny ϕ : E → ̃︀E is normalized if ϕ*(ω̃︀E) = ωE, where ωE and ω̃︀E denote the invariant
differentials of E and ̃︀E, respectively (see [33, Chap. III] for the invariant differential of an elliptic curve). Vélu’s
formulae give a normalized separable isogeny, and its modified form is shown in [6] as below (the form was
given much earlier by Elkies [16]):

Modified Vélu’s formulae in [6]
Let E : y2 = x3+ax+b be an elliptic curve over a finite field Fq of characteristic p ≥ 5. Let ℓ be an odd number,
and S a subgroup of E(Fq) of order ℓ. Set S* = S \{OE}. Then a normalized separable isogeny ϕ : E → ̃︀E = E/S
of degree ℓ can be written as

ϕ(x, y) =
(︃
N(x)
D(x) , y

(︂
N(x)
D(x)

)︂′
)︃
, (1)
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where D(x) is the polynomial defined as

D(x) =
∏︁
Q∈S*

(x − xQ) = xℓ−1 − sxℓ−2 + s2xℓ−3 − s3xℓ−4 + · · ·

and N(x) is related to D(x) through the formula

N(x)
D(x) = ℓx − s − (3x2 + a)D

′(x)
D(x) − 2(x

3 + ax + b)
(︂
D′(x)
D(x)

)︂′
. (2)

Here T′(x) denotes thederivative of a function T(x) and xQ the x-coordinate of a pointQ ∈ S*.With coefficients
s, s2, s3 of the polynomial D(x), set v = a(ℓ−1)+3(s2 −2s2) and w = 3as+2b(ℓ−1)+5(s3 −3ss2 +3s3). Then
the Weierstrass equation for ̃︀E is given by y2 = x3 + ãx + b̃ with ã = a − 5v and b̃ = b − 7w. (Fast algorithms
are shown also in [6] to compute the isogeny ϕ.)

Kernel polynomials
Partition the set S* into two parts S+ and S− such that S* = S+ ∪ S− and S− = {−P : P ∈ S+}. We consider the
kernel polynomial

F(x) =
∏︁
Q∈S+

(x − xQ) = xd + txd−1 + t2xd−2 + · · · + td (3)

with d = ℓ−1
2 , and it satisfies D(x) = F(x)2. Schoof [30] studied the relation among coefficients t and ti’s of

F(x). Instead of working with ̃︀E, he works with the isomorphic curve ̂︀E : y2 = x3 + âx + b̂ with â = ℓ4ã and
b̂ = ℓ6b̃. To E, we associate the reduced Weierstrass ℘-function by ℘(z) = 1

z2 +
∑︀∞

k=1 ckz
2k with c1 = − a5 ,

c2 = − b7 and ck = 3
(k−2)(2k+3)

∑︀k−2
j=1 cjck−1−j for k ≥ 3. Similarly, the function ℘̂ for ̂︀E is defined using â and b̂.

Then the polynomial F(x) satisfies

zℓ−1F(℘(z)) = exp

(︃
−12 tz

2 −
∞∑︁
k=1

ĉk − ℓck
(2k + 1)(2k + 2) z

2k+2
)︃
. (4)

(This is by reduction of relations overC, and the characteristic pmust be large enough to hold over Fq.) From
this equation, we can represent every coefficient ti with t, ck’s and ĉk’s, and with t, a, b, ã and b̃ since ck’s
and ĉk’s are obtained from a, b, ã and b̃. (See [4, Chap. VII] for the first few coefficients of F(x).) In particular,
every ti can be represented as an element of themultivariate polynomial ring Fq[t, a, b, ã, b̃] whenwe regard
all t, a, b, ã, b̃ as variables.

2.3 Modular polynomials

For every integer ℓ ≥ 2, there exists the modular polynomial Φℓ(X, Y) ∈ Z[X, Y] to parameterize pairs of
elliptic curveswith a cyclic isogeny of degree ℓbetween them. (See [32, Exercise 2.18, Chap. II].) For two elliptic
curves E and ̃︀E over a finite field Fq, there is an isogeny of degree ℓ from E to ̃︀E with cyclic kernel if and
only if Φℓ(j(E), j(̃︀E)) = 0. Every modular polynomial Φℓ(X, Y) is symmetric in each variable, and its integer
coefficients become very large as ℓ increases. In particular, for a prime ℓ, the modular polynomial Φℓ(X, Y) is
equal to the form

Xℓ+1 − XℓYℓ + Yℓ+1 +
∑︁

i,j≤ℓ,i+j<2ℓ
aijXiY j (5)

with aij ∈ Z, since there are precisely ℓ+1 subgroups of the ℓ-torsion group of an elliptic curve E. (Such each
subgroup corresponds to an isogenous curve of degree ℓwith a j-invariant, which is a zero of the polynomial
Φℓ(X, j(E)).)



Algebraic approaches for solving isogeny problems of prime power degrees | 35

3 Algebraic approaches for isogeny problems
In this section, we propose several algebraic approaches. Before presenting our approaches, let us define our
setting of isogeny problem as below:

Problem 1. Let ℓ = ℓe0 be a power of a small odd prime ℓ0. Suppose that there exists an isogeny of degree ℓ

between elliptic curves E and ̃︀E over a finite field Fq. Given ℓ, j = j(E) and ȷ̃ = j(̃︀E), find an isogeny ϕ : E → ̃︀E
of degree ℓ.

Compared to the general isogeny problem in [20], the isogeny degree ℓ is restricted to a prime power and it is
given in our setting. Note that a solution ofϕ is not unique in general for the above problem. (In particular, the
kernel of ϕ is not necessarily cyclic.) There are also many (compact) representations of a solution ϕ such as a
chain of isogenies of low degrees, a sequence of j-invariants of intermediate curves, and a path in an isogeny
graph between E and Ẽ. The meet-in-the-middle approach is a practical way to solve isogeny problems. For
the above isogeny problem, it builds two trees of isogenies of prime degree ℓ0 from both the sides of E and̃︀E, respectively, and it finds a collision between the two trees to find the shortest path from E to ̃︀E. While the
meet-in-the-middle approach is a generic way for solving graph problems, we shall propose two algebraic
approaches for solving the above isogeny problem.

3.1 First approach using modular polynomials

In this subsection, we present our first approach. Consider a chain of isogenies ϕk of prime degree ℓ0 from E
to ̃︀E as

E ϕ1−−−−−→ E1
ϕ2−−−−−→ E2

ϕ3−−−−−→ · · · ϕe−1−−−−−→ Ee−1
ϕe−−−−−→ ̃︀E.

Let jk denote the j-invariant of every elliptic curve Ek for 1 ≤ k ≤ e−1. In this approach, we regard j-invariants
jk’s as variables, and consider a system of equations using modular polynomials (cf., recall that j and ȷ̃ are
elements of Fq.) ⎧⎪⎪⎨⎪⎪⎩

Φℓ0 (j, j1) = 0,

Φℓ0 (jk , jk+1) = 0 (1 ≤ k ≤ e − 2),
Φℓ0 (je−1, ȷ̃) = 0.

(6)

A solution of this system gives all j-invariants jk’s of intermediate curves Ek.
Here we propose a method to solve the system (6) efficiently by Gröbner basis algorithms. (See textbooks

[2, 13] for Gröbner basis computation.) We assume that the exponent e of the isogeny degree ℓ is even with
e = 2e0 for a positive integer e0 for simple discussion.We divide the system (6) into two parts like themeet-in-
the-middle approach. In terms of Gröbner basis computation, we consider two ideals in differentmultivariate
polynomial rings

I =
⟨︀
Φℓ0 (j, j1),Φℓ0 (j1, j2), . . . ,Φℓ0 (je0−1, je0 )

⟩︀
⊂ Fq[j1, . . . , je0 ],̃︀I = ⟨︀Φℓ0 (je0 , je0+1),Φℓ0 (je0+1, je0+2), . . . ,Φℓ0 (je−1, ȷ̃)

⟩︀
⊂ Fq[je0 , . . . , je−1].

Both ideals I and ̃︀I are zero-dimensional since j, ȷ̃ ∈ Fq. In particular, the dimensions of Fq-vector spaces
Fq[j1, . . . , je0 ]/I and Fq[je0 , . . . , je−1]/̃︀I are both at most (ℓ0 + 1)e0 due to the form of the modular polynomial
(see Equation (5)). Moreover, the above generators give a Gröbner basis for the ideal I (resp., the ideal̃︀I) with
the lex term order with respect to je0 ≻ · · · ≻ j2 ≻ j1 (resp., je0 ≻ · · · ≻ je−2 ≻ je−1). Then we can efficiently
compute minimal polynomials g and g̃ of the variable je0 with respect to ideals I and̃︀I, respectively, by using
the FGLM algorithm [17]. (In this case, simple linear algebra might be more efficient since degrees of g and g̃
are known. See Remark 3.1 and Appendix A.1 below for details.) By the GCD computation over the univariate
polynomial ring Fq[je0 ], we obtain a common root of two minimal polynomials g and g̃. Such a common root
gives a solution of je0 .
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Once a solution of je0 is found, the isogenyproblem is divided into two isogenyproblemsof smaller degree
ℓe00 =

√
ℓ (i.e., a divide-and-conquer strategy). By repeating this procedure, we can solve the whole isogeny

problem.

Remark 3.1. Set g1 = Φℓ0 (j, j1), and let gk denote the minimal polynomial of the variable jk with respect to
the ideal ⟨Φℓ0 (j, j1), . . . ,Φℓ0 (jk−1, jk)⟩ for every 2 ≤ k ≤ e0. Putting Gk(X) := Φℓk0

(j, X), we have generically

gk(jk) = Gk−2(jk)Gk(jk)

for 3 ≤ k ≤ e0. (We verified by experiments that it holds in most cases.) For our target minimal polynomial
g = ge0 , it seems the best in performance to compute gk from gk−1 and Φℓ0 (jk−1, jk) recursively for 2 ≤ k ≤ e0,
see Appendix A.1. In a similar way, we can compute another minimal polynomial g̃ efficiently.

The time complexity of the first approach shall be analyzed in Appendix A.1. The complexity depends on an
algorithm for computing minimal polynomials, such as the FGLM algorithm and the GCD computation. Note
that our first approach is not better than the meet-in-the-middle approach in time complexity.

Possible improvement (3-section method)

We introduce a possible improvement for the first approach. Our idea is to divide the system (6) into three
parts. (cf., The original strategy is regarded as the “2-section method”.) With two parameters e1 and e2 sat-
isfying 1 < e1 < e0 < e2 < e and e1 ≈ e − e2, consider two ideals in different multivariate polynomial rings

I[1:e1] =
⟨︀
Φℓ0 (j, j1),Φℓ0 (j1, j2), . . . ,Φℓ0 (je1−1, je1 )

⟩︀
,̃︀I[e2:e−1] = ⟨︀Φℓ0 (je2 , je2+1),Φℓ0 (je2+1, je2+2), . . . ,Φℓ0 (je−1, ȷ̃)

⟩︀
.

As in the 2-section method, we use the lex term order with je1 ≻ · · · ≻ j2 ≻ j1 (resp., je2 ≻ je2+1 ≻ · · · ≻
je−1) for the zero-dimensional ideal I[1:e1] (resp., ̃︀I[e2:e−1]). Then the ideal I[1:e1] (resp., ̃︀I[e2:e−1]) includes a
polynomial g(je1 ) (resp., g̃(je2 )) such that the set of its roots contains the roots of Φℓ′ (j, je1 ) of level ℓ′ = ℓe10
(resp., Φℓ̃′ (je2 , ȷ̃) of level ℓ̃

′ = ℓe−e20 ). Namely, the polynomials g and g̃ are minimal polynomials for zero-
dimensional ideals I[1:e1] and̃︀I[e2:e−1], respectively. We then consider a new ideal

J[e1:e2] =
⟨︀
g(je1 ),Φℓ0 (je1 , je1+1), . . . ,Φℓ0 (je2−1, je2 ), g̃(je2 )

⟩︀
.

For this zero-dimensional ideal, we use the grevlex termorderwith je1 ≺ je2 ≺ je1+1 ≺ je2−1 ≺ · · · ≺ je0 to find
intermediate j-invariants from je1 to je2 . With these j-invariants, we obtain the other j-invariants j1, . . . , je1−1
and je2+1, . . . , je−1 as in the 2-section method. The time complexity of this 3-section method might be im-
proved so that it is better than that of the 2-section method.

3.2 Second approach using kernel polynomials

In this subsection, we present our second approach for solving the isogeny problem of prime power degree
ℓ = ℓe0. As in the first approach, we assume that the exponent e of the isogeny degree is even with e = 2e0
for simple discussion. In this approach, we take an intermediate elliptic curve E0 between E and ̃︀E such that
there exist two normalized isogenies φ and φ̃ of same degree ℓ′ = ℓe00 as

E φ−−−−−→ E0
φ̃←−−−−− ̃︀E.

Let a, b (resp., ã, b̃) denote Weierstrass coefficients in Fq defining the initial curve E (resp., the final curvẽ︀E). These coefficients can be chosen with two j-invariants j and ȷ̃ of E and ̃︀E. In contrast, we use two variables
a0, b0 as Weierstrass coefficients defining the intermediate curve E0. (That is, E0 : y2 = x3 + a0x + b0.)
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Like Equation (3), consider the kernel polynomial

F(x) = xm + txm−1 + t2xm−2 + · · · + tm ,

obtained from the isogeny φ : E → E0 with m = ℓ′−1
2 . Now we regard t as an additional variable. Then

we can represent the other coefficients t2, . . . , tm of F(x) as elements of the multivariate polynomial ring
R = Fq[t, a0, b0] by Schoof’s work [30], described in Subsection 2.2 (recall a, b ∈ Fq). In other words, we
regard the polynomial F(x) as an element of R[x]. Furthermore, like Equation (1), we can reconstruct the
isogeny φ : E → E0 with rational functions over R[x] as

φ(x, y) =
(︃
N(x)
D(x) , y

(︂
N(x)
D(x)

)︂′
)︃

for any point (x, y) ∈ E, by letting D(x) = F(x)2. Here the rational function T(x) = N(x)
D(x) ∈ R(x) is given by

Equation (2). Since φ(x, y) ∈ E0 for any point (x, y) ∈ E, we clearly have the relation

(x3 + ax + b)T′(x)2 = T(x)3 + a0T(x) + b0. (7)

By expanding this relation with respect to x, we obtain a set of equations S defined over R. (Every coefficient
of xi in (7) corresponds to an equation in S.)

Similarly, we consider the kernel polynomial

̃︀F(x̃) = x̃m + t̃x̃m−1 + t̃2 x̃m−1 + · · · + t̃m

obtained from another isogeny φ̃ : ̃︀E → E0. By regarding t̃ as another variable, we can also regard ̃︀F(x̃)
as an element of the polynomial ring ̃︀R[x̃] with ̃︀R = Fq [̃t, a0, b0]. We can also reconstruct the isogeny φ̃ as
φ̃(x̃, ỹ) = (̃︀T(x̃), ỹ̃︀T′(x̃)) for any point (x̃, ỹ) ∈ ̃︀E, for some rational function ̃︀T(x̃) ∈ ̃︀R(x̃). Similarly to the
previous paragraph, the relation (x̃3 + ãx̃ + b̃)̃︀T′(x̃)2 = ̃︀T(x̃)3 + a0̃︀T(x̃) + b0 gives another set of equations ̃︀S
defined over the ring ̃︀R.

Finally, we solve the system of equations in the union set S ∪ ̃︀S by using Gröbner basis algorithms over
the multivariate polynomial ring Fq[t, t̃, a0, b0]. (We used the grevlex term order with t ≻ t̃ ≻ a0 ≻ b0 in our
experiments.) A solution of (t, t̃, a0, b0) determines the Weierstrass equation for the intermediate curve E0,
and also two kernels of isogenies φ and φ̃.

Remark 3.2. While the first approach requires many variables as the exponent e increases, this approach al-
ways requires four variables t, t̃, a0, b0. On the other hand, as e increases, total degrees of equations become
large in this approach, while total degrees do not change in the first approach due to the use of the modular
polynomial of same level ℓ0. In contrast, one can consider several variants of this approach. As the simplest
variant,wedirectly consider the kernel polynomial of the isogenyϕ : E → ̃︀E (without taking any intermediate
curve between E and ̃︀E). This variant requires only one variable, but total degrees of equations become very
large as e increases. On the other hand, we consider multiple intermediate curves as a variant. This variant
requires many variables as the number of intermediate curves increases. As a result, the meet-in-the-middle
type described in this subsection seems the best in performance from our preliminary experiments.

As in the first approach, the time complexity of the second approach shall be analyzed in Appendix A.2. In
particular, the analysis shows that the second approach can never be asymptotically faster than the first one.

4 Experiments
In this section, we report experimental results of our algebraic approaches for solving the isogeny problem
of prime power degrees (see Problem 1 for the problem).
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4.1 Experiment parameters

For Problem 1, we fix parameters p = 2250 · 3159 − 1, q = p2 and E : y2 = x3 + x, extracted from SIKE-p503
parameters [21]. (The extension fieldFp2 is represented asFp[z]/(z2+1).) The initial curve E is a supersingular
elliptic curve defined over Fp2 having #E(Fp2 ) = (p + 1)2 = (2250 · 3159)2 and j = j(E) = 1728. We also take
3-powers ℓ = 3e (i.e., ℓ0 = 3) as isogeny degrees for even exponents e = 2e0. (cf., SIKE uses a combination
of isogenies of degrees 2 and 3.) We follow [21] to generate the final supersingular curve ̃︀E, isogenous to E of
degree ℓ.

4.2 Implementation details

Here we describe details of implementation for our algebraic approaches and the meet-in-the-middle ap-
proach with Magma [5], a computational algebra system.

For our first approach by 2-section and 3-section methods, we used a combination of the modular poly-
nomials ΦN(X, Y) for N = 3, 32, 33, which are pre-computed in Magma, in order to obtain the minimal
polynomials g, g̃. For example, for ℓ = 310, we computed Gröbner bases for I = ⟨Φ33 (j, j3),Φ32 (j3, j5)⟩,̃︀I = ⟨Φ32 (j5, j7),Φ33 (j7, ȷ̃)⟩ with the Magma command GroebnerBasis to obtain g, g̃ ∈ Fp2 [j5], then com-
puted the GCD of g, g̃ with the Magma commands GCD for the 2-section method.

For our second approach, we used Equation (4) to represent two kernel polynomials F(x) and ̃︀F(x̃) of
isogenies φ and φ̃, described in Subsection 3.2, as polynomials over Fq[t, t̃, a0, b0]. (As an alternative of (4),
fast algorithms are introduced in [6] for computing the kernel polynomial of an isogeny, but they require very
fast exponentiation.) We also used the grevlex term order with t ≻ t̃ ≻ a0 ≻ b0 to find a solution (t, t̃, a0, b0)
from the union set of equations S ∪ ̃︀S.

For the meet-in-the-middle approach, we construct two sets J and ̃︀J of sequences (j, j1, . . . , je0 ) and
(̃ȷ, ȷ̃1, . . . , ȷ̃e0 ) of j-invariants of elliptic curves Ek and ̃︀Ek, respectively. (Recall j = j(E) and ȷ̃ = j(̃︀E).) Here Ek−1
and Ek (resp., ̃︀Ek−1 and ̃︀Ek) are isogenous of degree 3 for every 1 ≤ k ≤ e0, where we set E0 = E (resp., ̃︀E0 = ̃︀E)
for convenience. To construct sequences in J and ̃︀J, we use the modular polynomial of level 3. For example,
we add each solution of Φ3(jk−1, x) to a sequence (j, j1, . . . , jk−1) of length k. (We used the Magma command
Roots to find a solution.) In constructing such sequences, we remove a sequence whose ending point al-
ready appeared in the other sequences, in order to reduce the sizes of two sets J and̃︀J. In our experiments, it
terminates when we find a pair of two sequences of J and̃︀J satisfying je0 = ȷ̃e0 (i.e., a collision).
4.3 Experimental results

In Table 1, we summarize average running times of our two approaches and themeet-in-the-middle approach
for solving the isogeny problem of degrees ℓ = 3e with even e from e = 6 up to 14. Specifically, we measured
the running time of every approach until it finds the j-invariant or the Weierstrass coefficients of an interme-
diate curve between two isogenous curves E and ̃︀E. We also experimented 5 times for every parameter set.
All the experiments were performed using Magma 2.24-5 on 4.20 GHz Intel Core i7 CPU with 16 GByte mem-
ory. From Table 1, the first approach is the fastest for isogeny degrees up to ℓ = 310. In contrast, our second
approach is costly and it did not terminate in one day for degrees larger than ℓ = 38. For degrees larger than
ℓ = 310, themeet-in-the-middle approach is faster than our algebraic approaches.With respect to thememory
usage, our first approach by the 2-sectionmethod requires about 64, 221 and 526MByte for ℓ = 310, 312 and
314, respectively, while the meet-in-the-middle approach requires about 24, 26 and 32 MByte for the same
isogeny degrees.
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Table 1: Average running times (seconds) of our two approaches and the meet-in-the-middle approach for the isogeny problem
of degrees ℓ = 3e on supersingular elliptic curves over Fp2 with 503-bit prime p = 2250 · 3159 − 1 (These parameters are from
SIKE-p503 [21], and the initial curve E is given by y2 = x3 + x over Fp2 )

Isogeny degrees Our first approach Our second approach Meet-in-the-middle approach
ℓ = 3e 2-section 3-section

36 = 729 0.11 0.15 336.42 2.93
38 = 6561 0.19 0.45 > 1 day 9.61
310 = 59049 7.98 5.63 – 31.09
312 = 531441 287.77 159.39 – 96.75
314 = 4782969 5071.16 2725.01 – 292.82

5 Concluding remarks
In this paper, we proposed two algebraic approaches for solving isogeny problems of prime power degrees.
The first one is a straightforward way using modular polynomials of small prime levels. The second one is a
more complex way, which uses kernel polynomials of isogenies based on [30] and reconstructs the isogenies
with Vélu’s formulae [6, 39]. From the analysis in Appendix A, our approaches are not asymptotically faster
than the meet-in-the-middle approach. However, our experiments showed that the first approach is faster
than the meet-in-the-middle approach for isogeny degrees up to ℓ = 310 over supersingular elliptic curves
of SIKE-p503 [21] with a single classical computer. On the one hand, our first approach is applicable in the
collision search step of the meet-in-the-middle approach. Such combination could make it faster in practice
and reduce the memory size of the meet-in-the-middle approach. As future work, we would like to use the
combination for solving isogeny problems of large degrees.
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A Time complexity analysis
In this appendix, we analyze time complexities of our algebraic approaches. Here we use the same notation
as in Section 3. In this complexity analysis, we assume that ℓ and ℓ0 are constants, and we set e and e0 as
asymptotic parameters to estimate time complexities.

A.1 For the first approach

The first approach proceeds with the below two steps:

Step 1. Compute minimal polynomials g and g̃ of the variable je0 with respect to ideals I and Ĩ, respectively.
Step 2. By computing the GCD of g and g̃ over the univariate polynomial ring Fq[je0 ], we obtain a common

root in Fq of the minimal polynomials.

There are several methods to compute Step 1, such as the FGLM algorithm and the GCD computation. In
the below, we estimate costs of the first approach using several different methods for Step 1.

Using the FGLM algorithm for Step 1

Applying the FGLM algorithm directly to the whole ideal
The cost of Step 1byusing theFGLMalgorithm for the ideal I is estimatedasO

(︀
e0((ℓ0 + 1)e0 )3

)︀
= O

(︀
e0(ℓ0 + 1)3e0

)︀
,

since dimFqFq[j1, . . . , je0 ]/I ≤ (ℓ0 + 1)
e0 and the number of variables is e0. Similarly, the FGLM algorithm for

another ideal̃︀I requires the same cost. Hence the complexity of Step 1 is

O(2e0(ℓ0 + 1)3e0 ) = O(e0(ℓ0 + 1)3e0 ) = O(e(ℓ0 + 1)3e/2) = O(eℓ
3
2 e
0 ).

Using the normal form computation and simple linear algebra only
Instead of directly using of the FGLM algorithm, we can compute minimal polynomials g and g̃ based on the
below well-known fact:

Lemma A.1. Let K be a field, I a zero-dimensional ideal of S = K[X1, . . . , Xn], and G a Gröbner basis of I with
respect to a fixed term order ≻. Let f ∈ S and g(t) ∈ K[t] with leading coefficient 1. We denote by mf (t) the
minimal polynomial of f with respect to the ideal I. Then g(t) = mf (t) if and only if g(t) satisfies the following
two conditions:

1. NFI(g(f )) = 0, where NFI(g(f )) denotes the normal form of g(f ) ∈ S with respect to G.
2. For any h(t) ∈ K[t] with NFI(h(f )) = 0, we have deg(g) ≤ deg(h).

Recall from Remark 3.1 that we have generically g = Gk−2Gk for 3 ≤ k ≤ e0, where we set Gk(jk) := Φℓk (j, jk)
for 1 ≤ k ≤ e0. (Until the end of this appendix, we assume this generic condition.) Since the degree of g
equals to d := deg(g) = deg(Ge0−2) + deg(Ge0 ) = (ℓ0 + 1)ℓe0−30 + (ℓ0 + 1)ℓe0−10 = O(ℓe00 ), it suffices to compute
NFI(Xk) for 0 ≤ k ≤ d = O(ℓe00 ) with X := je0 , and solve the linear equation NFI(Xd) +

∑︀d−1
k=0 ckNFI(X

k) = 0
over Fq, and then we have g =

∑︀d
k=0 ckX

k by Lemma A.1. The cost of computing each normal form NFI(Xk)
is O((ℓ0 + 1)2e0 ) = O(ℓ2e00 ). Hence the cost of computing NFI(Xk) for 0 ≤ k ≤ d is O((ℓe00 ℓ2e00 )) = O(ℓ3e00 ).
The cost of solving the linear equation is not higher than O(ℓ3e00 ) since it is O(d3) = O(ℓ3e00 ) if one uses the
Gaussian elimination naively. Similarly, computing g̃ requires O(ℓ3e00 ). Here we estimate that the cost of Step
1 is O(2ℓ3e00 ) = O(ℓ3e00 ) = O(ℓ

3
2 e
0 ). In contrast, the cost of Step 2mainly depends on the computation of the GCD

of g and ̃︀g over Fq. Note that the complexity of computing the GCD of two univariate polynomials of degree at
most d over Fq is O(d2) arithmetic over Fq (if one uses classical polynomial arithmetic). Since both degrees of
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g and g̃ are equal to (ℓ0 + 1)ℓe0−30 + (ℓ0 + 1)ℓe0−10 = O(ℓe00 ), we estimate that the cost of Step 2 is O(ℓ2e00 ) = O(ℓe0).
Summing up, we roughly estimate that the complexity of the first approach is

O(eℓ
3
2 e
0 ) + O(ℓe0) = O(eℓ

3
2 e
0 )

if the FGLM algorithm is applied. Moreover, the complexity becomes

O(ℓ
3
2 e
0 ) + O(ℓe0) = O(ℓ

3
2 e
0 )

if only the normal form computation and simple linear algebra is used. For the parameter in our experiments
(i.e., ℓ0 = 3), the cost is O(e033e0 ) or O(33e0 ).

Using sequential GCD for Step 1

As mentioned in Remark 3.1, it is practical to compute minimum polynomials gk together with Gk(X) :=
Φℓk0

(j, X) sequentially for 2 ≤ k ≤ e0. (Note the targetminimal polynomial g is given by ge0 .) Theminimal poly-
nomial gk is the lowest degree polynomial in jk belonging to the ideal generated by Gk−1(jk−1) = Φℓk−10

(j, jk−1)
and Φℓ0 (jk−1, jk), that is ⟨︀

Gk−1(jk−1),Φℓ0 (jk−1, jk)
⟩︀
∩ Fq[jk] =

⟨︀
gk(jk)

⟩︀
.

Once gk is computed, we obtain Gk as the quotient of gk divided by Gk−2 since gk(X) = Gk−2(X)Gk(X). Here we
estimate the cost of computing Gk. Regarding Gk−1(jk−1) and Φℓ0 (jk−1, jk) as polynomials in jk−1 over Fq[jk],
the cost of computing Gk can be upper-bounded by that of computing their greatest common divisor with re-
spect to jk−1 by the Euclidean algorithmwith pseudodivision. This is due to the following reason; In the below
steps (1) and (2), the target minimal polynomial can be computed by eliminating jk−1 from G′

k−1(jk−1, jk) and
Φℓ0 (jk−1, jk). The Euclidean algorithm with pseudo division corresponds to eliminating jk−1 by using leading
coefficients as polynomials over Fq[jk], whereas the Gröbner basis computation corresponds to eliminating
jk−1 by using head terms as polynomials in Fq[jk−1, jk] with respect to the lexicographical term order with
jk−1 ≻ jk. In each elimination step of the Euclidean algorithm with pseudo division, the elimination of a
term is just the same as computing an S-polynomial (or its multiple by a monomial). To make our estimation
simple, we can use so called the subresultant GCD algorithm which is the Euclidean algorithm with pseudo
division and principal subresultant coefficient (PSC) and computes the resultant, that is, not theminimal poly-
nomial but the characteristic polynomial (Gk−2(jk))ℓ0Gk(jk) of jk with respect to ⟨Gk−1(jk−1),Φℓ0 (jk−1, jk)⟩.

Now we estimate the cost of computing the resultant of Gk−1 and Φℓ0 (jk−1, jk) with respect to jk−1 by the
subresultantGCD,wherewemayassume that the remainder sequence is normal.Note that degjk−1 (Gk−1(jk−1)) =
(ℓ0 + 1)ℓk−20 = O(ℓk−10 ), and degjk−1 (Φℓ0 (jk−1, jk)) = ℓ0 + 1. The final target Gk is computed by conducting two
procedures below:

1. Using thedivision algorithm, computeG′
k−1(jk−1, jk) := Gk−1(jk−1) mod Φℓ0 (jk−1, jk),whereΦℓ0 (jk−1, jk)

is a monic polynomial over Fq[jk] of degree ℓ0 + 1 in jk−1. Note that G′
k−1 is a univariate polynomial

over Fq[jk] in variable jk−1 of degree ≤ ℓ0. More specifically, proceed with the following (we use simple
notation A, B, C for polynomials and N for degrees):

(1-1) Set A← Φℓ0 (jk−1, jk), and B← Gk−1.
(1-2) Set N← degjk−1 (B), and C← (the coefficient of jNk−1 in B).
(1-3) Compute B − jN−(ℓ0+1)k−1 CA, and set B← B − jN−(ℓ0+1)k−1 CA.
(1-4) If N ≤ ℓ0, stop the loop. Otherwise set N← degjk−1 (B) and go back to (1-2).

The resulting polynomial B coincides with the target G′
k−1.

2. Compute the resultant of G′
k−1(jk−1, jk) and Φℓ0 (jk−1, jk) by the subresultant GCD, and then recover Gk

from the resultant.

We estimate the cost of the procedure (1). Let n be the number of times the loop executes, and let (Bs , Ns , Cs)
for 1 ≤ s ≤ n be tuples of the successive values Bs of B, Ns of N and Cs of C respectively. We denote by Ms
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the maximum degree of the coefficients of jik−1 for 0 ≤ i ≤ Ns − 1 in Bs. Note that B1 = Gk−1 ∈ Fq[jk−1],
N1 = degjk−1 (Gk−1) = O(ℓ

k−1
0 ), C1 ∈ Fq r {0} and M1 ≤ 0. Recall from (2.5) that

A = Φℓ0 (jk−1, jk) = j
ℓ0+1
k−1 − (j

ℓ0
k )j

ℓ0
k−1 +

⎛⎝ ∑︁
i,i′≤ℓ0 ,i+i′<2ℓ0

aii′ jik−1j
i′
k

⎞⎠ + jℓ0+1k ,

and hence all the coefficients of jik−1 for 0 ≤ i ≤ Ns of j
Ns−(ℓ0+1)
k−1 CsA are polynomials over Fq[jk] of degrees at

most deg(Cs)+ℓ0+1. From this, thedegree of the coefficient of each jikwith0 ≤ i ≤ Ns inBs+1 = Bs−j
Ns−(ℓ0+1)
k−1 CsA

is at mostmax{Ms , deg(Cs)+ℓ0+1}, and thus both deg(Cs+1) andMs+1 are ≤ max{Ms , deg(Cs)+ℓ0+1}. Since
M1 ≤ 0 ≤ deg(C1)+ℓ0+1, successively we haveMs ≤ (s−1)(ℓ0+1) and deg(Cs) ≤ (s−1)(ℓ0+1). Since A and Cs
have atmost (ℓ0+1)2+2 = O((ℓ0+1)2) anddeg(Cs) terms respectively, computing CsA requiresO((s−1)(ℓ0+1)3)
arithmetic in Fq, which is clearly dominant in the n-th loop. It follows from n ≤ deg(B1) − degjk−1 (A) + 1 =
O(ℓk−10 ) and

∑︀n
s=1(s − 1)(ℓ0 + 1)

3 = O(ℓ30n2) that the total cost of the procedure (1) is

O(ℓ30(ℓk−10 )2) = O(ℓ2k0 ).

By the estimation of the cost of computing a resultant of two polynomials, we estimate the complexity of
the procedure (2). The procedure (2) requires O(ℓ20) arithmetic over Fq[jk] since both G′

k−1 and Φℓ0 (jk−1, jk)
have degree ≤ ℓ0 + 1 = O(ℓ0). Since the degree of the resultant ĝk = (Gk−2)ℓ0Gk is d̂k := (ℓ0 + 1)2ℓk−20 =
O(ℓk0), wemay assume that all arithmetic over Fq[jk] in the procedure (2) are arithmetic of two polynomials of
degree O(ℓ0ℓk0) = O(ℓk0) by considering pseudo division and PSC. Hence the complexity of the procedure (2)
is estimated as O(ℓ20(ℓk0)2) = O(ℓ2k0 ) if one uses classical polynomial arithmetic, and O(ℓ20(ℓk0)1+ϵ) = O(ℓ

(1+ϵ)k
0 )

for some 0 < ϵ < 1 if one uses fast polynomial computation (e.g., fast Fourier transform). Dividing the degree
O(ℓk0)-polynomial ĝk by (Gk−2)ℓ0 provides Gk, and it is done in O

(︁
ℓ2k0

)︁
(or O(ℓ(1+ϵ)k0 )), which is equal to the

cost of (2). Summing up, we estimate that the total cost is

O(ℓ40) + O(ℓ60) + · · · + O(ℓ2e00 ) = O(ℓ2e00 ) = O(ℓe0) = O(ℓ)

or O(ℓ(1+ϵ)e00 ) = O(ℓ(1+ϵ)/2). For the parameter in our experiments (i.e., ℓ0 = 3), the cost is O(32e0 ).

Remark A.1. For the meet-in-the-middle approach, we factorize the univariate polynomial Φ3(x, j) over Fp2
for the j-invariant j = j(E) of an elliptic curve E to find j-invariants of all elliptic curves 3-isogeneous to E.
It costs roughly O(log p), and hence the total cost of the meet-in-the-middle approach is O(3e0 log p). On the
other hand, the total cost of our first approach is O(32e0 ) as discussed above, and hence we expect that our
first approach could be faster than the meet-in-the-middle approach when log p > 3e0 . This is a main reason
why our first approach is faster than the meet-in-the-middle approach in practice for small exponents e0.

A.2 For the second approach

We estimate the complexity of our second approach for solving the isogeny problem of prime degree ℓ = ℓe0
with e = 2e0. We use the same notation as in Subsection 3.2. To estimate the complexity, we calculate the
number of equations in the system, that is, #(S ∪ ̃︀S), and the maximum value of the total degrees of the
equations with respect to t,̃︀t, a0 and b0.

First, we bound the total degrees of ti and ̃︀ti with respect to t, ̃︀t, a0 and b0 for 2 ≤ i ≤ m. The kernel
polynomial F(x) for E is written as F = xm + txm−1 +

∑︀m−2
k=0 tm−kx

k. For each 2 ≤ i ≤ m, the total degree of
ti with respect to t, a0 and b0 is i, and thus it is bounded by m. Similarly, the total degree of̃︀ti with respect
to ̃︀t, a0 and b0 is bounded by m. Next, we explicitly write down a polynomial G =

∑︀
k ckx

k ∈ R[x] such
that S = {ck : 0 ≤ k ≤ degxG}, where the coefficient ring is R = Fq[t, a0, b0]. Recall that we obtain S by
expanding (3.2) with respect to x. It follows from T = N

D and D = F2 that we have T′ = N′F−2NF′
F3 , and thus (3.2)

is rearranged as

(x3 + ax + b)
(︂
N′F − 2NF′

F3

)︂2
= N3

F6
+ a0

(︂
N
F2

)︂
+ b0. (8)
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Note that
N = (ℓx + 2t)F2 − 2(3x2 + a)F′F − 4(x3 + ax + b)(F′′F − (F′)2)

by (2.2), and hence N is of degree 2m + 1 with respect to x. We also note that each coefficient of N is a poly-
nomial in R = Fq[t, a0, b0] of total degree ≤ 2m + 1 = O(m). Multiplying by F6 the both side of (8), we have

(x3 + ax + b)
(︀
N′F − 2NF′

)︀2 = N3 + a0NF4 + b0F6

and set
G := (x3 + ax + b)

(︀
N′F − 2NF′

)︀2 − N3 − a0NF4 − b0F6,

which is of degree 6m+3with respect to x. Writing G =
∑︀6m+3

k=0 ckxk with ck ∈ R for 0 ≤ k ≤ 6m+3, we clearly
have S = {ck : 0 ≤ k ≤ 6m+3}, and the total degree of each ck is equal to or less than 6m+3 = O(m). Similarly,
we can construct a polynomial ̃︀G =

∑︀
k ̃︀ckxk ∈ ̃︀R[x] with ̃︀R = Fq[̃︀t, a0, b0] such that ̃︀S = {̃︀ck : 0 ≤ k ≤ degx̃︀G}

with degx̃︀G = 6m + 3. The total degree of each ̃︀ck is equal to or less than 6m + 3 = O(m).
Here we assume that we use the algorithm F4, which is default for computing Gröbner bases in Magma,

to solve a system of (non-homogeneous)multivariate equations. Let IS∪̃︀S denote the ideal defined by S∪̃︀S. Let
solv. deg(IS∪̃︀S) denote the solving degree of the ideal IS∪̃︀S ⊂ Fq[t,̃︀t, a0, b0] with respect to the grevlex order.
To estimate the complexity of computing a Gröbner basis of IS∪̃︀S, we use the following proposition proved by
Caminata and Gorla:

Proposition A.1 ([7]). Let K be a field, and R = K[X1, . . . , Xn] the polynomial ring of n variables. Let f1, . . . , fℓ
be (not necessarily homogeneous) polynomials in R, and I the ideal generated by f1, . . . , fℓ. We denote by s =
solv. deg(I) the solving degree of I, that is, the highest degree of the polynomials involved in the computation of
a Gröbner basis of I (we fix the grevlex order for Gröbner bases). Let di be the total degree of fi for 1 ≤ i ≤ ℓ, and

m :=
ℓ∑︁
i=1

(︃
n + s − di
s − di

)︃
.

Then the number of operations in K required to compute a Gröbner basis of I is

O
(︃(︃

n + s
s

)︃
mω−1

)︃
if m ≤

(︃
n + s
s

)︃
,

O

⎛⎝m(︃n + ss
)︃ω−1⎞⎠ otherwise,

where 2 ≤ ω ≤ 3 is the exponent of matrix multiplication.

Since the total degree of each c ∈ S ∪ ̃︀S is ≈ 6m + 3 = O(m), we have

solv. deg(IS∪̃︀S) ≥ 6m + 3 = O(m),

where the solving degree is not less than the maximum degree of input polynomials. It also follows from
#(S ∪ ̃︀S) ≈ 2(6m + 3) = 12m + 6 = O(m) and(︃

4 + solv. deg(IS∪̃︀S)
solv. deg(IS∪̃︀S)

)︃
=

(︃
4 + solv. deg(IS∪̃︀S)

4

)︃
≥ O(m4)

that the number of operations in Fq required to compute a Gröbner basis of IS∪̃︀S in the second approach is
≥ O

(︀
m5)︀ = O (︀(ℓ′)5)︀ = O (︁ℓ5e00

)︁
by Proposition A.1, and so is the total complexity of the second approach.

For the parameter in our experiments (i.e., ℓ0 = 3), the complexity is not less than 35e0 .
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