
Research Article

Mikhail Anokhin*

Pseudo-free families and cryptographic
primitives

https://doi.org/10.1515/jmc-2020-0055
received December 10, 2020; accepted May 03, 2022

Abstract: In this article, we study the connections between pseudo-free families of computational Ω-alge-
bras (in appropriate varieties of Ω-algebras for suitable finite sets Ω of finitary operation symbols) and
certain standard cryptographic primitives. We restrict ourselves to families H d Dd(∣)∈ of computational
Ω-algebras (where D 0, 1{ }⊆

∗) such that for every d D∈ , each element of Hd is represented by a unique bit
string of the length polynomial in the length of d. Very loosely speaking, our main results are as follows: (i)
pseudo-free families of computational mono-unary algebras with one to one fundamental operation (in the
variety of all mono-unary algebras) exist if and only if one-way families of permutations exist; (ii) for any
m 2≥ , pseudo-free families of computational m-unary algebras with one to one fundamental operations (in
the variety of all m-unary algebras) exist if and only if claw resistant families of m-tuples of permutations
exist; (iii) for a certain Ω and a certain variety V of Ω-algebras, the existence of pseudo-free families of
computational Ω-algebras in V implies the existence of families of trapdoor permutations.

Keywords: universal algebra, pseudo-free family, unary algebra, one-way family of permutations, claw
resistant family of tuples of permutations, family of trapdoor permutations

MSC 2020: 94A60, 08A70, 08A60, 08A62

1 Introduction

Let Ω be a finite set of finitary operation symbols and let V be a variety of Ω-algebras. (See Section 2.2 for
definitions.) Informally, a family of computational Ω-algebras is a family of Ω-algebras whose elements are
represented by bit strings in such a way that equality testing, the fundamental operations, and generating
random elements can be performed efficiently. Loosely speaking, a family of computational Ω-algebras is
called pseudo-free in V if all members of this family belong to V, and given a random member H of the
family (for a given security parameter) and random elements g g H, , m1 … ∈ , it is computationally hard to
find a system of equations

v a a x x w a a x x i s, , ; , , , , ; , , , 1, , ,i m n i m n1 1 1 1() () { }… … = … … ∈ … (1)

in the variables x x, , n1 … together with elements h h H, , n1 … ∈ such that
– For each i s1, ,{ }∈ … , v a a x x, , ; , ,i m n1 1()… … and w a a x x, , ; , ,i m n1 1()… … are elements of the V-free

Ω-algebra freely generated by a a x x, , , , ,m n1 1… … ,
– System (1) is unsatisfiable in the V-free Ω-algebra freely generated by a a, , m1 … , and
– v g g h h w g g h h, , ; , , , , ; , ,i m n i m n1 1 1 1() ()… … = … … in H for all i s1, ,{ }∈ … .

If a family of computational Ω-algebras satisfies this definition with the additional requirement that n 0=

(i.e., that the equations in (1) be variable free), then this family is said to be weakly pseudo-free in V.



* Corresponding author: Mikhail Anokhin, Information Security Center, Faculty of Computational Mathematics and Cybernetics,
Lomonosov University, Michurinsky prosp. 1, 119192 Moscow, Russia, e-mail: anokhin@mccme.ru

Journal of Mathematical Cryptology 2022; 16: 114–140

Open Access. © 2022 Mikhail Anokhin, published by De Gruyter. This work is licensed under the Creative Commons Attribution
4.0 International License.

https://doi.org/10.1515/jmc-2020-0055
mailto:anokhin@mccme.ru

By fixing the number s of equations in the definition of a pseudo-free (resp., weakly pseudo-free) family in
V, we obtain a definition of an s-pseudo-free (resp., weakly s-pseudo-free) family in V. Of course, pseudo-
freeness (in any aforementioned version)may depend heavily on the form in which system (1) is required to
be found, i.e., on the representation of such systems.

The notion of pseudo-freeness (which is a variant of weak pseudo-freeness in the aforementioned
sense) was introduced by Hohenberger in [1, Section 4.5] for black-box groups. Rivest gave formal defini-
tions of a pseudo-free family of computational groups (see [2, Definition 2], [3, Slide 17]) and a weakly
pseudo-free one (see [3, Slide 11]). These authors consider (weak) pseudo-freeness only in the varieties of all
groups and of all Abelian groups. Note that pseudo-freeness (resp., weak pseudo-freeness) in those works is
in fact 1-pseudo-freeness (resp., weak 1-pseudo-freeness) in our terminology. For motivation of the study of
pseudo-freeness, we refer the reader to [1,2,4]. Surveys of some results concerning pseudo-free families of
computational groups can be found in [5, Chapter 1], [6, Section 1], and [7, Section 1.1].

1.1 Related work

Most researchers consider pseudo-freeness (in various versions) in the varieties of all groups [1–3,8–10], of
all Abelian groups [1–4,6,8,11–15], and of all elementary Abelian p-groups, where p is a prime [16].
Anokhin [7] initiated the study of (weakly) pseudo-free families of computational Ω-algebras in arbitrary
varieties of Ω-algebras. In our opinion, the study of these families opens up new opportunities for using
(weak) pseudo-freeness in mathematical cryptography.

Let H d DH d(∣)= ∈ be a family of computational Ω-algebras, where D 0, 1{ }⊆
∗. (We specify only the

Ω-algebras here.) This family is said to have exponential size if there exists a polynomial ξ such that

H 2d
ξ d∣ ∣ ()

≤
∣ ∣ for all d D∈ (see also [7, Definition 3.2]). The family H is called polynomially bounded if there

exists a polynomial η such that the length of any representation of every h Hd∈ is at most η d(∣ ∣) for all d D∈

(see also [7, Definition 3.3]). Of course, if H is polynomially bounded, then it has an exponential size. It
should be noted that a (weakly) pseudo-free family can have applications in cryptography only if it is
polynomially bounded or at least has an exponential size. (Weakly) pseudo-free families that do not have
exponential size per se are of little interest; they can be constructed unconditionally (see [7, Section 3.4]).
Finally, the family H is said to have unique representations of elements if for every d D∈ , each element of
Hd is represented by a unique bit string (see also [7, Definition 3.4]). This property seems to be useful in
applications.

Micciancio [4] proved that a specific polynomially bounded family of computational Abelian groups
having unique representations of elements is pseudo-free in the variety A of all Abelian groups under a
certain very strong number-theoretic hardness assumption. The same result, but with slightly different
representations of group elements by bit strings and different distributions of random elements of the
groups, was obtained by Jhanwar and Barua [11]. Moreover, Catalano et al. [12] proved that under the
same assumption as in [4], the family of computational Abelian groups from that work satisfies an appar-
ently stronger condition than pseudo-freeness in A. That condition, called adaptive pseudo-freeness, was
introduced in [12]. Anokhin [10] constructed an exponential-size pseudo-free family in the variety of all
groups under the general integer factoring intractability assumption. Also, he proved that a certain poly-
nomially bounded family of computational Abelian groups having unique representations of elements is
weakly pseudo-free in A under the general integer factoring intractability assumption (see [6]). Compared
to the aforementioned result of Micciancio, this is a weaker statement, but it is proved under a much weaker
cryptographic assumption.

There are many constructions of cryptographic objects based on classical algebraic structures (e.g.,
groups). However, to the best of our knowledge, there are only a few works concerning both universal
algebra and cryptography. Probably, the first such work is by Artamonov and Yashchenko [17]. In that
work, the authors introduced and studied the notion of a pk-algebra that naturally formalizes the
syntax of a one-round two-party key agreement scheme. See also the extended version [18] of [17]. Partala

Pseudo-free families and cryptographic primitives  115

[19] proposed a generalization of the well-known Diffie–Hellman key agreement scheme based on universal
algebras. Moreover, he considered some approaches to the instantiation of the proposed scheme. Loosely
speaking, that scheme is secure if it is computationally hard to compute images under an unknown
homomorphism (in a certain setting). See also [20] (a preliminary version of [19]) and the thesis [21].

In this article, we address the following natural questions:
– Which cryptographic primitives can be constructed from polynomially bounded pseudo-free families (in

appropriate varieties of Ω-algebras for suitable finite sets Ω of finitary operation symbols)?
– In which varieties of Ω-algebras can polynomially bounded pseudo-free families be constructed from

standard cryptographic primitives?

Let O denote the variety of all Ω-algebras. In some (not very interesting) cases, polynomially bounded
(weakly) pseudo-free families inO exist unconditionally. Namely, ifΩ consists of nullary operation symbols
only, then there exists a polynomially bounded pseudo-free family in O. This family consists of free
Ω-algebras. Now assume that ωΩ Ω0 { }= ∪ , where Ω0 consists of nullary operation symbols and the arity
ofω is 1. Then, in O, there exist an exponential-size pseudo-free family and a polynomially bounded weakly
pseudo-free family. All these three families have unique representations of elements. See [7, Section 4.1] for
details.

In many natural cases, collision-resistant hash function families can be constructed from polynomially
bounded weakly pseudo-free families in V (see [7, Section 4.2]; note that by [7, Remark 3.9], weak
1-pseudo-freeness is equivalent to weak pseudo-freeness in the same variety). In particular, we can do
this if at least one of the following conditions holds (see [7, Remark 4.7]):
– Ω contains a binary operation symbol ω and V is a nontrivial variety of Ω-algebras such that any

Ω-algebra in V is a groupoid with an identity element under ω. (Of course, this holds if V is a nontrivial
variety of monoids, loops, groups, or rings.)

– Ω contains two distinct unary operation symbols and V O= .
– Ω contains an m-ary operation symbol, where m 2≥ , and V O= .

Assume that Ω consists of a single m-ary operation symbol, where m 1≥ . In other words, we consider
m-ary groupoids. Furthermore, assume the existence of collision-resistant hash function families. Then, in
O, there exist a polynomially bounded weakly pseudo-free family having unique representations of ele-
ments and an exponential-size pseudo-free family. See [7, Sections 5.1–5.2] for details. As we have already
seen, if m 1= , then such (weakly) pseudo-free families exist unconditionally.

From now on, we assume that all families of computational Ω-algebras are polynomially bounded
and have unique representations of elements. Hence, we can assume that every family of computational
Ω-algebras has the form H d D,d d�(() ∣)∈ , where D 0, 1{ }⊆

∗, Hd is an Ω-algebra such that H 0, 1d
η d{ } ()

⊆
≤ ∣ ∣

for some fixed polynomial η, and d� is a probability distribution on Hd for any d D∈ . Thus, the unique
representation of each element h Hd∈ (d D∈) is h itself.

Suppose p is an arbitrary fixed prime number and let pA be the variety of all elementary Abelian
p-groups. Then pseudo-free families in pA exist if and only if certain homomorphic collision-resistant
p-ary hash function families exist or, equivalently, certain homomorphic one-way families of functions
exist. See [16, Theorem 4.12] for details. Note that pseudo-freeness in pA is equivalent to weak pseudo-
freeness in pA for families of computational elementary Abelian p-groups (see [16, Theorem 3.7]).

1.2 Our contributions and organization of the article

This article continues the study initiated in [7]. Our main results are as follows:
(i) Assume thatΩ consists of a single unary operation symbolω. (In this case,Ω-algebras are called mono-

unary algebras.) Suppose H d D,d d�(() ∣)∈ is a 1-pseudo-free (in particular, pseudo-free) family of
computational mono-unary algebras in O such that ω is a permutation of Hd for each d D∈ , and the
probability ensemble d Dd�(∣)∈ is pseudo-uniform in the sense of Definition 2.4. Then,

116  Mikhail Anokhin

ω H H d D: d d(∣)→ ∈ is a one-way family of permutations (see Theorem 4.2). Conversely, if there
exists a one-way family of permutations, then there exists a pseudo-free family of computational
mono-unary algebras in O such that the fundamental operation of any mono-unary algebra in this
family is a permutation (see Corollary 4.7). The construction of this pseudo-free family is explicit.

(ii) Assume that Ω consists of m distinct unary operation symbols ω ω, , m1 … , where m 2≥ . (In this case,
Ω-algebras are called m-unary algebras.) Suppose H d D,d d�(() ∣)∈ is a 1-pseudo-free (in particular,
pseudo-free) family of computational m-unary algebras in O such that ω ω, , m1 … are permutations of
Hd for each d D∈ and the probability ensemble d Dd�(∣)∈ is pseudo-uniform in the sense of
Definition 2.4. Then ω ω H H d D, , :m d d1(() ∣)… → ∈ is a claw resistant family of m-tuples of permuta-
tions (see Theorem 5.2). Conversely, if there exists a claw resistant family of m-tuples of permutations,
then there exists a pseudo-free family of computational m-unary algebras in O such that the funda-
mental operations of any m-unary algebra in this family are permutations (see Corollary 5.5). The
construction of this pseudo-free family is explicit.

(iii) Assume thatΩ consists of a single unary operation symbolω and two distinct binary operation symbols ε and
δ. LetV be the variety generated by all finiteΩ-algebras satisfying the identity z z δ z ε ω z z z, , ,1 2 1 1 2 2(((())))∀ = .
Suppose H d D,d d�(() ∣)∈ is a 1-pseudo-free (in particular, pseudo-free) family of computationalΩ-algebras
inV such thatω is a permutation of Hd for eachd D∈ and the probability ensemble d Dd�(∣)∈ is pseudo-
uniform in the sense of Definition 2.4. For every d D∈ and h y H, d∈ , put ψ y ε h y,d h, () ()= in Hd. Then,

ψ d D h H,d h d,(∣)∈ ∈ is a family of trapdoor permutations (see Theorem 6.2).

We emphasize that in the introduction, all the results are stated loosely. In particular, we ignore the
probability distribution (depending on the security parameter) according to which the index d is sampled.
Also, we do not specify the representation of elements of the (V-)free Ω-algebra by bit strings. (This
representation is used for representing systems of the form (1).) For precise statements, we refer the reader
to the cited works and to Sections 3–6 of this article.

The rest of this article is organized as follows. Section 2 contains notation, basic definitions, and general
results used in this article. In particular, in Section 2.5, we formally define families of computational
Ω-algebras (with the aforementioned restrictions), as well as pseudo-free and s-pseudo-free ones. The
main result of Section 3 is as follows: If the arity of any operation symbol in Ω is at most 1, then for each
positive integer s, pseudo-freeness in O is equivalent to s-pseudo-freeness in O for families of computa-
tional Ω-algebras with one to one unary fundamental operations (see Corollary 3.4). This result is used in
Sections 4 and 5 and may be interesting in its own right. In Sections 4–6, we prove main results (i)–(iii),
respectively. Section 7 concludes and suggests some directions for future research. Finally, in Appendix A,
we briefly recall the notation introduced in Section 2.

2 Preliminaries

We mostly use the notation and conventions of [7].

2.1 General preliminaries

In this article, � denotes the set of all nonnegative integers. The operation of disjoint union is denoted by⊔.
Let Y be a set and let n �∈ . We denote by Y n the set of all (ordered) n-tuples of elements from Y .
Furthermore, we put Y Yn

i
n i

0= ⨆
≤

=
and Y Yi

i
0= ⨆

∗

=

∞ . In particular,∅∗ consists only of the empty tuple.
For some sets Y , we consider elements of Y∗ as strings over Y . In particular, we do this for 0, 1{ }.

Suppose u v, are strings over a set. Then, we denote by u∣ ∣ the length of u and by uv the concatenation of
u and v. Moreover, un denotes the concatenation of n copies of u. In particular, the unary representation of n,

Pseudo-free families and cryptographic primitives  117

i.e., the string of n ones, is denoted by 1n. Also, we write u v⊑ whenever u is a prefix of v, i.e., v uw= for
some (unique) string w. The notation u v⊏ means that u v⊑ and u v≠ .

Let I be a set. Suppose each i I∈ is assigned an object qi. Then, we denote by q i Ii(∣)∈ the family of all
such objects and by q i Ii{ ∣ }∈ the set of all elements of this family.

When necessary, we assume that all “finite” objects (e.g., integers, tuples of integers, tuples of tuples of
integers) are represented by bit strings in some natural way. Sometimes we identify such objects with their
representations. Unless otherwise specified, integers are represented by their binary expansions.

Suppose ϕ is a function. We denote by ϕdom the domain of ϕ. Also, we use the same notation for ϕ
and for the function z z ϕ z ϕ z, , , ,n n1 1() (() ())… ↦ … , where n �∈ and z z ϕ, , domn1 … ∈ . The identity func-
tion on the set Y is denoted by idY .

Let ρ be a function from a subset of 0, 1{ }∗ onto a set S and let s S∈ . Then, unless otherwise specified,
s ρ[] denotes an arbitrary preimage of s under ρ. A similar notation was used by Boneh and Lipton in [22] and
by Hohenberger in [1]. In general, s ρ[] denotes many strings in 0, 1{ }∗ unless ρ is one to one. We use any of
these strings as a representation of s for computational purposes.

For convenience, we say that a function π : 0� � { }→ ⧹ is a polynomial if there exist c 0� { }∈ ⧹ and

d �∈ such that π n cnd() = for any n 0� { }∈ ⧹ (π 0() can be an arbitrary positive integer). Of course, every
polynomial growth function from � to r r 0� �{ ∣ }= ∈ ≥+ can be upper bounded by a polynomial in this
sense. Therefore, this restricted notion of a polynomial is sufficient for our purposes. For any c 0� { }∈ ⧹ , the
constant polynomial n c↦ (n �∈) is denoted by c.

2.2 Algebraic preliminaries

In this subsection, we recall the basic definitions and simple facts from the universal algebra. For a detailed
introduction to this topic, the reader is referred to standard books, e.g., [23–25].

Throughout this article, Ω denotes a set of finitary operation symbols. Each ω Ω∈ is assigned a non-
negative integer called the arity of ω and denoted by ωar . An Ω-algebra is a set H called the carrier (or the
underlying set) together with a family ω H H ω: Ωωar(∣)→ ∈ of finitary operations on H called the funda-
mental operations. We often denote an Ω-algebra and its carrier by the same symbol.

Let H be anΩ-algebra. Then, its fundamental operation associated with a symbolω Ω∈ will be denoted
by ωH or simply by ω. A subset of H is called a subalgebra of H if it is closed under the fundamental
operations of H . If S is a system of elements of H , then we denote by S⟨ ⟩ the subalgebra of H generated by S,
i.e., the smallest subalgebra of H containing S.

Suppose G is an Ω-algebra. A homomorphism of G to H is a function ϕ G H: → such that for every
ω Ω∈ and g g G, , ω1 ar… ∈ ,

ϕ ω g g ω ϕ g ϕ g, , , , .ω ω1 ar 1 ar(()) (() ())… = …

If a homomorphism of G onto H is one to one, then it is called an isomorphism. Of course, the Ω-algebras G
and H are said to be isomorphic if there exists an isomorphism of G onto H .

Let H i Ii(∣)∈ be a family of Ω-algebras. Recall that the fundamental operations of the direct product of
this family are defined as follows:

ω h i I h i I ω h h i I, , , , ,i ω i i ω i1, ar , 1, ar ,((∣) (∣)) (() ∣)∈ … ∈ = … ∈

where ω Ω∈ and h h H, ,i ω i i1, ar ,… ∈ for all i I∈ . In particular, the direct product ofG and H is the Ω-algebra
with carrier G H× and the following fundamental operations:

ω g h g h ω g g ω h h, , , , , , , , , ,ω ω ω ω1 1 ar ar 1 ar 1 ar(() ()) (() ())… = … …

where ω Ω∈ , g g G, , ω1 ar… ∈ , and h h H, , ω1 ar… ∈ .
An Ω-algebra with only one element is said to be trivial. It is obvious that all trivial Ω-algebras are

isomorphic.

118  Mikhail Anokhin

For every i �∈ , put ω ω iΩ Ω ari { ∣ }= ∈ = . We note that if Ω0 = ∅, then an Ω-algebra may be empty.
Whenever ω Ω0∈ , it is common to write ω instead of ω().

We consider elements of Ω1
∗ as strings over Ω1. Of course, Ω1

∗ is a free monoid under the concatenation
operation. This monoid naturally acts (from the left) on H as follows:

ω ω h ω ω ω h ,n n1 1 2() ((()))… = … …

where n �∈ ,ω ω, , Ωn1 1… ∈ , and h H∈ . It is evident that if all unary fundamental operations of H are one to
one, then uh uh h h= ′ ⇔ = ′ for any u Ω1∈

∗ and h h H, ′ ∈ . We will tacitly use this fact in the sequel.
Let Z be a set of objects called variables. We always assume that any variable is not in Ω. The set ZTm()

of all Ω-terms (or simply terms) over Z is defined as the smallest set such that Z ZΩ Tm0 ()⊔ ⊆ and if
ω Ω Ω0∈ ⧹ and v v Z, , Tmω1 ar ()… ∈ , then the formal expression ω v v, , ω1 ar()… is in ZTm(). The Ω-terms
can be considered as strings over the alphabet consisting of all symbols from ZΩ ⊔ , parentheses, and
comma. Of course, ZTm() is an Ω-algebra under the natural fundamental operations. This Ω-algebra is
called the Ω-term algebra over Z .

Suppose v ZTm()∈ . Let the string P v() over ZΩ ⊔ be obtained from v by removing all parentheses and
commas. The string P v() is known as the term v written in Polish notation. It is well known that the function
v P v()↦ (v ZTm()∈) is one to one. Moreover, if the arities of the operation symbols occurring in v are
known, then v can be easily recovered from P v(). See [23, Chapter III, Section 2] for details; however, in that
book, reverse Polish notation is used.

Consider the case where Z z z, ,1 2{ }= … , where z z, ,1 2 … are distinct. Assume that v z zTm , , m1({ })∈ … for
some m �∈ . Furthermore, let h h H, , m1 … ∈ . Then, the element v h h H, , m1()… ∈ is defined inductively in
the natural way. It is easy to see that v h h v z z h h, , Tm , , , ,m m m1 1 1{ () ∣ ({ })}… ∈ … = ⟨ … ⟩.

An identity (or a law) over Ω is a closed first-order formula of the form z z v w, , m1 ()∀ … = , where m �∈

and v w z z, Tm , , m1({ })∈ … . A class V of Ω-algebras is said to be a variety if it can be defined by a set ϒ
of identities (over Ω). This means that for any Ω-algebra G, G V∈ if and only if G satisfies all identities
in ϒ. By the famous Birkhoff variety theorem (see, e.g., [23, Chapter IV, Theorem 3.1], [24, Chapter II,
Theorem 11.9], or [25, Section 3.2.3, Theorem 21]), a class of Ω-algebras is a variety if and only if it is closed
under taking subalgebras, homomorphic images, and direct products. Note that if a class of Ω-algebras is
closed under taking direct products, then it contains a trivial Ω-algebra as the direct product of the empty
family of Ω-algebras. A quasi-identity over Ω is defined as a closed first-order formula of the form

z z v w v w v w, , m s s1 1 1()∀ … = ∧ ⋯ ∧ = → = , where m s, �∈ and v w v w v w z z, , , , , , Tm , ,s s m1 1 1({ })… ∈ … .
The variety consisting of all Ω-algebras with at most one element is said to be trivial; all other varieties

ofΩ-algebras are called nontrivial. The trivial variety is defined by the identity z z z z,1 2 1 2()∀ = . WhenΩ0 = ∅,
the trivial variety contains not only trivial Ω-algebras, but also the empty Ω-algebra. If C is a class of
Ω-algebras, then the variety generated by C is the smallest variety of Ω-algebras containing C. This variety
is defined by the set of all identities holding in all Ω-algebras in C.

Let V be a variety of Ω-algebras. Then, an Ω-algebra F V∈ is said to be V-free if it has a generating
system f i Ii(∣)∈ such that for every system of elements g i Ii(∣)∈ of any Ω-algebra G V∈ , there exists a
homomorphism α F G: → satisfying α f gi i() = for all i I∈ (evidently, this homomorphism α is unique). Any
generating system f i Ii(∣)∈ with this property is called free, and the Ω-algebra F is said to be freely
generated by every such system. It is well known (see, e.g., [23, Chapter IV, Corollary 3.3], [24, Chapter
II, Definition 10.9 and Theorem 10.10], or [25, Section 3.2.3, Theorem 16]) that for any set I , there exists a
unique V-free Ω-algebra (up to isomorphism) with a free generating system indexed by I . It is easy to see
that if V is nontrivial, then for each free generating system f i Ii(∣)∈ of a V-free Ω-algebra, fi are distinct.
In this case, one can consider free generating systems as sets.

We denote by F , V()∞ ∞ the V-free Ω-algebra freely generated by a a x x, , , , ,1 2 1 2… … . Of course, if V is
nontrivial, then the elements of this free generating system are assumed to be distinct. Furthermore,
suppose m n, �∈ and let a a, ,1 2a { }= … , x x, ,1 2x { }= … , a a, ,m m1a { }= … , x x, ,n n1x { }= … , F V a() = ⟨ ⟩∞ ,
Fm n m n, V a x() = ⟨ ⊔ ⟩, and F Fm m m,0V V a() ()= = ⟨ ⟩. For elements of Fm n, V(), we use the notation
v a a x x v a x, , ; , , ;m n1 1() ()… … = , where v is an Ω-term. It is well known that ai and xj can be considered
as variables taking values in arbitraryΩ-algebraG V∈ . That is, for any v a x F; m n, V() ()∈ , g g G, , m1 … ∈ , and
h h G, , n1 … ∈ (separated from g g, , m1 …), the element v g g h h G, , ; , ,m n1 1()… … ∈ is well defined as

Pseudo-free families and cryptographic primitives  119

α v a x;(()), where α is the unique homomorphism of Fm n, V() to G such that α a gi i() = and α x hj j() = for each
i m1, ,{ }∈ … and j n1, ,{ }∈ … . If g g g, , m1()= … and h h h, , n1()= … , then we sometimes write v g h;()

instead of v g g h h, , ; , ,m n1 1()… … . Whenever n 0= , we omit the semicolon in the aforementioned notation
(e.g., v a v a;() ()= for any v a F; V() ()∈ ∞).

Unless otherwise specified, equations and systems of equations of the form v a x w a x; ;() ()= , where
v w F, , V()∈ ∞ ∞ , are considered in the variables in x.

Denote by O the variety of all Ω-algebras. We write F ,∞ ∞, F∞, Fm n, , and Fm instead of F , O()∞ ∞ , F O()∞ ,
Fm n, O(), and Fm O(), respectively. These Ω-algebras are the Ω-term algebras over the respective sets of
variables.

2.3 Probabilistic preliminaries

Let � be a probability distribution on a finite or countably infinite sample space Y . Then, we denote by
supp � the support of � , i.e., the set y Y yPr 0�{ ∣ { } }∈ ≠ . In many cases, one can consider � as a
distribution on supp � . The same notation will be used for random variables taking values in Y .
Namely, if y is such a random variable, then ysupp is the support of the distribution of y.

Suppose Z is a finite or countably infinite set and α is a function from Y to Z . Then, the image of �

under α, which is a probability distribution on Z , is denoted by α �(). This distribution is defined by
z α zPr Prα

1
� �{ } ()() =

− for each z Z∈ . Note that if a random variable y is distributed according to � , then
the random variable α y() is distributed according to α �().

We use the notation y y, , ~n1 �… to indicate that y y, , n1 … (denoted by upright bold letters) are inde-
pendent random variables distributed according to � . We assume that these random variables are inde-
pendent of all other random variables defined in such a way. Furthermore, all occurrences of an upright
bold letter (possibly indexed or primed) in a probabilistic statement refer to the same (unique) random
variable. Of course, all random variables in a probabilistic statement are assumed to be defined on the same
sample space. Other specifics of random variables do not matter for us. Note that the probability distribu-
tion � in this notation can be random. For example, suppose i Ii�(∣)∈ is a probability ensemble con-
sisting of distributions on the set Y , where the set I is finite or countably infinite. Moreover, let � be a
probability distribution on I . Then, i ~ � and y ~ i� mean that the joint distribution of the random vari-
ables i and y is given by i y i yi yPr , Pr Pr i� �[] { } { }= = = for each i I∈ and y Y∈ .

By a probabilistic function from Y to Z , we mean a function from Y to the set of all probability
distributions on Z . If � is a probabilistic function from Y to Z , then � �() is the probability distribution
on Z such that for each z Z∈ , z zPr E Pry y� � �{ } { }() ()= , where the expectation is taken with respect to y
distributed according to � . In other words, if we consider the probability ensemble y y Y�(() ∣)∈ and
define random variables y ~ � and z y~ �() (see the previous paragraph), then � �() is the distribution of
z. Alternatively, a probabilistic function fromY to Z can be defined as a function Y ZΠ : �× → + such that

y zΠ , 1z Z ()∑ =
∈

for all y Y∈ . It is easy to see that this definition is essentially equivalent to the original one.

Suppose each i n1, ,{ }∈ … (where n �∈) is assigned a probability distribution i� on a finite or coun-
tably infinite sample spaceYi. Then, the probability distribution n1� �×⋯× onY Yn1 ×⋯× is defined as the
distribution of a random variable y y, , n1()… , where y ~i i� for every i n1, ,{ }∈ … . (Of course, the distribu-
tion of this random variable does not depend on the choice of independent random variables y y, , n1 …

distributed according to , , n1� �… , respectively.) In particular, n� � �= ×⋯× , where � occurs n times.
Furthermore, for a nonempty finite set Z , Z�() denotes the uniform probability distribution on Z .

The notation y y, , n1 �… ← indicates that y y, , n1 … are fixed elements of the setY chosen independently
at random according to the distribution � .

Let � and � be probability distributions on the sample space Y . Then, the statistical distance (also
known as variation distance) between � and � is defined as follows:

y yΔ , 1
2

Pr Pr .
y Y

� � � �() ∣ { } { }∣∑= −

∈

120  Mikhail Anokhin

The following properties of the statistical distance are well known and/or can be proved straightforwardly:
– M MΔ , max Pr PrM Y� � � �() ∣ ∣= −⊆ .
– Δ is a metric on the set of all probability distributions on Y .
– If � is a probabilistic function from Y to Z , then Δ , Δ ,� � � � � �(() ()) ()≤ . (In particular, this holds for

deterministic functions.)

See also [26, Section 8.8], [27, Section A.2.6], and [6, Lemma 2.3].

2.4 Cryptographic preliminaries

Let i Ii	 	(∣)= ∈ be a probability ensemble consisting of distributions on 0, 1{ }∗, where I 0, 1{ }⊆
∗. Then, 	

is called polynomial-time samplable (or polynomial-time constructible) if there exists a probabilistic poly-
nomial-time algorithm A such that for every i I∈ the random variable A i() is distributed according to i	 . It
is easy to see that if 	 is polynomial-time samplable, then there exists a polynomial π satisfying
supp 0, 1i

π i	 { } ()
⊆

≤ ∣ ∣ for any i I∈ . Furthermore, let j Jj

(∣)= ∈ be a probability ensemble consisting
of distributions on 0, 1{ }∗, where J �⊆ . Usually, when it comes to polynomial-time samplability of
 , the
indices are assumed to be represented in binary. If, however, these indices are represented in unary, then
we specify this explicitly. Thus, the ensemble
 is called polynomial-time samplable when the indices are
represented in unary if there exists a probabilistic polynomial-time algorithm B such that for every j J∈ the
random variable B 1j() is distributed according to j
 .

Suppose K is an infinite subset of �, D is a subset of 0, 1{ }∗, and k Kk� �(∣)= ∈ is a probability
ensemble consisting of distributions on D. We assume that � is polynomial-time samplable when the
indices are represented in unary. This notation is used throughout the article.

A function ν K: �→ + is called negligible if for every polynomial π , there exists a nonnegative integer n
such that ν k π k1() ()≤ / whenever k K∈ and k n≥ . Of course, if ε ν K, : �→ +, ν is negligible, and
ε k ν k() ()≤ for all sufficiently large k K∈ , then ε is also negligible. Moreover, it is easy to see that if
ν ν K, : �′ → + are negligible and η is a polynomial, then ν k ν k() ()+ ′ and η k ν k() () are negligible as func-
tions of k K∈ . We denote by negl an unspecified negligible function on K . Any (in)equality containing

knegl() is meant to hold for all k K∈ .
SupposeY and Z are finite or countably infinite sets, as in Section 2.3. Let k Kk�(∣)∈ and k Kk�(∣)∈

be probability ensembles consisting of distributions on Y . Then, these ensembles are called statistically
indistinguishable if kΔ , neglk k� �() ()= . The properties of the statistical distance listed at the end of Section
2.3 imply the following properties of statistical indistinguishability:
– If k Kk�(∣)∈ and k Kk�(∣)∈ are statistically indistinguishable and M k Kk(∣)∈ is a family of subsets of

Y , then M M kPr Pr neglk kk k� �∣ ∣ ()− = .
– Statistical indistinguishability is an equivalence relation on the set of all probability ensembles indexed

by K and consisting of distributions on Y .
– If k Kk�(∣)∈ and k Kk�(∣)∈ are statistically indistinguishable and k Kk�(∣)∈ is a family of prob-

abilistic functions from Y to Z , then k Kk k� �(() ∣)∈ and k Kk k� �(() ∣)∈ are statistically indistinguish-
able. (In particular, this holds for families of deterministic functions.)

The notion of statistical indistinguishability can be naturally extended to probability ensembles
indexed by K and consisting of random variables that take values inY . Namely, suppose vk and wk (where
k K∈) are random variables taking values in Y . Let k� and k
 be the distributions of vk and wk, respec-
tively. Then, k Kvk(∣)∈ and k Kwk(∣)∈ are said to be statistically indistinguishable if k Kk�(∣)∈ and

k Kk
(∣)∈ are statistically indistinguishable. In this case, we write v wk s k≈ .
Suppose k Krk(∣)∈ and k Ksk(∣)∈ are probability ensembles consisting of random variables taking

values in 0, 1{ }∗. Then, these ensembles are called computationally indistinguishable (or polynomial-time
indistinguishable) if for any probabilistic polynomial-time algorithm A,

A A kr sPr 1 , 1 Pr 1 , 1 negl .k
k

k
k∣ [()] [()]∣ ()= − = =

Pseudo-free families and cryptographic primitives  121

In this case, we write r sk c k≈ .
For each k K∈ , let k� and k� be the distributions of rk and sk, respectively. Of course, computational

indistinguishability of k Krk(∣)∈ and k Ksk(∣)∈ depends only on the probability ensembles k Kk�(∣)∈

and k Kk�(∣)∈ . Therefore, the notion of computational indistinguishability can be naturally extended to
probability ensembles indexed by K and consisting of distributions on 0, 1{ }∗. Namely, such probability
ensembles k Kk�(∣)∈ and k Kk
(∣)∈ are said to be computationally indistinguishable if v wk c k≈ , where
v ~k k� and w ~k k
 for all k K∈ .

The following properties of computational indistinguishability are well known and/or can be proved
straightforwardly:
– If r sk s k≈ , then r sk c k≈ .
– Computational indistinguishability is an equivalence relation on the set of all probability ensembles

indexed by K and consisting of distributions on 0, 1{ }∗.

– If r sk c k≈ and B is a probabilistic polynomial-time algorithm, then B Br s1 , 1 ,k
k c

k
k() ()≈ .

Throughout this article, by indistinguishability, we mean either statistical or computational indistin-
guishability. Note that after choosing one of these types of indistinguishability, we use only this type.
Whenever k Krk(∣)∈ and k Ksk(∣)∈ are indistinguishable, we write r sk k≈ .

Remark 2.1. The aforementioned properties of statistical and computational indistinguishability imply the
following common properties of these types of indistinguishability:
(i) If r sk k≈ and A is a probabilistic polynomial-time algorithm, then A rPr 1 , 1k

k[()]= ≤

A ksPr 1 , 1 neglk
k[()] ()= + .

(ii) Indistinguishability is an equivalence relation on the set of all probability ensembles indexed by K and
consisting of distributions on 0, 1{ }∗. Of course, the same holds for the set of all probability ensembles
indexed by K and consisting of random variables taking values in 0, 1{ }∗.

(iii) If r sk k≈ and B is a probabilistic polynomial-time algorithm, then B Br s1 , 1 ,k
k

k
k() ()≈ .

Let Y d Dd(∣)∈ be a family of subsets of 0, 1{ }∗.

Definition 2.2. (Polynomially bounded family). We say that the family Y d Dd(∣)∈ is polynomially bounded
if there exists a polynomial η such that Y 0, 1d

η d{ } ()
⊆

≤ ∣ ∣ for all d D∈ .

Definition 2.3. (Polynomial-time decidable family). We call the family Y d Dd(∣)∈ polynomial-time decid-
able if there exists a deterministic polynomial-time algorithm that, given d D∈ and u 0, 1{ }∈

∗, decides
whether u Yd∈ .

In other words, polynomial-time decidability of the family Y d Dd(∣)∈ means that, given d D∈ , the
membership problem for Yd is decidable in polynomial time.

Suppose d Dd� �(∣)= ∈ is a probability ensemble such that d� is a probability distribution on Yd for
any d D∈ .

Definition 2.4. (Pseudo-uniform probability ensemble). Assume that for all d D∈ , Yd is finite. For each
k K∈ , let d ~ k� , y ~ d� , and Yu ~ d�(). We call the ensemble � pseudo-uniform with respect to
Y d Dd(∣)∈ and � if d y d u, ,() ()≈ . Moreover, if we are using computational indistinguishability, then
we additionally require that Y d Dd(∣)∈ be polynomial-time decidable.

Let ϕ Y d DΦ : 0, 1d d({ } ∣)= → ∈
∗ be a family of functions. Recall that the familyΦ is called polynomial-

time computable if the function d y ϕ y, d() ()↦ (where d D∈ and y Yd∈) is polynomial-time computable.

Remark 2.5. Assume that the following conditions hold:
– For each d D∈ , ϕd is a permutation of Yd.

122  Mikhail Anokhin

– If we are using computational indistinguishability, then the family Φ is polynomial-time computable.
– The probability ensemble � is pseudo-uniform with respect to Y d Dd(∣)∈ and � .

Let k K∈ , d ~ k� , y ~ d� , and Yu ~ d�(). Then, d y d u, ,() ()≈ and hence, ϕ ϕd y d u, ,d d(()) (())≈ (see
property (iii) in Remark 2.1), where d u,() and ϕd u, d(()) are identically distributed. By property (ii) in
Remark 2.1, ϕd y d y, ,d(()) ()≈ .

2.5 Pseudo-free families of computational Ω-algebras

From now on, we assume that Ω is finite and that algorithms can work with its elements. A general
definition of a family of computational Ω-algebras was given in [7, Definition 3.1]. These families consist
of triples of the form H ρ, ,d d d�(), where d ranges over D, Hd is anΩ-algebra, ρd is a function from a subset of
0, 1{ }∗ onto Hd, and d� is a probability distribution on ρdom d for any d D∈ . In this article, we consider only
polynomially bounded families H ρ d D, ,d d d�(() ∣)∈ of computational Ω-algebras that have unique repre-
sentations of elements. This means that the following conditions hold:
– The family ρ d Ddom d(∣)∈ is polynomially bounded. See also [7, Definition 3.3].
– For each d D∈ , the function ρd is one to one. Hence, we can assume that for every d D∈ , H 0, 1d { }⊆

∗

and the unique representation of each element h Hd∈ is h itself. Namely, we use the family
ρ d Ddom , id ,d ρ ddom d � ∣(())∈ instead of H ρ d D, ,d d d�(() ∣)∈ . Here, ρdom d is considered as the unique

Ω-algebra such that ρd is an isomorphism of thisΩ-algebra onto Hd (d D∈). See also [7, Definition 3.4 and

Remark 3.5]. Moreover, if H 0, 1d { }⊆
∗, then we write H ,d d�() instead of H , id ,d H dd �().

Now we give a formal definition of a family of computational Ω-algebras with the aforementioned
restrictions. Let H d DH ,d d�(() ∣)= ∈ be a family of pairs, where H 0, 1d { }⊆

∗ is an Ω-algebra and d� is
a probability distribution on Hd for any d D∈ .

Definition 2.6. (Family of computational Ω-algebras, see also [7, Definition 3.1]) The family H is called a
family of computational Ω-algebras if the following conditions hold:
(i) The family H d Dd(∣)∈ is polynomially bounded.

(ii) For every ω Ω∈ , the family ω d DHd ∣()∈ is polynomial-time computable.
(iii) The probability ensemble d Dd�(∣)∈ is polynomial-time samplable.

Throughout this article, we denote by V a variety of Ω-algebras and by σ a function from a subset of
0, 1{ }∗ onto F , V()∞ ∞ . Also, suppose s 0� { }∈ ⧹ , H V∈ , and g H m

∈ , where m 0� { }∈ ⧹ . Then, H σ gΣ , , ,s V()

denotes the set of all tuples

v w v w h h, , , , , , ,σ σ s σ s σ n1 1 1(([] []) ([] []) ())… …

such that the following conditions hold:
– n �∈ , v w F,i i m n, V()∈ for all i s1, ,{ }∈ … , and h Hj ∈ for all j n1, ,{ }∈ … ;
– The system of equations

v a x w a x i s; ; , 1, , ,i i() () { }= ∈ …

is unsatisfiable in Fm V() (or, equivalently, in F V()∞);
– v g h w g h; ;i i() ()= in H for each i s1, ,{ }∈ … , where h h h, , n1()= … .

Note that in this definition of H σ gΣ , , ,s V(), vi σ[] and wi σ[] (i s1, ,{ }∈ …) denote all preimages rather than
arbitrarily chosen ones. Moreover, let

Pseudo-free families and cryptographic primitives  123

H σ g H σ gΣ , , , Σ , , , .
t

t
1

V V() ()= ⨆

=

∞

We say that the family H d DH ,d d�(() ∣)= ∈ is in V if Hd V∈ for all d D∈ . In the rest of this subsec-
tion, we assume that H is a family of computational Ω-algebras in V.

Definition 2.7. (Pseudo-free and s-pseudo-free family). The family H is said to be pseudo-free (resp.,
s-pseudo-free) in V with respect to � and σ if for any polynomial π and any probabilistic polynomial-
time algorithm A,

A H σ k A H σ kd g g d g gPr 1 , , Σ , , , negl resp., Pr 1 , , Σ , , , negl ,k k
sd dV V[() ()] () ([() ()] ())∈ = ∈ =

where d ~ k� and g ~ π k
d�

().

Thus, the definition of s-pseudo-freeness in V with respect to � and σ is obtained by replacing
H σ gΣ , , ,d V() by H σ gΣ , , ,s d V() in the definition of pseudo-freeness in V with respect to � and σ. See

also [7, Definition 3.6 and Remark 3.9]. We say that algorithm A from Definition 2.7 tries to break the
pseudo-freeness or s-pseudo-freeness of the family H for the polynomial π .

Remark 2.8. It is evident that if H is pseudo-free inV with respect to � and σ, then H is s-pseudo-free inV

with respect to � and σ. See also [7, Remark 3.9]. Furthermore, let t be an integer such that t s1 ≤ ≤ . We
note that if H is s-pseudo-free in V with respect to � and σ, then H is t-pseudo-free in V with respect to �

and σ. This is because for any p p σ, , domt1
2()… ∈ , d D∈ , h Hd∈

∗, and g Hd
m

∈ (m 0� { }∈ ⧹), we have

p p h H σ g p p u u u u h H σ g, , , Σ , , , , , , , , , , , Σ , , , ,t t d t

s t

s d1 1

pairs

V V  () () (() ()) ()… ∈ ⇔ … … ∈

−

where u a σ1[]= .

Of course, this remark remains valid if the family H is not necessarily polynomially bounded and does
not necessarily have unique representations of elements.

In the next two examples, we introduce the functions nat and SLP. See also [7, Section 3.3]. In what
follows, we will often assume that σ nat= . However, the theorems and corollaries mentioned at the end of
Remark 2.11 also hold when σ SLP= .

Example 2.9. (Natural representation, see also [7, Example 3.12]). Denote by T ,∞ ∞ the Ω-term algebra over
the set a , a , ,x , x ,1 2 1 2{ }… … of distinct variables. Let v a x;() be an arbitrary element of F , V()∞ ∞ , where
v T ,∈ ∞ ∞. In general, unless V O= , the term v is not uniquely determined by v a x;(). We represent v a x;()

by the term v written in Polish notation. Moreover, we encode each variable bi by ib b bini = , where
b a, x{ }∈ , i 0� { }∈ ⧹ , and ibin is the binary representation of i without leading zeros. More formally, consider
the term v as a string over the alphabet consisting of all symbols from iΩ b b a, x , 0i �{ ∣ { } { }}⊔ ∈ ∈ ⧹ ,
parentheses, and comma. Let v be obtained from v by removing all parentheses and commas and replacing
all occurrences of bi by bi for every b a, x{ }∈ and i 0� { }∈ ⧹ , where bi is defined earlier. Then, v v↦ is a one
to one function from T ,∞ ∞ to the set of all strings over the finite alphabet Ω a, x, 0, 1{ }⊔ . It is convenient to
use v as a representation of v a x;() for computational purposes. We call this representation natural and
denote the function v v a x;()↦ , where v T ,∈ ∞ ∞, by nat. Of course, nat is well defined and is a function
onto F , V()∞ ∞ .

Assume that V O= . In this case, the function nat is one to one. For every i 0� { }∈ ⧹ , we identify ai with
ai and xi with xi. Then w wnat 1() =− for all w F ,∈ ∞ ∞. This allows us to simplify the notation.

Example 2.10. (Representation by straight-line programs, see also [7, Example 3.13]) By a straight-line
program over F , V()∞ ∞ we mean a sequence u u, , n1()… of tuples such that n 0� { }∈ ⧹ and for any
i n1, ,{ }∈ … , either u b m,i ()= , where b a x,{ }∈ and m 0� { }∈ ⧹ , or u ω m m, , ,i ω1 ar()= … , where ω Ω∈

124  Mikhail Anokhin

and m m i, , 1, , 1ω1 ar { }… ∈ … − . Here, a and x are considered as symbols that are not in Ω. Any straight-line
program u u u, , n1()= … over F , V()∞ ∞ naturally defines the sequence v v, , n1()… of elements of F , V()∞ ∞ by
induction. Namely, for every i n1, ,{ }∈ … , we put v bi m= if u b m,i ()= and v ω v v, ,i m m ω1 ar()= … if
u ω m m, , ,i ω1 ar()= … , where b, m, ω, and m m, , ω1 ar… are as mentioned earlier. The straight-line program
u is said to represent the element vn. We denote by SLP the function u vn↦ , where u u u, , n1()= … is a
straight-line program over F , V()∞ ∞ and vn is defined earlier. It is evident that SLP is a function onto
F , V()∞ ∞ . Note that this method of representation (for elements of the free group) was used in [1].

Remark 2.11. It is easy to see that, given w nat[] for arbitrary w F , V()∈ ∞ ∞ , one can compute w SLP[] in
polynomial time. Therefore pseudo-freeness (i.e., s-pseudo-freeness) in V with respect to � and SLP
implies pseudo-freeness (i.e., s-pseudo-freeness) in V with respect to � and nat. The inverse transforma-
tion w wSLP nat[] []↦ , in general, cannot be performed in polynomial time. This is because the unique
representation w nat[] (when V O=) can have length exponential in the length of the binary representation
of w SLP[] . See also [7, Remark 3.16]. However, if ωar 1≤ for all ω Ω∈ , then, given w SLP[] for arbitrary
w F , V()∈ ∞ ∞ , one can compute w nat[] in polynomial time. Hence, in this case, pseudo-freeness (i.e.,
s-pseudo-freeness) in V with respect to � and SLP is equivalent to pseudo-freeness (i.e., s-pseudo-free-
ness) inV with respect to � and nat. This shows that Theorems 4.6 and 5.4 and Corollaries 3.4, 4.7, and 5.5
remain valid if we replace nat by SLP in their statements.

2.6 Families having almost no short collisions

In this subsection, we assume that Ω consists of m unary operation symbols, where m 0� { }∈ ⧹ . In this case,
Ω-algebras are called m-unary algebras. For each m 0� { }∈ ⧹ , when it comes to m-unary algebras, the set Ω
is assumed to be fixed. We note that 1-unary algebras are called mono-unary algebras.

Let n 0� { }∈ ⧹ . Denote by n� them-unary algebra with carrier n0, , 1{ }… − and fundamental operations
defined by ω z z n1 mod() ()= + for every ω Ω∈ and z n0, , 1{ }∈ … − . (Of course, y nmod denotes the
remainder of y �∈ divided by n.) In is obvious that uz z u nmod(∣ ∣)= + for all u Ω∈

∗ and z n�∈ .
Suppose H d Dd(∣)∈ is a family of m-unary algebras.

Definition 2.12. (Family having almost no short collisions) We say that the family H d Dd(∣)∈ has almost
no short collisions with respect to � if for any polynomial π,

u v h H u v uh vh kPr , Ω s.t. negl ,π k
d[] ()()

∃ ∈ ∃ ∈ ⊏ ∧ = =
≤

where d ~ k� .
Construction 2.13. Let E d k K d1 , , suppk

k�{() ∣ }= ∈ ∈ and let d E1 ,k() ∈ . For any ω Ω∈ , it is evident
that ω is a permutation of Hd2k� × if and only if ω is a permutation of Hd. Furthermore, if u v, Ω∈

∗, u v⊏ ,

z h H, d2k�() ∈ × , and u z h v z h, ,() ()= , then u v mod 2k∣ ∣ ∣ ∣ ()≡ , and hence, v 2k∣ ∣ ≥ because u v0 ∣ ∣ ∣ ∣≤ < .
This implies that if π is a polynomial, then

u v z h H u v u z h v z hPr , Ω , s.t. , , 0π k
d2k�() () ()()

[]∃ ∈ ∃ ∈ × ⊏ ∧ = =
≤

for all sufficiently large k K∈ , where d ~ k� . In particular, H d E1 ,d
k

2k� ∣ ()()× ∈ has almost no short
collisions with respect to k K1k

k� � �(({ }) ∣)= × ∈ . (Clearly, the probability ensemble � is polynomial-
time samplable when the indices are represented in unary.)

Pseudo-free families and cryptographic primitives  125

3 A transformation of unsatisfiable systems of equations into
single unsatisfiable equations

In this section, we assume that the arity of any operation symbol inΩ is at most 1 (i.e.,Ω Ω Ω0 1= ⊔) and that
V O= . It is easy to see that for any g F ,∈ ∞ ∞ there exist unique v Ω1∈

∗ and b Ω0 a x∈ ⊔ ⊔ satisfying g vb= .

Also, vf vf= for every v Ω1∈
∗ and f F ,∈ ∞ ∞.

Suppose v Ω1∈
∗ and b Ω m n0 a x∈ ⊔ ⊔ , where m n, �∈ . Then, for any Ω-algebra H and any g H m

∈ and
h H n
∈ , we have vb g h v b g h; ;()() (())= . We use the notation vb g h;() for this element. In particular, we

put vb a x vb a x v b a x; ; ;() ()() (())= = .

Lemma 3.1. Let v w, Ω1∈
∗ and b c, Ω0 a x∈ ⊔ ⊔ . Assume that vb wc≠ . Then, the equation

vb a x wc a x; ;() ()= (2)

is satisfiable in F∞ if and only if

b c b v w c w v .x x(() ())≠ ∧ ∈ ∧ ⊑ ∨ ∈ ∧ ⊑ (3)

Proof. First assume that (2) is satisfiable in F∞. Since vb wc≠ , we have b x∈ or c x∈ . By interchanging, if
necessary, vb and wc, we may assume that b x∈ . Consider the case where c x∉ . Then, (2) is an equation in
the single variable b. Suppose b rf↦ , where r Ω1∈

∗ and f Ω0 a∈ ⊔ , is an assignment that satisfies this
equation. Then, we have vrf wc= . This implies that vr w= and v w⊑ . Furthermore, it is obvious that b c≠ .
Thus, in this case, condition (3) holds.

Now consider the case where c x∈ . If b c= , then v w≠ and vr wr≠ for any r Ω1∈
∗. Therefore, (2) is

unsatisfiable in F∞. This contradiction shows that b c≠ . Let b rf↦ , c ug↦ , where r u, Ω1∈
∗ and

f g, Ω0 a∈ ⊔ , be an assignment that satisfies equation (2). Then we have vrf wug= , and hence, vr wu= .
This implies that v w⊑ or w v⊑ . Thus, in this case, condition (3) also holds.

Now assume that condition (3) holds. By interchanging, if necessary, vb and wc, we may assume that
b c≠ , b x∈ , and v w⊑ . Suppose r is the unique string in Ω1

∗ such that vr w= . If c x∉ , then the assignment
b rc F↦ ∈ ∞ satisfies equation (2). If, however, c x∈ , then for every f F∈ ∞, the assignment b rf↦ , c f↦

satisfies (2). Note that in both these cases, there are no other satisfying F∞-valued assignments for (2). Thus,
equation (2) is satisfiable in F∞. □

Corollary 3.2. Let v w, Ω1∈
∗ andb c, Ω0 a x∈ ⊔ ⊔ . Assume that v w∣ ∣ ∣ ∣≤ . Then the equation vb a x wc a x; ;() ()=

is unsatisfiable in F∞ if and only if one of the following mutually exclusive conditions holds:
(i) v w= , b c≠ , and b c, x∉ ;
(ii) v w⊏ and b c x= ∈ ;
(iii) v w⊏ and b x∉ ;
(iv) v w⋢ .

Proof. Lemma 3.1 imply that the equation vb a x wc a x; ;() ()= is unsatisfiable in F∞ if and only if

b c v w b c b v w c w v .x x() ((() ()))≠ ∨ ≠ ∧ = ∨ ∉ ∨ ⋢ ∧ ∉ ∨ ⋢ (4)

(Of course, if this equation is unsatisfiable in F∞, then vb wc≠ , i.e., b c≠ or v w≠ .) The corollary follows
immediately from the following facts:
– If v w= , then (4) is equivalent to the condition b c b cx x≠ ∧ ∉ ∧ ∉ .
– If v w⊏ , then (4) is equivalent to the condition b c b x= ∨ ∉ .
– If v w⋢ , then w v⋢ and (4) holds. □

In the next lemma, we say that a system of equations

v a x w a x i s; ; , 1, , ,i i() () { }= ∈ …

126  Mikhail Anokhin

where v w F,i i ,∈ ∞ ∞ for all i s1, ,{ }∈ … , is represented by v w v w, , , ,s s1 1(() ())… .

Lemma 3.3. There exists a deterministic polynomial-time algorithm C such that the following holds. Let
u v w v w, , , ,s s1 1(() ())= … , where v w F,i i m n,∈ for all i s1, ,{ }∈ … with m n s, , �∈ . Then
(i) If the system of equations represented by u is unsatisfiable in F∞, thenC u v w,() ()= , where v w F, m n,∈ are

such that
– The equation v a x w a x; ;() ()= is unsatisfiable in F∞ and
– The quasi-identity

z z t t v z t w z t v z t w z t v z t w z t, , , , , ; ; ; ; ; ; ,m n s s1 1 1 1(() () () () () ())∀ … … = ∧ ⋯ ∧ = → =

where z z t t, , , , ,m n1 1… … are distinct variables, z z z, , m1()= … , and t t t, , n1()= … , holds in any
Ω-algebra with one to one unary fundamental operations.

(ii) If the system of equations represented by u is satisfiable in F∞, then C u() is a message reporting this.

Proof. SupposeC is a deterministic polynomial-time algorithm that maintains an ordered list L of elements
of dom nat 2() and proceeds on input u as follows:
(1) Initialize the list L with u.
(2) For each v w L,() ∈ (in ascending order), do the following:
– If the equation v a x w a x; ;() ()= is unsatisfiable in F∞, then output v w,() and stop. (It follows from

Lemma 3.1 that this condition can be checked in polynomial time.)
– If v w= , then remove the current pair v w,() from the list L and go to the next pair in this list.
– Assume that the equation v a x w a x; ;() ()= is satisfiable in F∞ and v w≠ . Let v v b= ′ and w w c= ′ ,

where v w, Ω1′ ′ ∈
∗ and b c, Ω m n0 a x∈ ⊔ ⊔ . By Lemma 3.1,

b c b v w c w v .x x(() ())≠ ∧ ∈ ∧ ′ ⊑ ′ ∨ ∈ ∧ ′ ⊑ ′

By interchanging, if necessary, v and w, we may assume that b c≠ , b x∈ , and v w′ ⊑ ′. Let r be the
unique string in Ω1

∗ such that v r w′ = ′. Then replace the current pair v w,() by b rc,() in L and

substitute all occurrences of b in the elements of the subsequent pairs in L by rc.
(3) If this point is reached (i.e., the list L is exhausted and the algorithmC did not terminate), then output a

message reporting that the system of equations represented by u is satisfiable in F∞.
Suppose H is an Ω-algebra with one to one unary fundamental operations. Let S LH() be the set of all

H -valued assignments to variables in m na x⊔ (i.e., functions from m na x⊔ to H) that satisfy the system of
equations represented by the list L maintained byC. It is easy to see that all the transformations of the list L
made byC during the computation on input u preserve the set S LH(). Assume thatC u v w,() ()= . Then v w,()

is in the list L at the end of the computation ofC. Hence, H satisfies the quasi-identity from condition (i). In
particular, this quasi-identity holds in F∞. Since the equation v a x w a x; ;() ()= is unsatisfiable in F∞, the
system of equations represented by u is also unsatisfiable in F∞. This implies condition (ii).

Now assume thatC u() is a message reporting that the system of equations represented by u is satisfiable
in F∞. This system is equivalent to the system of equations represented by L at the end of the computation of
C. The last system has the form

b rc i q, 1, , ,i i i { }= ∈ … (5)

where q �∈ , r Ωi 1∈
∗, bi nx∈ , and c Ωi m n0 a x∈ ⊔ ⊔ for all i q1, ,{ }∈ … . Moreover, b c b c b c, , , , ,i i i i q q1 1{ }∉ …+ +

for every i q1, ,{ }∈ … . But the last condition implies that (5) is satisfiable in F∞. Namely, we can
– Assign an arbitrary value in F∞ to cq if cq x∈ .

– Find the assignment to the variable bq from the equation b r cq q q= (because b cq q≠).
– Assign an arbitrary value in F∞ to cq 1− if cq 1 x∈− and it is still unassigned.

– Find the assignment to the variable bq 1− from the equation b r cq q q1 1 1=− − − (because b c b c, ,q q q q1 1{ }∉− −),
and so on.

Pseudo-free families and cryptographic primitives  127

Therefore, the system of equations represented by u is indeed satisfiable in F∞. Hence, if this system is
unsatisfiable in F∞, then C u v w,() ()= , where v w F, m n,∈ are such that the equation v a x w a x; ;() ()= is
unsatisfiable in F∞. We have already seen that v and w also satisfy the second condition required in (i).
Thus, condition (i) holds. □

Corollary 3.4. Let H d DH ,d d�(() ∣)= ∈ be a family of computational Ω-algebras and let s 0� { }∈ ⧹ . Assume
that for any d D∈ , all unary fundamental operations of Hd are one to one. Then H is pseudo-free in O with
respect to � and nat if and only if H is s-pseudo-free in O with respect to � and nat.

Proof. Let C be a deterministic polynomial-time algorithm from Lemma 3.3. It is easy to see that if

p p h H g, , , Σ , , nat,s d1 O() ()… ∈ , where p p, , dom nats1
2()… ∈ , d D∈ , h Hd∈

∗, and g Hd
l

∈ (l 0� { }∈ ⧹),
then C p p h H g, , , Σ , , nat,s d1 1 O(()) ()… ∈ . This shows that if H is 1-pseudo-free in O with respect to �

and nat, then it is pseudo-free in O with respect to � and nat. The required equivalence follows from
Remark 2.8 and this implication. □

We note that this corollary remains valid if the family H is not necessarily polynomially bounded and
does not necessarily have unique representations of elements.

4 Pseudo-free families of computational mono-unary algebras and
one-way families of permutations

In this section, we assume that ωΩ { }= , where ωar 1= . In other words, we consider mono-unary algebras.
Furthermore, let V be the variety O of all mono-unary algebras.

Throughout this section, suppose
– Y d Dd(∣)∈ is a polynomially bounded family of subsets of 0, 1{ }∗,
– d Dd� �(∣)= ∈ is a polynomial-time samplable probability ensemble such that d� is a probability

distribution on Yd for any d D∈ , and
– ϕ Y d DΦ : 0, 1d d({ } ∣)= → ∈

∗ is a family of functions.

Definition 4.1. (One-way family). The family Φ is called one-way with respect to � and � if it is
polynomial-time computable and for any probabilistic polynomial-time algorithm A,

A ϕ kd z zPr 1 , , neglk
d

1[() ()] ()∈ =
− , where d ~ k� and ϕz ~ d d�().

Of course, if ϕd is a permutation of Yd for every d D∈ , then we use the term “one-way family of
permutations” instead of “one-way family of functions.”

We prefer the term “one-way family of functions” to the more common term “family of one-way
functions” because one-wayness is a property of the whole family of functions rather than of its individual
members.

Theorem 4.2. Let H d DH ,d d�(() ∣)= ∈ be a 1-pseudo-free (in particular, pseudo-free) family of computa-
tional mono-unary algebras in O with respect to � and σ. Moreover, assume that the following additional
conditions hold:
– For each d D∈ , ω is a permutation of Hd.
– The probability ensemble d Dd�(∣)∈ is pseudo-uniform with respect to H d Dd(∣)∈ and � .

Then ω d DΦ Hd ∣()′ = ∈ is a one-way family of permutations with respect to � and d Dd�(∣)∈ .

Proof. It is evident that Φ′ is polynomial-time computable. Suppose A is a probabilistic polynomial-
time algorithm trying to break the one-wayness of Φ′. Let B be a probabilistic polynomial-time algorithm

128  Mikhail Anokhin

(trying to break the 1-pseudo-freeness of H for the polynomial 1) that on input d g1 , ,k() for arbitrary k K∈ ,
d supp k�∈ , and g Hd∈ runs A on this input. If A returns an output y, then B returns ω x a y, ,σ σ1 1(([()] [])).
Otherwise, the algorithm B fails. It is easy to see that A d g ω g1 , ,k 1() ()=

− (in Hd) if and only
if B d g H σ g1 , , Σ , , ,k

d1 O() ()∈ .
Let k K∈ , d ~ k� , and g ~ d� . Then ωd g d g, ,(()) ()≈ by Remark 2.5. Furthermore, given d g u, ,(),

where d D∈ , g Hd∈ , and u 0, 1{ }∈
∗, the condition u ω g1()=

− (which implies that u Hd∈) can be checked in
polynomial time if we are using computational indistinguishability. Hence,

A ω A ω k B H σ
k k

d g g d g g d g gPr 1 , , Pr 1 , , negl Pr 1 , , Σ , , ,
negl negl

k k k
d

1
1 O[(())] [() ()] () [() ()]

() ()

= ≤ = + = ∈

+ =

−

(see property (i) in Remark 2.1). Thus, Φ′ is one-way with respect to � and d Dd�(∣)∈ . □

Remark 4.3. Assume that the family Φ is one-way with respect to � and � . Suppose A is a probabilistic
polynomial-time algorithm (trying to break the one-wayness of Φ) that on input d z1 , ,k() for arbitrary k K∈ ,
d supp k�∈ , and z ϕsupp d d�()∈ chooses y d�← and outputs it. Let k K∈ , d ~ k� , and ϕz z, ~ d d�()′ .
Then

A ϕ kz z d z zPr Pr 1 , , negl .k
d

1[] [() ()] ()= ′ = ∈ =
−

Lemma 4.4. Assume that the family Φ is one-way with respect to � and � . Then for any polynomial π and
any probabilistic polynomial-time algorithm A,

i π k A ϕ kd z z zPr 1, , s.t. 1 , , , , negl ,k
π k id1

1[{ ()} (()) ()] ()()∃ ∈ … … ∈ =
− (6)

where d ~ k� and ϕz z, , ~π k d d1 �()()… .

Proof. Let π be a polynomial and let A be a probabilistic polynomial-time algorithm trying to violate
condition (6) for π . Define the function η K: 0� { }→ ⧹ by η k 2 π klog2() ()

=
⌈ ⌉ for each k K∈ . Then π k η k() ()≤

and η k() is a power of 2 for all k K∈ . Furthermore, the function 1 1k η k()
→ (k K∈) is polynomial-time

computable. (In other words, η is a polynomial parameter on K in the sense of [16, Definition 2.2] and [7,
Definition 2.2]; see also [28, Preliminaries].) Suppose B is a probabilistic polynomial-time algorithm (trying to
break the one-wayness of Φ) that on input d w1 , ,k() for every k K∈ , d supp k�∈ , and w ϕsupp d d�()∈

proceeds as follows:
(1) Choose j η k1, ,�({ ()})← … and z z ϕ, , π k d d1 �()()… ← . Let z z z, , π k1()()= … .

(2) If j π k()≤ , then replace zj by w in z .
(3) Run A on input d z1 , ,k() and return the output if it exists.

Let k K∈ , d ~ k� , η kj ~ 1, ,�({ ()})… , ϕv v v v w, , , , , , ~η kj j d d1 1 1 �()()… …− + , v wj = , and

i π k A ϕI d v v v1, , 1 , , , , .k
π k id1

1{ { ()} ∣ (()) ()}()= ∈ … … ∈
−

Then

i π k A ϕd v v v IPr 1, , s.t. 1 , , , , Prk
π k id1

1[{ ()} (()) ()] []()∃ ∈ … … ∈ = ≠ ∅
− (7)

and

B ϕ kj I d w wPr Pr 1 , , negl .k
d

1[] [() ()] ()∈ ≤ ∈ =
− (8)

It is easy to see that the conditional distribution of d v v, , , π k1(())()… given jj = does not depend on
j η k1, ,{ ()}∈ … . Moreover, this conditional distribution for any such j is the same as the unconditional
distribution of d v v, , , π k1(())()… . Hence, the random variables j and d v v, , , π k1(())()… are independent.
Therefore, j and I are also independent.

Assume that IPr 0[]≠ ∅ ≠ . Since j and I are independent, we see that Ij I I jPr E PrI[∣] []∈ ≠ ∅ = ∈ ,
where the expectation is taken with respect to I distributed according to the conditional distribution of I

Pseudo-free families and cryptographic primitives  129

given I ≠ ∅. As I I η k η kjPr 1[] ∣ ∣ () ()∈ = / ≥ / for every nonempty set I π k1, ,{ ()}⊆ … , this implies that
η kj I IPr 1[∣] ()∈ ≠ ∅ ≥ / , or, equivalently,

η kI j IPr Pr .[] () []≠ ∅ ≤ ∈ (9)

If IPr 0[]≠ ∅ = , then (9) is trivial.
Let ϕz z, , ~π k d d1 �()()… . Then the distribution of d z z, , , π k1(())()… is the same as the conditional

distribution of d v v, , , π k1(())()… given jj = for arbitrary j η k1, ,{ ()}∈ … . Hence, d z z, , , π k1(())()… and
d v v, , , π k1(())()… are identically distributed (see mentioned earlier). Condition (6) follows immediately
from this fact and (7)–(9). □

Corollary 4.5. Let d Dd�(∣)∈ be a probability ensemble consisting of distributions on 0, 1{ }∗. Assume that the
following conditions hold:
– The family Φ is one-way with respect to � and � .
– If d ~ k� , t ~ d� , and ϕz ~ d d�() (k K∈), then d t d z, ,() ()≈ .

– When we are using computational indistinguishability, Y d Dd(∣)∈ is polynomial-time decidable and
d Dd�(∣)∈ is polynomial-time samplable.

Then for any polynomial π and any probabilistic polynomial-time algorithm A,

i π k A ϕ kd t t tPr 1, , s.t. 1 , , , , negl ,k
π k id1

1[{ ()} (()) ()] ()()∃ ∈ … … ∈ =
− (10)

where t t, , ~π k d1 �()… .

Proof. Suppose π is a polynomial and A is a probabilistic polynomial-time algorithm trying to
violate condition (10) for π . Let k K∈ , d ~ k� , t t, , ~π k d1 �()… , and ϕz z, , ~π k d d1 �()()… . Then
d t t d z z, , , , , ,π k π k1 1() ()() ()… ≈ … . This can be easily proved by a standard hybrid argument (see [26, proof
of Theorem 8.34] or [29, Section 3.8.4, Exercise 7] for statistical indistinguishability and [29, proof of
Theorem 3.2.6] for computational indistinguishability). Furthermore, given d v w, ,(), where d D∈ and
v w, 0, 1{ }∈

∗, the condition w ϕ vd
1()∈

− (which implies that w Yd∈) can be checked in polynomial time if
we are using computational indistinguishability. Hence, using property (i) in Remark 2.1 together with
Lemma 4.4, we have

i π k A ϕ

i π k A ϕ k k

d t t t

d z z z

Pr 1, , s.t. 1 , , , ,

Pr 1, , s.t. 1 , , , , negl negl . □

k
π k i

k
π k i

d

d

1
1

1
1

[{ ()} (()) ()]

[{ ()} (()) ()] () ()

()

()

∃ ∈ … … ∈

≤ ∃ ∈ … … ∈ + =

−

−

Theorem 4.6. Assume that the following conditions hold:
– For every d D∈ , ϕd is a permutation of Yd.

– The family Φ is one-way with respect to � and � .

For each d D∈ , let Hd be the mono-unary algebra with carrierYd and fundamental operation ϕd. Assume that

the family H d Dd(∣)∈ has almost no short collisions with respect to � . Then H ϕ d DH ,d d d�(() ∣)= ∈ is a

pseudo-free family of computational mono-unary algebras in O with respect to � and nat.

Proof. It is easy to see that H is a family of computational mono-unary algebras. By Corollary 3.4, it suffices
to prove that H is 1-pseudo-free in O with respect to � and nat. Let π be a polynomial and let A be a
probabilistic polynomial-time algorithm trying to break the 1-pseudo-freeness of H for π . Suppose B is a
probabilistic polynomial-time algorithm (trying to violate the condition proved in Lemma 4.4 for Φ and π)
that on input d g1 , ,k() for every k K∈ , d supp k�∈ , and g g g ϕ, , suppπ k d d

π k
1 �() (())()

()
= … ∈ proceeds as

follows:
(1) Run A on input d g1 , ,k(). Assume that the output is v w h H g, , Σ , , nat,d1 O(()) ()∈ , where v w F, π k n,()∈

and h h h H, , n d
n

1()= … ∈ for some n �∈ . (Note that, in general, the algorithm B cannot check this
condition. However, if it is not true, then further execution of B does not matter.)

130  Mikhail Anokhin

(2) If v w ω a ω b, ,i
s

j{ } { }= , where i j, �∈ , i j< , s π k1, ,{ ()}∈ … , and b π k na x()∈ ⊔ , then output ω b g h;j i 1 ()− − .

(Since ω g ω b g h;i
s

j ()= , this output is equal to ω g ϕ gs d s
1 1() ()=

− − .) Otherwise, the algorithm B fails.

Suppose the assumption of stage 1 of the algorithm B holds. Then the equation v a x w a x; ;() ()= is
unsatisfiable in F∞ and v g h w g h; ;() ()= in Hd. By Corollary 3.2, one of the following mutually exclusive
conditions holds:
(i) v w ω a ω a, ,i

s
i

t{ } { }= , where i �∈ , s t π k, 1, ,{ ()}∈ … , and s t≠ (in this case, g gs t=);
(ii) v w ω x ω x, ,i

s
j

s{ } { }= , where i j, �∈ , i j< , and s n1, ,{ }∈ … (in this case, ω h ω hi
s

j
s=);

(iii) v w ω a ω b, ,i
s

j{ } { }= , where i j, �∈ , i j< , s π k1, ,{ ()}∈ … , and b π k na x()∈ ⊔ (in this case, B out-
puts ϕ gd s

1()−).

Note that each of these conditions corresponds to the condition of Corollary 3.2 with the same number.
Condition (iv) of this corollary cannot hold for strings in ω{ }∗.

Let k K∈ , d ~ k� , ϕg g, , ~π k d d1 �()()… , and g g g, , π k1()()= … . Denote by Sk
i(), Sk

ii(), and Sk
iii() the events

that A on input d g1 , ,k() outputs v w h H g, , Σ , , nat,d1 O(()) ()∈ , where v w,{ } satisfies conditions (i), (ii),
and (iii), respectively, and h h h H, , n

n
d1()= … ∈ for some n �∈ . Then

π k π k kg g z zPr S Pr , , are not distinct 1
2

Pr negl ,k
i

π k1[]
()(())

[] ()()
()≤ … ≤

−
= ′ = (11)

where ϕz z, ~ d d�()′ . This is because kz zPr negl[] ()= ′ = by Remark 4.3. Furthermore, suppose ξ is a
polynomial such that if ω x ω x h A d g, , supp 1 , ,i

s
j

s
k(()) ()∈ , where i j, �∈ , i j≠ , s 0� { }∈ ⧹ , d supp k�∈ ,

and g ϕsupp d d
π k�(()) ()

∈ , then i j ξ k, ()≤ . Then it is easy to see that

i j ξ k y H i j ω y ω y kPr S Pr , 0, , s.t. neglk
ii i j

d[{ ()}] ()()
≤ ∃ ∈ … ∃ ∈ < ∧ = = (12)

because H d Dd(∣)∈ has almost no short collisions with respect to � . Finally,

s π k B ϕ kd g gPr S Pr 1, , s.t. 1 , , neglk
iii k

sd
1[{ ()} () ()] ()()

≤ ∃ ∈ … = =
− (13)

by Lemma 4.4.

Note that the events Sk
i(), Sk

ii(), and Sk
iii() are mutually exclusive. By using (11)–(13), we have

A H kd g gPr 1 , , Σ , , nat, Pr S Pr S Pr S negl .k
k
i

k
ii

k
iii

d1 O[() ()] ()() () ()
∈ = + + =

This shows that H is 1-pseudo-free in O with respect to � and nat. □

Corollary 4.7. Assume that there exists a one-way family of permutations with respect to some probability
ensemble of the required form. Then there exists a pseudo-free family of computational mono-unary algebras
in O with respect to some probability ensemble of the required form and nat. Moreover, the fundamental
operation of any mono-unary algebra in this family is a permutation.

Proof. Assume that ϕd is a permutation ofYd for every d D∈ and that the family Φ is one-way with respect to
� and � . For each d D∈ , let Hd be the mono-unary algebra with carrierYd and fundamental operation ϕd (as
in Theorem 4.6). Suppose E and � are as in Construction 2.13. (Recall that E d k K d1 , , suppk

k�{() ∣ }= ∈ ∈

and k K1k
k� � �(({ }) ∣)= × ∈ .) Then ω is a permutation of G He d2k�= × for every e d E1 ,k()= ∈ , and the

family G e Ee(∣)∈ has almost no short collisions with respect to � (see Construction 2.13 with m 1=). More-
over, it is easy to see that the family ω e EGe ∣()∈ is one-way with respect to � and e Ee�(∣)∈ , where

e d2k�� � �()= × for each e d E1 ,k()= ∈ . Finally, by Theorem 4.6, G ω e E,e e�((()) ∣)∈ is a pseudo-
free family of computational mono-unary algebras in O with respect to � and nat. (Note that
ω ϕe d d2k�� � �() ()()= × for all e d E1 ,k()= ∈ . Also, it is evident that � is polynomial-time samplable
when the indices are represented in unary.) □

Pseudo-free families and cryptographic primitives  131

5 Pseudo-free families of computational m-unary algebras and
claw resistant families of m-tuples of permutations

In this section, we assume that Ω consists of m distinct unary operation symbols ω ω, , m1 … , where m 2≥ . In
other words, we consider m-unary algebras. Furthermore, suppose V is the variety O of all m-unary
algebras.

For arbitrary functions ψ ψ Y Z, , :m1 … → , a pair y y Y, 2()′ ∈ is said to be a claw for ψ ψ, , m1()… if there
exist distinct indices i j m, 1, ,{ }∈ … such that ψ y ψ yi j() ()= ′ . Throughout this section, let Y d Dd(∣)∈ be a

polynomially bounded family of subsets of 0, 1{ }∗ and let ψ ψ d DΨ , ,d m d1, ,(() ∣)= … ∈ be a family of

m-tuples of functions, where ψ ψ Y, , : 0, 1d m d d1, , { }… →
∗ for all d D∈ .

Definition 5.1. (Claw resistant family). The family Ψ is called claw resistant (or claw-free) with respect to �

if the following conditions hold:
(i) For every i m1, ,{ }∈ … , the family ψ d Di d,(∣)∈ is polynomial-time computable.

(ii) If we are using computational indistinguishability, then the family Y d Dd(∣)∈ is polynomial-time
decidable.

(iii) For every i m1, ,{ }∈ … and d D∈ , there exists a probability distribution i d,� on Yd such that

– For each i m1, ,{ }∈ … , the probability ensemble d Di d,�(∣)∈ is polynomial-time samplable and

– For any i j m, 1, ,{ }∈ … , d s d s, ,i j() ()≈ , where d ~ k� , ψs ~i i id d, ,�(), and ψs ~j j jd d, ,�() (k K∈).
(iv) For any probabilistic polynomial-time algorithm A, A ψ ψ kdPr 1 , is a claw for , , neglk

md d1, ,[() ()] ()… = ,

where d ~ k� .

Whenever ψ ψ, ,d m d1, ,… are permutations ofYd for every d D∈ , we use the term “claw resistant family of
m-tuples of permutations” instead of “claw resistant family of m-tuples of functions.”

We prefer the term “claw resistant family of m-tuples of functions (resp., permutations)” to the more
common term “family of claw-free functions (resp., permutations)” for the following reasons:
– Such a family consists of m-tuples of functions (resp., permutations) rather than of functions (resp.,

permutations).
– Claw resistance is a property of the whole family rather than of its individual members.
– It is required that claws for a random m-tuple of functions are computationally hard to find rather than

do not exist.

We note that Definition 5.1 is one of the possible definitions of a claw resistant family. For
example, in [29, Definition 2.4.6], m 2= , the functions ψ d1, and ψ d2, may have different domains, and

ψ ψd d d d1, 1, 2, 2,� �() ()= for all d D∈ (in our notation). Most researchers consider claw resistant families of

pairs, although claw resistant families of tuples were defined already in the pioneering work of Damgård
[30] (see Definition 2.3 of that work).

Theorem 5.2. Let H d DH ,d d�(() ∣)= ∈ be a 1-pseudo-free (in particular, pseudo-free) family of computa-
tional m-unary algebras in O with respect to � and σ. Moreover, assume that the following additional
conditions hold:
– For each i m1, ,{ }∈ … and d D∈ , ωi is a permutation of Hd.
– The probability ensemble d Dd�(∣)∈ is pseudo-uniform with respect to H d Dd(∣)∈ and � .

Then the family ω ω d DΨ , ,H
m
H

1
d d ∣(())′ = … ∈ of m-tuples of permutations is claw resistant with respect to � .

Proof. Conditions (i) and (ii) of Definition 5.1 are evident for Ψ′. Condition (iii) of that definition holds
because if k K∈ , d ~ k� , and h ~ d� , then ω ωd h d h d h, , ,i j(()) () (())≈ ≈ for any i j m, 1, ,{ }∈ … (see
Remark 2.5). Therefore we can take d� as i d,� for every i m1, ,{ }∈ … and d D∈ . It remains to prove

132  Mikhail Anokhin

condition (iv) of Definition 5.1 for Ψ′. Let A be a probabilistic polynomial-time algorithm trying to violate
this condition. Suppose B is a probabilistic polynomial-time algorithm (trying to break the 1-pseudo-free-
ness of H for the polynomial 1) that on input d g1 , ,k() for arbitrary k K∈ , d supp k�∈ , and g supp d�∈

proceeds as follows:
(1) Run A on input d1 ,k(). Assume that the output is h h H, d1 2

2() ∈ . (Note that, in general, the algorithm B
cannot check this condition. However, if it is not true, then further execution of B does not matter.)

(2) For each i m1, ,{ }∈ … , compute ω hi 1() and ω hi 2(). If there exist distinct indices i j m, 1, ,{ }∈ … such that
ω h ω hi j1 2() ()= , then output ω x ω x h h, , ,i σ j σ1 2 1 2(([()] [()]) ()) for some such i and j. (Since the equation

ω x ω xi j1 2() ()= is unsatisfiable in F∞ (see Lemma 3.1), this output is in H σ gΣ , , ,d1 O().) Otherwise, the
algorithm B fails.
Let k K∈ , d ~ k� , and g ~ d� . Then

A ω ω B H σ kd d g gPr 1 , is a claw for , , Pr 1 , , Σ , , , negl .k H
m
H k

d1 1d d O() [() ()] ()[()]… ≤ ∈ =

Thus, condition (iv) of Definition 5.1 holds for Ψ′. □

The next lemma is probably well known (see also [29, Section 2.7.4, Exercise 22]).

Lemma 5.3. Assume that the family ψ ψ d D, ,d m d1, ,(() ∣)… ∈ is claw resistant with respect to � . Moreover,
suppose i d,� (i m1, ,{ }∈ … , d D∈) are probability distributions satisfying condition (iii) of Definition 5.1 for Ψ.
Then for each i m1, ,{ }∈ … , the family ψ d DΨi i d,(∣)= ∈ is one-way with respect to � and d Di d,�(∣)∈ .

Proof. Let i m1, ,{ }∈ … . By condition (i) of Definition 5.1, the family Ψi is polynomial-time computable.
Suppose A is a probabilistic polynomial-time algorithm trying to break the one-wayness of Ψi. Choose an
arbitrary j m i1, ,{ } { }∈ … ⧹ . Let B be a probabilistic polynomial-time algorithm (trying to violate condition

(iv) of Definition 5.1 for Ψ) that on input d1 ,k() for every k K∈ and d supp k�∈ proceeds as follows:
(1) Choose r j d,�← .

(2) Run A on input d ψ r1 , ,k
j d,(()). If A returns an output y, then return y r,(). (It is evident that if A outputs a

preimage of ψ rj d, () under ψi d, , then B outputs a claw for ψ ψ, ,d m d1, ,()… .) Otherwise, the algorithm B
fails.
Let k K∈ , d ~ k� , ψs ~i i id d, ,�(), and ψs ~j j jd d, ,�(). Then d s d s, ,i j() ()≈ . Furthermore, given d v w, ,(),

where d D∈ and v w, 0, 1{ }∈
∗, the condition w ψ vi d,

1()∈
− (which implies that w Yd∈) can be checked in

polynomial time if we are using computational indistinguishability. Therefore,

A ψ A ψ k B ψ ψ

k k

d s s d s s dPr 1 , , Pr 1 , , negl Pr 1 , is a claw for , ,

negl negl

k
i i i

k
j i j

k
md d d d,

1
,

1
1, ,[() ()] [() ()] () [() ()]

() ()

∈ ≤ ∈ + ≤ …

+ =

− −

(see property (i) in Remark 2.1). Thus, the family Ψi is one-way with respect to � and d Di d,�(∣)∈ . □

Theorem 5.4. Assume that the following conditions hold:
– For every i m1, ,{ }∈ … and d D∈ , ψi d, is a permutation of Yd.

– The family Ψ is claw resistant with respect to � .

For each d D∈ , let Hd be the m-unary algebra with carrier Yd and fundamental operations ψ ψ, ,d m d1, ,…

associated with ω ω, , m1 … , respectively. Assume that the family H d Dd(∣)∈ has almost no short collisions
with respect to � . Furthermore, suppose i d,� (i m1, ,{ }∈ … , d D∈) are probability distributions satisfying
condition (iii) of Definition 5.1 for Ψ. Then for any i m1, ,{ }∈ … , H ψ d DH ,i d i d i d, ,�((()) ∣)= ∈ is a pseudo-free
family of computational m-unary algebras in O with respect to � and nat.

Proof. Let i m1, ,{ }∈ … . It is easy to see that Hi is a family of computational m-unary algebras. By Corollary
3.4, it suffices to prove that Hi is 1-pseudo-free in O with respect to � and nat. Suppose π is a polynomial
and A is a probabilistic polynomial-time algorithm trying to break the 1-pseudo-freeness of Hi for π . For

Pseudo-free families and cryptographic primitives  133

each j m1, ,{ }∈ … , let Bj be a probabilistic polynomial-time algorithm that on input d g1 , ,k() for every k K∈ ,

d supp k�∈ , and g g g ψ, , suppπ k i d i d
π k

1 , ,�() (())()
()

= … ∈ proceeds as follows:

(1) Run A on input d g1 , ,k(). Assume that the output is v w h H g, , Σ , , nat,d1 O(()) ()∈ , where v w F, π k n,()∈

and h h h H, , n d
n

1()= … ∈ for some n �∈ . (Note that, in general, the algorithm Bj cannot check this
condition. However, if it is not true, then further execution of Bj does not matter.)

(2) If v w ua uω u b, ,s j{ } { }= ′ , where u u, Ω′ ∈
∗, s π k1, ,{ ()}∈ … , and b π k na x()∈ ⊔ , then output u b g h;()′ .

(Since ug uω u b g h;s j ()= ′ , this output is equal to ω g ψ gj s j d s
1

,
1() ()=

− − .) Otherwise, the algorithm Bj fails.

We note that the algorithm Bj tries to violate condition (10) in Corollary 4.5 for ψd i d i d, ,� �()= (d D∈),
ψ d DΦ j d,(∣)= ∈ , and π . Also, let C be a probabilistic polynomial-time algorithm (trying to violate condi-

tion (iv) of Definition 5.1 for Ψ) that on input d1 ,k() for every k K∈ and d supp k�∈ proceeds as follows:

(1) Choose g ψi d i d
π k

, ,�(()) ()
← .

(2) Run A on input d g1 , ,k(). Assume that the output is v w h H g, , Σ , , nat,d1 O(()) ()∈ , where v w F, π k n,()∈

and h h h H, , n d
n

1()= … ∈ for some n �∈ . (In general, similarly to the algorithm Bj, C cannot check this
condition. However, if it is not true, then further execution of C does not matter.)

(3) If v w uω u b uω u c, ,s t{ } { }= ′ ″ , where u u u, , Ω′ ″ ∈
∗, s t m, 1, ,{ }∈ … , s t≠ , and b c, π k na x()∈ ⊔ , then output

u b g h u c g h; , ;(() ())′ ″ . (Since uω u b g h uω u c g h; ;s t() ()′ = ″ , this output is a claw for ω ω, ,H
m
H

1
d d

()… =

ψ ψ, ,d m d1, ,()… .) Otherwise, the algorithm C fails.

Assume that the algorithm A is invoked by Bj for some j m1, ,{ }∈ … or by C on input d g1 , ,k()

(where k K∈ , d supp k�∈ , and g g g ψ, , suppπ k i d i d
π k

1 , ,�() (())()
()

= … ∈) and that the output of A is

v w h H g, , Σ , , nat,d1 O(()) ()∈ with v w F, π k n,()∈ and h h h H, , n d
n

1()= … ∈ for some n �∈ . Then the equation
v a x w a x; ;() ()= is unsatisfiable in F∞ and v g h w g h; ;() ()= in Hd. By Corollary 3.2, one of the following
mutually exclusive conditions holds:
(i) v w ua ua, ,s t{ } { }= , where u Ω∈

∗, s t π k, 1, ,{ ()}∈ … , and s t≠ (in this case, g gs t=);
(ii) v w ux u x, ,s s{ } { }= ′ , where u u, Ω′ ∈

∗, u u⊏ ′, and s n1, ,{ }∈ … (in this case, uh u hs s= ′);
(iii) v w ua uω u b, ,s j{ } { }= ′ , where u u, Ω′ ∈

∗, s π k1, ,{ ()}∈ … , j m1, ,{ }∈ … , and b π k na x()∈ ⊔ (in this case, Bj

outputs ψ gj d s,
1 ()−);

(iv) v w uω u b uω u c, ,s t{ } { }= ′ ″ , where u u u, , Ω′ ″ ∈
∗, s t m, 1, ,{ }∈ … , s t≠ , and b c, π k na x()∈ ⊔ (in this case,

C outputs a claw for ψ ψ, ,d m d1, ,()…).

Note that each of these conditions corresponds to the condition of Corollary 3.2 with the same number.

Let k K∈ , d ~ k� , ψg g, , ~π k i id d1 , ,�()()… , and g g g, , π k1()()= … . Denote by Tk
i(), Tk

ii(), Tk
iii(), and Tk

iv() the

events that A on input d g1 , ,k() outputs v w h H g, , Σ , , nat,d1 O(()) ()∈ , where v w,{ } satisfies conditions (i),
(ii), (iii), and (iv), respectively, and h h h H, , n

n
d1()= … ∈ for some n �∈ .

By Lemma 5.3, for all j m1, ,{ }∈ … , ψ d Dj d,(∣)∈ is one-way with respect to � and d Dj d,�(∣)∈ . By

using Corollary 4.5 for ψd i d i d, ,� �()= (d D∈) and ψ d DΦ j d,(∣)= ∈ for each j m1, ,{ }∈ … , we obtain

s π k B ψ kd g gPr T Pr 1, , s.t. 1 , , negl .k
iii

j

m

j
k

j sd
1

,
1[{ ()} () ()] ()()

∑≤ ∃ ∈ … = =

=

− (14)

Let ψz z, ~ i id d, ,�()′ . Then kz zPr negl[] ()= ′ = by Remark 4.3, and hence,

π k π k kg g z zPr T Pr , , are not distinct 1
2

Pr negl .k
i

π k1[]
()(())

[] ()()
()≤ … ≤

−
= ′ = (15)

Furthermore, suppose ξ is a polynomial such that if ux u x h A d g, , supp 1 , ,s s
k(()) ()′ ∈ , where u u, Ω′ ∈

∗,
u u⊏ ′, s �∈ , d supp k�∈ , and g ψsupp i d i d

π k
, ,�(()) ()

∈ , then u u ξ k,∣ ∣ ∣ ∣ ()′ ≤ . Then it is easy to see that

u u y H u u uy u y kPr T Pr , Ω s.t. neglk
ii ξ k

d[] ()() ()
≤ ∃ ′ ∈ ∃ ∈ ⊏ ′ ∧ = ′ =

≤ (16)

134  Mikhail Anokhin

because H d Dd(∣)∈ has almost no short collisions with respect to � . Finally,

C ψ ψ kdPr T Pr 1 , is a claw for , , negl .k
iv k

md d1, ,[() ()] ()()
≤ … = (17)

Note that the events Tk
i(), Tk

ii(), Tk
iii(), and Tk

iv() are mutually exclusive. By using (14)–(17), we have

A H kd g gPr 1 , , Σ , , nat, Pr T Pr T Pr T Pr T negl .k
k
i

k
ii

k
iii

k
iv

d1 O[() ()] ()() () () ()
∈ = + + + =

This shows that Hi is 1-pseudo-free in O with respect to � and nat. □

Corollary 5.5. Assume that there exists a claw resistant family of m-tuples of permutations with respect to
some probability ensemble of the required form. Then there exists a pseudo-free family of computational
m-unary algebras in O with respect to some probability ensemble of the required form and nat.Moreover, the
fundamental operations of any m-unary algebra in this family are permutations.

Proof. Assume that ψi d, is a permutation ofYd for every i m1, ,{ }∈ … and d D∈ and that the family Ψ is claw
resistant with respect to � . Suppose i d,� (i m1, ,{ }∈ … ,d D∈) are probability distributions satisfying condition
(iii) of Definition 5.1 for Ψ. For each d D∈ , let Hd be the m-unary algebra with carrier Yd and fundamental
operationsψ ψ, ,d m d1, ,… associated withω ω, , m1 … , respectively (as in Theorem 5.4). Also, suppose E and � are

as in Construction 2.13. (Recall that E d k K d1 , , suppk
k�{() ∣ }= ∈ ∈ and k K1k

k� � �(({ }) ∣)= × ∈ .) Then
ω ω, , m1 … are permutations ofG He d2k�= × for every e d E1 ,k()= ∈ and the family G e Ee(∣)∈ has almost no
short collisions with respect to � (see Construction 2.13). Moreover, it is easy to see that the family

ω ω e E, ,G
m
G

1
e e ∣(())… ∈ is claw resistant with respect to �. In particular, the probability distributions

i d2 ,k�� �() × (i m1, ,{ }∈ … , d E1 ,k() ∈) satisfy condition (iii) of Definition 5.1 for this claw resistant family.
Finally, by Theorem 5.4, if i m1, ,{ }∈ … and ω ψe i i d i d i d2 , 2 , ,k k� �� � � � �()(()) ()= × = × for each

e d E1 ,k()= ∈ , then G e E,e e�(() ∣)∈ is a pseudo-free family of computational m-unary algebras in O with
respect to � and nat. (It is evident that � is polynomial-time samplable when the indices are represented in
unary.) □

6 Constructing a family of trapdoor permutations from a certain
pseudo-free family of computational algebras

In this section, we assume that ω ε δΩ , ,{ }= , where ω is a unary operation symbol and ε and δ are distinct
binary operation symbols. Furthermore, suppose V is the variety generated by all finite Ω-algebras satis-
fying the identity z z δ z ε ω z z z, , ,1 2 1 1 2 2(((())))∀ = .

Let k Kk	 	(∣)= ∈ , where k	 is a probability distribution on D 0, 1{ }×
∗ for each k K∈ . Assume that 	

is polynomial-time samplable when the indices are represented in unary. If d t, ~ k	() , where k K∈ , then
we denote by k	′ the distribution of the random variable d. Furthermore, as in Section 4, suppose
– Y d Dd(∣)∈ is a polynomially bounded family of subsets of 0, 1{ }∗,
– d Dd� �(∣)= ∈ is a polynomial-time samplable probability ensemble such that d� is a probability

distribution on Yd for any d D∈ , and
– ϕ Y d DΦ : 0, 1d d({ } ∣)= → ∈

∗ is a family of functions.

Definition 6.1. (Family of trapdoor functions) The family Φ is said to be a family of trapdoor functions with
respect to 	 and � if it is one-way with respect to k Kk	(∣)′ ∈ and � and there exists a deterministic

polynomial-time algorithm B such that B d t w ϕ z1 , , ,k
d

1() ()∈
− for all k K∈ , d t, supp k	() ∈ , and w ϕ Yd d()∈ .

Again, if ϕd is a permutation of Yd for every d D∈ , then we use the term “family of trapdoor permuta-
tions” instead of “family of trapdoor functions.”

Pseudo-free families and cryptographic primitives  135

Theorem 6.2. Let H d DH ,d d�(() ∣)= ∈ be a 1-pseudo-free (in particular, pseudo-free) family of computa-
tional Ω-algebras in V with respect to � and σ. Moreover, assume that the following additional conditions
hold:
– For each d D∈ , ω is a permutation of Hd.
– The probability ensemble d Dd�(∣)∈ is pseudo-uniform with respect to H d Dd(∣)∈ and � .

For every d D∈ and h y H, d∈ , put ψ y ε h y,d h
H

, d() ()= . For all k K∈ , suppose k
 is the distribution of the

random variable ωd h h, ,((())), where d ~ k� and h ~ d� . Then ψ d D h HΨ ,d h d,(∣)= ∈ ∈ is a family of

trapdoor permutations with respect to k Kk
(∣)∈ and d D h H,d d�(∣)∈ ∈ .

Proof. It is evident that Ψ is polynomial-time computable. Let d D∈ and h Hd∈ . Since Hd V∈ , ψd h, is a
permutation of Hd and y δ ω h y,1(())↦

− (y Hd∈) is its inverse. In particular, ψ y δ h y,d ω h,
1 () ()

()
=

− for all

y Hd∈ . This shows that, given d and h, the permutation ψd ω h, () can be inverted in polynomial time.

Suppose A is a probabilistic polynomial-time algorithm trying to break the one-wayness of Ψ. Let B be a
probabilistic polynomial-time algorithm (trying to break the 1-pseudo-freeness of H for the polynomial 2)
that on input d h g1 , , ,k(()) for arbitrary k K∈ ,d supp k�∈ , and h g H, d∈ runs A on input d h g1 , , ,k(()). If A
returns an output y, then B returns ε a x a y, , ,σ σ1 1 2(([()] [])). Otherwise, the algorithm B fails.

Consider the Ω-algebra G with carrier 0, 1{ } and fundamental operations defined as follows:

ω b ε c ε c c δ b c c1, 0, 0, 1, , ,() () () ()= = = =

for allb c, 0, 1{ }∈ . Then it is easy to see thatG V∈ and the equation ε x0, 11() = is unsatisfiable inG. This implies
that the equation ε a x a,1 1 2() = (in the variable x1) is unsatisfiable in F2 V() (or, equivalently, in F V()∞). By using
this fact, we see that A d h g ψ g1 , , ,k

d h,
1(()) ()=

− if and only if B d h g H σ h g1 , , , Σ , , , ,k
d1 V(()) (())∈ .

Let k K∈ , d ~ k� , and h g, ~ d� . By Remark 2.5, ωd h d h, ,(()) ()≈ . Therefore, ωd h g d h g, , , ,(()) ()≈

and

ω ψ ψd h g d h g, , , ,ωd h d h, ,(() ()) (())() ≈ (18)

by property (iii) in Remark 2.1. It is easy to see that the probability ensemble d D h H,d d�(∣)∈ ∈ is
pseudo-uniform with respect to H d D h H,d d(∣)∈ ∈ and k Kk�(∣)∈ , where k� is the distribution of the
random variable d h,(). By Remark 2.5,

ψd h g d h g, , , , .d h,(()) ()≈ (19)

It follows from (18) and (19) that ω ψd h g d h g, , , ,ωd h,(() ()) ()() ≈ (see property (ii) in Remark 2.1). Further-
more, given d h g u, , ,(()), where d D∈ , h g H, d∈ , and u 0, 1{ }∈

∗, the condition u ψ gd h,
1 ()=

− (which implies
that u Hd∈) can be checked in polynomial time if we are using computational indistinguishability. Hence,

A ω ψ A ψ k

B H σ k k

d h g g d h g g

d h g h g

Pr 1 , , , Pr 1 , , , negl

Pr 1 , , , Σ , , , , negl negl

k
ω

k

k

d h d h

d

, ,
1

1 V

[((()) ())] [(()) ()] ()

[(()) (())] () ()

() = ≤ = +

= ∈ + =

−

(see property (i) in Remark 2.1). Thus, Ψ is one-way with respect to k Kk
(∣)′ ∈ and d D h H,d d�(∣)∈ ∈ ,
where k
′ is the distribution of the random variable ωd h,(()). □

Unfortunately, we are unable to construct a pseudo-free (or even 1-pseudo-free) family of computa-
tional Ω-algebras in V under some natural cryptographic assumption. This probably requires a good
description of F , V()∞ ∞ and a classification of the (un)satisfiable systems of equations

v a x w a x i s; ; , 1, , ,i i() () { }= ∈ …

where v w F,i i , V()∈ ∞ ∞ for all i s1, ,{ }∈ … . Moreover, we cannot suggest a candidate for a (1-)pseudo-free
family of computational Ω-algebras in V. This could be the subject of further research.

By [7, Remark 3.10], if there exists a 1-pseudo-free family of finite computational Ω-algebras (even in
the more general sense of [7, Definitions 3.1 and 3.6 and Remark 3.9]) in a variety of Ω-algebras, then this

136  Mikhail Anokhin

variety is generated by its finite Ω-algebras. Of course, the variety V satisfies the consequent of this
implication.

7 Conclusion

We have shown that pseudo-free families of computational Ω-algebras (in appropriate varieties of Ω-alge-
bras for suitable finite sets Ω of finitary operation symbols) are closely connected with certain standard
cryptographic primitives. This is an additional motivation for studying such pseudo-free families. Here are
some suggestions for further research:
– Find other applications of (weakly) pseudo-free families of computational Ω-algebras. For example, it

would be interesting to construct a secure cryptographic protocol from a polynomially bounded or
exponential-size (weakly) pseudo-free family in a suitable variety of Ω-algebras.

– Construct a polynomially bounded or exponential-size (weakly) pseudo-free family in some interesting
variety of Ω-algebras under a standard cryptographic assumption.

– Modify the definition of a (weakly) pseudo-free family of computational Ω-algebras to make this defini-
tion more useful.

See also [7, Section 6].

Acknowledgements: The author would like to thank the anonymous reviewers for their helpful comments
and suggestions.

Conflict of interest: The author states no conflict of interest.

References

[1] Hohenberger SR. The cryptographic impact of groups with infeasible inversion. Department of Electrical Engineering and
Computer Science. Master thesis, Massachusetts Institute of Technology; 2003.

[2] Rivest RL. On the notion of pseudo-free groups. In: Theory of cryptography (TCC 2004). vol. 2951. Lecture Notes in
Computer Science. Berlin, Heidelberg: Springer; 2004. p. 505–21.

[3] Rivest RL. On the notion of pseudo-free groups. 2004. Presentation of [2]. Available at https://people.csail.mit.edu/
rivest/pubs/Riv04e.slides.pdf, https://people.csail.mit.edu/rivest/pubs/Riv04e.slides.ppt, and http://people.csail.mit.
edu/rivest/Rivest-TCC04-PseudoFreeGroups.ppt.

[4] Micciancio D. The RSA group is pseudo-free. J Cryptol. 2010;23(2):169–86.
[5] Fukumitsu M. Pseudo-free groups and cryptographic assumptions. Department of Computer and Mathematical Sciences,

Graduate School of Information Sciences. PhD thesis, Tohoku University; 2014.
[6] Anokhin M. A certain family of subgroups of ℤn

★ is weakly pseudo-free under the general integer factoring intractability
assumption. Groups Complex Cryptol. 2018;10(2):99–110.

[7] Anokhin M. Pseudo-free families of computational universal algebras. J Math Cryptol. 2021;15(1):197–222.
[8] Hirano T, Tanaka K. Variations on pseudo-free groups. Tokyo Institute of Technology, Department of Mathematical and

Computing Sciences. Research Reports on Mathematical and Computing Sciences, Series C: Computer Science, no. C-239,
January 2007. See https://www.researchgate.net/publication/242185873_Variations_on_Pseudo-Free_Groups.

[9] Hasegawa S, Isobe S, Shizuya H, Tashiro K. On the pseudo-freeness and the CDH assumption. Int J Inf Secur.
2009;8(5):347–55.

[10] Anokhin M. Constructing a pseudo-free family of finite computational groups under the general integer factoring
intractability assumption. Groups Complex Cryptol. 2013;5(1):53–74. Erratum: Groups Complex. Cryptol 11 (2019), 133–4.

[11] Jhanwar MP, Barua R. Sampling from signed quadratic residues: RSA group is pseudofree. In: Progress in
Cryptology–INDOCRYPT 2009. vol. 5922. Lecture Notes in Computer Science. Berlin, Heidelberg: Springer; 2009. p. 233–47.

[12] Catalano D, Fiore D, Warinschi B. Adaptive pseudo-free groups and applications. In: Advances in Cryptology–EUROCRYPT
2011. vol. 6632. Lecture Notes in Computer Science. Berlin, Heidelberg: Springer; 2011. p. 207–23.

Pseudo-free families and cryptographic primitives  137

https://people.csail.mit.edu/rivest/pubs/Riv04e.slides.pdf
https://people.csail.mit.edu/rivest/pubs/Riv04e.slides.pdf
https://people.csail.mit.edu/rivest/pubs/Riv04e.slides.ppt
http://people.csail.mit.edu/rivest/Rivest-TCC04-PseudoFreeGroups.ppt
http://people.csail.mit.edu/rivest/Rivest-TCC04-PseudoFreeGroups.ppt
https://www.researchgate.net/publication/242185873_Variations_on_Pseudo-Free_Groups

[13] Fukumitsu M, Hasegawa S, Isobe S, Koizumi E, Shizuya H. Toward separating the strong adaptive pseudo-freeness from
the strong RSA assumption. In: Information Security and Privacy (ACISP 2013). vol. 7959. Lecture Notes in Computer
Science. Berlin, Heidelberg: Springer; 2013. p. 72–87.

[14] Fukumitsu M, Hasegawa S, Isobe S, Shizuya H. On the impossibility of proving security of strong-RSA signatures via the
RSA assumption. In: Information Security and Privacy (ACISP 2014). vol. 8544. Lecture Notes in Computer Science. Cham:
Springer; 2014. p. 290–305.

[15] Fukumitsu M, Hasegawa S, Isobe S, Shizuya H. The RSA group is adaptive pseudo-free under the RSA assumption. IEICE
Trans Fundam Electron Comput Sci. 2014;E97.A(1):200–14.

[16] Anokhin M. Pseudo-free families of finite computational elementary Abelian p-groups. Groups Complex Cryptol.
2017;9(1):1–18.

[17] Artamonov VA, Yashchenko VV. Multibasic algebras in public key distribution systems (Russian). Uspekhi Mat Nauk.
1994;49(4(298)):149–50. English translation: Russian Math. Surveys 1994;49:145–6.

[18] Artamonov VA, Klyachko AA, Sidelnikov VM, Yashchenko VV. Algebraic aspects of key generation systems. In: Error
Control, Cryptology, and Speech Compression (ECCSP 1993). vol. 829, Lecture Notes in Computer Science. Berlin,
Heidelberg: Springer; 1994. p. 1–5.

[19] Partala J. Algebraic generalization of Diffie-Hellman key exchange. J Math Cryptol. 2018;12(1):1–21.
[20] Partala J. Key agreement based on homomorphisms of algebraic structures. 2011. Cryptology ePrint Archive.

https://eprint.iacr.org/, Report 2011/203.
[21] Partala J. Algebraic methods for cryptographic key exchange. Department of Computer Science and Engineering, Faculty of

Information Technology and Electrical Engineering. PhD thesis, University of Oulu; 2015.
[22] Boneh D, Lipton RJ. Algorithms for black-box fields and their application to cryptography. In: Advances in

Cryptology–CRYPTO ’96. vol. 1109. Lecture Notes in Computer Science. Berlin, Heidelberg: Springer; 1996. p. 283–97.
[23] Cohn PM. Universal algebra. vol. 6 Mathematics and its applications. Dordrecht, Boston, London: D. Reidel Publishing

Company; 1981.
[24] Burris S, Sankappanavar HP. A Course in Universal Algebra. The Millennium ed. 2012. Available at http://www.math.

uwaterloo.ca/~snburris/htdocs/ualg.html.
[25] Wechler W. Universal algebra for computer scientists. vol. 25. EATCS Monographs on Theoretical Computer Science. Berlin

et al.: Berlin, Heidelberg: Springer; 1992.
[26] Shoup V. A computational introduction to number theory and algebra. 2nd ed. New York: Cambridge University

Press; 2008.
[27] Arora S, Barak B. Computational complexity: A modern approach. New York: Cambridge University Press; 2007.
[28] Luby M. Pseudorandomness and cryptographic applications. Princeton: Princeton University Press; 1996.
[29] Goldreich O. Foundations of cryptography. vol. 1. Basic Tools. Cambridge, United Kingdom: Cambridge University

Press; 2001.
[30] Damgård IB. Collision free hash functions and public key signature schemes. In: Advances in Cryptology–EUROCRYPT ’87.

vol. 304. Lecture Notes in Computer Science. Berlin, Heidelberg: Springer; 1988. p. 203–16.

138  Mikhail Anokhin

https://eprint.iacr.org/
http://www.math.uwaterloo.ca/~snburris/htdocs/ualg.html
http://www.math.uwaterloo.ca/~snburris/htdocs/ualg.html

Appendix A

Table of notation

In this appendix, for the convenience of the reader, we briefly recall the notation introduced in Section 2 (in
order of appearance).

� 0, 1,{ }= …

⊔ the operation of disjoint union
Y n the set of all (ordered) n-tuples of elements from Y
Y n≤ Yi

n i
0= ⨆

=

Y∗ Yi
i

0= ⨆
=

∞

u∣ ∣ the length of string u
uv the concatenation of strings u and v
un the concatenation of n copies of string u
1n the unary representation of n �∈ , i.e., the string of n ones
u v⊑ means that string u is a prefix of string v
u v⊏ means that u v⊑ and u v≠

q i Ii(∣)∈ the family of objects qi (i I∈)
ϕdom the domain of function ϕ

idY the identity function on Y
s ρ[] an arbitrary preimage of s under function ρ (unless otherwise specified)

�+ r r 0�{ ∣ }= ∈ ≥

Ω a set of finitary operation symbols (from Section 2.5 on, Ω is finite)
ωar the arity of ω Ω∈

ωH the fundamental operation associated with ω Ω∈ of Ω-algebra H
S⟨ ⟩ the subalgebra generated by S

G H× the direct product of Ω-algebras G and H
Ωi the set of all i-ary operation symbols in Ω
ω ω hn1()… ω ω ω hn1 2((()))= … … , where ω ω, , Ωn1 1… ∈ and h is an element of an Ω-algebra

ZTm() the Ω-term algebra over Z
V a variety of Ω-algebras
F , V()∞ ∞ the V-free Ω-algebra freely generated by a a x x, , , , ,1 2 1 2… …

a a a, ,1 2{ }= …

x x x, ,1 2{ }= …

ma a a, , m1{ }= …

nx x x, , n1{ }= …

F V()∞
a= ⟨ ⟩

Fm n, V() m na x= ⟨ ⊔ ⟩

Fm V() Fm m,0 V a()= = ⟨ ⟩

v a x;() v a a x x, , ; , ,m n1 1()= … … for v Fm n, V()∈

v g h;() v g g h h, , ; , ,m n1 1()= … … for v Fm n, V()∈ , g g g G, , m
m

1()= … ∈ , and h h h G, , n
n

1()= … ∈ ,

where G V∈

v a() v a a, , m1()= … for v Fm V()∈

v g() v g g, , m1()= … for v Fm V()∈ and g g g G, , m
m

1()= … ∈ , where G V∈

O the variety of all Ω-algebras
F ,∞ ∞ F , O()= ∞ ∞

Pseudo-free families and cryptographic primitives  139

F∞ F O()= ∞

Fm n, Fm n, O()=

Fm Fm O()=

supp � the support of probability distribution � on a finite or countably infinite sample space
Y , i.e., y Y yPr 0�{ ∣ { } }∈ ≠

ysupp the support of the distribution of random variable y
α �() the image of probability distribution � under function α
y y, , ~n1 �… means that y y, , n1 … are independent random variables distributed according to

probability distribution �

n1� �×⋯× the distribution of a random variable y y, , n1()… , where y y, , n1 … are independent

random variables distributed according to probability distributions , , n1� �… ,
respectively

n� � �= ×⋯× , where probability distribution � occurs n times
Z�() the uniform probability distribution on Z

y y, , n1 �… ← means that y y, , n1 … are fixed elements chosen independently at random according to

probability distribution �

Δ ,� �() the statistical distance between probability distributions � and �

K an infinite subset of �

D a subset of 0, 1{ }∗

k Kk� �(∣)= ∈ a polynomial-time samplable (when the indices are represented in unary) probability
ensemble consisting of distributions on D

negl an unspecified negligible function on K
r sk s k≈ means that probability ensembles k Krk(∣)∈ and k Ksk(∣)∈ are statistically

indistinguishable
r sk c k≈ means that probability ensembles k Krk(∣)∈ and k Ksk(∣)∈ are computationally

indistinguishable
r sk k≈ means that r sk s k≈ or r sk c k≈ (only one type of indistinguishability is used

everywhere)
σ a function from a subset of 0, 1{ }∗ onto F , V()∞ ∞

H σ gΣ , , ,s V() the set defined in Section 2.5

H σ gΣ , , ,V() H σ gΣ , , ,t t1 V()= ⨆
=

∞

v Ω-term v over a , a , ,x , x ,1 2 1 2{ }… … (or over a x⊔ when V O=) written in Polish nota-
tion, where the indices of variables are represented in binary (see Example 2.9)

nat the function v v a x;()↦ that provides the natural representation of elements of
F , V()∞ ∞ (see Example 2.9)

SLP the function that provides the representation of elements of F , V()∞ ∞ by straight-line
programs (see Example 2.10)

n� the m-unary algebra with carrier n0, , 1{ }… − and fundamental operations defined by
ω z z n1 mod() ()= + for every ω Ω∈ and z n0, , 1{ }∈ … −

140  Mikhail Anokhin

	1 Introduction
	1.1 Related work
	1.2 Our contributions and organization of the article

	2 Preliminaries
	2.1 General preliminaries
	2.2 Algebraic preliminaries
	2.3 Probabilistic preliminaries
	2.4 Cryptographic preliminaries
	2.5 Pseudo-free families of computational Ω-algebras
	2.6 Families having almost no short collisions

	3 A transformation of unsatisfiable systems of equations into single unsatisfiable equations
	4 Pseudo-free families of computational mono-unary algebras and one-way families of permutations
	5 Pseudo-free families of computational m-unary algebras and claw resistant families of m-tuples of permutations
	6 Constructing a family of trapdoor permutations from a certain pseudo-free family of computational algebras
	7 Conclusion
	Acknowledgements
	References
	Appendix A Table of notation

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /POL (Versita Adobe Distiller Settings for Adobe Acrobat v6)
 /ENU (Versita Adobe Distiller Settings for Adobe Acrobat v6)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

