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Abstract: Elliptic curves are typically defined by Weierstrass equations. Given a kernel, the well-known Vélu’s
formula shows how to explicitly write down an isogeny betweenWeierstrass curves. However, it is not clear how
to do the same on other forms of elliptic curves without isomorphisms mapping to and from the Weierstrass
form. Previous papers have shown some isogeny formulas for (twisted) Edwards, Huff, and Montgomery forms
of elliptic curves. Continuing this line of work, this paper derives explicit formulas for isogenies between
elliptic curves in (twisted) Hessian form. In addition, we examine the numbers of operations in the base field
to compute the formulas. In comparison with other isogeny formulas, we note that our formulas for twisted
Hessian curves have the lowest costs for processing the kernel and our X-affine formula has the lowest cost for
processing an input point in affine coordinates.
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1 Introduction
An elliptic curve is defined as a nonsingular irreducible projective curve of genus one, with a specified point
as additive identity on the curve. An elliptic curve is said to be defined over a field k if the curve is defined over
k and the specified point additive identity is k-rational.

Let E be an elliptic curve defined over k with the specified point additive identity O. It is well known
that there exist functions x, y ∈ k(E) such that the rational map ϕ defined over k by ϕ = (x : y : 1) is an
isomorphism from E to an elliptic curve in Weierstrass form:

Y2Z + a1XYZ + a3YZ2 = X3 + a2X2Z + a4XZ2 + a6Z3

and ϕ(O) = (0 : 1 : 0), where a1, a2, . . . , a6 ∈ k (see [1, III.3.1]). Therefore, elliptic curves are typically
identified with curves defined by such a Weierstrass equation with the specified point additive identity
(0 : 1 : 0).

Let E and E′ be elliptic curves with specified point additive identities O and O′ respectively. An isogeny
from E to E′ is defined as a morphism ϕ : E → E′ such that ϕ(O) = O′. It is a theorem (see [1, III.4.8]) that an
isogeny is also a group homomorphism. As a corollary, the kernel of an isogeny is a finite subgroup of the
domain. Conversely, if F is a finite subgroup of E, there exists an elliptic curve E′ and a separable isogeny
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ϕ : E → E′ such that the kernel of ϕ is F (see [1, III.4.12]). Given E and F, Vélu’s formula in [2] shows an explicit
expression for ϕ and E′, where E and E′ are both in Weierstrass form.

However, the Weierstrass equation is only one way to represent an elliptic curve. Other forms of elliptic
curves are possible and have been proposed, some with applications in cryptography. Examples include
Montgomery curves in [3, 4], (twisted) Edwards curves in [5–7], Huff curves in [8, 9], and (twisted) Hessian
curves in [10]. The first formulas for isogenies defined directly for non-Weierstrass curves was for (twisted)
Edwards curves and Huff curves [11]. Shortly thereafter, similar work, [12] and [13], showed formulas for
computing isogenies on Montgomery curves. In this paper, we derive a formula for isogenies on twisted
Hessian curves and consider the computational cost of computing image points. Furthermore, in our main
proof, we make explicit and rigorous the techniques and justifications that are required but omitted in proving
isogeny formulas in previous works. Compared to other isogeny formulas, we note that our formulas for
twisted Hessian curves have the lowest costs for preprocessing the kernel points to determine the rational
map prior to input evaluation, and our X-affine formula has the lowest cost for processing an input point in
affine coordinates.

Isogenies have found applications in counting the number of points on an elliptic curve over a finite field
(e.g. see [14, 15]), analyzing the complexity of elliptic-curve discrete logarithms in [16], and cryptographic
constructions (e.g. [17–19]). More efficient isogeny formulas could lead to performance benefits in the above
applications.

The organization of the paper is as follows. Section 2 introduces Hessian curves and their generalization
called twisted Hessian curves. A summary of the point addition formulas on twisted Hessian curves is included.
Section 3 derives formulas for 3-isogenies. Section 4 states and proves the main result for isogenies with a
kernel of size ℓ /≡0 (mod 3). Finally, Section 5 examines the main formula’s computational cost of computing
image points. Some open problems and directions for future work are given in Section 6.

2 Twisted Hessian Curves
A Hessian curve in projective coordinates is defined by the equation

X3 + Y3 + Z3 = dXYZ

with 27 − d3 ≠ 0. The Hessian form of elliptic curves has been studied, for example, in [20–23], to optimize
point addition and scalar multiplication formulas, as well as to optimize pairing computations. In addition, as
a step towards resistance against side-channel attacks, the Sylvester addition formula (described below) on
Hessian curves can also be used for point doubling and subtraction after a permutation of input coordinates
[24]. A generalization of Hessian curves, called twisted Hessian curves, is defined by the equation

aX3 + Y3 + Z3 = dXYZ

with a(27a − d3) ≠ 0. Twisted Hessian curves were used in [10] to provide a complete unified addition formula
and improve efficiency for point doubling and tripling over fields of arbitrary characteristic. Other works that
optimized arithmetic on (twisted) Hessian curves include [25–27].

Definition 1. A twisted Hessian curve over a field k is a projective curve H(a, d) defined by the polynomial
aX3 + Y3 + Z3 = dXYZ with the specified point (0 : −1 : 1) as additive identity in the projective space P(k)2,
with a, d ∈ k and a(27a − d3) ≠ 0. If a = 1, the curve is called a Hessian curve.

As an elliptic curve, each twisted Hessian curve must be isomorphic over k to a curve given by a Weierstrass
equation. Over a finite field of characteristic not equal to 3, we can find an explicit isomorphism from any
twisted Hessian curve to a Weierstrass curve, and conversely, from any Weierstrass curve with a k-rational
point of order 3 to a twisted Hessian curve. Such isomorphisms are given in [10, Theorem 5.3 and 5.4] and [28].
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For convenience, we summarize below the formulas for point addition on twisted Hessian curves. Let
(X1 : Y1 : Z1) and (X2 : Y2 : Z2) be points on H(a, d). The inverse of (X1 : Y1 : Z1) is

−(X1 : Y1 : Z1) = (X1 : Z1 : Y1).

The (Sylvester) standard addition formula is given by:

X3 = X21Y2Z2 − X22Y1Z1,
Y3 = Z21X2Y2 − Z22X1Y1,
Z3 = Y21X2Z2 − Y22X1Z1.

If (X3, Y3, Z3) ≠ (0, 0, 0), then (X1 : Y1 : Z1) + (X2 : Y2 : Z2) = (X3 : Y3 : Z3). Another addition formula,
called rotated addition, is defined by the formula:

X′
3 = Z22X1Z1 − Y21X2Y2,
Y ′
3 = Y22Y1Z1 − aX21X2Z2,
Z′3 = aX22X1Y1 − Z21Y2Z2.

If (X′
3, Y ′

3, Z′3) ≠ (0, 0, 0), then (X1 : Y1 : Z1) + (X2 : Y2 : Z2) = (X′
3 : Y ′

3 : Z′3). The completeness follows
because (X3, Y3, Z3) ≠ (0, 0, 0) or (X′

3, Y ′
3, Z′3) ≠ (0, 0, 0) by [10, Theorem 4.7]. Moreover, if a is not a cube in

k, then (X′
3, Y ′

3, Z′3) ≠ (0, 0, 0) [10, Theorem 4.5].

3 3-isogenies
In this section, we show how to compute 3-isogenies on twisted Hessian curves, and in the next section, we
provide a formula for ℓ-isogenies with ℓ /≡0 (mod 3). To compute an isogeny with kernel of size divisible by
3, we can write the kernel as an internal product of a subgroup of size ℓ not divisible by 3 and one or more
subgroups of size 3, and compose the formulas for each factor. Together, these formulas are sufficient for
kernels of any size. In particular, to obtain an isogeny with kernel of size 3rℓ where ℓ /≡0 (mod 3), we can
compose an ℓ-isogeny with r isogenies of degree 3.

To derive the result for 3-isogenies, we begin by characterizing all points of order 3 on a twisted Hessian
curve. Let c be a cubic root of a. It can be easily verified that the point (1 : 0 : −c) and its inverse (1 : −c : 0)
both have order 3. In addition, if ω3 = 1 and ω ≠ 1, then (0 : −ω : 1) and its inverse (0 : 1 : −ω) have order 3.
The verification has been done in [10, Theorem 5.1]. In fact, based on the cardinality of the 3-torsion on elliptic
curves (e.g. see [29, Theorem 3.2]), these are the only points of order 3 on a twisted Hessian curve. Moreover,
using the defining equation of H(a, d), it can be easily verified that the 3-torsion is the precisely the set of
points (X : Y : Z) such that XYZ = 0.

We now turn to formulas for 3-isogenies of twisted Hessian curves. As seen in the preceding paragraph,
a kernel of size 3 is either generated by (0 : −ω : 1) with ω3 = 1 and ω ≠ 1 or by (1 : −c : 0) with c3 = a.
First, we consider 3-isogenies with their kernel generated by (0 : −ω : 1). Such a map can be obtained by
composing the 3-isogeny given in [10, Theorem 5.4] from a twisted Hessian curve to a Weierstrass curve of the
form Y2Z + a1XYZ + a3YZ2 = X3 with the isomorphism given in [10, Theorem 5.4] between such a Weierstrass
curve and a twisted Hessian curve. The result of such composition is stated in Theorem 1.

Theorem 1. Let ω3 = 1 and ω ≠ 1. The map

(X : Y : Z) ↦→ (XYZ : aX3 + ω2Y3 + ωZ3 : aX3 + ωY3 + ω2Z3)

is an isogeny from H(a, d) to H(d3 − 27a, 3d) with the kernel

⟨(0 : −ω : 1)⟩ = ⟨(0 : −ω2 : 1)⟩ = {(0 : −1 : 1), (0 : −ω : 1), (0 : −ω2 : 1)}.
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Proof. We leave the straightforward verification to the reader.

Next, we consider 3-isogenies with kernel generated by the point (1 : −c : 0) with c3 = a. The only formula for
such isogenies that we are aware of is given in [30, Proposition 4] for Hessian curves over characteristic 3. We
restate the result here.

Theorem 2. Let k have characteristic 3. The map σ : H(1, d3
i+1
) → H(1, d3

i
) defined by

σ(X : Y : Z) = (d2·3
i
XYZ : Y2Z + X2Y + XZ2 : XY2 + X2Z + YZ2)

is an isogeny. Moreover, f : H(1, d3
i
) → H(1, d3

i+1
) defined by f (X : Y : Z) = (X3 : Y3 : Z3) is an isogeny, and

f ∘ σ(P) = 3P for each P on H(1, d3
i+1
). The kernel of σ is {(0 : −1 : 1), (−1 : 1 : 0), (−1 : 0 : 1)}.

We generalize Theorem 2 to 3-isogenies on twisted Hessian curves H(a, d) over any characteristic with kernel
⟨(1 : −c : 0)⟩, where c3 = a.

Theorem 3. The rational map

ϕ =
(︀
XYZ : c2X2Z + cXY2 + YZ2 : c2X2Y + cXZ2 + Y2Z

)︀
.

is an isogeny from H(a, d) to H(A, D), where c3 = a,

A = d2c + 3dc2 + 9a and D = d + 6c

with kernel
⟨(1 : −c : 0)⟩ = ⟨(1 : 0 : −c)⟩ = {(0 : −1 : 1), (1 : −c : 0), (1 : 0 : −c)}.

Proof. Let f = xy, g = c2x2 + cxy2 + y, and h = c2x2y + cx + y2 be the dehomogenized coordinate maps of ϕ.
Also let A and D be as given in the theorem statement. Then,

Af 3 + g3 + h3 − Dfgh = (ax3y3 − cdx2y2 + ax3 + y3)(ax3 + y3 + 1 − dxy).

This shows that the range of the rational map ϕ is indeed H(A, D). It remains to check that the kernel is as
claimed. Let P = (X : Y : Z) and suppose ϕ(P) = (0 : −1 : 1), then XYZ = 0.

1. If X = 0, then YZ2 = −Y2Z, i.e. Z = −Y and P = (0 : −1 : 1).
2. If Y = 0, then c2X2Z = −cXZ2, i.e. cX = −Z and P = (1 : 0 : −c).
3. If Z = 0, then cXY2 = −c2X2Y, i.e. Y = −cX and P = (1 : −c : 0).

Conversely, by straightforward calculation, we see that ϕ(P) = (0 : −1 : 1) for each such P.

4 Isogenies of degree ℓ /≡0 (mod 3)

In this section, we look at the ℓ-isogeny formulas, where ℓ /≡0 (mod 3). One approach for obtaining such an
ℓ-isogeny between twistedHessian curves is to compose the isogeny given by Vélu’s formulawith isomorphisms
to and from Weierstrass curves. This approach, however, doesn’t lead to a simple formula. Moreover, the
resulting codomain twisted Hessian curve is dependent on the choice of point of order 3 on the codomain
Weierstrass curve produced by Vélu’s formula. We prove our main twisted Hessian isogeny result as follows.

Theorem 4. Let F = {(0 : −1 : 1)} ∪ {(si : ti : 1)}ni=1 be a finite subgroup of H(a, d) of size ℓ = n + 1, where ℓ is
not divisible by 3. Then, F is the kernel of an isogeny from H(a, d) to H(A, D) defined by

ϕ(P) =
(︃∏︁
R∈F

X(P + R) :
∏︁
R∈F

Y(P + R) :
∏︁
R∈F

Z(P + R)
)︃
.



Isogenies on twisted Hessian curves | 349

where A = aℓ and
D =

(1 − 2n)d + 6
∑︀n

i=1 1/(si ti)∏︀n
i=1 si

.

Note that in the equation for ϕ, for each point P + R, the choice of representative of P + R in projective
coordinates does not affect the result ϕ(P). Moreover, si ti ≠ 0 for each i ∈ {1, 2, . . . , n}.

Proof. Without loss of generality, let k be algebraically closed. We start by writing down a rational form of the
map ϕ given in the theorem, which is derived from the standard addition formula. Let

ϕY :=
y
x

n∏︁
i=1

xy − si ti
s2i y − tix2

and ϕZ :=
1
x

n∏︁
i=1

t2i x − siy2

s2i y − tix2
.

That is, ϕ(x : y : 1) = (1 : ϕY : ϕZ). Define

G = A + ϕ3
Y + ϕ

3
Z − DϕYϕZ ∈ k(H),

where A, D ∈ k are to be determined.
Our goal is show that G = 0 for A, D ∈ k as stated in the theorem. To this end, by Proposition [1, II.1.2], it

suffices to show that G has no poles and G(Q) = 0 for some Q on H. By the definitions of ϕY and ϕZ, if P is a
pole of G, then X(ϕ(P)) = 0, which is equivalent to X(P+R) = 0 for some R ∈ F. Let Q = P+R. From the formula
of ϕ, it can be seen that ϕ is invariant under translation by any point in F. So ϕ(P) = ϕ(Q) and X(Q) = 0.
Therefore, if G has a pole at some point P, then G also has a pole at some point Q with X(Q) = 0. By subsituting
X = 0 into the defining equation of H, we find that the only points Q with X(Q) = 0 are {(0 : −ω : 1) | ω3 = 1}.

Let P = (0 : −ω : 1) with ω3 = 1. We’ll show that P is not a pole of G for some A and D in k and hence by
the arguments in the preceding paragraph, G has no pole at all and thus is constant.

First, we assume that the characteristic of k is not 3. We need the following facts:

– k[H]P is a discrete valuation ring and x is a uniformizer of k[H]P by [31, Theorem 1 of Chapter 3].
– k[H]P has the unique maximal ideal MP := {q ∈ k[H]P | q(P) = 0} (see [31, Section 2.4]).
– k(H) is the field of quotients of k[H]P.
– The field k is a subring of k[H]P, and the map b ↦→ b +Mp from k to k[H]p/MP is a field isomorphism.

We can conclude that the function that maps each element in k(H) to its Laurent series expansion in k((x)) is a
one-to-one ring homomorphism [31, Problem 2.32]. We write f =

∑︀r
i=m cix

i where m ∈ Z and r ∈ Z ∪ {∞} to
mean that f has the Laurent series expansion

∑︀r
i=m cix

i. We also denote by O(xn) any unspecified series of
order at least n.

Next, we find the series expansion of y in terms of x. The order of y at P is ordP(y) = 0, since y is defined
and is nonzero at P. Thus y has a power series expansion y =

∑︀∞
i=0 cix

i. As ax3 + y3 + 1 − dxy is zero in
k(H) and the function that maps each element in k(H) to its Laurent series expansion is a one-to-one ring
homomorphism,

ax3 + (
∞∑︁
i=0

cixi)3 + 1 − dx(
∞∑︁
i=0

cixi) = 0.

Since y − c0 vanishes at P, we have c0 = −ω. Then, solving for c1 and c2 gives

y = −ω − d
3ω x + O(x

3).

Then,

xy − si ti
s2i y − tix2

= ti
ωsi

+
(︂
3 − dsi ti
3s2i

)︂
x +
(︃
9t2i − d2s2i ti

9ω2s3i

)︃
x2 + O(x3),

t2i x − siy2

s2i y − tix2
= ωsi

+
(︂
3t2 − ds
3ωs2

)︂
x +
(︃
dsi t2i − 3t

3s3i

)︃
x2 + O(x3).
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Note that by the characterization of the 3-torsion in the preceding section, that the kernel does not contain
a point of order 3 is equivalent to si ti ≠ 0. In the remainder of the proof, we use the definition S :=

∏︀n
i=1 si,

and since −(si : ti : 1) = (si/ti : 1/ti : 1), we have
n∏︁
i=1
ti = 1,

n∑︁
i=1

t2i
si

=
n∑︁
i=1

1
si ti

, and
∑︁

1≤i<j≤n

t2i t2j
sisj

=
∑︁

1≤i<j≤n

1
sisj ti tj

. (1)

Moreover, we also use the following formula for the product of power series:
n∏︁
i=1
c(0)i +c(1)i x + c

(2)
i x

2 + O(x3)

=
n∏︁
i=1
c(0)i +

(︁ n∏︁
i=1
c(0)i
)︁(︁ n∑︁

i=1

c(1)i
c(0)i

)︁
x

+
(︁ n∏︁
i=1
c(0)i
)︁(︁ n∑︁

i=1

c(2)i
c(0)i

+
n∑︁

1≤i<j≤n

c(1)i c
(1)
j

c(0)i c
(0)
j

)︁
x2 + O(x3),

assuming
∏︀n
i=1 c

(0)
i ≠ 0.

Thus, we have
n∏︁
i=1

xy − si ti
s2i y − tix2

= U0 + U1x + U2x2 + O(x3),

where

U0 =
n∏︁
i=1

ti
ωsi

= 1
ωnS ,

U1 =
(︁ n∏︁
i=1

ti
ωsi

)︁ n∑︁
i=1

(︁ ω
si ti

− d3

)︁
= 1
ωn−1S

(︁
− nd3 +

n∑︁
i=1

1
si ti

)︁
,

U2 =
n∏︁
i=1

ti
ωsi

(︁ n∑︁
i=1

(︀ d2
9ω −

ti
ωs2i

)︀
+
∑︁

1≤i<j≤n

(︀ω2(3 − dsi ti)(3 − dsj tj)
9sisj ti tj

)︀)︁

= 1
ωnS

(︁ n∑︁
i=1

(︀ d2
9ω −

ti
ωs2i

)︀
+
∑︁

1≤i<j≤n

(︀d2ω2

9 − dω
2

3si ti
− dω

2

3sj tj
+ ω2

sisj ti tj
)︀)︁

= 1
ωn+1S

(︁n(n + 1)
2

d2
9 −

n∑︁
i=1

ti
s2i
− (n − 1)d

3
∑︁
i

1
si ti

+
∑︁

1≤i<j≤n

1
sisj ti tj

)︁
.

Moreover,

n∏︁
i=1

t2i x − siy2

s2i y − tix2
= V0 + V1x + V2x2 + O(x3),

where

V0 =
n∏︁
i=1

ω
si

= ω
n

S ,

V1 =
ωn
S

n∑︁
i=1

d
3ω2 −

t2i
ω2si

= ω
n−2

S

(︁nd
3 −

n∑︁
i=1

t2i
si

)︁
,

V2 =
ωn
S

(︁ n∑︁
i=1

(︀ dt2i
3ωsi

− ti
ωs2i

)︀
+
∑︁

1≤i<j≤n

(dsi − 3t2i )(dsj − 3t2j )
9ω4sisj

)︁
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= ω
n

S

(︁ n∑︁
i=1

(︀ dt2i
3ωsi

− ti
ωs2i

)︀
+
∑︁

1≤i<j≤n

d2
9ω −

dt2i
3ωsi

−
dt2j
3ωsj

+
t2i t2j
ωsisj

)︁

= ω
n−1

S

(︁n(n − 1)
2

d2
9 −

n∑︁
i=1

ti
s2i

+ (2 − n)d
3

n∑︁
i=1

t2i
si

+
∑︁

1≤i<j≤n

t2i t2j
sisj

)︁
.

Substitution into G, with some additional simplifying using (1), yields

G = G−3x−3 + G−2x−2 + G−1x−1 + O(1),

where

G−3 = 0,

G−2 =
ω
S3
(︁
(2n − 1)d − 6

n∑︁
i=1

1
si ti

+ DS
)︁
,

G−1 =
ω2d
3S3

(︁
(2n − 1)d − 6

n∑︁
i=1

1
si ti

+ DS
)︁
.

Hence, G−2 = G−1 = 0 if

D =
(1 − 2n)d + 6

∑︀n
i=1

1
si ti

S ;

i.e. G has no pole and thus is constant.
Finally, we consider the case when k has characteristic 3. In particular, x is not a uniformizer for k[H]P.

Instead, ω = 1, and u = y + 1 is a uniformizer for k[H]P. Since x is defined and vanishes at P, i.e. ordP(x) ≥ 1,
x has a power series expansion x =

∑︀∞
i=0 biu

i with b0 = 0. Hence,

a(
∞∑︁
i=0

biui)3 + (u − 1)3 + 1 − d(
∞∑︁
i=0

biui)(u − 1) = 0.

Solving for b1, b2, . . . , we get

x = −1d (u
3 + u4 + · · · + u8) + a − d

3

d4 (u9 + · · · + u11) + −a − d
3

d4 (u12 + u13 + u14) + O(u15).

Note that in characteristic 3, by the definition of twisted Hessian curves, d ≠ 0. Then,

( xy − si ti
s2i y − tix2

)3 = t3i
s3i
(1 + u3 + u6) + O(u9),

( t
2
i x − siy2

s2i y − tix2
)3 = 1

s3i
(1 − u3) + O(u9),

xy − si ti
s2i y − tix2

· t
2
i x − siy2

s2i y − tix2
= 1
s2i

(︁
ti +

t3i + 2
dsi

u3 + t3i
dsi

u6
)︁
+ O(u9).

Therefore,
n∏︁
i=1

( xy − si ti
s2i y − tix2

)3 = 1
S3
(︁
1 + nu3 + n(n + 1)2 u6

)︁
+ O(u9),

n∏︁
i=1

( t
2
i x − siy2

s2i y − tix2
)3 = 1

S3
(︁
1 − nu3 + n(n − 1)2 u6

)︁
+ O(u9),

n∏︁
i=1

xy − si ti
s2i y − tix2

· t
2
i x − siy2

s2i y − tix2
= 1
S2
(︁
1 +

n∑︁
i=1

t3i + 2
dsi ti

u3
)︁
+ O(u6).
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Using the identities in (1), since
n∑︁
i=1

(t3i + 2)
dsi ti

= 1
d

(︁ n∑︁
i=1

t2i
si
−

n∑︁
i=1

1
si ti

)︁
= 0,

we obtain the simplified expression
n∏︁
i=1

xy − si ti
s2i y − tix2

· t
2
i x − siy2

s2i y − tix2
= 1
S2 + O(u6).

Substitution into the definition of G, with additional simplification in characteristic 3, yields

G = d
2DS + (2n − 1)d3

S3 u−6 + −d
2DS + (1 − 2n)d3

S3 u−3 + O(1).

Therefore, if D = (1 − 2n)d/S, G = O(1) and thus is constant.
We have proved that for the value of D stated in theorem, G is constant. So if G(Q) = 0 for some Q, then

G = 0. Next, we find A ∈ k such that G vanishes at Q = (1 : −c : 0) ∈ H where c3 = a. By [10, Theorem 4.1], i.e.
(X : Y : Z) + (1 : −c : 0) = (Y : cZ : c2X),

ϕ(Q) =
(︃∏︁
R∈F

X(Q + R) :
∏︁
R∈F

Y(Q + R) :
∏︁
R∈F

Z(Q + R)
)︃

=
(︃∏︁
R∈F

Y(R) : cℓ
∏︁
R∈F

Z(R) : c2ℓ
∏︁
R∈F

X(R)
)︃

=
(︃∏︁
R∈F

Y(R)/Z(R) : cℓ : 0
)︃

= (−1 : cℓ : 0).

So G(Q) = A − c3ℓ = A − aℓ. Solving G(Q) = 0 for A gives A = aℓ.
It remains to check that the kernel of ϕ is indeed F. It’s clear that ϕ(P) = (0 : −1 : 1) if P ∈ F. For the

converse, suppose ϕ(P) = (0 : −1 : 1). Then X(Q) = 0 where Q = P + R for some R ∈ F. So Q = (0 : −1 : 1) or
Q = (0 : −ω : 1) for some ω ≠ 1 such that ω3 = 1. If Q = (0 : −1 : 1), P = −R ∈ F. Else, by [10, Theorem 4.6],

ϕ(Q) = ϕ(0 : −ω : 1) = (0 : −ωℓ : 1) ≠ (0 : −1 : 1)

since 3 - ℓ. However, this contradicts ϕ(Q) = ϕ(P) = (0 : −1 : 1). That concludes the proof.

5 Rational-map representations
In this section, we derive efficient rational-map representations of the isogeny in Theorem 4 and examine their
computational complexity by counting the number of multiplications, squarings, and inversions. We denote
by S,M,Ma, and I the cost of squaring, multiplication, multiplication by a, and inversion respectively.

In general, the computational cost depends onmany factors, for examples, how the points are represented:
projective, affine, or both (mixed), how much we want to avoid inversions, how the coordinate maps are
represented (e.g. polynomials or rational functions), and the particular applications and their amortized
running time. In our analysis, we will work with purely affine coordinates or purely projective coordinates,
and allow up to one inversion operation. Furthermore, we separate the computation into two parts: one that
involves only the kernel and one that requires the input point.

5.1 Aflne coordinates

Due to the symmetry between the Z and Y coordinates, we have a choice whether to work with the X-affine
and Z-affine patch. We will analyze both cases.
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5.1.1 Z-aflne coordinates

Lemma 1. If ax3 + y3 + 1 = dxy and aα3 + β3 + 1 = dαβ, then,

(xy − αβ)(β2xy − α) = (βy2 − aα2x)(βx2 − α2y), (2)
(β2y − aαx2)(y − aαβx2) = (βy2 − aα2x)(β − aα2xy), (3)

(αy2 − β2x)(αβy2 − x) = (α2y − βx2)(aα2xy − β). (4)

Proof. The lemma is implied by the following polynomial identities:

(xy − αβ)(β2xy − α) − (βy2 − aα2x)(βx2 − α2y) = α2β(ax3 + y3 + 1 − dxy) − αxy(aα3 + β3 + 1 − dαβ),

(β2y − aαx2)(y − aαβx2) − (βy2 − aα2x)(β − aα2xy) = aα2βx(ax3 + y3 + 1 − dxy) − aαx2y(aα3 + β3 + 1 − dαβ),

(αy2 − β2x)(αβy2 − x) − (α2y − βx2)(aα2xy − β) = α2βy(ax3 + y3 + 1 − dxy) − αxy2(aα3 + β3 + 1 − dαβ).

Corollary 1. Let F = {(0, −1)} ∪ {(α̃i , 1)}ri=1 ∪ {(αi , βi), (αi/βi , 1/βi)}si=1 be a subgroup of H(a, d) and |F| /≡0
(mod 3), where (αi , βi) has order greater than 2 and (α̃i , 1) has order 2. Let ϕ be the isogeny in Theorem 4 with
kernel F. Then,

ϕ =
(︁
x

r∏︁
i=1

α̃i − xy
aα̃ix2 − y

s∏︁
i=1

βix2 − α2i y
βi − aα2i xy

, y
r∏︁
i=1

y2 − aα̃2i x
aα̃ix2 − y

s∏︁
i=1

βiy2 − aα2i x
βi − aα2i xy

)︁
(5)

=
(︁
x

r∏︁
i=1

α̃2i y − x2
x − α̃iy2

s∏︁
i=1

α2i y − βix2

aα2i xy − βi
, y

r∏︁
i=1

xy − α̃i
x − α̃iy2

s∏︁
i=1

aα2i x − βiy2

aα2i xy − βi

)︁
. (6)

Proof. Equation (5) follows from Theorem 4, the rotated addition formula, and simplification using equations
(2) and (3) in Lemma 1. Equation (6) follows from Theorem 4, the standard addition formula, and simplification
using equations (2) and (4) in Lemma 1.

In counting the number of operations, we separate the computation into two parts: one that involves only the
kernel and one that requires the input point. First, we look at (5).

– To process the kernel, we compute the following values: {α2i , aαi , aα2i }si=1 and {aα̃i , aα̃2i }ri=1. This step
takes sS + (2s + r)Ma + rM.

– Then, we compute xy, x2, y2 for 2S + 1M.
– Next, we compute {βix2 − α2i y, βiy2 − aα2i x, βi − aα2i xy}si=1 and {y2 − aα̃2i x, aα̃ix2 − y}ri=1 for (5s + 2r)M
– The products x(

∏︀r
i=1 α̃i − xy)(

∏︀s
i=1 βix

2 − α2i y), y(
∏︀r
i=1 y

2 − aα̃2i x)(
∏︀s
i=1 βiy

2 − aα2i x), and (
∏︀r
i=1 aα̃ix

2 −
y)(
∏︀s
i=1 βi − aα

2
i xy) take additional (3r + 3s − 1)M.

– A final step takes 2M + 1I.

In total, processing the kernel takes sS + (2s + r)Ma + rM and the input point takes 2S + (8s +5r +2)M +1I.
By similar counting, using (6), processing the kernel takes (r + s)S + 2sMa and the input point takes 2S + (8s +
5r + 2)M + 1I.

5.1.2 X-aflne coordinates

Lemma 2. If a + y3 + z3 = dyz and a + β3 + 𝛾3 = dβ𝛾, then,

(𝛾2yz − aβ)(β2yz − a𝛾) = (az − β𝛾y2)(ay − β𝛾z2), (7)
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(𝛾2y − βz2)(β2y − 𝛾z2) = (az − β𝛾y2)(yz − β𝛾), (8)
(β2z − 𝛾y2)(𝛾2z − βy2) = (yz − β𝛾)(ay − β𝛾z2). (9)

Proof.

(𝛾2yz − aβ)(β2yz − a𝛾) − (ax − β𝛾y2)(ay − β𝛾z2) = aβ𝛾(a + y3 + z3 − dyz) − ayz(a + β3 + 𝛾3 − dβ𝛾),

(𝛾2y − βz2)(β2y − 𝛾z2) − (ax − β𝛾y2)(yz − β𝛾) = β𝛾z(a + y3 + z3 − dyz) − yz2(a + β3 + 𝛾3 − dβ𝛾),

(β2z − 𝛾y2)(𝛾2z − βy2) − (yz − β𝛾)(ay − β𝛾z2) = β𝛾y(a + y3 + z3 − dyz) − y2z(a + β3 + 𝛾3 − dβ𝛾).

Corollary 2. Let F = O∪{(β̃i , β̃i)}ri=1∪{(βi , 𝛾i), (𝛾i , βi)}si=1 be a subgroup of H(a, d) and |F| /≡0 (mod 3), where
(βi , 𝛾i) has order greater than 2 and (β̃i , β̃i) has order 2. Let ϕ be the isogeny in Theorem 4 with kernel F. Then,

ϕ =
(︁
y

r∏︁
i=1

β̃2i y2 − az
β̃i(z2 − β̃iy)

s∏︁
i=1

az − βi𝛾iy2
yz − βi𝛾i

, z
r∏︁
i=1

a − β̃iyz
z2 − β̃iy

s∏︁
i=1

ay − βi𝛾iz2
yz − βi𝛾i

)︁
(10)

=
(︁
y

r∏︁
i=1

β̃2i y − β̃iz2

yz − β̃2i

s∏︁
i=1

az − βi𝛾iy2
yz − βi𝛾i

, z
r∏︁
i=1

β̃2i z − β̃iy2

yz − β̃2i

s∏︁
i=1

ay − βi𝛾iz2
yz − βi𝛾i

)︁
. (11)

Moreover, using the notation of Theorem 4,

D =
r∏︁
i=1
β̃i

(︃ s∏︁
i=1
βi𝛾i

(︁
(1 − 2r + 2s)d + 6

r∑︁
i=1

β̃i
)︁
− 6a

s∑︁
i=1

∏︁
j≠i
βj𝛾j

)︃
.

Note that the expression for D doesn’t involve any inversion.

Proof. Equation (10) follows from Theorem 4, the rotated addition formula, and simplification using equations
(7) and (8) in Lemma 2. Equation (11) follows fromTheorem4, the standard addition formula, and simplification
using equations (8) and (9) in Lemma 2. The expression for D follows because, using the notation in Theorem
4,

n∏︁
i=1

1
si ti

=
s∑︁
i=1

β3i + 𝛾3i
βi𝛾i

+
r∑︁
i=1

β̃i =
s∑︁
i=1

dβi𝛾i − a
βi𝛾i

+
r∑︁
i=1

β̃i

= sd − a
s∑︁
i=1

1
βi𝛾i

+
r∑︁
i=1

β̃i ,

1/
n∏︁
i=1
si =

s∏︁
i=1
βi𝛾i

r∏︁
i=1
β̃i .

By rewriting (10) and (11) as

ϕ =
(︁
y

r∏︁
i=1

1
β̃i

r∏︁
i=1

β̃2i y2 − az
z2 − β̃iy

s∏︁
i=1

az − βi𝛾iy2
yz − βi𝛾i

, z
r∏︁
i=1

β̃i
β̃i

r∏︁
i=1

a − β̃iyz
z2 − β̃iy

s∏︁
i=1

ay − βi𝛾iz2
yz − βi𝛾i

)︁
(12)

=
(︁
y

r∏︁
i=1
β̃i

r∏︁
i=1

β̃iy − z2

yz − β̃2i

s∏︁
i=1

az − βi𝛾iy2
yz − βi𝛾i

, z
r∏︁
i=1
β̃i

r∏︁
i=1

β̃iz − y2

yz − β̃2i

s∏︁
i=1

ay − βi𝛾iz2
yz − βi𝛾i

)︁
(13)

and straightforward counting as before, the costs of (12) and (13) are given in Table 1.
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5.2 Projective coordinates

Corollary 3. Let F = O ∪ {(α̃i : β̃i : β̃i)}ri=1 ∪ {(αi : βi : 𝛾i), (αi : 𝛾i : βi)}si=1 be a subgroup of H(a, d) and
|F| /≡0 (mod 3), where (αi : βi : 𝛾i) has order greater than 2 and (α̃i : β̃i : β̃i) has order 2. Let ϕ be the isogeny in
Theorem 4 with kernel F. Then,

ϕ =
(︁
X

r∏︁
i=1
β̃2i XY − α̃i β̃iZ2

s∏︁
i=1
α2i YZ − βi𝛾iX2 :

Y
r∏︁
i=1
aα̃2i XZ − β̃2i Y2

s∏︁
i=1
aα2i XZ − βi𝛾iY2 :

Z
r∏︁
i=1
β̃2i YZ − aα̃i β̃iX2

s∏︁
i=1
aα2i XY − βi𝛾iZ2

)︁
(14)

=
(︁
X

r∏︁
i=1
α̃2i YZ − β̃2i X2

s∏︁
i=1
α2i YZ − βi𝛾iX2 :

Y
r∏︁
i=1
β̃2i XY − α̃i β̃iZ2

s∏︁
i=1
aα2i XZ − βi𝛾iY2 :

Z
r∏︁
i=1
β̃2i XZ − α̃i β̃iY2

s∏︁
i=1
aα2i XY − βi𝛾iZ2

)︁
(15)

Proof. The corollary follows by projectivizing the expressions in previous corollaries.

By straightforward counting, (15) takes (2r + s)S + (r + s)M + sMa to process the kernel and (9s + 9r + 3)M + 3S
for the input point, and (14) takes additional 2rMa for processing the kernel. The results are summarized in
Table 1.

Table 1: Computational cost of our isogeny formulas on twisted Hessian curves.

Process kernel Process input point
Z-aflne (5) sS + rM + (r + 2s)Ma 2S + (8s + 5r + 2)M + 1I
Z-aflne (6) (r + s)S + 2sMa 2S + (8s + 5r + 2)M + 1I
X-aflne (12) rS + (r + s − 1)M 2S + (6r + 5s + 4)M + 2Ma + 1I
X-aflne (13) rS + (r + s − 1)M 2S + (5r + 5s + 4)M + 2Ma + 1I
Projective (14) (2r + s)S + (r + s)M + (s + 2r)Ma 3S + (9s + 9r + 3)M
Projective (15) (2r + s)S + (r + s)M + sMa 3S + (9s + 9r + 3)M

Table 2: Comparison of the computational costs for various isogeny formulas. We denote by cost(2s) the cost of computing 2s.

Formula Process kernel Process input point
twisted Hessian (Z-aflne) [this work] 0.8sM + 2sMa (8s + 3.6)M + 1I
twisted Hessian (X-aflne) [this work] (s − 1)M (5s + 5.6)M + 2Ma + 1I
twisted Hessian (projective) [this work] 1.8sM + sMa (9s + 5.4)M
Edwards (aflne) [11] + [this work] (4.4s + 0.8)M (6s + 2.6)M + 1I + cost(2s)
Edwards (projective) [11] + [this work] (8s + 0.8)M (7s + 7.2)M + cost(2s)
Huff (aflne) [11] (3.6s + 1.6)M (6s − 0.4)M + 2I
Vélu’s [2] 9.8M (13s + 1.8)M + 1I



356 | F. Lontouo Perez Broon et al.

5.3 Comparison with other formulas

For comparison, consider the isogeny formula from [11] for Edwards curves, which is the most efficient to our
knowledge so far. We note that the authors reported the cost of (6s + 1)M + 2S + I in affine coordinates or
(6s + 3)M + 4S in mixed coordinates (the kernel is in affine coordinates and the input point is in projective
coordinates), for computing an image point. However, in each case, up to sI were required for preprocessing
the kernel points. Here, we consider a different approach that avoids inversions entirely in the projective case
and uses only 1 inversion in the affine case. First, we consider the projective case. Suppose the kernel is

F = {(0 : 1 : 1)} ∪ {(αi : βi : 𝛾i)}si=1 ∪ {(−αi : βi : 𝛾i)}si=1.

The isogeny is

(x : y : z) ↦→
(︁
x

s∏︁
i=1
β2i 𝛾4i x

2z2 − α2i 𝛾4i y
2z2 :

y
s∏︁
i=1
β2i 𝛾4i y

2z2 − α2i 𝛾4i x
2z2 :

z
s∏︁
i=1
β2i 𝛾4i z

4 − d2α2i β4i x
2y2
)︁
.

For processing the kernel, one can compute β2i 𝛾4i , α
2
i 𝛾

4
i , and d

2α2i β4i , for all i, with (5s + 1)S + 4sM. For
computing the image point, x2z2, y2z2, x2y2, and z4, take 3M and 4S. If the characteristic is not 2, By the
definition of (twisted) Edwards curves, the characteristic is not 2, andwe can compute each pair of 2(β2i 𝛾4i x

2z2−
α2i 𝛾4i y

2z2) and 2(β2i 𝛾4i y
2z2 − α2i 𝛾4i x

2z2) for the x and y coordinates with only 2M using the identities:

2(ax − by) = (a − b)(x + y) + (a + b)(x − y) and
2(ay − bx) = (a − b)(x + y) − (a + b)(x − y).

Each factor β2i 𝛾4i z
4 − d2α2i β4i x

2y2 in the z coordinate takes 2M, and let cost(2s) be the cost of computing
2s. Multiplication of all the factors in the x and y coordinates takes 2sM, and multiplication of the factors
in the z coordinate including 2s takes (s + 1)M. Therefore, the total cost of computing an image point is
4S + (7s + 4)M + cost(2s).

Similarly, in affine coordinates, we can compute the Edwards isogeny map

(x, y) ↦→
(︃
x

s∏︁
i=1

β2i x2 − α2i y2

β2i − d2α2i β
4
i x2y2

, y
s∏︁
i=1

β2i y2 − α2i x2

β2i − d2α2i β
4
i x2y2

)︃

using (3s + 1)S + 2sM for processing the kernel and (6s + 1)M + 2S + I + cost(2s) for the input point.
The comparison is summarized in Table 2, where we assume the kernel size is odd and 1S = 0.8M. We

note that our formulas for twisted Hessian curves have the lowest costs for processing the kernel and our
X-affine formula has the lowest cost for processing an input point in affine coordinates.

6 Conclusion
In this work we looked at computing isogenies between elliptic curves represented as twisted Hessian curves.
There still exist othermodels of curves for which direct isogeny formulas are not known, such as Jacobi quartics
and Jacobi intersections [32, 33]. It would be interesting to see if simple isogeny formulas exist for these models.
We note that the original Velu isogeny formulas are expressed as a sum, while the more recent Edwards,
Hessian, and Montgomery formulas all involve a product of expressions involving the kernel points. Is there
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a multiplicative version of Velu’s formulas? Or additive expressions for isogenies of the alternate models of
elliptic curves?

We leave it as future work to further optimize the formulas presented and integrate them into specific
applications. For example, this could include efficient computation of low degree isogenies. Low-degree
isogenies are used in post-quantum cryptographic isogeny schemes, and if optimized formulas can be found,
they may lead to implementing these isogeny cryptosystems using twisted Hessian curves. In particular, it
may be interesting to compute the 9-isogeny formulas for Hessian curves, similar to the work on 4-isogenies
over Montgomery and Edwards models [19, 34].

It would also be interesting to use low degree isogenies to compute scalar multiplication formulas on
Hessian curves for small scalars like 2, 3, and 5, as done in [35, 36], especially for curves with j-invariant zero.
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