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Abstract: Let Ω be a finite set of finitary operation symbols. We initiate the study of (weakly) pseudo-free
families of computational Ω-algebras in arbitrary varieties of Ω-algebras. A family (Hd | d ∈ D) of compu-
tational Ω-algebras (where D ⊆ {0, 1}*) is called polynomially bounded (resp., having exponential size) if
there exists a polynomial η such that for all d ∈ D, the length of any representation of every h ∈ Hd is at most
η(|d|) (resp., |Hd| ≤ 2η(|d|)). First, we prove the following trichotomy: (i) if Ω consists of nullary operation
symbols only, then there exists a polynomially bounded pseudo-free family; (ii) if Ω = Ω0 ∪ {ω}, where Ω0
consists of nullary operation symbols and the arity of ω is 1, then there exist an exponential-size pseudo-free
family and a polynomially bounded weakly pseudo-free family; (iii) in all other cases, the existence of poly-
nomially bounded weakly pseudo-free families implies the existence of collision-resistant families of hash
functions. In this trichotomy, (weak) pseudo-freeness is meant in the variety of all Ω-algebras. Second, as-
suming the existence of collision-resistant families of hash functions, we construct a polynomially bounded
weakly pseudo-free family and an exponential-size pseudo-free family in the variety of all m-ary groupoids,
where m is an arbitrary positive integer.
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1 Introduction
Informally, a family of computational groups is a family of groups whose elements are represented by bit
strings in suchaway that equality testing,multiplication, inversion, computing the identity element, andgen-
erating random elements can be performed efficiently. Loosely speaking, a family of computational groups
is called pseudo-free if, given a randommember G of the family (for a given security parameter) and random
elements g1, . . . , gm ∈ G, it is computationally hard to find a system of group equations

vi(a1, . . . , am; x1, . . . , xn) = wi(a1, . . . , am; x1, . . . , xn), i ∈ {1, . . . , s}, (1)

in the variables x1, . . . , xn together with elements h1, . . . , hn ∈ G such that (1) is unsatisfiable in the free
group freely generated by a1, . . . , am, but

vi(g1, . . . , gm; h1, . . . , hn) = wi(g1, . . . , gm; h1, . . . , hn)

in G for all i ∈ {1, . . . , s}. If a family of computational groups satisfies this definition with the additional
requirement that n = 0 (i.e., that the equations in (1) be variable-free), then this family is said to be weakly
pseudo-free. Of course, (weak) pseudo-freeness depends heavily on the form in which system (1) is required
to be found, i.e., on the representation of such systems.

*Corresponding Author: Mikhail Anokhin: Information Security Institute, Lomonosov University, Michurinsky prosp. 1,
119192 Moscow, Russia; Email: anokhin@mccme.ru

https://doi.org/10.1515/jmc-2020-0014


198 | M. Anokhin

The notion of pseudo-freeness (which is a variant of weak pseudo-freeness in the above sense) was intro-
duced by Hohenberger in [19, Section 4.5] (for black-box groups). Rivest gave formal definitions of a pseudo-
free family of computational groups (see [26,Definition 2], [27, Slide 17]) andaweakly pseudo-free one (see [27,
Slide 11]). Note that the definitions of (weak) pseudo-freeness in those works are based on single group equa-
tions rather than systems of group equations. For motivation of the study of pseudo-freeness, we refer the
reader to [19, 22, 26].

Let Ω be a finite set of finitary operation symbols and letV be a variety of Ω-algebras. (See Subsection 2.2
for definitions.) Then the notions of pseudo-freeness and weak pseudo-freeness can be naturally extended
to families of computational Ω-algebras in the varietyV. Informally, a family of computational Ω-algebras is
a family of Ω-algebras whose elements are represented by bit strings in such a way that equality testing, the
fundamental operations, and generating random elements can be performed efficiently. To define a (weakly)
pseudo-free family of computational Ω-algebras in V, we require that all Ω-algebras in the family belong
to V and replace the free group by the V-free Ω-algebra in the above definition of a (weakly) pseudo-free
family of groups. In this case, vi(a1, . . . , am; x1, . . . , xn) and wi(a1, . . . , am; x1, . . . , xn) in (1) are elements
of theV-free Ω-algebra freely generated by a1, . . . , am , x1, . . . , xn. Of course, (weakly) pseudo-free families
in different varieties are completely different objects.

1.1 Related work

Until now, researchers have considered pseudo-freeness (in various versions) only in the varieties of all
groups [1, 17–19, 26, 27], of all abelian groups [3, 9, 12–14, 18–20, 22, 26, 27], and of all elementary abelian
p-groups, where p is a prime [2]. A survey of some results concerning pseudo-freeness can be found in [11,
Chapter 1]. Here we give some examples of candidates for (weakly) pseudo-free families of computational
groups. These families are presented in the form ((Gd , Gd) | d ∈ D), where D ⊆ {0, 1}*, Gd is a group whose
every element is represented by a single bit string of length polynomial in the length of d, and Gd is a prob-
ability distribution on Gd (d ∈ D). Of course, multiplication, inversion, and computing the identity element
in Gd are required to be performed efficiently when d is given. Furthermore, given (d, 1k), one can efficiently
generate random elements of Gd according to a probability distribution that is statistically 2−k-close to Gd.
For a positive integer n, denote by Zn the set {0, . . . , n − 1} considered as a ring under addition and multi-
plication modulo n and by Z*

n the group of units of Zn. Also, let Sn andOn be the subgroups of squares in Z*
n

(i.e., {z2 mod n | z ∈ Z*
n}) and of elements of odd order in Z*

n, respectively. We denote by U(Y) the uniform
probability distribution on a nonempty finite set Y.

SupposeN is the set of all products of twodistinct primes. Rivest conjectured that the family ((Z*
n ,U(Z*

n)) |
n ∈ N) is pseudo-free in the variety A of all abelian groups (super-strong RSA conjecture, see [26, Conjec-
ture 1], [27, Slide 18]). A natural candidate for a pseudo-free family in the variety of all groups is ((GL2(Zn),
U(GL2(Zn))) | n ∈ N), where GL2(Zn) is the group of invertible 2 × 2 matrices over Zn (see [8]). If both p and
2p+1 are prime numbers, then p is called a Sophie Germain prime and 2p+1 is said to be a safe prime. Let S be
the set of all products of two distinct safe primes. Micciancio [22] proved that the family ((Z*

n ,U(Sn)) | n ∈ S) is
pseudo-free inA under the strong RSA assumption for S as the set of moduli. Informally, the last assumption
is that, given a random n ∈ S (for a given security parameter) and a uniformly random g ∈ Z*

n, it is computa-
tionally hard to find an integer e ≥ 2 together with an eth root of g in Z*

n. It is easy to see that if n ∈ S and the
prime factors of n are different from 5, then Sn = On. Therefore the above result of Micciancio remains valid
if we replace Sn byOn in it. The same result as in [22], but with slightly different representations of group ele-
ments by bit strings and different distributions of random elements of the groups, was obtained by Jhanwar
and Barua [20]. Moreover, Catalano, Fiore, and Warinschi [9] proved that under the same assumption as in
the above result of Micciancio, the family ((Z*

n ,U(Sn)) | n ∈ S) satisfies an apparently stronger condition than
pseudo-freeness in A. That condition, called adaptive pseudo-freeness, was introduced in [9].

Note that it is unknown whether the set S is infinite. Indeed, this holds if and only if there are infinitely
many Sophie Germain primes, which is a well-known unproven conjecture in number theory. Thus, the as-
sumption used in [9, 20, 22] is very strong.
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Assume that finding a nontrivial divisor of a random number in some set C of composite numbers (for
a given security parameter) is a computationally hard problem. Then Anokhin [3] proved that the family
((On ,U(On)) | n ∈ C) isweaklypseudo-free inA. It is evident that this result alsoholds for ((Z*

n ,U(On)) | n ∈ C).
Compared to the above result of Micciancio, this is a weaker statement, but it is proved under a much weaker
cryptographic assumption.

There are many constructions of cryptographic objects based on classical algebraic structures (e.g.,
groups). However, to the best of our knowledge, there are only a few works concerning both universal alge-
bra and cryptography. Probably the first such work is by Artamonov and Yashchenko [5]. In that work, the
authors introduced and studied the notion of a pk-algebra that naturally formalizes the syntax of a one-round
two-party key agreement scheme. See also the extended version [4] of [5]. Partala [25] proposed a general-
ization of the well-known Diffie–Hellman key agreement scheme based on universal algebras. Moreover, he
considered some approaches to the instantiation of the proposed scheme. Loosely speaking, that scheme
is secure if it is computationally hard to compute images under an unknown homomorphism (in a certain
setting). See also [23] (a preliminary version of [25]) and the thesis [24].

1.2 Organization of the paper and our contributions

In this paper, we initiate the study of (weakly) pseudo-free families of computational Ω-algebras in arbitrary
varieties of Ω-algebras. We hope that the study of these families will open up new opportunities inmathemat-
ical cryptography.

The rest of the paper is organized as follows. Section 2 contains notation, basic definitions, and general
results used in the paper. In Section 3, we formally define and discuss (weakly) pseudo-free families of com-
putational Ω-algebras and related notions. In particular, the results of Subsections 3.4–3.5 can be considered
as tools for constructing (weakly) pseudo-free families of computational Ω-algebras.

Let O denote the variety of all Ω-algebras. In Section 4, we study the following question: When poly-
nomially bounded (weakly) pseudo-free families in O exist unconditionally? A family H = (Hd | d ∈ D) of
computational Ω-algebras (where D ⊆ {0, 1}*) is called polynomially bounded if there exists a polynomial
η such that the length of any representation of every h ∈ Hd is at most η(|d|) for all d ∈ D. (See also Defini-
tion 3.3.) Furthermore, the family H is said to have exponential size if there exists a polynomial η such that
|Hd| ≤ 2η(|d|) for all d ∈ D. (See Definition 3.2.) It should be noted that a (weakly) pseudo-free family can have
applications in cryptography only if it is polynomially bounded or at least has exponential size. (Weakly)
pseudo-free families that do not have exponential size per se are of little interest; they can be constructed
unconditionally (see Subsection 3.4). Loosely speaking, the main results of Section 4 can be summarized as
follows:

(i) If Ω consists of nullary operation symbols only, then there exists a polynomially bounded pseudo-free
family inO.

(ii) Assume that Ω = Ω0 ∪ {ω}, where Ω0 consists of nullary operation symbols and the arity of ω is 1.
Then there exist an exponential-size pseudo-free family and a polynomially bounded weakly pseudo-
free family (both inO).

(iii) In all other cases, the existence of polynomially bounded weakly pseudo-free families inO implies the
existence of collision-resistant families of hash functions. Thus, in these cases, such weakly pseudo-
free families cannot be constructed unconditionally.

Moreover, the (weakly) pseudo-free families in results (i)–(ii) have unique representations of elements, i.e.,
each element of any Ω-algebra in these families is represented by a single bit string. (See Definition 3.4.) This
property seems to be useful in applications. For precise statements of these results, see Subsection 4.3 and
references therein.

In Section 5, we consider the case where Ω consists of a single operation symbol of arbitrary arity m ≥ 1.
In this case, Ω-algebras are called m-ary groupoids. Assuming the existence of collision-resistant families
of hash functions, we construct a polynomially bounded weakly pseudo-free family and an exponential-size



200 | M. Anokhin

pseudo-free family in the variety of all m-ary groupoids. Moreover, the first family has unique representa-
tions of elements. Combining this with the results of Section 4, we obtain that for arbitrary m ≥ 2, polynomi-
ally bounded weakly pseudo-free families in the variety of all m-ary groupoids exist if and only if collision-
resistant families of hash functions exist. The same holds if the weakly pseudo-free families are additionally
required to have unique representations of elements. These results are stated loosely here; for precise state-
ments, we refer the reader to Subsections 5.1–5.2.

Finally, Section 6 concludes and suggests some directions for future research.

2 Preliminaries

2.1 General preliminaries

In this paper,Ndenotes the set of all nonnegative integers. Let n ∈ N. For a set Y, we denote by Yn the set of all
(ordered) n-tuples of elements from Y. The operation of disjoint union is denoted by⊔. We consider elements
of {0, 1}n as bit strings of length n. Furthermore, let {0, 1}≤n =

⨆︀n
i=0{0, 1}

i and {0, 1}* =
⨆︀∞
i=0{0, 1}

i. If
u, v ∈ {0, 1}*, then we denote by |u| the length of u and by uv the concatenation of u and v. The unary
representation of n, i.e., the string of n ones, is denoted by 1n. Similarly, 0n denotes the string of n zeros.

Let I be a set. Suppose each i ∈ I is assigned an object qi. Then we denote by (qi | i ∈ I) the family of all
such objects and by {qi | i ∈ I} the set of all elements of this family.

When necessary, we assume that all “finite” objects (e.g., integers, tuples of integers, tuples of tuples of
integers) are represented by bit strings in some natural way. Sometimes we identify such objects with their
representations. Unless otherwise specified, integers are represented by their binary expansions.

Suppose ϕ is a function. We denote by domϕ the domain of ϕ. Also, we use the same notation for ϕ and
for the function (y1, . . . , yn) ↦→ (ϕ(y1), . . . , ϕ(yn)), where n ∈ N and (y1, . . . , yn) ∈ (domϕ)n.

Let ρ be a function from a subset of {0, 1}* onto a set S and let s ∈ S. Then, unless otherwise specified,
[s]ρ denotes an arbitrary preimage of s under ρ. A similar notation was used by Boneh and Lipton in [6] and
by Hohenberger in [19]. In general, [s]ρ denotes many strings in {0, 1}* unless ρ is one-to-one. We use any of
these strings as a representation of s for computational purposes.

For convenience, we say that a function π : N → N \ {0} is a polynomial if there exist c ∈ N \ {0} and
d ∈ N such that π(n) = cnd for any n ∈ N \ {0} (π(0) can be an arbitrary positive integer). Of course, every
polynomial growth function from N to R+ = {r ∈ R | r ≥ 0} can be upper bounded by a polynomial in this
sense. Therefore this restricted notion of a polynomial is sufficient for our purposes.

2.2 Algebraic preliminaries

In this subsection, we recall the basic definitions and simple facts from universal algebra. For a detailed
introduction to this subject, the reader is referred to standard books, e.g., [10], [7], or [28].

Throughout the paper, Ω denotes a set of finitary operation symbols. Each ω ∈ Ω is assigned a non-
negative integer called the arity of ω and denoted by arω. An Ω-algebra is a set H called the carrier (or the
underlying set) together with a family (̂︀ω : Har ω → H |ω ∈ Ω) of finitary operations on H called the funda-
mental operations. For simplicity of notation, the fundamental operation ̂︀ω associated with a symbol ω ∈ Ω
will be denoted by ω. Furthermore, we denote an Ω-algebra and its carrier by the same symbol.

Let H be an Ω-algebra. A set G ⊆ H is called a subalgebra of H if it is closed under the fundamental
operations of H. If S is a system of elements of H, then we denote by ⟨S⟩ the subalgebra of H generated by S,
i.e., the smallest subalgebra of H containing S.

An equivalence relation θ on H is said to be a congruence (on H) if

(h1, h′1), . . . , (har ω , h′ar ω) ∈ θ =⇒ (ω(h1, . . . , har ω), ω(h′1, . . . , h′ar ω)) ∈ θ
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for any ω ∈ Ω and h1, h′1, . . . , har ω , h′ar ω ∈ H. Suppose θ is a congruence on H. For arbitrary h ∈ H, we
denote by h/θ the equivalence class of h under θ. Moreover, let H/θ = {h/θ | h ∈ H}. Then H/θ is an Ω-
algebra whose fundamental operations are well defined as follows:

ω(h1/θ, . . . , har ω/θ) = ω(h1, . . . , har ω)/θ, ω ∈ Ω, h1, . . . , har ω ∈ H.

This Ω-algebra is called the quotient algebra of H by θ. Also, let θ≠ = {(h, h′) ∈ θ | h ≠ h′}. If ρ : Y → H, then
ρ/θ denotes the function y ↦→ ρ(y)/θ, where y ∈ Y.

A homomorphism of H to an Ω-algebra L is a function ϕ : H → L such that for every ω ∈ Ω and
h1, . . . , har ω ∈ H,

ϕ(ω(h1, . . . , har ω)) = ω(ϕ(h1), . . . , ϕ(har ω)).

If a homomorphism of H onto L is one-to-one, then it is called an isomorphism. Let ϕ : H → L be a homo-
morphism. Then its kernel is defined as {(h, h′) ∈ H2 |ϕ(h) = ϕ(h′)}. It is evident that the kernel of ϕ is a
congruence on H. For example, if θ is a congruence on H, then h ↦→ h/θ (where h ∈ H) is a homomorphism
of H onto H/θ (called the natural homomorphism) with kernel θ.

An Ω-algebra with only one element is said to be trivial. It is obvious that all trivial Ω-algebras are iso-
morphic.

If Ω = {ω}, where arω = m ≥ 1, then Ω-algebras are called m-ary groupoids (or m-groupoids). When
m = 2, these Ω-algebras are called simply groupoids. Note that some authors consider m-ary groupoids only
for m ≥ 2.

Put Ω0 = {ω ∈ Ω | arω = 0}. We note that if Ω0 = ∅, then an Ω-algebra can be empty. Whenever ω ∈ Ω0,
it is common to write ω instead of ω().

Let Z be a set of objects called variables. We always assume that any variable is not in Ω. The set Tm(Z)
of all Ω-terms (or simply terms) over Z is defined as the smallest set such that Ω0 ⊔ Z ⊆ Tm(Z) and if ω ∈
Ω \ Ω0 and v1, . . . , var ω ∈ Tm(Z), then the formal expression ω(v1, . . . , var ω) is in Tm(Z). The Ω-terms can
be considered as strings over the alphabet consisting of all symbols from Ω⊔ Z, parentheses, and comma. Of
course, Tm(Z) is an Ω-algebra under the natural fundamental operations. This Ω-algebra is called the Ω-term
algebra over Z.

Suppose v ∈ Tm(Z). Then the set subt(v) of subterms of the term v is defined inductively as follows:

subt(v) =

⎧⎪⎪⎨⎪⎪⎩
{v} if v ∈ Ω0 ⊔ Z,
{v} ⊔

⋃︀ar ω
i=1 subt(vi) if v = ω(v1, . . . , var ω), ω ∈ Ω \ Ω0,

and v1, . . . , var ω ∈ Tm(Z).

Let the string P(v) over Ω ⊔ Z be obtained from the term v by removing all parentheses and commas.
The string P(v) is known as the term v written in Polish notation. It is well known that the function v ↦→ P(v)
(v ∈ Tm(Z)) is one-to-one. Moreover, if the arities of operation symbols occurring in v are known, then v can
be easily recovered from P(v). See [10, Chapter III, Section 2] for details, although in that book reverse Polish
notation is used.

Consider the casewhere Z = {z1, z2, . . . },where z1, z2, . . . aredistinct. Assume that v ∈ Tm({z1, . . . , zm})
for somem ∈ N. Furthermore, let h1, . . . , hm ∈ H. Then the element v(h1, . . . , hm) ∈ H is defined inductively
in the natural way. It is easy to see that {v(h1, . . . , hm) | v ∈ Tm({z1, . . . , zm})} = ⟨h1, . . . , hm⟩.

An identity (or a law) over Ω is a closed first-order formula of the form ∀ z1, . . . , zm (v = w), where v, w ∈
Tm({z1, . . . , zm}) (m ∈ N). A class V of Ω-algebras is said to be a variety if it can be defined by a set 𝛶
of identities. This means that for any Ω-algebra G, G ∈ V if and only if G satisfies all identities in 𝛶 . By
the famous Birkhoff variety theorem (see, e.g., [10, Chapter IV, Theorem 3.1], [7, Chapter II, Theorem 11.9],
or [28, Subsection 3.2.3, Theorem 21]), a class of Ω-algebras is a variety if and only if it is closed under taking
subalgebras, homomorphic images, and direct products. Note that if a class of Ω-algebras is closed under
taking direct products, then it contains a trivial Ω-algebra as the direct product of the empty family of Ω-
algebras. Recall that if (Hi | i ∈ I) is a family of Ω-algebras, then the fundamental operations of the direct
product of this family are defined as follows:

ω((h1,i | i ∈ I), . . . , (har ω,i | i ∈ I)) = (ω(h1,i , . . . , har ω,i) | i ∈ I),
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where ω ∈ Ω and h1,i , . . . , har ω,i ∈ Hi (i ∈ I).
The variety consisting of all Ω-algebras with at most one element is said to be trivial; all other varieties

of Ω-algebras are called nontrivial. The trivial variety is defined by the identity ∀ z1, z2 (z1 = z2). When Ω0 =
∅, the trivial variety contains not only trivial Ω-algebras, but also the empty Ω-algebra. If C is a class of Ω-
algebras, then the variety generated by C is the smallest variety of Ω-algebras containing C. This variety is
defined by the set of all identities holding in all Ω-algebras in C.

Let V be a variety of Ω-algebras. Then an Ω-algebra F ∈ V is said to be V-free if it has a generating
system (fi | i ∈ I) such that for every system of elements (gi | i ∈ I) of any Ω-algebra G ∈ V there exists a
homomorphism α : F → G satisfying α(fi) = gi for all i ∈ I (evidently, this homomorphism α is unique). Any
generating system (fi | i ∈ I) with this property is called free and the Ω-algebra F is said to be freely generated
by every such system. It is well known (see, e.g., [10, Chapter IV, Corollary 3.3], [7, Chapter II, Definition 10.9
and Theorem 10.10], or [28, Subsection 3.2.3, Theorem 16]) that for any set I there exists a unique V-free Ω-
algebra (up to isomorphism) with a free generating system indexed by I. It is easy to see that ifV is nontrivial,
then for each free generating system (fi | i ∈ I) of a V-free Ω-algebra, fi are distinct. In this case, one can
consider free generating systems as sets.

We denote by F∞,∞(V) the V-free Ω-algebra freely generated by a1, a2, . . . , x1, x2, . . . . Of course, if V
is nontrivial, then the elements of this free generating system are assumed to be distinct. Furthermore, sup-
pose m, n ∈ N and let F∞(V) = ⟨a1, a2, . . . ⟩, Fm,n(V) = ⟨a1, . . . , am , x1, . . . , xn⟩, and Fm(V) = Fm,0(V) =
⟨a1, . . . , am⟩. For elements of Fm,n(V), we use the notation v(a1, . . . , am; x1, . . . , xn) = v(a; x), where v is an
Ω-term. It is well known that ai and xj can be considered as variables taking values in arbitrary Ω-algebra
G ∈ V. That is, for any v(a; x) ∈ Fm,n(V), g1, . . . , gm ∈ G, and h1, . . . , hn ∈ G (separated from g1, . . . , gm),
the element v(g1, . . . , gm; h1, . . . , hn) ∈ G is well defined as α(v(a; x)), where α is the unique homomor-
phism of Fm,n(V) to G such that α(ai) = gi and α(xj) = hj for each i ∈ {1, . . . ,m} and j ∈ {1, . . . , n}. If
g = (g1, . . . , gm) and h = (h1, . . . , hn), then we sometimes write v(g; h) instead of v(g1, . . . , gm; h1, . . . , hn).
Whenever n = 0, we omit the semicolon in the above notation (e.g., v(a) = v(a; ) for any v(a; ) ∈ F∞(V)).

Denote byO the variety of all Ω-algebras. We write F∞,∞, F∞, Fm,n, and Fm instead of F∞,∞(O), F∞(O),
Fm,n(O), and Fm(O), respectively. These Ω-algebras are the Ω-term algebras over the respective sets of vari-
ables.

2.3 Probabilistic preliminaries

Let Y be a probability distribution on a finite or countably infinite sample space Y. Then we denote by suppY
the support of Y, i.e., the set {y ∈ Y | PrY{y} ≠ 0}. In many cases, one can consider Y as a distribution
on suppY. Suppose α is a function from Y to a finite or countably infinite set Z. Then the image of Y under
α, which is a probability distribution on Z, is denoted by α(Y). This distribution is defined by Prα(Y){z} =
PrY α−1(z) for each z ∈ Z.

We use the notation y1, . . . , yn ∼ Y to indicate that y1, . . . , yn (denoted by upright bold letters) are
independent random variables distributed according to Y. We assume that these random variables are inde-
pendent of all other random variables defined in such a way. Furthermore, all occurrences of an upright bold
letter (possibly indexed or primed) in a probabilistic statement refer to the same (unique) random variable.
Of course, all random variables in a probabilistic statement are assumed to be defined on the same sample
space. Other specifics of random variables do not matter for us. Note that the probability distribution Y in
this notation can be random. For example, suppose (Yi | i ∈ I) is a probability ensemble consisting of distri-
butions on the set Y, where the set I is finite or countably infinite. Moreover, let I be a probability distribution
on I. Then i ∼ I and y ∼ Yi mean that the joint distribution of the random variables i and y is given by
Pr[i = i, y = y] = PrI{i}PrYi{y} for each i ∈ I and y ∈ Y.

The notation y1, . . . , yn ← Y indicates that y1, . . . , yn (denoted by upright medium-weight letters) are
fixed elements of the set Y chosen independently at random according to the distribution Y.

For any n ∈ N, we denote by Yn the distribution of (y1, . . . , yn), where y1, . . . , yn ∼ Y. Furthermore, if Z
is a nonempty finite set, then U(Z) denotes the uniform probability distribution on Z.
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The collision probability CP(Y) of the probability distribution Y is defined by

CP(Y) =
∑︁
y∈Y

(PrY{y})2 = Pr[y = y′],

where y, y′ ∼ Y. The next lemma is well known.

Lemma 2.1. Let Z be a finite set and let Z be a probability distribution on Z. Then CP(Z) ≥ 1/|Z|. Furthermore,
CP(Z) = 1/|Z| if and only if Z = U(Z).

Proof. It is easy to see that

CP(Z) − 1
|Z| =

∑︁
z∈Z

(︂
PrZ{z} −

1
|Z|

)︂2
.

The lemma follows immediately from this.

2.4 Cryptographic preliminaries

LetY = (Yi | i ∈ I) be aprobability ensemble consistingof distributions on {0, 1}*,where I ⊆ {0, 1}*. ThenY is
called polynomial-time samplable (or polynomial-time constructible) if there exists a probabilistic polynomial-
time algorithm A such that for every i ∈ I the distribution of A(i) coincides with Yi. It is easy to see that if Y
is polynomial-time samplable, then there exists a polynomial π satisfying suppYi ⊆ {0, 1}≤π(|i|) for any i ∈ I.
Furthermore, let Z = (Zj | j ∈ J) be a probability ensemble consisting of distributions on {0, 1}*, where J ⊆ N.
Unless otherwise specified, when we speak of polynomial-time samplability of Z, we assume that the indices
are represented in binary. If, however, these indices are represented in unary, then we specify this explicitly.
Thus, the ensemble Z is called polynomial-time samplable when the indices are represented in unary if there
exists a probabilistic polynomial-time algorithm B such that for every j ∈ J the distribution of B(1j) coincides
with Zj.

Suppose K is an infinite subset of N, D is a subset of {0, 1}*, and D = (Dk | k ∈ K) is a probability
ensemble consisting of distributions on D. We always assume thatD is polynomial-time samplable when the
indices are represented in unary. Furthermore, put 1K = {1k | k ∈ K}. This notation is used throughout the
paper.

A function ν : K → R+ is called negligible if for every polynomial π there exists a nonnegative integer n
such that ν(k) ≤ 1/π(k) whenever k ∈ K and k ≥ n. Of course, if ϵ, ν : K → R+, ν is negligible, and ϵ(k) ≤ ν(k)
for all sufficiently large k ∈ K, then ϵ is also negligible. Moreover, it is easy to see that if ν, ν′ : K → R+ are
negligible and η is a polynomial, then ν(k)+ν′(k) and η(k)ν(k) are negligible as functions of k ∈ K. We denote
by negl an unspecified negligible function on K. Any (in)equality containing negl(k) is meant to hold for all
k ∈ K.

Definition 2.2 (polynomial parameter; see also [21, Preliminaries]). A function ξ : D → N is called a polyno-
mial parameter on D if the function d ↦→ 1ξ (d) (d ∈ D) is polynomial-time computable. It is easy to see that
the function ξ is a polynomial parameter on D if and only if it is polynomial-time computable and there ex-
ists a polynomial π satisfying ξ (d) ≤ π(|d|) for all d ∈ D. A function η : I → N, where I ⊆ N, is said to be a
polynomial parameter on I if the function 1i ↦→ η(i) (i ∈ I) is a polynomial parameter on the set {1i | i ∈ I} in
the above sense, i.e., the function 1i ↦→ 1η(i) (i ∈ I) is polynomial-time computable.

To avoid confusion, we always specify the domain of a polynomial parameter. Note that the restriction of any
polynomial to a set I ⊆ N is a polynomial parameter on I.

Definition 2.3 (family of hash functions). Assume that D =
⨆︀
k∈K Dk. For each d ∈ D, define κ(d) to be the

unique k ∈ K such that d ∈ Dk. Suppose the following two conditions hold:

– There exists a polynomial π such that ∅ ≠ Dk ⊆ {0, 1}≤π(k) for any k ∈ K.
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– The function κ : D → K defined above is a polynomial parameter on D.

Furthermore, let ξ and η be polynomial parameters on K. Then a family (ϕd : {0, 1}ξ (κ(d)) → {0, 1}η(κ(d)) | d ∈
D) of functions is said to be a family of hash functions if this family is polynomial-time computable (i.e., the
function (d, y) ↦→ ϕd(y), where d ∈ D and y ∈ {0, 1}ξ (κ(d)), is polynomial-time computable) and ξ (k) > η(k)
for all k ∈ K.

In what follows, we use the assumptions and notation of Definition 2.3 when speaking of families of hash
functions. In this case, we also assume that for every k ∈ K,Dk is a probability distribution on Dk.

Recall that a collision for a function ϕ is a pair (y, z) ∈ (domϕ)2 such that y ≠ z and ϕ(y) = ϕ(z).

Definition 2.4 (collision-resistant family of hash functions). A family (ϕd : {0, 1}ξ (κ(d)) → {0, 1}η(κ(d)) | d ∈
D) of hash functions is called collision-resistant (or collision-intractable) with respect to D if for any proba-
bilistic polynomial-time algorithm A, Pr[A(d) is a collision for ϕd] = negl(k), where d ∼ Dk.

Note that the algorithm A in Definition 2.4 can compute 1k as 1κ(d).
We use the term “collision-resistant family of hash functions” instead of the more common term “family

of collision-resistant hash functions” because collision resistance is a property of the whole family of hash
functions rather than of its individual members.

Remark 2.5. Let (ϕd : {0, 1}ξ (κ(d)) → {0, 1}η(κ(d)) | d ∈ D) be a family of hash functions. Assume that this
family is collision-resistant with respect toD. Suppose A is a probabilistic polynomial-time algorithm that on
input d ∈ D chooses y, y′ ← U({0, 1}ξ (κ(d))) and outputs (y, y′). Let k ∈ K, d ∼ Dk, and y, y′ ∼ U({0, 1}ξ (k)).
Then

negl(k) = Pr[A(d) is a collision for ϕd] = Pr[ϕd(y) = ϕd(y′)] − Pr[y = y′]

≥ 1
2η(k)

− 1
2ξ (k)

≥ 1
2η(k)

− 1
2η(k)+1

= 2−η(k)
2

(see Lemma 2.1) and hence 2−η(k) = negl(k).

The next lemma is well known and can be proved using a variant of the Merkle–Damgård construction (see,
e.g., [16, Subsubsection 6.2.3.2]). For completeness, we give a short proof of this lemma.

Lemma 2.6. Let (ϕd : {0, 1}ξ (κ(d)) → {0, 1}η(κ(d)) | d ∈ D) be a family of hash functions that is collision-
resistant with respect to D. Suppose ξ ′ is a polynomial parameter on K satisfying ξ ′(k) > η(k) for all k ∈ K.
Then there exists a family (ϕ′

d : {0, 1}
ξ ′(κ(d)) → {0, 1}η(κ(d)) | d ∈ D) of hash functions that is collision-resistant

with respect toD.

Proof. For each k ∈ K, put β(k) = ⌈ξ ′(k)/(ξ (k) − η(k))⌉ and δ(k) = β(k)(ξ (k) − η(k)) − ξ ′(k). Then β and δ are
polynomial parameters on K.

Let d ∈ D, k = κ(d), and y ∈ {0, 1}ξ
′(k). Express y0δ(k) as y1 . . . yβ(k), where y1, . . . , yβ(k) ∈ {0, 1}ξ (k)−η(k).

Define 𝛾i(y) ∈ {0, 1}η(k) inductively as follows:

𝛾0(y) = 0η(k), 𝛾i(y) = ϕd(yi𝛾i−1(y)) for i ∈ {1, . . . , β(k)}.

Then we put ϕ′
d(y) = 𝛾β(k)(y). It is evident that (ϕ′

d | d ∈ D) is a family of hash functions.
Suppose (y, z) is a collision for ϕ′

d. Let y0
δ(k) = y1 . . . yβ(k) and z0δ(k) = z1 . . . zβ(k), where yi , zi ∈

{0, 1}ξ (k)−η(k) for all i ∈ {1, . . . , β(k)}. Since y0δ(k) ≠ z0δ(k), there exists an i ∈ {1, . . . , β(k)} such that
yi𝛾i−1(y) ≠ zi𝛾i−1(z). Choose the largest such i. Then it is easy to see that (yi𝛾i−1(y), zi𝛾i−1(z)) is a collision for
ϕd. This implies that the family (ϕ′

d | d ∈ D) is collision-resistant with respect toD.
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3 (Weakly) pseudo-free families of computational Ω-algebras:
Definitions and properties

Fromnowon,weassume thatΩ is finite and that algorithmscanworkwith its elements. LetH = ((Hd , ρd ,Rd) | d ∈
D) be a family of triples, where Hd is an Ω-algebra, ρd is a function from a subset of {0, 1}* onto Hd, and Rd
is a probability distribution on dom ρd for any d ∈ D. If Hd ⊆ {0, 1}* and ρd is the identity function on Hd,
then we denote this function simply by id because its domain is clear.

3.1 Families of computational Ω-algebras

Definition 3.1 (family of computational Ω-algebras). The family H is called a family of computational Ω-
algebras if the following conditions hold:

(i) There exists a deterministic polynomial-time algorithm that, given d ∈ D and [g]ρd , [h]ρd (for any g, h ∈
Hd), decides whether g = h.

(ii) For every ω ∈ Ω there exists a deterministic polynomial-time algorithm that, given d ∈ D and
[h1]ρd , . . . , [har ω]ρd (where h1, . . . , har ω ∈ Hd), computes [ω(h1, . . . , har ω)]ρd .

(iii) The probability ensemble (Rd | d ∈ D) is polynomial-time samplable.

Definition 3.2 (family having exponential size). The family H is said to have exponential size if there exists a
polynomial η such that |Hd| ≤ 2η(|d|) for all d ∈ D.

Of course, exponential size is a property of the family (Hd | d ∈ D), but it is convenient to define this property
for families of the form ((Hd , ρd ,Rd) | d ∈ D).

Definition 3.3 (polynomially bounded family). We say that the family H is polynomially bounded if there ex-
ists a polynomial η such that dom ρd ⊆ {0, 1}≤η(|d|) for all d ∈ D.

It is obvious that if H is polynomially bounded, then H has exponential size.

Definition 3.4 (family having unique representations of elements). The family H is said to have unique rep-
resentations of elements if the function ρd is one-to-one for each d ∈ D.

Remark 3.5. Suppose H has unique representations of elements. Then we can assume that for every d ∈ D,
Hd ⊆ {0, 1}* and the unique representation of each element h ∈ Hd is h itself. In other words, we consider
the family ((dom ρd , id,Rd) | d ∈ D) instead of H. Here dom ρd denotes the unique Ω-algebra such that ρd is
an isomorphism of this Ω-algebra onto Hd (d ∈ D).

3.2 (Weakly) pseudo-free families of computational Ω-algebras

Throughout the paper, we denote by V a variety of Ω-algebras and by σ a function from a subset of {0, 1}*

onto F∞,∞(V). Also, suppose s ∈ N \ {0}, H ∈ V, ρ is a function from a subset of {0, 1}* onto H, and g ∈ Hm,
where m ∈ N \ {0}. Then we denote by Σs(H,V, σ, ρ, g) the set of all tuples

(([v1]σ , [w1]σ), . . . , ([vs]σ , [ws]σ), ([h1]ρ , . . . , [hn]ρ))

such that the following conditions hold:

– n ∈ N, vi , wi ∈ Fm,n(V) for all i ∈ {1, . . . , s}, and hj ∈ H for all j ∈ {1, . . . , n};
– the system of equations

vi(a; x) = wi(a; x), i ∈ {1, . . . , s},
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in the variables x1, . . . , xn is unsatisfiable in Fm(V) (or, equivalently, in F∞(V));
– vi(g; h) = wi(g; h) in H for each i ∈ {1, . . . , s}, where h = (h1, . . . , hn).

Furthermore, let Σ′s(H,V, σ, g) be the set of all tuples (([v1]σ , [w1]σ), . . . , ([vs]σ , [ws]σ)) such that

– vi , wi ∈ Fm(V) for all i ∈ {1, . . . , s},
– vj ≠ wj for some j ∈ {1, . . . , s}, and
– vi(g) = wi(g) in H for each i ∈ {1, . . . , s}.

Note that in the above definitions of Σs(. . . ) and Σ′s(. . . ), [vi]σ, [wi]σ (i ∈ {1, . . . , s}), and [hj]ρ (j ∈ {1, . . . , n})
denote all preimages rather than arbitrarily chosen ones.

It is evident that (p1, . . . , ps) ∈ Σ′s(H,V, σ, g) if and only if (p1, . . . , ps , ()) ∈ Σs(H,V, σ, ρ, g) (the last
condition does not depend on ρ). Of course, () denotes the empty tuple. Thus, Σ′s(H,V, σ, g) is obtained from
Σs(H,V, σ, ρ, g) by imposing the restriction n = 0 and removing the last element () of the tuples. Elements
of Σ′1(H,V, σ, g) will be written as ([v]σ , [w]σ) instead of (([v]σ , [w]σ)). Moreover, let

Σ(H,V, σ, ρ, g) =
∞⨆︁
s=1
Σs(H,V, σ, ρ, g) and Σ′(H,V, σ, g) =

∞⨆︁
s=1
Σ′s(H,V, σ, g).

We say that the family H = ((Hd , ρd ,Rd) | d ∈ D) is in V if Hd ∈ V for all d ∈ D. In this subsection, we
assume that H is a family of computational Ω-algebras inV.

Definition 3.6 (pseudo-free family). The family H is called pseudo-free inVwith respect toD and σ if for any
polynomial π and any probabilistic polynomial-time algorithm A,

Pr[A(1k , d, r) ∈ Σ(Hd,V, σ, ρd, ρd(r))] = negl(k),

where d ∼ Dk and r ∼ Rπ(k)d .

Remark 3.7. IfV is trivial, then Σ(H,V, σ, ρ, g) = ∅ for any H ∈ V, any function ρ from a subset of {0, 1}*

onto H, and any g ∈ Hm, wherem ∈ N \ {0}. Therefore, in this case the considered family H of computational
Ω-algebras is always pseudo-free inV with respect toD and σ.

The condition of the next definition is obtained from the condition of Definition 3.6 by replacing Σ(. . . ) by
Σ′(. . . ).

Definition 3.8 (weakly pseudo-free family). The family H is calledweakly pseudo-free inVwith respect toD
and σ if for any polynomial π and any probabilistic polynomial-time algorithm A,

Pr[A(1k , d, r) ∈ Σ′(Hd,V, σ, ρd(r))] = negl(k),

where d ∼ Dk and r ∼ Rπ(k)d .

Remark 3.9. Let s ∈ N \ {0}. Define the notion of s-pseudo-freeness (resp., weak s-pseudo-freeness) in V

with respect to D and σ by replacing Σ(. . . ) by Σs(. . . ) in Definition 3.6 (resp., Σ′(. . . ) by Σ′s(. . . ) in Defini-
tion 3.8). We consider (weak) s-pseudo-freeness only when s is a constant. Note that in many works (see,
e.g., [19, 20, 22, 26, 27]), pseudo-freeness (resp., weak pseudo-freeness) is understood as 1-pseudo-freeness
(resp., weak 1-pseudo-freeness). It is evident that any pseudo-free (resp., weakly pseudo-free) family of com-
putational Ω-algebras inV with respect toD and σ is also s-pseudo-free (resp., weakly s-pseudo-free) inV

with respect toD and σ. Rivest remarked that in the variety of all groups, 1-pseudo-freeness is equivalent to
pseudo-freeness (see [26, Subsection 5.1]). Micciancio obtained the same result for the variety of all abelian
groups (see [22, Corollary 1]). Moreover, Anokhin proved that in the variety of all elementary abelian p-groups,
where p is an arbitrary prime, anyweakly 1-pseudo-free family of computational groups is pseudo-free (see [2,
Theorem 3.7]). Note that these results hold only under certain additional conditions.
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Suppose H ∈ V and g ∈ Hm, where m ∈ N \ {0}. It is easy to see that if (r1, . . . , rt) ∈ Σ′(H,V, σ, g)
(where t ∈ N \ {0} and ri ∈ (dom σ)2 for all i ∈ {1, . . . , t}) and j ∼ U({1, . . . , 2⌈log2 t⌉}), then

Pr[j ∈ {1, . . . , t}, rj ∈ Σ′1(H,V, σ, g)] ≥ 1
2⌈log2 t⌉

≥ 1
2t .

Hence weak 1-pseudo-freeness inVwith respect toD and σ is equivalent to weak pseudo-freeness inVwith
respect toD and σ.

It is obvious that if H is pseudo-free (resp., s-pseudo-free) in V with respect to D and σ, then H is weakly
pseudo-free (resp., weakly s-pseudo-free) inV with respect toD and σ.

We say that the algorithm A from Definition 3.6 (resp., Definition 3.8) tries to break the pseudo-freeness
(resp., weak pseudo-freeness) of the family H. The same terminology will be used for (weak) s-pseudo-
freeness.

Remark 3.10 (see also [1, Remark 3.6]). Assume that the family H is weakly 1-pseudo-free in V with respect
toD and σ. Let D′ be a subset of D such that {Hd | d ∈ D′} does not generate the varietyV. Then there exist
distinct elements v, w ∈ Fm(V) (for some m ∈ N \ {0}) such that v(g) = w(g) for all d ∈ D′ and g ∈ Hmd . It is
evident that ([v]σ , [w]σ) ∈ Σ′1(Hd ,V, σ, g) for every d ∈ D′ and g ∈ Hmd . This implies that PrDk D

′ = negl(k).
Thus, we see that if D′ is a subset of D such that PrDk D

′ is not negligible as a function of k ∈ K (in particular, if
D′ = D), then {Hd | d ∈ D′} generates the varietyV. This shows that the family H can beweakly 1-pseudo-free
(with respect toD and σ) only in the variety generated by {Hd | d ∈ D}.

Remark 3.11. Recall that H = ((Hd , ρd ,Rd) | d ∈ D) is a family of computational Ω-algebras in V. For each
d ∈ D, let Sd be a subset of dom ρd such that ρd(Sd) = Hd and suppRd ⊆ Sd. Also, assume that for every
ω ∈ Ω there exists a deterministic polynomial-time algorithm that, given d ∈ D and [h1]ρd , . . . , [har ω]ρd ∈ Sd
(where h1, . . . , har ω ∈ Hd), computes [ω(h1, . . . , har ω)]ρd ∈ Sd. Then H′ = ((Hd , ρd|Sd ,Rd) | d ∈ D) is a family
of computational Ω-algebras inV. Moreover, if H is pseudo-free (resp., weakly pseudo-free) inVwith respect
to D and σ, then H′ is also pseudo-free (resp., weakly pseudo-free) in V with respect to D and σ. For weak
pseudo-freeness, the converse also holds.

3.3 Two examples of the function σ

In this subsection,we introduce two functions nat and SLP. Inwhat follows,wewill often assume that σ = nat
or σ = SLP.

Example 3.12 (natural representation). Denote by T∞,∞ the Ω-term algebra over the set {a1, a2, . . . , x1, x2,
. . . } of distinct variables. Let v(a; x) be an arbitrary element of F∞,∞(V), where v ∈ T∞,∞. In general, unless
V = O, the term v is not uniquely determined by v(a; x). We represent v(a; x) by the term v written in Polish
notation. Moreover, we encode each variable bi by bi = bbin i, where b ∈ {a, x}, i ∈ N \ {0}, and bin i is
the binary representation of i without leading zeros. More formally, consider the term v as a string over the
alphabet consisting of all symbols from Ω ⊔ {bi |b ∈ {a, x}, i ∈ N \ {0}}, parentheses, and comma. Let v be
obtained from v by removing all parentheses and commas and replacing all occurrences of bi by bi for every
b ∈ {a, x} and i ∈ N \ {0}, where bi is defined above. Then v ↦→ v is a one-to-one function from T∞,∞ to the
set of all strings over the finite alphabet Ω⊔{a, x, 0, 1}. It is convenient to use v as a representation of v(a; x)
for computational purposes. We call this representation natural and denote the function v ↦→ v(a; x), where
v ∈ T∞,∞, by nat. Of course, the function nat is well defined. For each m ∈ N, let natm be the restriction of
nat to ⟨a1, . . . , am⟩. Then nat and natm are functions onto F∞,∞(V) and Fm(V), respectively.

Assume thatV = O. In this case, the function nat is one-to-one. For every i ∈ N \ {0}, we identify ai with
ai and xi with xi. Then nat−1(w) = w for all w ∈ F∞,∞. This allows us to simplify the notation.

Example 3.13 (representation by straight-line programs). By a straight-line program over F∞,∞(V) we mean
a sequence (u1, . . . , un) of tuples such that n ∈ N \ {0} and for any i ∈ {1, . . . , n}, either ui = (b,m), where
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b ∈ {a, x} and m ∈ N \ {0}, or ui = (ω,m1, . . . ,mar ω), where ω ∈ Ω and m1, . . . ,mar ω ∈ {1, . . . , i − 1}.
Here a and x are considered as symbols that are not in Ω. Any straight-line program u = (u1, . . . , un) over
F∞,∞(V) naturally defines the sequence (v1, . . . , vn) of elements of F∞,∞(V) by induction. Namely, for every
i ∈ {1, . . . , n}, we put vi = bm if ui = (b,m) and vi = ω(vm1 , . . . , vmar ω ) if ui = (ω,m1, . . . ,mar ω), where
b, m, ω, and m1, . . . ,mar ω are as above. The straight-line program u is said to represent the element vn. We
denote by SLP the function u ↦→ vn, where u = (u1, . . . , un) is a straight-line program over F∞,∞(V) and vn is
defined above. It is evident that SLP is a function onto F∞,∞(V). Note that this method of representation (for
elements of the free group) was used in [19].

Remark 3.14. Assume that V = O. Unlike nat, the function SLP is not one-to-one. However, there exists a
deterministic polynomial-time algorithm that, given [v]SLP and [w]SLP (where v, w ∈ F∞,∞), decides whether
v = w. This algorithm can be easily constructed using the following observation: For any b, c ∈ {a, x}, i, j ∈
N \ {0}, ω, µ ∈ Ω, and v1, . . . , var ω , w1, . . . , war µ ∈ F∞,∞, we have

– bi = cj if and only if b = c and i = j;
– bi ≠ ω(v1, . . . , var ω);
– ω(v1, . . . , var ω) = µ(w1, . . . , war µ) if and only if ω = µ and vi = wi for all i ∈ {1, . . . , arω}.

Remark 3.15. As in Remark 3.14, assume that V = O. Let u = (u1, . . . , un) be a straight-line program over
F∞,∞ and let (v1, . . . , vn) be the sequence of elements of F∞,∞ naturally defined by u as in Example 3.13, i.e.,
vi = SLP(u1, . . . , ui) for all i ∈ {1, . . . , n}. Then an easy induction on n shows that subt(vn) ⊆ {v1, . . . , vn}.
Moreover, there exists a deterministic polynomial-time algorithm that, given u, computes (j1, . . . , jl) such
that 1 ≤ j1 < · · · < jl ≤ n and subt(vn) = {vj1 , . . . , vjl}. Indeed, let Γu be the directed acyclic graph with vertex
set {1, . . . , n} in which (i, j) is an edge (i.e., i → j) if and only if ui = (ω,m1, . . . ,mar ω) (where ω ∈ Ω and
m1, . . . ,mar ω ∈ {1, . . . , i − 1}) and j ∈ {m1, . . . ,mar ω}. Then it is easy to see (using induction on n) that

subt(vn) = {vj | j is reachable from n in Γu}.

The set of all vertices reachable from n in Γu can be found in time polynomial in n using breadth-first search
or depth-first search.

Remark 3.16. It is easy to see that, given [w]nat for arbitraryw ∈ F∞,∞(V), one can compute [w]SLP in polyno-
mial time. Therefore pseudo-freeness (resp., weak pseudo-freeness) inV with respect toD and SLP implies
pseudo-freeness (resp., weak pseudo-freeness) in V with respect to D and nat. The same holds for (weak)
s-pseudo-freeness for arbitrary s ∈ N \ {0}. However, the inverse transformation [w]SLP ↦→ [w]nat, in general,
cannot be performed in polynomial time. This is because the unique representation [w]nat (whenV = O) can
have length exponential in the length of the binary representation of [w]SLP. For example, assume thatV = O

and Ω ∋ ζ , ω, where ar ζ = 0 and arω = 2. For each n ∈ N, let wn = SLP((ζ ), (ω, 1, 1), . . . , (ω, n, n)). This
means that w0 = ζ and wn+1 = ω(wn , wn). Then an induction on n shows that the length of wn = nat−1(wn)
(as a string over Ω) is 2n+1 − 1.

3.4 Certain families ofV-free Ω-algebras are pseudo-free

The next lemma is similar to Lemma 3.8 in [1].

Lemma 3.17. For each u ∈ 1K , suppose τu is a function from a subset of {0, 1}* onto F𝛾(u)(V) (where 𝛾 : 1K →
N \ {0}) and Fu is a probability distribution on dom τu. Assume that the following conditions hold:

(i) F = ((F𝛾(u)(V), τu ,Fu) | u ∈ 1K) is a family of computational Ω-algebras;
(ii) τu(suppFu) ⊆ {a1, . . . , a𝛾(u)} for all u ∈ 1K;
(iii) CP(τ1k (F1k )) = negl(k).

Then F is pseudo-free inV with respect to (U({1k}) | k ∈ K) and σ.
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Proof. Suppose π is a polynomial and A is a probabilistic polynomial-time algorithm trying to break the
pseudo-freeness of F. Let k ∈ K and f1, . . . , fπ(k) ∈ suppF1k . Assume that

A(1k , 1k , (f1, . . . , fπ(k))) ∈ Σ(F𝛾(1k)(V),V, σ, τ1k , (τ1k (f1), . . . , τ1k (fπ(k)))).

Then, in particular, there exist v1, . . . , vs , w1, . . . , ws ∈ Fπ(k),n(V) (for some s ∈ N \{0} and n ∈ N) such that
the system of equations

vi(a1, . . . , aπ(k); x1, . . . , xn) = wi(a1, . . . , aπ(k); x1, . . . , xn), i ∈ {1, . . . , s},

is unsatisfiable in F∞(V), but the system

vi(τ1k (f1), . . . , τ1k (fπ(k)); x1, . . . , xn) = wi(τ1k (f1), . . . , τ1k (fπ(k)); x1, . . . , xn), i ∈ {1, . . . , s},

is satisfiable even in F𝛾(1k)(V). Here, of course, x1, . . . , xn are considered as variables. Since {τ1k (f1), . . . ,
τ1k (fπ(k))} ⊆ {a1, . . . , a𝛾(1k)} (see condition (ii)), this implies that τ1k (f1), . . . , τ1k (fπ(k)) are not distinct.
Hence,

Pr[A(1k , 1k , (f1, . . . , fπ(k))) ∈ Σ(F𝛾(1k)(V),V, σ, τ1k , (τ1k (f1), . . . , τ1k (fπ(k))))]

≤ Pr[τ1k (f1), . . . , τ1k (fπ(k)) are not distinct] ≤
π(k)(π(k) − 1)

2 CP(τ1k (F1k )) = negl(k),

where f1, . . . , fπ(k) ∼ F1k . (Here we use condition (iii).) Thus, the family F is pseudo-free inVwith respect to
(U({1k}) | k ∈ K) and σ.

In the next corollary, ai = nat−1(ai) (see Example 3.12).

Corollary 3.18. Let η be a polynomial parameter on K such that 2−η(k) = negl(k). Then

F = ((F2η(|u|) , nat2η(|u|) ,U({a1, . . . , a2η(|u|)})) | u ∈ 1
K)

is a pseudo-free family of computational Ω-algebras inO with respect to (U({1k}) | k ∈ K) and σ.

Proof. It is easy to see that F is a family of computational Ω-algebras. Furthermore, CP(U({a1, . . . , a2η(k)})) =
2−η(k) = negl(k) by Lemma 2.1. Hence the corollary follows from Lemma 3.17.

3.5 (Weakly) pseudo-free families of quotient algebras

In this subsection, as in Subsection 3.2, we assume that the family H = ((Hd , ρd ,Rd) | d ∈ D) is a family of
computational Ω-algebras inV.

Definition 3.19 (σ-compatible family). We call the family H σ-compatible if there exists a deterministic
polynomial-time algorithm that, given

(d, [u]σ , ([g1]ρd , . . . , [gm]ρd ), ([h1]ρd , . . . , [hn]ρd ))

for any d ∈ D, u ∈ Fm,n(V) (m, n ∈ N), and g1, . . . , gm , h1, . . . , hn ∈ Hd, computes
[u(g1, . . . , gm; h1, . . . , hn)]ρd .

Note that if the family H is polynomially bounded, then it is SLP-compatible and hence nat-compatible (see
Remark 3.16).

In Lemmas 3.20 and 3.21 below, let (Ed | d ∈ D) be a polynomial-time samplable probability ensemble
such that for every d ∈ D, Ed is a probability distribution on a set Ed ⊆ {0, 1}≤ξ (|d|), where ξ is a fixed
polynomial. (We can let Ed = suppEd for all d ∈ D.) Furthermore, suppose each pair (d, e) with d ∈ D and
e ∈ Ed is assigned a congruence θd,e on Hd. Finally, we denote byD′

k the distribution of the random variable
(d, e), where d ∼ Dk and e ∼ Ed (k ∈ K).

The next lemma is similar to Theorem 3.7 in [1].
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Lemma 3.20. Assume that the following conditions hold:

(i) There exists a deterministic polynomial-time algorithm that, given d ∈ D, e ∈ Ed, and [g]ρd , [h]ρd (where
g, h ∈ Hd), decides whether (g, h) ∈ θd,e.

(ii) If d ∼ Dk and e ∼ Ed, then for any probabilistic polynomial-time algorithm A,

Pr[A(1k , d, e) = ([y]ρd , [z]ρd ) s.t. (y, z) ∈ θ
≠
d,e] = negl(k).

Also, suppose the family H is σ-compatible and pseudo-free (resp., weakly pseudo-free) inV with respect toD
and σ. Then H′ = ((Hd/θd,e , ρd/θd,e ,Rd) | d ∈ D, e ∈ Ed) is a pseudo-free (resp., weakly pseudo-free) family
of computational Ω-algebras inV with respect to (D′

k | k ∈ K) and σ.

Proof. It is evident that for any d ∈ D, e ∈ Ed, and h ∈ Hd, the set (ρd/θd,e)−1(h/θd,e), where h/θd,e is
considered as an element of Hd/θd,e, coincides with the set ρ−1d (h/θd,e), where h/θd,e is considered as a
subset of Hd. This together with condition (i) implies that H′ is a family of computational Ω-algebras.

We consider only the case where H is pseudo-free. When H is weakly pseudo-free, the proof is the same,
mutatis mutandis. Suppose π is a polynomial and A is a probabilistic polynomial-time algorithm trying to
break the pseudo-freeness of H′. Let B be a probabilistic polynomial-time algorithm (trying to break the
pseudo-freeness of H) that on input (1k , d, r) for arbitrary k ∈ K, d ∈ suppDk, and r ∈ (suppRd)π(k) chooses
e ← Ed, runs A on input (1k , (d, e), r), and returns the output of A (if it exists). Furthermore, suppose C is
a probabilistic polynomial-time algorithm (trying to violate condition (ii)) that on input (1k , d, e) for every
k ∈ K, d ∈ suppDk, and e ∈ suppEd proceeds as follows:

(1) Choose r← Rπ(k)d .
(2) Run A on input (1k , (d, e), r). Assume that the output is

(([v1]σ , [w1]σ), . . . , ([vs]σ , [ws]σ), (q1, . . . , qn)), (2)

where s ∈ N \ {0}, n ∈ N, vi , wi ∈ Fπ(k),n(V) for all i ∈ {1, . . . , s}, and qj = [hj]ρd = [hj/θd,e]ρd/θd,e
(hj ∈ Hd) for all j ∈ {1, . . . , n}. Note that, in general, the algorithm C cannot check this condition.
However, if it is not true, then further execution of C does not matter.

(3) Compute [vi(ρd(r); h)]ρd and [wi(ρd(r); h)]ρd for all i ∈ {1, . . . , s}, where h = (h1, . . . , hn). (This can be
done in deterministic polynomial time because H is σ-compatible.)

(4) If there exists an i ∈ {1, . . . , s} such that vi(ρd(r); h) ≠ wi(ρd(r); h), then output
([vi(ρd(r); h)]ρd , [wi(ρd(r); h)]ρd ) for some such i. Otherwise, the algorithm C fails.

Assume that the algorithm A is invoked by B or C on input (1k , (d, e), r) (where k ∈ K, d ∈ suppDk,
e ∈ suppEd, and r ∈ (suppRd)π(k)) and that the output of A (denoted by u) is in Σ(Hd/θd,e ,V, σ, ρd/θd,e,
(ρd/θd,e)(r)). In particular, this means that u has the form (2) and (vi(ρd(r); h), wi(ρd(r); h)) ∈ θd,e for all
i ∈ {1, . . . , s}. If vi(ρd(r); h) = wi(ρd(r); h) for every i ∈ {1, . . . , s}, then the algorithm B outputs u ∈
Σ(Hd ,V, σ, ρd , ρd(r)). Otherwise, the algorithm C outputs a pair ([y]ρd , [z]ρd ) such that (y, z) ∈ θ≠d,e. Hence,

Pr[A(1k , (d, e), r) ∈ Σ(Hd/θd,e,V, σ, ρd/θd,e, (ρd/θd,e)(r))] ≤ Pr[B(1k , d, r) ∈ Σ(Hd,V, σ, ρd, ρd(r))]

+ Pr[C(1k , d, e) = ([y]ρd , [z]ρd ) s.t. (y, z) ∈ θ
≠
d,e] = negl(k) + negl(k) = negl(k),

where k ∈ K, d ∼ Dk, e ∼ Ed, and r ∼ Rπ(k)d . Thus, H′ is pseudo-free in V with respect to (D′
k | k ∈ K)

and σ.

Lemma 3.21. Assume that the following conditions hold:

(i) There exists a deterministic polynomial-time algorithm that, given d ∈ D, e ∈ Ed, and [g]ρd , [h]ρd (where
g, h ∈ Hd), decides whether (g, h) ∈ θd,e (as in Lemma 3.20).

(ii) For any polynomial π and any probabilistic polynomial-time algorithm A,

Pr[A(1k , d, e, r) = ([v]σ , [w]σ) s.t. v, w ∈ Fπ(k)(V) and (v(ρd(r)), w(ρd(r))) ∈ θ≠d,e] = negl(k),

where d ∼ Dk, e ∼ Ed, and r ∼ Rπ(k)d .
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Also, suppose the family H is weakly pseudo-free in V with respect to D and σ. Then H′ = ((Hd/θd,e , ρd/θd,e,
Rd) | d ∈ D, e ∈ Ed) is a weakly pseudo-free family of computational Ω-algebras inV with respect to (D′

k | k ∈
K) and σ.

Proof. As in the proof of Lemma 3.20, we see that H′ is a family of computational Ω-algebras.
Let π be a polynomial and let A be a probabilistic polynomial-time algorithm trying to break the weak

pseudo-freeness of H′. Suppose B is a probabilistic polynomial-time algorithm (trying to break the weak
pseudo-freeness of H) that on input (1k , d, r) for arbitrary k ∈ K, d ∈ suppDk, and r ∈ (suppRd)π(k) chooses
e← Ed, runs A on input (1k , (d, e), r), and returns the output of A (if it exists). Furthermore, let C be a prob-
abilistic polynomial-time algorithm (trying to violate condition (ii)) that on input (1k , d, e, r) for every k ∈ K,
d ∈ suppDk, e ∈ suppEd, and r ∈ (suppRd)π(k) proceeds as follows:

(1) Run A on input (1k , (d, e), r). Assume that the output is (p1, . . . , ps), where s ∈ N \ {0} and pi ∈
(dom σ)2 for all i ∈ {1, . . . , s}. Note that, in general, the algorithm C cannot check this condition.
However, if it is not true, then further execution of C does not matter.

(2) Choose j← U({1, . . . , 2⌈log2 s⌉}).
(3) If j ∈ {1, . . . , s}, then output pj. Otherwise, the algorithm C fails.

Assume that the algorithm A is invoked by B or C on input (1k , (d, e), r) (where k ∈ K, d ∈ suppDk,
e ∈ suppEd, and r ∈ (suppRd)π(k)) and that the output of A is

u = (([v1]σ , [w1]σ), . . . , ([vs]σ , [ws]σ)) ∈ Σ′(Hd/θd,e ,V, σ, (ρd/θd,e)(r)).

This means that s ∈ N \ {0}, vi , wi ∈ Fπ(k)(V) for all i ∈ {1, . . . , s}, vj ≠ wj for some j ∈ {1, . . . , s}, and
(vi(ρd(r)), wi(ρd(r))) ∈ θd,e for each i ∈ {1, . . . , s}. For brevity, put

Π(k, d, e, r) = {([v]σ , [w]σ) | v, w ∈ Fπ(k)(V), (v(ρd(r)), w(ρd(r))) ∈ θ≠d,e}.

Here [v]σ and [w]σ denote all preimages of v andw, respectively, rather than arbitrarily chosen ones.Moreover,
let vu(g) = (v1(g), . . . , vs(g)) and wu(g) = (w1(g), . . . , ws(g)) for arbitrary g ∈ Hπ(k)d . Choose a polynomial η
satisfying 2⌈log2 s⌉ ≤ η(k). If vu(ρd(r)) = wu(ρd(r)), then the algorithm B outputs u ∈ Σ′(Hd ,V, σ, ρd(r)).
Assume that vu(ρd(r)) ≠ wu(ρd(r)). Then it is evident that the algorithm C outputs an element of Π(k, d, e, r)
if and only if j ∈ {1, . . . , s} and vj(ρd(r)) ≠ wj(ρd(r)), where j is defined in step (2) of C. This shows that

Pr[C(1k , d, e, r) ∈ Π(k, d, e, r) |A(1k , (d, e), r) = u]

= Pr[j ∈ {1, . . . , s}, vj(ρd(r)) ≠ wj(ρd(r))] ≥
1

2⌈log2 s⌉
≥ 1
η(k) ,

where j ∼ U({1, . . . , 2⌈log2 s⌉}). (The random bits of the algorithm A are considered as a part of the random
bits of the algorithm C.) Hence,

Pr[A(1k , (d, e), r) = u] ≤ η(k) Pr[C(1k , d, e, r) ∈ Π(k, d, e, r), A(1k , (d, e), r) = u]

and

Pr[A(1k , (d, e), r) = u′ ∈ Σ′(Hd/θd,e ,V, σ, (ρd/θd,e)(r))

s.t. vu
′
(ρd(r)) ≠ wu

′
(ρd(r))] ≤ η(k) Pr[C(1k , d, e, r) ∈ Π(k, d, e, r)].

Therefore we have

Pr[A(1k , (d, e), r) ∈ Σ′(Hd/θd,e,V, σ, (ρd/θd,e)(r))] = Pr[A(1k , (d, e), r)
= u′ ∈ Σ′(Hd/θd,e,V, σ, (ρd/θd,e)(r))

s.t. vu
′
(ρd(r)) = wu

′
(ρd(r))] + Pr[A(1k , (d, e), r) = u′ ∈ Σ′(Hd/θd,e,V, σ, (ρd/θd,e)(r))

s.t. vu
′
(ρd(r)) ≠ wu

′
(ρd(r))] ≤ Pr[B(1k , d, r) ∈ Σ′(Hd,V, σ, ρd(r))] + η(k) Pr[C(1k , d, e, r) ∈ Π(k, d, e, r)]

= negl(k) + η(k) negl(k) = negl(k),

where k ∈ K, d ∼ Dk, e ∼ Ed, and r ∼ Rπ(k)d . Thus, H′ is weakly pseudo-free inV with respect to (D′
k | k ∈ K)

and σ.
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4 When polynomially bounded (weakly) pseudo-free families inO

exist unconditionally?
In this section, we mostly consider the case where V = O. Recall that w = nat−1(w) for any w ∈ F∞,∞ (see
Example 3.12).

4.1 Unconditional results

Remark 4.1. Assume that Ω consists of nullary operation symbols only. By Corollary 3.18,

F = ((F2|u| , nat2|u| ,U({a1, . . . , a2|u|})) | u ∈ 1
K)

is a pseudo-free family of computational Ω-algebras inO with respect to (U({1k}) | k ∈ K) and σ. Also, F has
unique representations of elements. Furthermore, it is easy to see that F2k = Ω ⊔ {a1, . . . , a2k} for all k ∈ K.
Therefore each string (over the alphabet Ω ⊔{a, 0, 1}) in domnat2k has length at most k +2. This shows that
F is polynomially bounded.

Remark 4.2. Assume that Ω = Ω0 ⊔ {ω}, where Ω0 consists of nullary operation symbols and arω = 1. For
arbitrary n ∈ N, denote by ωn the n-fold composition of ω with itself. It is easy to see that every element of
F∞ can be uniquely represented as ωi(b), where i ∈ N and b ∈ Ω0 ⊔ {a1, a2, . . . }.

Let k ∈ K. Denote by θ1k the following binary relation on F2k :

{(v, w) ∈ F22k | v = w or v = ωi(b), w = ωj(b), where i, j ≥ 2k , b ∈ Ω0 ⊔ {a1, . . . , a2k}}.

This relation is a congruence on F2k . The equivalence classes under θ1k are

{ω0(b)}, . . . , {ω2k−1(b)}, {ω2k (b), ω2k+1(b), . . . },

where b ranges over Ω0 ⊔ {a1, . . . , a2k}.
By Corollary 3.18,

F = ((F2|u| , nat2|u| ,U({a1, . . . , a2|u|})) | u ∈ 1
K)

is a pseudo-free family of computationalΩ-algebras inOwith respect to (U({1k}) | k ∈ K) andnat.We observe
that, given (1k , v, w) (where v, w ∈ F2k ), one can decide whether (v, w) ∈ θ1k in deterministic polynomial
time.Also, if (v, w) ∈ θ≠1k , thenboth v andw have length at least 2k+1as strings overΩ⊔{a, 0, 1}. This implies
that for any probabilistic polynomial-time algorithm A, we have Pr[A(1k , 1k) = (v, w) s.t. (v, w) ∈ θ≠1k ] = 0 for
all sufficiently large k ∈ K. Moreover, it is easy to see that the family F is nat-compatible. Thus, by Lemma 3.20,

F′ = ((F2|u| /θu , nat2|u| /θu ,U({a1, . . . , a2|u|})) | u ∈ 1
K)

is a pseudo-free family of computational Ω-algebras inOwith respect to (U({1k}) | k ∈ K) and nat. (We apply
this lemma to H = F, Eu = {e}, where e ∈ {0, 1}* is arbitrary, Eu = U(Eu), and θu,e = θu for all u ∈ 1K . Since
e is fixed, we omit it.) The family F′ has exponential size because |F2k /θ1k | = (2k + 1)(|Ω0| + 2k) for all k ∈ K.
But this family is not polynomially bounded and does not have unique representations of elements. The last
disadvantage can be overcome by restricting the function nat2|u| to the set

Su = {ωi(b) | i ∈ {0, . . . , 2|u|}, b ∈ Ω0 ⊔ {a1, . . . , a2|u|}},

where u ∈ 1K . Namely, let

F′′ = ((F2|u| /θu , (nat2|u| |Su )/θu ,U({a1, . . . , a2|u|})) | u ∈ 1
K).

ThenbyRemark 3.11,F′′ is apseudo-free family of computationalΩ-algebras inOwith respect to (U({1k}) | k ∈
K) and nat (note that (nat2|u| |Su )/θu = (nat2|u| /θu)|Su for all u ∈ 1K). This family has exponential size and
unique representations of elements, but is not polynomially bounded.
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Remark 4.3. In this remark, as in Remark 4.2, we assume that Ω = Ω0 ⊔ {ω}, where Ω0 consists of nullary
operation symbols and arω = 1. Also, we use the notation of Remark 4.2.

Let k ∈ K. Define the function δ1k by δ1k (i, b) = ωi(b) for each i ∈ N and b ∈ Ω0 ⊔ {a1, . . . , a2k}. This
function provides a more succinct representation of elements of F2k than nat2k . By Lemma 3.17,

F = ((F2|u| , δu ,U({(0, a1), . . . , (0, a2|u| )})) | u ∈ 1
K)

is a pseudo-free (and hence weakly pseudo-free) family of computational Ω-algebras in O with respect to
(U({1k}) | k ∈ K) and SLP. Of course, given 1k and [v]δ1k , [w]δ1k (where v, w ∈ F2k ), one can decide whether
(v, w) ∈ θ1k in deterministic polynomial time. Suppose v, w ∈ Fm and f ∈ {a1, . . . , a2k}m (where m ∈ N) are
such that (v(f ), w(f )) ∈ θ≠1k . Let v = ω

i(b) and w = ωj(c), where i, j ∈ N and b, c ∈ Ω0 ⊔ {a1, . . . , am}. Then
v(f ) = ωi(b(f )) and w(f ) = ωj(c(f )), where b(f ), c(f ) ∈ Ω0 ⊔ {a1, . . . , a2k}. Therefore we have i, j ≥ 2k. It is
evident that subt(v) = {ωl(b) | l ∈ {0, . . . , i}} and subt(w) = {ωl(c) | l ∈ {0, . . . , j}}. Hence it follows from
Remark 3.15 that if (u1, . . . , un) ∈ SLP−1(v) ⊔ SLP−1(w), then n ≥ min{i, j} + 1 ≥ 2k + 1. This implies that for
any polynomial π and any probabilistic polynomial-time algorithm A,

Pr[A(1k , 1k , r) = ([v]SLP, [w]SLP) s.t. v, w ∈ Fπ(k) and (v(δ1k (r)), w(δ1k (r))) ∈ θ
≠
1k ] = 0

for all sufficiently large k ∈ K, where r ∼ U({(0, a1), . . . , (0, a2k )})π(k). Thus, by Lemma 3.21,

F′ = ((F2|u| /θu , δu/θu ,U({(0, a1), . . . , (0, a2|u| )})) | u ∈ 1
K)

is a weakly pseudo-free family of computational Ω-algebras in O with respect to (U({1k}) | k ∈ K) and SLP.
(As in Remark 4.2, we apply this lemma to H = F, Eu = {e}, where e ∈ {0, 1}* is arbitrary, Eu = U(Eu),
and θu,e = θu for all u ∈ 1K . Since e is fixed, we omit it.) The family F′ has exponential size, but is not
polynomially bounded and does not have unique representations of elements. However, we can overcome
both of these disadvantages by restricting the function δu to the set Su = {(i, b) | i ∈ {0, . . . , 2|u|}, b ∈
Ω0 ⊔ {a1, . . . , a2|u|}}, where u ∈ 1K . Namely, let

F′′ = ((F2|u| /θu , (δu|Su )/θu ,U({(0, a1), . . . , (0, a2|u| )})) | u ∈ 1
K).

Then by Remark 3.11, F′′ is a weakly pseudo-free family of computational Ω-algebras in O with respect to
(U({1k}) | k ∈ K) and SLP (note that (δu|Su )/θu = (δu/θu)|Su for all u ∈ 1

K). It is easy to see that the family F′′

is polynomially bounded and has unique representations of elements.
Note that neither F′ nor F′′ is 1-pseudo-free inOwith respect to (U({1k}) | k ∈ K) and nat. This is because

the equation x1 = ω(x1) is unsatisfiable in F∞, butω2|u| (a1)/θu = δu(2|u|, a1)/θu is a solution to this equation
in F2|u| /θu (u ∈ 1K). In particular, neither F′ nor F′′ is pseudo-free inO with respect to (U({1k}) | k ∈ K) and
SLP (see Remarks 3.16 and 3.9).

4.2 Some cases where the existence of weakly pseudo-free families implies the
existence of collision-resistant families of hash functions

Construction 4.4. Suppose χ :
⨆︀
n∈N{0, 1}

n → F∞(V) is a function satisfying the following conditions:

(i) N is an infinite polynomial-time enumerable subset of N. This means that the function i ↦→ min{n ∈
N | n > i} is a polynomial parameter on N (see [15, Subsubsection 2.2.3.1]).

(ii) There exists adeterministic polynomial-timealgorithm that, given y ∈
⨆︀
n∈N{0, 1}

n, computes [χ(y)]nat.
(iii) There exists a polynomial 𝛾 such that χ({0, 1}n) ⊆ F𝛾(n)(V) for all n ∈ N.
(iv) For any n ∈ N, χ|{0,1}n is one-to-one.

Also, let H = ((Hd , ρd ,Rd) | d ∈ D) be a polynomially bounded family of computational Ω-algebras inV (see
Subsection 3.2). Choose a polynomial parameter η on K such that dom ρd ⊆ {0, 1}≤η(k) for each k ∈ K and
d ∈ suppDk. Denote by ξ the polynomial parameter k ↦→ min{n ∈ N | n > η(k) + 1} on K (see condition (i)).
Then ξ (k) ∈ N and ξ (k) > η(k) + 1 for all k ∈ K.
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For any n ∈ N, let αn be the one-to-one function from {0, 1}≤n onto {0, 1}n+1 \ {0n+1} defined by αn(y) =
y10n−|y| for all y ∈ {0, 1}≤n. Then the function (1n , y) ↦→ αn(y), where n ∈ N and y ∈ {0, 1}≤n, is polynomial-
time computable.

Choose a polynomial π such that χ({0, 1}ξ (k)) ⊆ Fπ(k)(V) for all k ∈ K. Condition (iii) implies that such a
polynomial exists. Put

Ek = {(1k , d, r) | d ∈ suppDk , r ∈ (dom ρd)π(k)},

where k ∈ K, and E =
⨆︀
k∈K Ek. For each e ∈ E, define κ(e) to be the unique k ∈ K such that e ∈ Ek. It is easy

to see that Ek ⊆ {0, 1}≤ζ (k) for all k ∈ K, where ζ is a fixed polynomial, and κ is a polynomial parameter on E,
as in Definition 2.3. Finally, let

ϕ(1k ,d,r)(y) = αη(k)([χ(y)(ρd(r))]ρd ),

for every k ∈ K, d ∈ suppDk, r ∈ (dom ρd)π(k), and y ∈ {0, 1}ξ (k). Here [χ(y)(ρd(r))]ρd denotes the preimage
of χ(y)(ρd(r)) under ρd computed by the following deterministic polynomial-time algorithm:

(1) Given y, compute [χ(y)]nat (see condition (ii)).
(2) Given d, [χ(y)]nat, and r, compute and output [χ(y)(ρd(r))]ρd . (This can be done in deterministic polyno-

mial time because H is nat-compatible.)

Thus, Φ = (ϕe : {0, 1}ξ (κ(e)) → {0, 1}η(κ(e))+1 | e ∈ E) is a family of hash functions.

Theorem 4.5. Let H, π, and Φ be as in Construction 4.4. Assume that the family H is weakly 1-pseudo-free inV
with respect toD and nat. For each k ∈ K, denote by Ek the distribution of the random variable (1k , d, r), where
d ∼ Dk and r ∼ Rπ(k)d . Then the family Φ is collision-resistant with respect to E = (Ek | k ∈ K). (It is evident that
the probability ensemble E is polynomial-time samplable when the indices are represented in unary.)

Proof. Let A be a probabilistic polynomial-time algorithm trying to find collisions for Φ. Suppose B is a
probabilistic polynomial-time algorithm (trying to break the weak 1-pseudo-freeness of H) that on input e =
(1k , d, r) for every k ∈ K, d ∈ suppDk, and r ∈ (suppRd)π(k) proceeds as follows:

(1) Run A on input e. Assume that the output is a collision (y, z) for the function ϕe. If this is not true, then
B fails.

(2) Compute and output ([χ(y)]nat, [χ(z)]nat), where χ is related to π andΦ as in Construction 4.4. (It is easy
to see that this pair is in Σ′1(Hd ,V, nat, ρd(r)).)

Let k ∈ K, d ∼ Dk, and r ∼ Rπ(k)d . Then the random variable e = (1k , d, r) is distributed according to Ek.
Furthermore, we have

Pr[A(e) is a collision for ϕe] = Pr[B(1k , d, r) ∈ Σ′1(Hd,V, nat, ρd(r))] = negl(k)

because H is weakly 1-pseudo-free in V with respect to D and nat. Thus, the family Φ is collision-resistant
with respect to E.

Corollary 4.6. Assume that there exists a function χ :
⨆︀
n∈N{0, 1}

n → F∞(V) satisfying conditions (i)–(iv) of
Construction 4.4. Then the existence of polynomially bounded weakly 1-pseudo-free families of computational
Ω-algebras inV with respect toD and nat implies the existence of collision-resistant families of hash functions
(with respect to some probability ensemble that is indexed by K and is polynomial-time samplable when the
indices are represented in unary).

Corollary 4.6 follows immediately from Theorem 4.5.

Remark 4.7. Here are some cases where a function χ :
⨆︀
n∈N{0, 1}

n → F∞(V) satisfying conditions (i)–(iv)
of Construction 4.4 exists:

(i) Ω ∋ ω, where arω = 2, and V is a nontrivial variety of Ω-algebras such that any H ∈ V is a groupoid
with an identity element (denoted by 1H) under ω. (In particular, this holds ifV is a nontrivial variety of
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monoids, loops, groups, or rings.) In this case, the required function χ : {0, 1}* → F∞(V) canbedefined
as follows. For any y ∈ {0, 1}*, let {i1, . . . , im} (where i1 < · · · < im) be the set of all i ∈ {1, . . . , |y|}
such that the ith bit of y is 1. Then

χ(y) =

⎧⎪⎪⎨⎪⎪⎩
1F∞(V) if m = 0,
ai1 if m = 1,
ω(. . . ω(ω(ai1 , ai2 ), ai3 ), . . . , aim ) if m ≥ 2.

Choose an Ω-algebra H ∈ V with at least two elements. Furthermore, let h ∈ H \ {1H}. Suppose y
and z are distinct bit strings of the same length. We assume that the jth bits of y and z are 0 and 1,
respectively. Let α be the homomorphism of F∞(V) to H such that α(aj) = h and α(ai) = 1H for all
i ∈ N \ {j}. Then it is easy to see that α(χ(y)) = 1H ≠ h = α(χ(z)) and hence χ(y) ≠ χ(z). (We note that
α(1F∞(V)) = ω(α(1F∞(V)), α(aj+1)) = α(aj+1) = 1H .) Thus, χ|{0,1}n is one-to-one for every n ∈ N.

(ii) Ω ∋ ω0, ω1, where arω0 = arω1 = 1 and ω0 ≠ ω1, and V = O. In this case, the required function
χ : {0, 1}* → F∞ can be defined by χ(y) = ωyn (. . . ωy2 (ωy1 (a1)) . . . ) for all y = y1 . . . yn ∈ {0, 1}*,
where n ∈ N and y1, . . . , yn ∈ {0, 1}.

(iii) Ω ∋ ω, where arω = m ≥ 2, and V = O. In this case, the required function χ : {0, 1}* → F∞ can be
defined inductively as follows:

χ(ϵ) = a1, χ(y0) = χ(y), χ(y1) = ω(a|y|+1, . . . , a|y|+1⏟  ⏞  
m−1 times

, χ(y)),

where ϵ is the empty string and y ∈ {0, 1}*. Using induction on |z|, it is easy to see that for any z ∈
{0, 1}* and any i ∈ {1, . . . , |z|}, the ith bit of z is 1 if and only if χ(z) contains a subterm of the form
ω(ai , . . . , ai , v), where v ∈ F∞. This implies that for each n ∈ N, χ|{0,1}n is one-to-one.

By Corollary 4.6, in any of these cases, the existence of polynomially bounded weakly 1-pseudo-free families
of computational Ω-algebras inVwith respect toD and nat implies the existence of collision-resistant fami-
lies of hash functions (with respect to some probability ensemble that is indexed by K and is polynomial-time
samplable when the indices are represented in unary).

4.3 Summary of results

The main results of this section can be summarized as follows:

– Assume that Ω consists of nullary operation symbols only. Then there exists a polynomially bounded
pseudo-free family of computational Ω-algebras inOwith respect to (U({1k}) | k ∈ K) and σ. Moreover,
this family has unique representations of elements. See Remark 4.1.

– Assume that Ω = Ω0 ⊔ {ω}, where Ω0 consists of nullary operation symbols and arω = 1. Then there
exist

– anexponential-sizepseudo-free family of computationalΩ-algebras inOwith respect to (U({1k})
| k ∈ K) and nat and

– a polynomially bounded weakly pseudo-free family of computational Ω-algebras in O with re-
spect to (U({1k}) | k ∈ K) and SLP.

Moreover, both of these families have unique representations of elements. See Remarks 4.2 and 4.3.
– In all other cases, the existence of polynomially boundedweakly pseudo-free families of computational
Ω-algebras inO with respect toD and nat implies the existence of collision-resistant families of hash
functions (with respect to some probability ensemble that is indexed by K and is polynomial-time sam-
plable when the indices are represented in unary). See Corollary 4.6 and Remark 4.7 (cases (ii) and (iii)).
Note that by Remark 3.9, weak pseudo-freeness in O with respect to D and nat is equivalent to weak
1-pseudo-freeness inO with respect toD and nat.
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5 (Weakly) pseudo-free families in the variety of allm-ary
groupoids

In this section, we assume that Ω = {ω}, where arω = m is an arbitrary positive integer. In other words, we
consider m-ary groupoids. In particular,O is the variety of all m-ary groupoids.

Lemma 5.1. Let G be an m-ary groupoid and let g = (g1, . . . , gn) ∈ Gn, where n ∈ N. Assume that g1, . . . , gn
are distinct and that gi ∉ ω(Gm) for all i ∈ {1, . . . , n}. Also, suppose v and w are distinct elements of Fn such
that v(g) = w(g). Then there exist v1, . . . , vm , w1, . . . , wm ∈ Fn such that the following two conditions hold:

(i) ω(v1, . . . , vm) ∈ subt(v) and ω(w1, . . . , wm) ∈ subt(w);
(ii) (v1(g), . . . , vm(g)) ≠ (w1(g), . . . , wm(g)), but ω(v1(g), . . . , vm(g)) = ω(w1(g), . . . , wm(g)).

Proof. Denote by V the set of all v ∈ Fn satisfying the following condition:

∀w ∈ Fn (v ≠ w, v(g) = w(g) =⇒ ∃ v1, . . . , vm , w1, . . . , wm ∈ Fn s.t. conditions (i) and (ii) hold).

To prove the lemma, it suffices to show that {a1, . . . , an} ⊆ V and that V is an m-ary subgroupoid (i.e.,
subalgebra) of Fn.

If v ∈ {a1, . . . , an}, then the assumptions on g imply that for any w ∈ Fn, we have v = w or v(g) ≠ w(g).
This shows that {a1, . . . , an} ⊆ V.

Let v′1, . . . , v′m ∈ V and v = ω(v′1, . . . , v′m). Also, suppose w is an element of Fn such that v ≠ w and
v(g) = w(g). Then it follows from the assumptions on g that w = ω(w′

1, . . . , w′
m), where w′

1, . . . , w′
m ∈ Fn.

If (v′1(g), . . . , v′m(g)) ≠ (w′
1(g), . . . , w′

m(g)), then conditions (i) and (ii) hold for vi = v′i and wi = w′
i (i ∈

{1, . . . ,m}). Otherwise, choose an index j ∈ {1, . . . ,m} satisfying v′j ≠ w′
j; such an index exists because v ≠

w. In this case, conditions (i) and (ii) hold for some v1, . . . , vm , w1, . . . , wm ∈ Fn such that ω(v1, . . . , vm) ∈
subt(v′j) and ω(w1, . . . , wm) ∈ subt(w′

j). This is because v′j ∈ V, v′j ≠ w′
j, and v′j(g) = w′

j(g). Thus, we obtain
that v ∈ V. This shows that V is an m-ary subgroupoid of Fn.

In Subsections 5.1–5.2 below, we use the assumptions and notation of Definition 2.3. In these subsections, we
also assume that suppDk ⊆ Dk for every k ∈ K.

5.1 Constructing a polynomially bounded weakly pseudo-free family from a
collision-resistant family of hash functions

Construction 5.2. Suppose Ψ = (ψd : {0, 1}mξ (κ(d)) → {0, 1}η(κ(d)) | d ∈ D) is a family of hash functions,
where ξ and η are polynomial parameters on K satisfying ξ (k) > η(k) for all k ∈ K. Then for every d ∈ D, let
Gd be the m-ary groupoid with carrier {0, 1}ξ (κ(d)) and fundamental operation defined by

ω(g1, . . . , gm) = ψd(g1 . . . gm)1ξ (κ(d))−η(κ(d)), g1, . . . , gm ∈ {0, 1}ξ (κ(d)).

Finally, put Mk = {0, 1}η(k)0ξ (k)−η(k) for each k ∈ K.

Theorem 5.3. Let Ψ, Gd (d ∈ D), and Mk (k ∈ K) be as in Construction 5.2. Assume that the family Ψ is
collision-resistant with respect to D. Then G = ((Gd , id,U(Mκ(d))) | d ∈ D) is a polynomially bounded weakly
pseudo-free family of computational m-ary groupoids inO with respect toD and SLP.

Proof. It is easy to see that G is a polynomially bounded family of computational m-ary groupoids. Let π
be a polynomial and let A be a probabilistic polynomial-time algorithm trying to break the weak 1-pseudo-
freeness of G. Suppose B is a probabilistic polynomial-time algorithm (trying to find collisions for Ψ) that on
input d ∈ D proceeds as follows:
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(1) Choose g1, . . . , gπ(k) ← U(Mk), where k = κ(d). If g1, . . . , gπ(k) are distinct, then put g = (g1, . . . , gπ(k)).
Otherwise, the algorithm B fails.

(2) Run A on input (1k , d, g). Assume that the output is ([v]SLP, [w]SLP) ∈ Σ′1(Gd ,O, SLP, g). (Remark 3.14
implies that B can check this condition). If this is not true, then B fails.

(3) Find (by exhaustive search) a pair

(([v1]SLP, . . . , [vm]SLP), ([w1]SLP, . . . , [wm]SLP))

of m-tuples such that the following conditions hold:

– ω(v1, . . . , vm) ∈ subt(v) and ω(w1, . . . , wm) ∈ subt(w);
– (v1(g), . . . , vm(g)) ≠ (w1(g), . . . , wm(g)), but ω(v1(g), . . . , vm(g)) = ω(w1(g), . . . , wm(g)).

By Lemma 5.1, such a pair exists. (We note that gi ∉ ω(Gmd ) for all i ∈ {1, . . . , π(k)}. This is because
the last bits of gi and of any string in ω(Gmd ) are 0 and 1, respectively.) The exhaustive search can be
performed in polynomial time by Remark 3.15.

(4) Output (v1(g) . . . vm(g), w1(g) . . . wm(g)). (By the last condition of the previous step, together with the
definition of ω on Gd, it is a collision for ψd.)

Let k ∈ K, d ∼ Dk, g1, . . . , gπ(k) ∼ U(Mk), and g = (g1, . . . , gπ(k)). Then

Pr[A(1k , d, g) ∈ Σ′1(Gd,O, SLP, g)] = Pr[A(1k , d, g) ∈ Σ′1(Gd,O, SLP, g), g1, . . . , gπ(k) are distinct]

+ Pr[A(1k , d, g) ∈ Σ′1(Gd,O, SLP, g), g1, . . . , gπ(k) are not distinct]

≤ Pr[B(d) is a collision for ψd] +
π(k)(π(k) − 1)

2η(k)+1
= negl(k) + negl(k) = negl(k)

because Ψ is collision-resistant with respect toD and 2−η(k) = negl(k) (see Remark 2.5). Thus, the family G is
weakly pseudo-free inO with respect toD and SLP (see Remark 3.9).

Corollary 5.4. Assume that m ≥ 2. Then the following conditions are equivalent:

(i) There exists a collision-resistant family of hash functions with respect to some probability ensemble that
is indexed by K and is polynomial-time samplable when the indices are represented in unary.

(ii) There exists a polynomially bounded weakly pseudo-free family of computational m-ary groupoids inO

with respect to some probability ensemble (with the same properties as in condition (i)) and SLP.
(iii) The same as condition (ii), but with nat instead of SLP.

Proof. The implication (i) =⇒ (ii) follows from Lemma 2.6 and Theorem 5.3. The implication (ii) =⇒ (iii)
follows from Remark 3.16. Finally, the implication (iii) =⇒ (i) follows from Corollary 4.6 and Remark 4.7
(case (iii)).

Remark 5.5. Note that the family G in Theorem 5.3 has unique representations of elements. Therefore Corol-
lary 5.4 remains valid if we require that theweakly pseudo-free families in conditions (ii) and (iii) additionally
have unique representations of elements.

5.2 Constructing an exponential-size pseudo-free family from a collision-resistant
family of hash functions

Construction 5.6. Suppose Ψ = (ψd : {0, 1}mξ (κ(d)) → {0, 1}η(κ(d)) | d ∈ D) and Gd (d ∈ D) are as in Con-
struction 5.2. Let d ∈ D and k = κ(d). For each n ∈ {0, . . . , 2η(k) − 1}, denote by βk(n) ∈ {0, 1}η(k) the binary
representation of length η(k) of n (with enough leading zeros to obtain η(k) bits). Thus, βk is a one-to-one
function from {0, . . . , 2η(k) − 1} onto {0, 1}η(k). Suppose λd is the homomorphism of F2η(k) to Gd such that
λd(ai) = βk(i − 1)0ξ (k)−η(k) for all i ∈ {1, . . . , 2η(k)} and θd is the kernel of this homomorphism.
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Recall that w = nat−1(w) for any w ∈ F∞,∞ (see Example 3.12).

Theorem 5.7. Let Ψ, η, and θd (d ∈ D) be as in Construction 5.6. Assume that the family Ψ is collision-resistant
with respect toD. Then

Q = ((F2η(κ(d)) /θd , nat2η(κ(d)) /θd ,U({a1, . . . , a2η(κ(d))})) | d ∈ D)

is a pseudo-free family of computational m-ary groupoids inO with respect toD and nat. Moreover, the family
Q has exponential size.

Proof. Remark 2.5 shows that 2−η(k) = negl(k). Therefore, by Corollary 3.18,

F = ((F2η(|u|) , nat2η(|u|) ,U({a1, . . . , a2η(|u|)})) | u ∈ 1
K)

is a pseudo-free family of computational m-ary groupoids in O with respect to (U({1k}) | k ∈ K) and nat.
Furthermore, it is easy to see that F is nat-compatible.

Suppose λd (d ∈ D) is as in Construction 5.6. It is not hard to show that, given (d, v) (where d ∈ D and
v ∈ F2η(κ(d)) ), one can compute λd(v) in polynomial time. Hence there exists a deterministic polynomial-time
algorithm that, given (1k , d, v, w), where k ∈ K, d ∈ Dk, and v, w ∈ F2η(k) , decides whether (v, w) ∈ θd.

Let A be a probabilistic polynomial-time algorithm trying to violate condition (ii) of Lemma 3.20. Suppose
B is a probabilistic polynomial-time algorithm (trying to find collisions for Ψ) that on input d ∈ D proceeds
as follows:

(1) Run A on input (1k , 1k , d), where k = κ(d). Let g = λd(a1, . . . , a2η(k) ). Assume that the output is (v, w)
such that (v, w) ∈ θ≠d. (It is easy to see that B can check this condition.) If this is not true, then B fails.

(2) Find (by exhaustive search) a pair ((v1, . . . , vm), (w1, . . . , wm)) of m-tuples such that the following
conditions hold:

– ω(v1, . . . , vm) ∈ subt(v) and ω(w1, . . . , wm) ∈ subt(w);
– (v1(g), . . . , vm(g)) ≠ (w1(g), . . . , wm(g)), but ω(v1(g), . . . , vm(g)) = ω(w1(g), . . . , wm(g)). (Of

course, subt(v) ∪ subt(w) ⊆ ⟨ai1 , . . . , ain ⟩, where 1 ≤ i1 < · · · < in ≤ 2η(k) and n ≤ π(k) for some
fixed polynomial π.)

By Lemma 5.1, such a pair exists. (We note that the elements of the 2η(k)-tuple g are distinct. Moreover,
these elements are not inω(Gmd ) because the last bits of each such element and of any element inω(Gmd )
are 0 and 1, respectively. See also step (3) of the algorithm B in the proof of Theorem 5.3.)

(3) Output (v1(g) . . . vm(g), w1(g) . . . wm(g)). (By the last condition of the previous step, together with the
definition of ω on Gd, it is a collision for ψd. See also step (4) of the algorithm B in the proof of Theo-
rem 5.3.)

Let k ∈ K and d ∼ Dk. Then

Pr[A(1k , 1k , d) = (v, w) s.t. (v, w) ∈ θ≠d] = Pr[B(d) is a collision for ψd] = negl(k)

because Ψ is collision-resistant with respect toD.
For every k ∈ K, denote byD′

k the distribution of the random variable (1k , d), where d ∼ Dk. It follows
from the above and from Lemma 3.20 that

F′ = ((F2η(|u|) /θd , nat2η(|u|) /θd ,U({a1, . . . , a2η(|u|)})) | u ∈ 1
K , d ∈ D|u|)

is a pseudo-free family of computational m-ary groupoids inO with respect to (D′
k | k ∈ K) and nat.

For each d ∈ D, put α(d) = (1κ(d), d). Then α is a one-to-one function from D onto {(u, d) | u ∈ 1K , d ∈
D|u|}. Both α and α−1 are polynomial-time computable. Therefore the family F′ can be indexed by D instead
of {(u, d) | u ∈ 1K , d ∈ D|u|}. Furthermore, α−1(D′

k) = Dk for all k ∈ K. Thus, we see that Q is a pseudo-
free family of computational m-ary groupoids in O with respect to D and nat. Moreover, the family Q has
exponential size because |F2η(κ(d)) /θd| ≤ |Gd| = 2ξ (κ(d)) for all d ∈ D, where κ and ξ are polynomial parameters
on D and K, respectively.
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6 Conclusion
Wehave initiated the studyof (weakly) pseudo-free families of computationalΩ-algebras in arbitrary varieties
of Ω-algebras. We hope that the assumption of the existence of polynomially bounded or exponential-size
(weakly) pseudo-free families in an appropriate variety of Ω-algebras will be useful in mathematical cryptog-
raphy. The results of the paper show that this assumption can be quite strong, but not unrealistic. Moreover,
this assumption can hold in a post-quantum world (see Subsections 5.1–5.2).

Here are some suggestions for further research:

– Find applications of (weakly) pseudo-free families of computational Ω-algebras. For example, con-
struct a cryptographic primitive or a secure cryptographic protocol from a polynomially bounded or
exponential-size (weakly) pseudo-free family in a suitable variety of Ω-algebras. See Subsection 4.2 for
results in this direction.

– Construct a polynomially bounded or exponential-size (weakly) pseudo-free family in some interesting
variety of Ω-algebras under a standard cryptographic assumption. See Subsections 5.1–5.2 for results
in this direction.

– Modify the definition of a (weakly) pseudo-free family of computational Ω-algebras to make this defi-
nition more useful.

Acknowledgement: I would like to thank the anonymous reviewer for many comments that have helped to
improve the presentation of the paper and to fix a small error in the proof of Lemma 3.21.
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A Table of notation
For the convenience of the reader, we briefly recall the notation introduced in Sections 2–3 (in order of ap-
pearance).

N = {0, 1, . . . }
Yn the set of all (ordered) n-tuples of elements from a set Y
⊔ the operation of disjoint union
{0, 1}≤n =

⨆︀n
i=0{0, 1}

i

{0, 1}* =
⨆︀∞
i=0{0, 1}

i

|u| the length of a bit string u
uv the concatenation of bit strings u and v
1n the string of n ones
0n the string of n zeros
domϕ the domain of a function ϕ
[s]ρ an arbitrary preimage of s under ρ (unless otherwise specified)
Ω a set of finitary operation symbols (from Section 3 on, Ω is finite)
arω the arity of ω ∈ Ω
⟨S⟩ the subalgebra generated by S
h/θ the equivalence class of h under θ
H/θ the quotient algebra {h/θ | h ∈ H} of an Ω-algebra H by a congruence θ
θ≠ = {(h, h′) ∈ θ | h ≠ h′}
ρ/θ the function y ↦→ ρ(y)/θ
Ω0 the set of all nullary operation symbols in Ω
Tm(Z) the Ω-term algebra over Z
subt(v) the set of all subterms of a term v
V a variety of Ω-algebras
F∞,∞(V) theV-free Ω-algebra freely generated by a1, a2, . . . , x1, x2, . . .
F∞(V) = ⟨a1, a2, . . . ⟩
Fm,n(V) = ⟨a1, . . . , am , x1, . . . , xn⟩
Fm(V) = Fm,0(V) = ⟨a1, . . . , am⟩
v(a; x) = v(a1, . . . , am; x1, . . . , xn) for v ∈ Fm,n(V)
v(g; h) = v(g1, . . . , gm; h1, . . . , hn) for v ∈ Fm,n(V), g = (g1, . . . , gm) ∈ Gm, and h = (h1, . . . , hn) ∈

Gn, where G ∈ V

v(a) = v(a1, . . . , am) for v ∈ Fm(V)
v(g) = v(g1, . . . , gm) for v ∈ Fm(V) and g = (g1, . . . , gm) ∈ Gm, where G ∈ V

O the variety of all Ω-algebras
F∞,∞ = F∞,∞(O)
F∞ = F∞(O)
Fm,n = Fm,n(O)
Fm = Fm(O)
suppY the support of a probability distribution Y on a finite or countably infinite sample space Y,

i.e., {y ∈ Y | PrY{y} ≠ 0}
α(Y) the image of a probability distribution Y under a function α
y1, . . . , yn ∼ Y means that y1, . . . , yn are independent random variables distributed according to Y
y1, . . . , yn ← Y means that y1, . . . , yn are fixed elements chosen independently at random according to Y
Yn the distribution of (y1, . . . , yn), where y1, . . . , yn ∼ Y
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U(Z) the uniform probability distribution on Z
CP(Y) the collision probability of Y, i.e., Pr[y = y′], where y, y′ ∼ Y

K an infinite subset of N
D a subset of {0, 1}*

D = (Dk | k ∈ K) a polynomial-time samplable (when the indices are represented in unary) probability en-
semble consisting of distributions on D

1K = {1k | k ∈ K}
negl an unspecified negligible function on K
σ a function from a subset of {0, 1}* onto F∞,∞(V)
Σs(H,V, σ, ρ, g) the set defined in Subsection 3.2
Σ′s(H,V, σ, g) the set defined in Subsection 3.2
Σ(H,V, σ, ρ, g) =

⨆︀∞
s=1 Σs(H,V, σ, ρ, g)

Σ′(H,V, σ, g) =
⨆︀∞
s=1 Σ

′
s(H,V, σ, g)

v an Ω-term v over {a1, a2, . . . , x1, x2, . . . } (or {a1, a2, . . . , x1, x2, . . . } when V = O) writ-
ten in Polish notation, where the indices of variables are represented in binary (see Exam-
ple 3.12)

nat the function v ↦→ v(a; x) that provides the natural representation of elements of F∞,∞(V)
(see Example 3.12)

natm the restriction of nat to ⟨a1, . . . , am⟩ (see Example 3.12)
SLP the function that provides the representation of elements of F∞,∞(V) by straight-line pro-

grams (see Example 3.13)


	1 Introduction
	1.1 Related work
	1.2 Organization of the paper and our contributions

	2 Preliminaries
	2.1 General preliminaries
	2.2 Algebraic preliminaries
	2.3 Probabilistic preliminaries
	2.4 Cryptographic preliminaries

	3 (Weakly) pseudo-free families of computational Ω-algebras: Definitions and properties
	3.1 Families of computational Ω-algebras
	3.2 (Weakly) pseudo-free families of computational Ω-algebras
	3.3 Two examples of the function σ
	3.4 Certain families of V-free Ω-algebras are pseudo-free
	3.5 (Weakly) pseudo-free families of quotient algebras

	4 When polynomially bounded (weakly) pseudo-free families in O exist unconditionally?
	4.1 Unconditional results
	4.2 Some cases where the existence of weakly pseudo-free families implies the existence of collision-resistant families of hash functions
	4.3 Summary of results

	5 (Weakly) pseudo-free families in the variety of all m-ary groupoids
	5.1 Constructing a polynomially bounded weakly pseudo-free family from a collision-resistant family of hash functions
	5.2 Constructing an exponential-size pseudo-free family from a collision-resistant family of hash functions

	6 Conclusion
	A Table of notation

