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Abstract: Extra-reductions occurring in Montgomery multiplications disclose side-channel information
which can be exploited even in stringent contexts. In this article, we derive stochastic attacks to defeat
Rivest-Shamir-Adleman (RSA)with Montgomery ladder regular exponentiation coupled with base blinding.
Namely, we leverage on precharacterized multivariate probability mass functions of extra-reductions
between pairs of (multiplication, square) in one iteration of the RSA algorithm and that of the next one(s)
to build amaximum likelihood distinguisher. The efficiency of our attack (in terms of required traces) is more
than double compared to the state-of-the-art. In addition to this result, we also apply our method to the case
of regular exponentiation, base blinding, and modulus blinding. Quite surprisingly, modulus blinding does
notmakeour attack impossible, and so even for large sizes of themodulus randomizing element.At the cost of
larger sample sizes our attacks tolerate noisy measurements. Fortunately, effective countermeasures exist.
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1 Introduction

It has been noted by Kocher [13] as early as 1996 that asymmetric cryptographic algorithms are prone to
side-channel attacks. Countermeasures have been developed in a view to make these attacks either impos-
sible or at least much harder to perform. There are several countermeasure principles. One first class
consists in balancing the control-flow so that execution traces perfectly superimpose whatever the value
of the secrets. A second important class of countermeasures consists in deceiving correlation attempts by
attacker with side-channel traces. The strategy consists in randomizing algorithm inputs or internal para-
meters, so that the computation is carried out on unpredictable data. Obviously, the randomization is
restricted, since it must be possible to unravel the injected randomness at the end of the computation.

In this article, we focus on the Rivest-Shamir-Adleman (RSA) cryptosystem, while it uses its secret
exponent . Despite the balancing and randomization countermeasures, attackers will desperately persist
at recovering . But in order to bypass protections, the attacker needs to resort to more evolved strategies.
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We make a difference between attacks which can be carried out in one single trace and those which require
multiple traces (since there is not enough information in a single trace). An attack which succeeds with one
single trace can overcome any algorithmic countermeasure:¹ basically, against randomizing counter-
measures, it will recover the randomized version of some sensitive value, but this randomized value is still
sufficient for the adversary to behave as if he knows the secret. As an example, in the case of exponent
blinding, instead of computing (where is the base, is the secret exponent, and is the
modulus), the side-channel protected RSA computes (where is the Euler totient function).
Those two quantities are equal, owing to the Fermat little theorem, hence, it does not matter if the attacker
recovers in lieu of : in both cases he can forge valid signatures or decrypt messages correctly.
Indeed, is equivalent to for the purpose of signature generation or decryption. When attacks require
some kind of averaging, then randomization countermeasures do work in concealing the secret, at least if
the randomness is refreshed at each new computation. However, the balancing countermeasures do not
deceive an attacker which averages traces, because the averaging of always the same execution allows for
the attacker to increase the signal-to-noise ratio (SNR).

In practice, the attacks which succeed in a single trace are the more dangerous, and implementers
defend their implementation in the first place. The so-called simple power analysis (SPA [14, §2]) introduced
in 1999 allows us to read out the exponent in one trace. Therefore, the usual countermeasure consists in the
implementation of a regular exponentiation algorithm. In RSA, the so-called “regular algorithm” is a
method to compute the modular exponentiation using a key-independent sequence of squaring and multi-
plication operations. Examples of regular exponentiation algorithms are the Montgomery ladder (treated in
this paper), the square and multiply always algorithm, or fixed window exponentiation with explicit multi-
plication also if the exponent bits in the current window are all equal to zero [15, Algorithm 14.82].

Thus, it is a protection against the simple trace analysis, where the attacker attempts to derive the
exponent by observing one (or several identical) computation. The regular exponentiation countermeasure
against SPA plugs the leak, but in the meantime takes care to properly align traces corresponding to various
executions. This is at the advantage of the adversary, in that such unfortunate alignment opens the door to
differential power analyses, as discussed in [14, §5], to template attacks [5], or to machine learning attacks
[19]. Those attacks, provided they require to collect several traces from the same inputs (for averaging in
order to increase the SNR), are combated by randomizing countermeasures. For instance, the input of the
RSA (its base) can be randomized at the input, while being consistently derandomized at the output.
Another option to randomize the intermediate computations is to randomize the modulus (so-called
“modular extension”). This second option also allows us to perform a sanity check for the computation,
which is incidentally a countermeasure against fault injection attacks [7]. We insist that all three counter-
measures might well be stacked one on top of each other, so as to thwart simple power attacks, differential
power attacks, and perturbation attacks, altogether. As an alternative to regular exponentiation algorithm,
or even as a complement to it, the secret exponent can be protected by blinding, as explained earlier.

2 Previous work and our contributions

2.1 State-of-the-art

We analyze in this article possible remaining biases, namely, extra-reductions inherent to the modular
multiplication algorithm.



1 For the sake of being accurate, let us precise that this assertion holds true for most scenarios, but might become wrong for
some pathological counterexamples where the overall attack requires some additional work (e.g., some search) which, e.g.,
increases in the exponent length so that an attack becomes infeasible when the exponent becomes longer by exponent blinding.
However, such countermeasures are not realistic from an industrial standpoint owing to the excessive overhead they incur, thus
they can safely be ignored in our argumentation.
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Given two integers and , the classical modular multiplication computes the multiplica-
tion followed by the modular reduction by . Montgomery Modular Multiplication (MMM) transforms
and into special representations known as their Montgomery forms.

Definition 2.1. (Montgomery transformation [16]) For any modulus , the Montgomery form of is
for some constant greater than and co-prime with .

In order to ease the computation, is usually chosen as the smallest power of two greater than , that
is, . Using the Montgomery form of integers, modular multiplications used in modular expo-
nentiation algorithms can be carried out using the MMM:

Definition 2.2. (MMM [16]) Let and be two elements of in the Montgomery form. The MMM of
and is .

Proposition 2.3. (MMM correction [15, §14.36]) The output of the MMM of and is .

Algorithm 1 shows that the MMM can be implemented in two steps:
(i) compute , then
(ii) reduce using Montgomery reduction which returns .

In Algorithm 1, the pair is such that .

Algorithm 1. Montgomery reduction (Algorithm 14.32 of [15])

input :

output :

1 ;
2 // Invariant:

3 if then
4 // Extra-reduction

5 ;
6 return ;

Definition 2.4. (Extra-reduction) In Algorithm 1, when the intermediate value is greater than , a
subtraction named extra-reduction occurs so as to have a result of the Montgomery multiplication
(MM) between 0 and . We set in the presence of the extra-reduction, and in its absence.

As we shall explain, this side channel is induced by the choice of moduli represented on a bitwidth,
which is exactly divisible by the bitwidth of the computers, namely, this bitwidth is typically a power of
two, such as 16, 32, or 64. This bias has given rise to the so-called extra-reduction analysis (ERA). An
overview of known ERAs is provided in Table 1. Specifically, this table shows which countermeasure can be
bypassed by which attack. The classification criteria in Table 1 are listed as follows:
• the implementation uses the Chinese Remainder Theorem (CRT), i.e., the moduli and are unknown to
the attacker,

• the protection against differential power analysis named the base blinding,
• the protection against SPA protection named the regular exponentiation algorithm,
• the compensation of the extra-reduction by a fake operation, which is named constant time nonstraight
line algorithm (N-SLA), i.e., constant operations have their fixed values identified by software.² In



2 For example, the reduction is always carried out with a value computed in Boolean logic (hence straight line) as either the
modulus or the constant zero (case of OpenSSL), or a dummy operation of same duration as a reduction is executed if the
reduction shall not be carried out (mbedTLS [6]). These two strategies are described in Appendix A, page 20, of [10]. However,
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principle (at least with a reasonable probability), these countermeasures might be detected and nullified
by a suitable side-channel attack. In Table 1, we assume that such side-channel attacks exist,

• identical execution times are ensured by avoiding extra-reductions at all, which is named constant time
straight line algorithm (SLA). Obviously, the attacks listed in Table 1 cannot work in this case, see also
Section 5,

• the protection against differential power analysis named the exponent blinding, and
• the fault and differential protection named modular extension.

The algorithms from ERA-1a, ERA-1b, and ERA-2 are pure (global) timing attacks. Of course, by defini-
tion, pure timing attacks cannot overcome constant time implementations. While the pure timing attacks
are very different for CRT implementations and for non-CRT implementations the local timing attacks from
ERA-L1 and ERA-L2 work for the CRT and non-CRT implementations as well. More precisely, these local
attacks are a little bit easier to perform on non-CRT implementations because the ratio (and sometimes
also the value ) does not have to be estimated there. For these reasons, we did not distinguish
between CRT and not CRT there. The pioneer papers [9,30] are significantly less efficient than their suc-
cessors in the respective ERA (up to factor 50) and less general [30]. The difference between ERA-L1 and
ERA-L2 is that with ERA-L2, the attacker is capable of probing the cache to distinguish between two
different execution paths of otherwise identical duration and power leakage, whereas with ERA-L1, the
attacker is restricted to observe the duration or the power leakage. Arguably, this difference resides more in
the side-channel collection than in its analysis.

Remark. The terminology in Table 1 shall be considered with attention. Indeed, historically, ERA-1a, ERA-
1b, and ERA-2 are pure timing attacks discovered in this order. Similarly, ERA-L1 and ERA-L2 are local
timing attacks, discovered in this order. But some papers about ERA-1b were published after the papers
from ERA-L1 and vice versa.

In [10,11], side-channel attacks on RSA, with CRT and without CRT, were investigated using leakage
information of the presence or absence of the extra-reductions in MMM. The side-channel information was
used to identify,whichMMs require extra reductions. Twoexponentiationalgorithmswere considered,namely,
the always square andmultiply exponentiation and theMontgomery ladder. The overall attacks split intomany
individual decisions whether or , where and denote subsequent key bits. The

Table 1: Summary of capability of extra-reduction analyses published before December 2020

With
RSA-CRT

Basis
blinding

Regular
algorithm

Constant time
N-SLA

Constant
time SLA

Exponent
blinding

Modular
extension

ERA-1a ✗ ✗ ✗ ✗ ✗ ✗ ✗

[9,13,22,25] No No No No No No No
ERA-1b ✓ ✗ ✓ ✗ ✗ ✗ ✗

[3,6,8,20] Yes No Yes No No No No
ERA-2 ✓ ✗ ✗ ✗ ✗ ✓ ✗

[23,24] Yes No No No No Yes No
ERA-L1 ✓ ✓ ✓ ✗ ✗ ✗ ✗

[1,2,21,26,30] Yes/No Yes Yes No No No No
ERA-L2 ✓ ✓ ✓ ✓ ✗ ✗ ✗

[10,11] Yes/No Yes Yes Yes No No No
This work ✓ ✓ ✓ ✓ ✗ ✗ ✓

Yes/No Yes Yes Yes No No Yes



both countermeasures rely on a test, hence a branching in the control flow, which can be detected by a cache-timing analysis
(see [2]) or by a power/electromagnetic side-channel analysis (empowered by a two-class clustering algorithm; see Figure 7
of [10]).

Stochastic methods defeat regular RSA exponentiation algorithms  411



presented attacks were successful but for these decisions only two – one squaring and onemultiplication– out
of four Montgomery operations (squaring or multiplication) were exploited. However, the approach is too
complex: the derivation of the probability mass function (PMF) of values for multiple operations becomes
mathematically intractable when the number of operations analyzed jointly is strictly greater than two.

2.2 Novel contributions

For these reasons, in this article, we resort to another way to estimate the distribution of the extra-reduction
which does not need the estimation of PMF values. We leverage on a previous work of Schindler [21]: this
paper simplifies the characterization of the extra-reduction distribution using two elegant properties of MMM.

Using sophisticated stochastic methods, we solve the problem and improve the efficiency of [10,11], in
the presence of regular exponent and base blinding.

Moreover, we extend the results to the case where the modulus is itself randomized. We show that ERA
remains a powerful side-channel despite the stacking of three protections, namely, regular exponentiation
and base and modulus blinding. We performed our experiments on 1024-bit RSAmoduli as this allows a fair
comparison of the attack efficiency with the experimental results in [10,11].

This manuscript contains joint research work from the years 2016–2018. We mention that parts of an
intermediate version of this paper have found input in the PhD thesis of the lead author.

2.3 Outline

The rest of this paper is organized as follows. We start by giving our optimized attack in Section 3. Namely,
we recapitulate in Section 3.1 the background to optimize the state-of-the-art when RSA uses a regular
algorithm (we focus on the so-called Montgomery ladder) and base blinding. The core of our attack is
presented in Section 3.2. Evaluation with both perfect and noisy measurements is conducted in Section 4,
where we also consider the “modulus extension” as a third countermeasure on top of regular exponentia-
tion and base blinding. Eventually, countermeasures are addressed in Section 5, and conclusions are
derived in Section 6. Some formal computation results are given in Appendix A.

3 The optimized attack: the stochastic background

In this section, we optimize the attack from [10,11]. We begin with definitions and we formulate the target of
our attack in Section 3.1. In Section 3.2, we analyze the stochastic properties of the MM, and in Lemma 3.4 we
develop a formula for the joint probability of several extra-reductions. The following subsections treat the
estimation of twoparameters,which are usually unknown, and themaximum likelihood estimator is derived.

3.1 Definitions and target of the attack

In this paper, we only consider the Montgomery ladder (left-to-right), which is described in Algorithm 2.
Unlike [10,11] we do not consider the square and always multiply algorithm (cf. Algorithm 1.1 in [11]). It is
obvious how the applied mathematical methods can be transferred to the square and always multiply
exponentiation algorithm.
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We assume that the message has been blinded (message blinding, a.k.a. base blinding). The attack
applies to both RSA with CRT and RSA without CRT. We further assume that the arithmetic operations apply
the Montgomery’s multiplication algorithm [17]. As in [10,11] we assume that a side-channel attack yields
(possibly noisy) information about whether or not MMs need extra-reductions. The applied mathematical
techniques are similar to that in [1,2,21], where attacks on different variants of fixed window exponentiation
algorithms [2,21] and the sliding window exponentiation algorithm [1] were analyzed thoroughly.

To avoid clumsy formulations we always target RSA with CRT in the following, where denotes one
prime factor of the RSA modulus . We note that the attack on RSA without CRT works identically and is
even simpler since there is no need to estimate the ratio (which is the ratio of two public parameters).

Definition 3.1 describes the notations, necessary to understand this paper.

Definition 3.1. For , and , the term denotes the value of register after the
key bit has been processed. Furthermore, stands for the normalized register values. For

, we set if the first Montgomery operation for key bit (“multiplication”) needs an
extra-reduction (ER) and otherwise. Analogously, if the second Montgomery operation for
key bit (“squaring,” or “Quadrierung” in German –we apply “Q” in place of “S” to prevent confusion with
the stochastic process defined below) needs an ER and otherwise. We recall that in the context
of random variables the abbreviation “iid” stands for “independent and identically distributed.” The
indicator function assumes the value 1 if and 0 else. For , the term denotes
the unique element in , which is congruent to modulo . The letter denotes the
Montgomery constant for some integer . (Usually, .)When is a real number,
the term denotes the real number . Finally, for we define

(MM, as per Definition 2.2).

Algorithm 2. Left-to-right Montgomery ladder with MM algorithm

Input:

Output:

1
2 First Square

3 for down to 0 do

6 return

Wenote that and (cf. lines 1 and6ofAlgorithm2).
Besides, the key is chosenof full length (hence ) andmust be coprimewith ,which is even (as is
a primenumber); therefore, is odd (hence ). This gives for free twobits of information to anattacker. The
index may be determined by an SPA. Moreover, it suffices to recover the exponent for the exponentiation
modulo : if denotes the secretRSAkeyand if , then ,which factorizes the
modulus (see, e.g., [21], Section 6).

3.2 The core of our attack

We interpret the as realizations of random variables , i.e., values taken on by , which assume values
in . Analogously, we view and as realizations of -valued random variables and .
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Lemmas 3.2(i) and (ii) collect known stochastic properties of Montgomery’s multiplication algorithm, while
Assertions (iii) and (iv) follow the strategy that has proven successful for fixed-window exponentiation
in [2,21].

Lemma 3.2. (MM)
(i) requires an extra-reduction iff

(3.1)

(ii) Assume that and that the random variable is uniformly distributed on . Furthermore, and
denote independent random variables, which are uniformly distributed on . Then approximately

(3.2)

(3.3)

(iii) The random variables may be viewed as iid uniformly distributed on .
(iv) For , we have

(3.4)

(3.5)

(v) For the indicator functions, we obtain

(3.6)

(3.7)

Proof. Assertions (i) and (ii) are shown in [22] (see Lemma A.3 and its proof at page 209). The core idea of
the approximate representations (3.2) and (3.3) is that a small deviation of the random variable (resp. of

) causes only a small deviation of the first summand but implies an “uncontrolled large” deviation of the
second summand over the unit interval. We note that if and are independent, then and

are independent, too. Since the base (Algorithm 2) has been base-blinded, we may
assume that is a realization of a random variable , which is uniformly distributed on the
unit interval . Following (3.3)we further assume that is also uniformly distributed on and that

and are independent (see also Remark 3.3). Now let us assume that the random variables
are iid uniformly distributed on . If we may replace ,

(approximation of ), and in (3.2) by , , and , and analogously and in (3.3) by and
, where and are uniformly distributed on and independent of . Furthermore, the

assumption that and are independent seems to be reasonable since and are independent.
This assumption finally implies that the random variables are independent. Formula (3.4)
follows from (3.1) if we replace the terms and by and (cf. (3.2)), and further

by . Analogously, to verify (3.5) one replaces in (3.1) the terms and by
and , respectively. The cases are similar. Assertion (v) follows imme-

diately from the definition of indicator functions. This completes the proof of Lemma 3.2. □
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Remark 3.3. (The independence assumption) A central assertion of Lemma 3.2, which is used in Lemma 3.4,
is that random variables may be viewed iid uniformly distributed on . This property has been
deduced from the (approximate) stochastic representations (3.2) and (3.3). In a strict sense, this claim is
certainly not correct, e.g., because the normalized register values only assume values in the finite set

, and to mention just one missing number theoretical property, the cannot assume non-
quadratic residua in . However, this is not relevant for our purposes since we are only interested in the
(joint) probabilities of extra reductions. These events can be characterized by “metric” conditions in (cf.
(3.1), (3.2), (3.3)). It should be noted that the iid assumption on the normalized intermediate random
variables of the exponentiation algorithm (here: the ) has been proven successful, e.g., in [2, 3,20–22],
and it will turn out to be successful in the following, too.

The overall attack consists of many independent decisions (which nevertheless influence each other).
Each of these attack steps (decisions) considers all MM simultaneously, which are carried out when
consecutive key bits are processed. Lemma 3.4 is the core of our attack. It provides the
probabilities, which are needed later in Lemma 4.6 (maximum likelihood decision strategy).

Lemma 3.4. Let and .
(i) The term (3.8) quantifies the probability that the extra-reduction vector

occurs if . The probabilities are expressed by integrals over . The index

shows the dependency on .

(3.8)

Note: When the key bit (for ) is processed the register value ( )
corresponds to the integration variable . The integration boundaries and corre-
spond to the integration with regard to the variables and , respectively ( ). The

integration boundaries depend on the hypothesis and the observed extra-reduction vector
. More precisely, for we have

If , then

(3.9)

(3.10)

If , then

(3.11)

and

(3.12)
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(ii) Let (with components). For each hypothesis and each extra-reduction vector
, we have

(3.13)

(3.14)

Proof. By Lemma 3.2(iv), the random variables , can be expressed by
indicator functions, which depend on the random variables . This allows
us to express the probability (3.8) by an integral over of a product of indicator functions. Further-
more, for the indicator functions and actually only depend on

, while and merely depend on , ,
, . This allows us to express (3.8) in the form

(3.15)

with suitable integration boundaries . These integration boundaries follow immediately
from Lemma 3.2(iv) and (ii) with in place of . This verifies the formula (3.9) to (3.12) for . The
integral over can be transformed in the same way into a sequence of one-dimensional integrals.
Since the integration boundaries depend only on the left-hand indicator functions,
i.e., on the observations Lemma 3.4(i) can be verified by induction on .

We first note that

(swapping the right-hand indices from 0 to 1 and vice versa) defines a volume-preserving diffeomorphism
on . As already pointed out above the probabilities (3.13) and (3.14) can be expressed by integrals
over of indicator functions

and

respectively. The terms and indicate the hypotheses. From Lemma 3.2(iv), we conclude that
and for all ,

which completes the proof of Assertion (ii). □

Lemma 3.4(ii) says that the information contained in the extra-reduction vectors

does not allow us to distinguish between the hypotheses and . This means that we can only
determine the set , as depicted in Figure 1.

In particular, it would be pointless to consider the case . For one can distinguish between the
cases and , or equivalently, between and .

For , the parameter corresponds to

(3.16)

where “ ” denotes the addition modulo 2. For the sake of clarity, we precise that the components of vector
can also be written as for .
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Remark 3.5.
(i) Lemma 3.4 can be applied to all -tuples for . Combining the informa-

tion from all -tuples only provides the vector . This information determines the
whole key since is odd due to (where we recall that is Euler
totient function).

(ii) The probabilities in Lemma 3.4 do not depend on the index . By Lemma 3.4(ii), it suffices to compute at
most probabilities of type (3.8). (Note that different extra-reduction vectors exist and one has
to distinguish between hypotheses.) Example 3.6 illustrates the calculation of one particular
probability, and the appendix contains two tables with all probabilities for .

(iii) For , our attack aims at pairs of consecutive key bits . This is like the original attack in
[10,11], but the original attack only exploits the extra reductions while our attack con-
siders . The probabilities, which are applied in the original attack, are the
marginal probabilities of the probability (3.8) with regard to . Obviously, the original
attack exploits less information than the new attack for , and experiments confirm that for

our new attack reduces by a factor greater than 2 the number of queries (cf. Figure 3).

Example 3.6. Let and . By Lemma 3.4(i),

(3.17)

Corollary 3.7. For by applying the law of total probability on in (3.8), the joint probability for
maximum likelihood described in [10, 11, Theorem 2] can be recovered.

Remark 3.8. The two approaches in previous work [10, 11] and this work are independent and both allow us
to derive a maximum likelihood key distinguisher. Here, we are not interested in the values manipulated by
the multiplication and square operations, but only with the necessary and sufficient conditions for the
existence of extra-reductions, allowing an analysis of larger dimensions.

Figure 1: Information collected during the presented attack on pairs of extra-reductions.
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4 Perfect and noisy measurements

The attacker gets access to side-channel information about each bit ( ) of the exponent
through the noised distribution of the pair of extra-reductions . The noise consists in two binary
random variables . Additionally, the random variables and are assumed independent
and identically distributed (iid), as is usually the case of measurement noise of different operations in a
side-channel trace. Namely, we denote by the probability

Thus, the attacker garners an iid sequence , where for each query
and exponent index , and . This means that

and are, respectively, the input and the output of a binary symmetric channel (BSC) of parameter
. Similarly, and are also input and output of an independent identical BSC parallel to the

first one.
In practical cases, detecting an extra-reduction using only one acquisition can lead to errors. Let us

model the attack setup, taking into account that the detection of presence/absence of extra-reductions is a
random variable, due to some noise. The random variables Markov chain for index is given as follows:

Secret Bias Observable

.

The probabilities (3.8) depend on the unknown ratio . The crucial observation is that the attacker
knows the position of all squarings and all multiplications. Lemma 4.2 provides concrete formula, which
allows us to estimate . Of course, this estimation step is only necessary for RSA with CRT but not for RSA
without CRT. We begin with a lemma, which will be needed.

Lemma 4.1. It is

(4.1)

(4.2)

(4.3)

Proof. Since and assume values in the left-hand side equations in (4.1) and (4.2) are
obvious, while the right-hand side equation follow immediately from (3.4) and (3.5), respectively. For

, for instance,

We note that the probability (4.2) was already verified in [20]³ and, for instance, in [11], respectively, the
latter by other mathematical methods. Formula (4.3) follows directly from (4.1) and (4.2). □

The ER-values and are determined (or more precisely: guessed) on the basis of single-trace
template attacks. In particular, their guesses and might be incorrect with some probability. We



3 Actually, (4.2) was proven in [20] but not (4.1). In [20], the square and multiply algorithm was considered where multi-
plications with a fixed value (MM transformed basis mod ) are carried out. Formula (4.1) considers the case of two random
factors.
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denote the corresponding random variables (referring to the guessed ER values) by and . In the
following, we assume that

(4.4)

and similarly for the initialization of the registers and in Algorithm 2. In other words, the probability of
guessing an ER value incorrectly is , independently of the true value. Of course, char-
acterizes a perfect side-channel measurement. Lemma 4.2(iii) is the generalization of (4.3) for noisy mea-
surements. As noted in Lemma 4.4, this allows the estimation of and .

Lemma 4.2.

(4.5)

(4.6)

Proof. Since is -valued, we obtain

and similarly

Solving these equations for and yields (4.5) and (4.6). □

In Lemma 4.3, represents the “error vector” and ham corresponds
to the Hamming weight of a value. The nonzero entries give the positions at which the guessed extra-
reduction vector are incorrect.

Lemma 4.3.
(i)

(4.7)

(ii) For each hypothesis and each (guessed) extra-reduction vector
, we have

(4.8)

Proof. The term quantifies the probability for the error vector
. This fact and thedefinitionof the conditional probability imply (4.7). Assertion (ii)

follows immediately from (i) and Lemma 3.4(ii), applied to the particular right-hand probabilities in (4.7). □
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The last lemma of this section explains how to estimate the ratio and the probability .

Lemma 4.4. Assume that the attacker has observed side-channel traces. Then

(4.9)

provides an estimator for and analogously

(4.10)

for . The index refers to the numbering of the side-channel traces.
(ii) Substituting and for and into (4.5) and (4.6) yields estimates and .
(iii) For perfect measurements alternatively (4.3) might be used to estimate . Compared to the mid-

term the right-hand term considers twice as many MM and thus should provide a more precise estimate.

Proof. Straightforward. □

Example 4.5. (Estimation of and ) For different exponents of 512-bit length, we estimate and
for two moduli (RSA-1024-p and RSA-1024-q defined in [11, Section 2.2]) and different values of

depending on the number of side-channel traces . For each value of between 0 and 500, we compute

using (4.5) and using (4.6) for the different exponents and the found values are represented
using a box plot (deciles/quartile/median values) in Figure 2.

4.1 The optimal decision strategy

Lemma 4.6 provides the optimal decision strategy for the individual decisions, i.e., for guessing the para-
meter set for the particular -tuples . The decision strategy exploits the information
from the observed (guessed) ER-vectors from side-channel traces. For , Lemma 4.6 describes
the situation in the case of perfect measurements.

Lemma 4.6. (Maximum likelihood estimator) Assume that the key has been selected randomly and that the
attacker has no information on the subkey . Let

(4.11)

(i) maximizes the right-hand side of (4.11) iff maximizes the right-hand side of (4.11). It thus suffices

to compute the right-hand term of (4.11) for all , or, without loss of generality, by fixing
one arbitrary bit within .

(ii) The attacker decides for

(4.12)

This is the optimal decision strategy.

Proof. The first assertion of (i) follows from Lemma 3.4(ii), and the second is an immediate consequence of
the first. With regard to the assumptions on and on the subkey we interpret the unknown
subkey as a realization of random variable, which is uniformly distributed on . Then

may be viewed as a realization of a random variable, which is uniformly
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distributed on . Furthermore, iff
. Hence, (4.11) yields the maximum likelihood estimator for the transformed subkey

. If we assume that each false decision is equally bad the optimal decision

Figure 2: Statistic box plot to estimate the ratio and the probability in function of side-channel traces using 1.000
randomly selected exponent values. (a) p/R ≃ 0.800907 and pnoise ≃ 0.00, (b) p/R ≃ 0.789290 and pnoise ≃ 0.00, (c) p/R ≃
0.800907 and pnoise ≃ 0.20, (d) p/R ≃ 0.789290 and pnoise ≃ 0.30.
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strategy (Bayes strategy against the uniform distribution on , identical loss for all types of errors)
is given by the maximum likelihood estimator, which completes the proof of Lemma 4.6. □

Remark 4.7.
(i) Lemma 4.6 assumes that and are known. Substituting and into (4.11) yields

estimates for the probabilities

(ii) In the proof of Lemma 4.6, we assume that is a realization of a uniformly distributed
random variable on . This assumption may not be justified for and in particular not for

since . Since we are only interested in the distribution on (cf. equation (4.12)),
this relaxes the uniformity condition.

(iii) In the proof of Lemma 4.6, we assume that each false decision is equally bad. This assumption is
reasonable if all transformed subkeys

are treated independently.

4.2 Attack summary and success rate

The decision strategy in Lemma 4.6 is based on the observed extra-reductions for each multiply and square
operation for calls of the cryptographic operation with a static key of -bit length ( and , as
described in Algorithm 2). For each -tuple of (noisily) observed extra reductions

the attacker estimates the value using the maximum likelihood estimator like described in Lemma 4.6
using only the probabilities (for and the probabilities are given as polynomials in the
ratio in the informative Appendix A). Algorithm 3 permits us to retrieve the key bit values. It is a
windowed algorithm, which recovers an estimation of the secret key by tuples of bits. In Algorithm 3,
takes values , , , etc. The first -bit window considers the Montgomery operations,
which depend on the key bits . Due to Lemma 4.3, subsequent windows overlap in one bit
position. Note that at lines 4 and 16 of Algorithm 3, the final value of must be , which might not
be a multiple of depending on the values of and . Thence, the final value of is adjusted to be equal
to . In this case, the last window consists in bits of indices , which overlaps the last
but one window in more than one bit position. Alternatively, the final maximum likelihood can be com-
puted for a smaller window (of length ). Our first proposal saves the computation of additional prob-
abilities (step 3 of Algorithm 3), hence it is adopted in Algorithm 3, and put in force at lines 7 and 17.

The last steps of Algorithm 3 consist in putting together pieces of bits of the key guess. Simple
error correction can be applied at this stage, to fix easily one or two errors while rebuilding the full bits of
the secret exponent. For each trial only the loop from line 16 in Algorithm 3 has to be executed (with

Figure 3: Success rate for an entire exponent using 1.000 randomly selected exponent values depending on the number of side-
channel traces with different noise probabilities : (a) , (b) , (c) .
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modified guesses for an index or for two indices ) and the Euclidean algorithm, which is not
costly. We point out that in Definition 4.8 we do not allow any false decision for the particular -bit
windows for the sake of a fair comparison with the attacks in [10,11]. If we did so this would increase
our success rate to some extent (and those in [10,11] as well).

Algorithm 3. Optimal extra-reduction attack using maximum likelihood estimator

Input: , a set of pairs of noisy bits (extra-reductions)

Output: A guessed key value

Attack phase

1 Estimate the ratio and the probability (by their estimated values and using
Lemma 4.4)

2 for each with do

for up to by step do

Computation of the estimated key value

, // by definition of the key (see Alg. 2)

for up to by step do

return

In order to compare the previous work and this optimized method, we compute the success rate of those
attacks. In this article, we define the success rate of a whole exponent value.
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Definition 4.8. (Success rate of an attack) The success rate of an attack is the number of succeeded attacks
over the number of experiments. The attack succeeds when all the key bits of entire exponent are found. As
a corollary, if only one bit is badly guessed, then the attack is considered to have failed.

For different exponents of 512-bit length, we estimate the success rate of the attack for the modulo (RSA-
1024-q defined in [11, Section 2.2]), for different probabilities and different values of depending on
the number of side-channel traces . Figure 3 shows a comparison between the attack described in [10,11]
and our method for between 2 and 5. Here one can observe that our method for different values increases
significantly the success rate compared to the state-of-the-art method described in [10,11]. The number of
side-channel traces needed to succeed the attack is divided by a factor greater than 2. More precisely, our
new method recovers the key with probability using only 40% of the traces needed in [10,11]. This
advantage does not depend on the size of the modulus .

The gain obtained by the increasing values is not significant.

4.3 The attack in the presence of several blinding techniques

We already know that base blinding (a.k.a. message blinding) does not prevent our attack. The reason is
that our attack neither requires the knowledge of any register values and nor it needs chosen input
values. In this section, we analyze the situation when in addition to base blinding either modulus blinding
or exponent blinding is applied.

4.3.1 The combination of basis blinding with modulus blinding

In the first step, an odd modulus blinding factor is selected randomly,

where for a suitable exponent , e.g., for . The modular exponentiation is calculated modulo
(instead ofmodulo ), and the newMontgomery constant is the product in place of . The input

value (base) is reduced modulo , yielding , and then the product is computed for

some random value (base blinding). The result of the modular exponentiation, , is

reduced modulo , which yields . Finally, the effect of the base blinding is annihilated by the

multiplication with , providing the desired output .

Remark 4.9.
(i) The modulus blinding factor needs to be odd because Montgomery’s multiplication algorithm

requires that the modulus is coprime to .

(ii) Of course, the annihilating term is not computed straightforward. First of all, this would be
extremely inefficient, and further, is a sensitive variable. Hence, it is better not to touch it more than
necessary in computations. Hence, we recommended already to resort to a similar albeit less harmful
strategy (cf. [13, §10]). If denotes the public RSA exponent, then , and thus for

(with randomly selected ) we have . Such blinding,
applied to Montgomery ladder regular exponentiation using MM (i.e., Algorithm 2), is illustrated in
Algorithm 4. (The affectation “ ” stands for uniformly random assignment.) Moreover, once a pair

has been found it can easily be updated by squaring both components modulo [13, §10].
(iii) In this paper, we consider the case “first modulus blinding then base blinding.” This countermeasure

is represented in Algorithm 5. We point out that reversed order, “first base blinding then modulus
blinding,” can be attacked in the same way.
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Algorithm 4. Left-to-right Montgomery ladder exponentiation built on top of MM algorithm, with base
blinding (attacked in this paper, in Section 4.1)

Input:

Output:

1 Nonzero base blinding factor

2 Basis blinding

3 First Square

4 for down to 0 do

7 return where

Algorithm 5. Left-to-right Montgomery ladder exponentiation built on top of MM algorithm, with base and
modulus blinding (attacked in this paper, in Section 4.3). (Throughout this algorithm, the MM algorithm
uses as the Montgomery constant.)

Input:

Output:
1 Odd modulus blinding factor

2 Nonzero base blinding factor

3 Basis & modulus blinding

4 First Square

5 for down to 0 do

8 return // where

For the case that only base blinding (or even no blinding technique at all) is applied, Lemma 3.4
provides concrete formulae that the extra-reduction vector occurs if the

relevant part of the secret exponent, , equals . These probabilities are polynomials in the ratio
. So far, the parameter remained constant during the attack so that there was no need to mention

it explicitly.
In this subsection, the ratio between the modulus and the Montgomery constant is no longer constant

but depends on the selected modulus blinding value . Hence, we extend the notation and write
in place of if .

For given modulus blinding factor one has with and .
However, the applied modulus blinding factor is unknown. Relevant to our formulae is the normalized

modulus blinding factor . We interpret as a realization of a random variable , which assumes
values in the finite set . Then

(4.13)

quantifies the probability for the extra-reduction vector under with a randomly
selected (normalized) modulus blinding factor (selected according to the distribution of the random
variable ). The probabilities are given by Lemma 3.4(i), and Assertion (ii) of Lemma 3.4 remains
valid, too.
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Usually the normalized blinding factors should be uniformly distributed on , i.e., each value in
should occur with probability . For typical parameters (e.g., for ), the right-hand side
of (4.13) can be replaced by

(4.14)

For reasonable parameter , the deviation of the right-hand term from the exact probability (4.13) is
negligible, which should justify the “=” sign. The evaluation of the integral is fairly easy since the integrand
is a polynomial in . In fact, for the integrand the integral equals . Another protec-
tion strategy would be to select modulus blinding factors uniformly in so that all blinding
factors have identical (maximal) length. In this case, assumes each value in with probability

, and (4.13) can be expressed by

(4.15)

In analogy to Section 4, the next step is to estimate and . The equivalents to (4.1) and (4.2) are

(4.16)

(4.17)

Substituting and in the proof of Lemma 4.2 by the right-hand terms of (4.16) and of
(4.17) (in place of (4.1) and (4.2)) yields equivalents to the formulae (4.5) and (4.6) for the modulus blinding
case. Note that the conditional probabilities and depend only on

but not on or .
More precisely, a careful computation yields

(4.18)

(4.19)

The right-hand side of (4.18) differs from (4.5) by the factor , while (4.19) coincides with (4.6)
Above we have identified two strategies for the selection of modulus blinding factors, which are of

particular interest. If is uniformly distributed on , then . Similarly, if is uniformly

distributed on , then .

Substituting (4.13) (resp., (4.14) or (4.15)) into Lemma 4.3(i) yields analogous assertions for the modulus
blinding case. The estimation of and is done as in Lemma 4.4. For different power traces, the blinding
factors are selected independently according to the same distribution so that the normalized blinding
factors for the power traces may be interpreted as realizations of iid random variables

, where is distributed as . With the aforementioned considerations and Lemma 4.6 also applies

to the modulus blinding scenario when is calculated as in (4.7),
combined with (4.13). Usually, the latter should coincide with (4.14) or (4.15).

Altogether, modulus blinding does not prevent our attack. For power trace it yet reduces its efficiency
since , which lowers the probability for extra-reductions. Moreover, the applied
blinding factor is unknown, which results in averaged probabilities (4.13). Both can be compensated
by increasing the sample size.
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Remark 4.10. Alternatively to the attack just analyzed one might estimate the product separately for all
power traces with formula (4.5), whereas (as above) is estimated only once at the beginning of the
attack on the basis of all power traces. The intention is to reduce the loss of efficiency caused by the use
of averaged probabilities (4.13). Lemma 4.6 then could be applied as in Sections 3.2–4.1 with individual
parameters for each power trace. On the negative side, the estimates of the products are less precise
than the estimate of in the scenario without modulus blinding since and depend only on the MM of
single power traces, which undermines the intention of this attack variant.

4.3.2 Experimental results with modulus blinding

Figure 4 compares the success rate evolution of our attack, using (4.14), for the same three noise levels as in
Figure 3, for with modulus randomization uniformly distributed in interval .

It can be seen that the value of does not really impact on the success rate of the attack, which is in line
with (4.14) and (4.15). It is corroborated by the fact that the attack success rate in the case of a modulus
randomization factor uniformly distributed in does not change significantly, by adapting the
attack with (4.15). These success rates are shown in Figure 5. Note that the ratio is the same in the
results from Figures 4 and 5, because the modulus (on 512 bits) is the same and the Montgomery constant
is also the same, namely, .

The success rate for some modulus randomization factors could be derived from the exact
formula (4.13). However, one shall take care that such small blinding factors should be of no practical
relevance. For instance,
• when , there exists only two eligible random numbers, namely 1 and 3;
• when , the only four eligible random numbers are ;
• when , the only eight eligible random numbers are .

If furthermore we demand that the blinding factors have full bit length (which corresponds to (4.15)) the
situation is even worse. The sets then reduce to , , and , respectively. However, such
little sets of admissible modular blinding factors might allow other, even stronger attacks. Interestingly, the
attacks work about with the same success rate as the original attacks [10,11] before our improvement in the
absence of modulus blinding.

4.3.3 The combination of basis blinding with exponent blinding

Assume that base blinding is combined with (additive) exponent blinding, which means that the exponent
is replaced by for some randomly selected exponent blinding factor . Our attack cannot

be transferred to this situation since (4.11) assumes that is the same for all power traces.
It should be noted, however, that if (e.g.) single-trace template attacks provide significant advantage

over blind guessing of the exponent bits a successful attack may be possible anyway; see [27,28], for
example, for details. The techniques developed in [27] obviously apply to the Montgomery ladder as well.
The knowledge of the extra-reductions alone does not yet give sufficient advantage over blind guessing for
single power traces. Sufficient advantage might be achieved by exploiting further features of the power
traces but this is not within the scope of this paper.

5 Countermeasures

In Table 1 and in Section 4.3, several countermeasures were addressed and analyzed. In particular, even the
combination of base blinding and exponent blinding does not prevent our attack. An option is to add
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exponent blinding, resulting in the combination (base blinding and exponent blinding) or in (base
blinding, modulus blinding, and exponent blinding). In the absence of additional leakage, to our best
knowledge no attack is known (Section 4.3).

The most solid solution, of course, is to avoid extra-reductions at all. Following an idea of C. Walter one
can completely resign on extra-reductions if the Montgomery constant is not only larger than but if

[29], Theorems 3 and 6. In this case, the intermediate values of the Montgomery operations within
the exponentiation algorithm are always between but they do not “explode.” Currently, OpenSSL
library uses another strategy. Indeed, most security standards prescribe that be chosen with a size which
is a multiple of the machine word size (typically 1024, 2048, 3072, and 4096 bits, which are all multiple of 32
and even 64 bits). Therefore, the abovementioned strategy of C. Walter requires that an extra limb (machine

Figure 4: Success rate for an entire exponent depending on the number of side-channel trace for different values of
probability and for modulus randomization on bits, for and modulus randomization uniform in .
(a) pnoise = 0.00, (b) pnoise = 0.10, (c) pnoise = 0.20.
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word encoding on radix in the representation of a big number) shall be allocated for each intermediate
variable, which is considered too high an overhead. For this reason, OpenSSL disguises the extra-reduction
in a constant time SLA, a technique mentioned already in Section 2.1. Namely, a mask of size bits
( is the size of the modulus) is computed to be equal to (i.e., 0xFF...FF in hexadecimal)
when an extra-reduction is required or to (i.e., 0x00...00 in hexadecimal)when no extra-reduction
is needed. Subsequently, the quantity (word obtained by bitwise logical AND of bits from and ) is
subtracted from the result of the MM. This quantity is either 0 or , depending on whether an extra-
reduction is needed or not. This strategy implements an SLA. Such coding style is, as of today, believed
secure against cache-timing attacks, because the control flow is data independent. However, the authors

Figure 5: Success rate for an entire exponent depending of the number of side-channel trace for different values of
probability and for modulus randomization on bits, for and modulus randomization uniform in

: (a) , (b) , (c) .
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warn that the strategy of OpenSSL might not hide perfectly the extra-reduction if the attacker is able to
partition power or electromagnetic side-channel traces based on the value of , since the absence of
extra-reduction involves a remarkable subtraction with a big number equal to zero. Such bias has already
been exploited in the past by attacks such as the Refined Power Analysis [12] or the Zero Power Analysis [4].
Note that OpenSSL is nowadays used in embedded systems (microcontrollers, internet of things devices,
smartphones [5,18], etc.), which are indeed attackable with power and electromagnetic side-channel
analyses.

6 Conclusion

In [10,11], ERA exploiting the dependency of two consecutive MMs was applied to attack RSA implementa-
tions, which use the Montgomery ladder or the always square and multiply exponentiation algorithm. Basis
blinding does not prevent this attack. Although both attacks were successful they did not exploit all the
available information. In this paper, we followed the strategy in [1,2,21], formulated, and analyzed a
stochastic process, which was tailored to the stochastic behavior of the extra-reductions in Montgomery
ladder. This sophisticated strategy allowed us to exploit all the given information in an optimal way.
Practical experiments underlined that the new method reduces the sample size by a factor greater than 2
(to 40% of the original sample size). Our new attack can directly be transferred to the always square and
multiply algorithm. Moreover, we presented a generalization of our attack, which cannot even be prevented
by combination of base blinding with modulus blinding. This generalization of our attack is efficient, too.
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