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Abstract: Recently, Blanco-Chacon proved the equivalence between the Ring Learning With Errors and
Polynomial Learning With Errors problems for some families of cyclotomic number fields by giving some
upper bounds for the condition number Cond(V) of the Vandermonde matrix V, associated to the nth cy-
clotomic polynomial. We prove some results on the singular values of V, and, in particular, we determine
Cond(Vy) forn = kaé , where k, ¢ > O are integers and p is an odd prime number.
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1 Introduction

Ring Learning With Errors (RLWE) was introduced by Lyubashevsky, Peikert, and Regev [1] in order to
speed up cryptographic constructions based on the Learning With Errors problem [2]. Before RLWE, Stehlé,
Steinfeld, Tanaka, and Xagawa [3] introduced what is now known as Polynomial Ring Learning With Errors
(PLWE). The equivalence between RLWE and PLWE is studied and proved for certain families of polynomi-
als [4, 5]. Let K = Q(a) be a number field of degree m and let O be its ring of integers. The definition of short
elements in K plays an essential role in RLWE and PLWE. This geometric notion derives from an appropriate
choice of a norm on K by embedding the number field in a vector space. On the one hand, RLWE makes use of
the canonical embedding o, which maps each x € Og to (al(x), vees am(x)), where 04, ..., on are the injec-
tive homomorphisms from K to C. On the other hand, PLWE uses the coefficient embedding, which maps each
x € Og to the vector (xg, ..., Xm-1) € Z™ of its coefficients with respect to the power basis 1, a, ..., a™ 1.
As a linear map, the canonical embedding ¢ admits a matrix representation V € C™™; so that, for each
x € Ok, wehave o(x) = V- (xg,...,Xm-1)". For the equivalence between RLWE and PLWE, it is important
to determine when, whether ||x|| is small, then so is ||o(x)||, and vice versa. This notion is quantified by V
having a small condition number Cond(V) := || V|||V"}|, where | V| := v/Tr(V*V) is the Frobenius norm of V
and V" is the conjugate transpose of V.

*Corresponding Author: Carlo Sanna: Politecnico di Torino, Department of Mathematical Sciences, Corso Duca degli Abruzzi
24, 10129 Torino, Italy; Email: carlo.sanna.dev@gmail.com

Antonio J. Di Scala: Politecnico di Torino, Department of Mathematical Sciences, Corso Duca degli Abruzzi 24, 10129 Torino,
Italy; Email: antonio.discala@polito.it

Edoardo Signorini: Telsy Elettronica e Telecomunicazioni S.p.A., Corso Svizzera 185, 10149 Torino, Italy; Email:
edoardo.signorini@telsy.it

3 Open Access. © 2020 A. J. Di Scala et al., published by De Gruyter. ‘ (cc) This work is licensed under the Creative Commons
Attribution 4.0 License


https://doi.org/10.1515/jmc-2020-0009

DE GRUYTER On the condition number of the Vandermonde matrix of the nth cyclotomic polynomial =—— 175

When K is the nth cyclotomic number field, V = V; is the Vandermonde matrix associated with the nth
cyclotomic polynomial, that is,

IR OO AT
1 o G o gt
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where {1, ..., {m are the primitive nth roots of unity, and m = ¢(n) is the Euler’s totient function of n.

Recently, Blanco-Chacén [4] gave some upper bounds for the condition number of V5, proving the equiv-
alence between the RLWE and PLWE problems for some infinite families of cyclotomic number fields.
Our first result is the following.

Theorem 1.1. For every positive integer n, we have

n

Cond(Vy) = rad(n)

Cond(Vrad(n)),
where rad(n) denotes the product of all prime factors of n.

Our second result is a formula for the condition number of ¥V, when n is a prime power or a power of 2 times
an odd prime power.

Theorem 1.2. If n = pX, where k is a positive integer and p is a prime number, or if n = 2Xp®, where k, ¢ are
positive integers and p is an odd prime number, then

1
Cond(Vy) = @(n)/2 (1 - 1—7)

In particular, Theorem 1.2 improves the upper bound Cond(Vy) < 4(p — 1)¢(n) given by Blanco-Chacén in the
case in which n = p* is a prime power [4, Theorem 4.1].

Our proofs of Theorems 1.1 and 1.2 are based on the study of the Gram matrix G, := Vy V. Regarding
that, we give also the following result.

Theorem 1.3. For every positive integer n, the matrix nG,* has integer entries.

From a number-theoretic point of view, it might be of some interest trying to describe the entries of nG,' ex-
plicitely, or at least understand the integer sequence Tr(nGy!),-1 (Which is related to Cond(V,) by (3) below).

2 Proofs

For every positive integer n, the Ramanujan’s sums modulo n are defined by

cn(t) == 4,
ic1

for all integers t. It is easy to check that cx(-) is an even periodic function with period n. Moreover, the follow-
ing formula holds [6, Theorem 272]

en®0 = () 40(4)(")) Q0
(n,6)

where p is the Mobius function and (n, t) denotes the greatest common divisor of n and t.
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Let Gy := Vy, Vyy be the Gram matrix of V. By the previous considerations, we have

cn(0) cn(1) cn(2) <o cn(m-1)
cn(1) cn(0) cn(1) coo cn(m-2)
Gn=| @ cn(1) cn(0) e+ calm=3) | () PP Q)
. . . . . <i,jsm
Cn("';_ 1) Cn(W;_z) Cn(rr;_3) Cn‘(O)

In particular, G, is a symmetric Toeplitz matrix with integer entries.
Let A4, ..., As be the distinct eigenvalues of G, which are real and positive, since G is the Gram matrix
of an invertible matrix, and let p4, . . . , ys be their respective multiplicities. We have

Cond(Vy) = || Va[[| Vi || = my/Tr(GR1) = m

Therefore, the study of Cond(V,) is equivalent to the study of the eigenvalues of Gn.
The next lemma relates the characteristic polynomials of Gn and G,q(y)-

B)

Lemma 2.1. For every positive integer n, we have
det(Gn - xIdm) = K™ det (G - £ 1dm )",

where n’ :=rad(n), m’ := o(n’), and h := n/n’.

Proof. We know from (2) that G, = (cn(i - j)) 0si.jm? where we shifted the indices i, j to the interval [0, m) since
this does not change the differences i — j and simplifies the next arguments. Write the integers i, j € [0, m) in
the form i = hi’ +i” and j = hj’ +j”, wherei’,j’ € [0, m’)and i”,j"” € [0, h) are integers. By (1) we have that
cn(i - j) # 0if and only if h divides i — j (otherwise, n/(n, i — j) is not squarefree), which in turn happens if
and only if i” = j”. In such a case, we have (n, i - j) = h(n’, i’ - j') and, again by (1), it follows that

ot rlita) Ly K)o e

Therefore, we have found that G, consists of m’ x m’ diagonal blocks of sizes h x h. Precisely,

Gp = h(Cn/(i/ —j/) Idh) =h Gy ® Idh,

0si’,j/ <m’
where ® denotes the Kronecker product. Consequently, the characteristic polynomial of Gy is
det(Gn - XIdm) = hm det (Gn/ ® Idh —% Idm)
=h" det((Gn/ - % Idm/) ® Idh)
h
= h"det(Gp - § 1dp)",
as claimed. O

Now we are ready to prove the first result.

2.1 Proof of Theorem 1.1

Let n’ := rad(n), m’ := @(n’), and h := n/n’. Furthermore, let A7, ..., A%, be the distinct eigenvalues of G,
with respective multiplicities u}, . . ., p& . It follows from Lemma 2.1 that s’ = s and that the eigenvalues of G,
are hAl, ..., hAg, with respective multiplicities hu’, . .., hus. Hence, (3) yields

S S 12
Cond(Vy) = m\l Z % = m$ % = % Cond(V,) = % Cond(V,/),
i=1 " i

i=1 1
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as claimed. O

We need a couple of preliminary lemmas to the proof of Theorem 1.2.

Lemma 2.2. For every odd positive integer n, the matrices G,, and Gn have the same eigenvalues (with the
same multiplicities).

Proof. Itisknown [6, Theorem 67] that Ramanujan’s sums are multiplicative functions respect to their moduli,
that is, c,;(t) = ca(t) c,(t) for all coprime positive integers a, b. Moreover, it is easy to check that ¢, (t) = (-1)".
Thus, (2) gives

Gon = (can(i =) = ((DTeali- ) =J'GuJ,

where J is the m x m matrix alternating +1 and -1 on its diagonal and having zeros in all the other entries.
Therefore, G, and G, are similar and consequently they have the same eigenvalues. O

1<i,jsm 1<i,jsm

Lemma 2.3. Given two complex numbers a and b, the determinant of the k x k matrix

a b b -+ b
b a b b
b b a b
b b b a

is equal to (a - b)**(a + (k - 1)b).

Proof. Subtracting the last row from all the other rows, and then adding to the last column all the other
columns, the matrix becomes

a-b 0 e 0 0
0 a-b e 0 0
0 o o alb 0
b b b b a+bk-1)
Laplace expansion along the last column gives the desired result. O

2.2 Proof of Theorem 1.2

First, let us consider n = pX, where k is a positive integer and p is a prime number. It follows from (1) that
¢p(t) = p - 1if p divides t, while ¢, (t) = —1 otherwise. Hence, using Lemma 2.3, we have

p-1-x -1 -1
-1 p-1-x -1

det(Gp ~ x1dp-1) = : S : =(-x0P?1-x,

-1 -1 p-1-x

so that the eigenvalues of Gp, are p and 1, with respective multiplicities p — 2 and 1.
As a consequence, (3) gives

Cond(Vy) = (p - 1) /2 <1 - %) (4)

and, thanks to Theorem 1.1, we obtain

Cond(V,,.) = p** Cond(Vy) = p*(p - 1), /2 (1 - %) —p(n), 2 (1 - 119)

as claimed.
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Now assume that n = 2Xp?, where k, ¢ are positive integers and p is an odd prime number. From Lemma 2.2
and (3) it follows at once that Cond(V,) = Cond(V}). Hence, Theorem 1.1 and (4) yield

COHd(VzkpZ) _ 2k—1p£—1 Cond(Vzp) _ 2k—1p€—1(p - 1)\/@ =p(n)/2 (1 = %) s

as claimed. OJ

The next lemma is the well known orthogonality relation between the roots of unity.

Lemma 2.4. We have

"o [n ifk=h,
2 (64 _{o ik #h,

fork,h=1,...,m.

2.3 Proof of Theorem 1.3

Let Vi;! = (W j)1<i,jem and define
m
¢
Sie =Y Wislk,
k=1

for all integers i, ¢with 1 < i < mand ¢ = 0. On the one hand, since V;'Vy = Idm, for ¢ < m we have that Sip=

8;.¢+1 (Kronecker delta). On the other hand, since {3, ..., {} are conjugate algebraic integers with minimal
polynomial of degree m, for ¢ = m there exist integers bg, . . ., by-1 such that (,f =bo+bi(+---+ bm_l(,T‘l
fork=1,...,m,and consequently S; y = boS;i 0 + b1S;i 1 + - + bm-1S; m-1.- Hence, S; ; is always an integer.

Recalling that G, = Vj, Vy, we have G;! = V! (V;l)*. Hence, also using Lemma 2.4, the (i, j) entry of
nGy! is equal to

m m m n s n m m n
nY W= WiuWin Y (Gbn) = (Z Wi,k(zf) <Z Wj,h(;f) =Y SieSje
k=1 k=1 h-1 =1 =1 \k=1 h-1 =

which is an integer. [J
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