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Abstract: Recently, Blanco-Chacón proved the equivalence between the Ring Learning With Errors and
Polynomial Learning With Errors problems for some families of cyclotomic number fields by giving some
upper bounds for the condition number Cond(Vn) of the Vandermonde matrix Vn associated to the nth cy-
clotomic polynomial. We prove some results on the singular values of Vn and, in particular, we determine
Cond(Vn) for n = 2kpℓ, where k, ℓ ≥ 0 are integers and p is an odd prime number.
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1 Introduction
Ring Learning With Errors (RLWE) was introduced by Lyubashevsky, Peikert, and Regev [1] in order to
speed up cryptographic constructions based on the Learning With Errors problem [2]. Before RLWE, Stehlé,
Steinfeld, Tanaka, and Xagawa [3] introduced what is now known as Polynomial Ring Learning With Errors
(PLWE). The equivalence between RLWE and PLWE is studied and proved for certain families of polynomi-
als [4, 5]. Let K = Q(α) be a number field of degree m and let OK be its ring of integers. The definition of short
elements in K plays an essential role in RLWE and PLWE. This geometric notion derives from an appropriate
choice of a norm on K by embedding the number field in a vector space. On the one hand, RLWEmakes use of
the canonical embedding σ, which maps each x ∈ OK to

(︀
σ1(x), . . . , σm(x)

)︀
, where σ1, . . . , σm are the injec-

tive homomorphisms from K toC. On the other hand, PLWE uses the coefficient embedding, whichmaps each
x ∈ OK to the vector (x0, . . . , xm−1) ∈ Zm of its coefficients with respect to the power basis 1, α, . . . , αm−1.
As a linear map, the canonical embedding σ admits a matrix representation V ∈ Cm×m; so that, for each
x ∈ OK, we have σ(x) = V · (x0, . . . , xm−1)

ᵀ. For the equivalence between RLWE and PLWE, it is important
to determine when, whether ‖x‖ is small, then so is ‖σ(x)‖, and vice versa. This notion is quantified by V
having a small condition number Cond(V) := ‖V‖‖V−1‖, where ‖V‖ :=

√︀
Tr(V*V) is the Frobenius norm of V

and V* is the conjugate transpose of V.
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When K is the nth cyclotomic number field, V = Vn is the Vandermonde matrix associated with the nth
cyclotomic polynomial, that is,

Vn :=

⎛⎜⎜⎜⎜⎜⎜⎝
1 ζ1 ζ 21 · · · ζm−11
1 ζ2 ζ 22 · · · ζm−12
1 ζ3 ζ 23 · · · ζm−13
...

...
...

. . .
...

1 ζm ζ 2m · · · ζm−1m

⎞⎟⎟⎟⎟⎟⎟⎠ ,

where ζ1, . . . , ζm are the primitive nth roots of unity, and m = φ(n) is the Euler’s totient function of n.
Recently, Blanco-Chacón [4] gave some upper bounds for the condition number of Vn, proving the equiv-

alence between the RLWE and PLWE problems for some infinite families of cyclotomic number fields.
Our first result is the following.

Theorem 1.1. For every positive integer n, we have

Cond(Vn) =
n

rad(n) Cond(Vrad(n)),

where rad(n) denotes the product of all prime factors of n.

Our second result is a formula for the condition number of Vn when n is a prime power or a power of 2 times
an odd prime power.

Theorem 1.2. If n = pk, where k is a positive integer and p is a prime number, or if n = 2kpℓ, where k, ℓ are
positive integers and p is an odd prime number, then

Cond(Vn) = φ(n)

√︃
2
(︂
1 − 1

p

)︂
.

In particular, Theorem 1.2 improves the upper bound Cond(Vn) ≤ 4(p−1)φ(n) given by Blanco-Chacón in the
case in which n = pk is a prime power [4, Theorem 4.1].

Our proofs of Theorems 1.1 and 1.2 are based on the study of the Gram matrix Gn := V*n Vn. Regarding
that, we give also the following result.

Theorem 1.3. For every positive integer n, the matrix nG−1n has integer entries.

From a number-theoretic point of view, it might be of some interest trying to describe the entries of nG−1n ex-
plicitely, or at least understand the integer sequence Tr(nG−1n )n≥1 (which is related to Cond(Vn) by (3) below).

2 Proofs
For every positive integer n, the Ramanujan’s sumsmodulo n are defined by

cn(t) :=
m∑︁
i = 1

ζ ti ,

for all integers t. It is easy to check that cn(·) is an even periodic function with period n. Moreover, the follow-
ing formula holds [6, Theorem 272]

cn(t) = µ
(︁

n
(n,t)

)︁ φ(n)
φ
(︁

n
(n,t)

)︁ , (1)

where µ is the Möbius function and (n, t) denotes the greatest common divisor of n and t.
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Let Gn := V*n Vn be the Gram matrix of Vn. By the previous considerations, we have

Gn =

⎛⎜⎜⎜⎜⎜⎝
cn(0) cn(1) cn(2) · · · cn(m − 1)
cn(1) cn(0) cn(1) · · · cn(m − 2)
cn(2) cn(1) cn(0) · · · cn(m − 3)
...

...
...

. . .
...

cn(m − 1) cn(m − 2) cn(m − 3) · · · cn(0)

⎞⎟⎟⎟⎟⎟⎠ =
(︀
cn(i − j)

)︀
1≤i,j≤m . (2)

In particular, Gn is a symmetric Toeplitz matrix with integer entries.
Let λ1, . . . , λs be the distinct eigenvalues of Gn, which are real and positive, since Gn is the Grammatrix

of an invertible matrix, and let µ1, . . . , µs be their respective multiplicities. We have

Cond(Vn) = ‖Vn‖‖V−1n ‖ = m
√︁
Tr(G−1n ) = m

⎯⎸⎸⎷ s∑︁
i = 1

µi
λi
. (3)

Therefore, the study of Cond(Vn) is equivalent to the study of the eigenvalues of Gn.
The next lemma relates the characteristic polynomials of Gn and Grad(n).

Lemma 2.1. For every positive integer n, we have

det(Gn − x Idm) = hm det
(︀
Gn′ − x

h Idm′
)︀h ,

where n′ := rad(n), m′ := φ(n′), and h := n/n′.

Proof. Weknow from (2) that Gn =
(︀
cn(i− j)

)︀
0≤i,j<m, wherewe shifted the indices i, j to the interval [0,m) since

this does not change the differences i − j and simplifies the next arguments. Write the integers i, j ∈ [0,m) in
the form i = hi′ + i′′ and j = hj′ + j′′, where i′, j′ ∈ [0,m′) and i′′, j′′ ∈ [0, h) are integers. By (1) we have that
cn(i − j) ≠ 0 if and only if h divides i − j (otherwise, n/(n, i − j) is not squarefree), which in turn happens if
and only if i′′ = j′′. In such a case, we have (n, i − j) = h(n′, i′ − j′) and, again by (1), it follows that

cn(i − j) = µ
(︁

n
(n,i−j)

)︁ φ(n)
φ
(︁

n
(n,i−j)

)︁ = µ
(︁

n′
(n′ ,i′−j′)

)︁ h φ(n′)
φ
(︁

n′
(n′ ,i′−j′)

)︁ = h cn′ (i′ − j′).

Therefore, we have found that Gn consists of m′ × m′ diagonal blocks of sizes h × h. Precisely,

Gn = h
(︀
cn′ (i′ − j′) Idh

)︀
0≤i′ ,j′<m′ = h Gn′ ⊗ Idh ,

where⊗ denotes the Kronecker product. Consequently, the characteristic polynomial of Gn is

det(Gn − x Idm) = hm det
(︀
Gn′ ⊗ Idh − xh Idm

)︀
= hm det

(︀
(Gn′ − x

h Idm′ )⊗ Idh
)︀

= hm det
(︀
Gn′ − x

h Idm′
)︀h ,

as claimed.

Now we are ready to prove the first result.

2.1 Proof of Theorem 1.1

Let n′ := rad(n), m′ := φ(n′), and h := n/n′. Furthermore, let λ′1, . . . , λ′s′ be the distinct eigenvalues of Gn′ ,
with respective multiplicities µ′1, . . . , µ′s′ . It follows from Lemma 2.1 that s′ = s and that the eigenvalues of Gn
are hλ′1, . . . , hλ′s, with respective multiplicities hµ′1, . . . , hµ′s. Hence, (3) yields

Cond(Vn) = m

⎯⎸⎸⎷ s∑︁
i = 1

µi
λi

= m

⎯⎸⎸⎷ s∑︁
i = 1

µ′i
λ′i

= m
m′ Cond(Vn′ ) =

n
n′ Cond(Vn′ ),
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as claimed.�

We need a couple of preliminary lemmas to the proof of Theorem 1.2.

Lemma 2.2. For every odd positive integer n, the matrices G2n and Gn have the same eigenvalues (with the
same multiplicities).

Proof. It is known [6, Theorem67] that Ramanujan’s sums aremultiplicative functions respect to theirmoduli,
that is, cab(t) = ca(t) cb(t) for all coprime positive integers a, b. Moreover, it is easy to check that c2(t) = (−1)t.
Thus, (2) gives

G2n =
(︀
c2n(i − j)

)︀
1≤i,j≤m =

(︀
(−1)i−jcn(i − j)

)︀
1≤i,j≤m = J−1GnJ,

where J is the m × m matrix alternating +1 and −1 on its diagonal and having zeros in all the other entries.
Therefore, Gn and G2n are similar and consequently they have the same eigenvalues.

Lemma 2.3. Given two complex numbers a and b, the determinant of the k × k matrix⎛⎜⎜⎜⎜⎜⎝
a b b · · · b
b a b · · · b
b b a · · · b
...

...
...

. . .
...

b b b · · · a

⎞⎟⎟⎟⎟⎟⎠
is equal to (a − b)k−1(a + (k − 1)b).

Proof. Subtracting the last row from all the other rows, and then adding to the last column all the other
columns, the matrix becomes ⎛⎜⎝

a − b 0 · · · 0 0
0 a − b · · · 0 0
.
.
.

.

.

.
. . .

.

.

.
.
.
.

0 0 0 a − b 0
b b b b a + b(k − 1)

⎞⎟⎠ .

Laplace expansion along the last column gives the desired result.

2.2 Proof of Theorem 1.2

First, let us consider n = pk, where k is a positive integer and p is a prime number. It follows from (1) that
cp(t) = p − 1 if p divides t, while cp(t) = −1 otherwise. Hence, using Lemma 2.3, we have

det(Gp − x Idp−1) =

⎛⎝p − 1 − x −1 · · · −1
−1 p − 1 − x · · · −1
.
.
.

.

.

.
. . .

.

.

.
−1 −1 · · · p − 1 − x

⎞⎠ = (p − x)p−2 (1 − x),

so that the eigenvalues of Gp are p and 1, with respective multiplicities p − 2 and 1.
As a consequence, (3) gives

Cond(Vp) = (p − 1)

√︃
2
(︂
1 − 1

p

)︂
, (4)

and, thanks to Theorem 1.1, we obtain

Cond(Vpk ) = p
k−1 Cond(Vp) = pk−1(p − 1)

√︃
2
(︂
1 − 1

p

)︂
= φ(n)

√︃
2
(︂
1 − 1

p

)︂
,

as claimed.
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Nowassume that n = 2kpℓ,where k, ℓarepositive integers and p is anoddprimenumber. FromLemma2.2
and (3) it follows at once that Cond(V2p) = Cond(Vp). Hence, Theorem 1.1 and (4) yield

Cond(V2kpℓ ) = 2k−1pℓ−1 Cond(V2p) = 2k−1pℓ−1(p − 1)

√︃
2
(︂
1 − 1

p

)︂
= φ(n)

√︃
2
(︂
1 − 1

p

)︂
,

as claimed.�

The next lemma is the well known orthogonality relation between the roots of unity.

Lemma 2.4. We have
n∑︁

ℓ=1

(︀
ζkζh

)︀ℓ = {︃n if k = h,
0 if k ≠ h,

for k, h = 1, . . . ,m.

2.3 Proof of Theorem 1.3

Let V−1n = (wi,j)1≤i,j≤m and define

Si,ℓ :=
m∑︁
k=1

wi,kζ ℓk ,

for all integers i, ℓwith 1 ≤ i ≤ m and ℓ ≥ 0. On the one hand, since V−1n Vn = Idm, for ℓ < m we have that Si,ℓ =
δi,ℓ+1 (Kronecker delta). On the other hand, since ζ1, . . . , ζk are conjugate algebraic integers with minimal
polynomial of degree m, for ℓ ≥ m there exist integers b0, . . . , bm−1 such that ζ ℓk = b0 + b1ζk + · · · + bm−1ζ

m−1
k

for k = 1, . . . ,m, and consequently Si,ℓ = b0Si,0 + b1Si,1 + · · · + bm−1Si,m−1. Hence, Si,ℓ is always an integer.
Recalling that Gn = V*n Vn, we have G−1n = V−1n

(︀
V−1n

)︀*. Hence, also using Lemma 2.4, the (i, j) entry of
nG−1n is equal to

n
m∑︁
k=1

wi,kwj,k =
m∑︁
k=1

m∑︁
h=1

wi,kwj,h
n∑︁

ℓ=1

(︀
ζkζh

)︀ℓ = n∑︁
ℓ=1

(︃ m∑︁
k=1

wi,kζ ℓk

)︃(︃ m∑︁
h=1

wj,hζ ℓh

)︃
=

n∑︁
ℓ=1

Si,ℓSj,ℓ,

which is an integer.�

Acknowledgement: A. J. Di Scala andC. Sanna aremembers of GNSAGAof INdAMandof CrypTO, the groupof
Cryptography and Number Theory of Politecnico di Torino. A. J. Di Scala is a member of DISMA Dipartimento
di Eccellenza MIUR 2018-2022. E. Signorini is a cryptographer at Telsy S.p.A.

References
[1] V. Lyubashevsky, C. Peikert, and O. Regev, On ideal lattices and learning with errors over rings, Advances in cryptology—

EUROCRYPT 2010, Lecture Notes in Comput. Sci., vol. 6110, Springer, Berlin, 2010, pp. 1–23.
[2] O. Regev, On lattices, learning with errors, random linear codes, and cryptography, J. ACM 56 (2009), no. 6, Art. 34, 40.
[3] D. Stehlé, R. Steinfeld, K. Tanaka, and K. Xagawa, Eflcient public key encryption based on ideal lattices (extended abstract),

Advances in cryptology—ASIACRYPT 2009, Lecture Notes in Comput. Sci., vol. 5912, Springer, Berlin, 2009, pp. 617–635.
[4] I. Blanco-Chacón,On the RLWE/PLWE equivalence for cyclotomic number fields, Appl. Algebra Engrg. Comm. Comput. (accepted).
[5] M. Rosca, D. Stehlé, and A. Wallet, On the ring-LWE and polynomial-LWE problems, Advances in cryptology—EUROCRYPT 2018.

Part I, Lecture Notes in Comput. Sci., vol. 10820, Springer, Cham, 2018, pp. 146–173.
[6] G. H. Hardy and E. M. Wright, An introduction to the theory of numbers, sixth ed., Oxford University Press, Oxford, 2008,

Revised by D. R. Heath-Brown and J. H. Silverman, With a foreword by Andrew Wiles.


	1 Introduction
	2 Proofs
	2.1 Proof of Theorem 1.1
	2.2 Proof of Theorem 1.2
	2.3 Proof of Theorem 1.3


