
Open Access. © 2020 G. McGuire and O. Robinson, published by De Gruyter. This work is licensed under the Creative
Commons Attribution 4.0 License

J. Math. Cryptol. 2021; 15:223–236

Research Article

Gary McGuire* and Oisín Robinson

Lattice Sieving in Three Dimensions for
Discrete Log in Medium Characteristic
https://doi.org/10.1515/jmc-2020-0008
Received Feb 25, 2020; accepted Sep 01, 2020

Abstract: Lattice sieving in two dimensions has proven to be an indispensable practical aid in integer factor-
ization and discrete log computations involving the number field sieve. The main contribution of this article
is to show that a different method of lattice sieving in three dimensions will provide a significant speedup in
medium characteristic. Our method is to use the successiveminima and shortest vectors of the lattice instead
of transition vectors to iterate through lattice points. We showcase the new method by a record computation
in a 133-bit subgroup of Fp6 , with p6 having 423 bits. Our overall timing is nearly 3 times faster than the
previous record of a 132-bit subgroup in a 422-bit field. The approach generalizes to dimensions 4 or more,
overcoming one key obstruction to the implementation of the tower number field sieve.

Keywords: Number field sieve, discrete log

2020 Mathematics Subject Classification: 11Y05

1 Introduction
The most widely adopted public-key cryptography algorithms in current use are critically dependent on the
(assumed) intractability of either the integer factorization problem (IFP), the finite field discrete logarithm
problem (DLP) or the elliptic curve discrete logarithm problem (ECDLP). The most effective known attacks
against IFP and DLP use the same basic algorithm, namely the Number Field Sieve (NFS). This algorithm has
subexponential complexity in the input size. On the other hand, all known methods to attack the ECDLP in
the general case have exponential complexity. However there are special instances of the ECDLP which can
be attacked by effectively transferring the problem to a finite field, allowing the NFS to be used. For example
such instances arise in the context of pairing-based cryptography, where certain elliptic curves can be used
to realize ‘Identity-Based Encryption’ (IBE). There is a trade-off between the reduced security due to the size
of the finite field on which the security is dependent, and increased efficiency of the pairing arithmetic. The
optimal parameters have been the subject of intense scrutiny over the last few years, which have seen a suc-
cession of improvements in the NFS for the DLP in themedium characteristic case. This is directly relevant in
the case of pairings, where the finite field on which the security of the protocol depends is typically a small
degree extension of a prime field.

Akeypart of theNFS is lattice sieving. Themain contribution of this article is to demonstrate that different
methods of lattice enumeration can make a significant difference to the speed of lattice sieving.

This paper is organized as follows. In section 2, we give a very brief overview of the Number Field Sieve al-
gorithm in themedium-characteristic case. Amore detailed explanation can be found in [11]. One of themain
bottlenecks of this algorithm is lattice sieving, which involves enumerating points in a (low-dimensional) lat-
tice. We propose in section 3 a straightforward idea to significantly increase enumeration speed in dimension
three and above. The idea is to change the angle of planes that are sieved through in order to reduce the

*Corresponding Author: Gary McGuire: UCD School of Mathematics and Statistics, University College Dublin, Ireland
Oisín Robinson: UCD School of Mathematics and Statistics, University College Dublin, Ireland

https://doi.org/10.1515/jmc-2020-0008

224 | G.McGuire and O. Robinson

number of planes. This idea has been used before for lattice enumeration in a sphere [17], however it has not
been applied successfully to lattice sieving for the NFS. We show that the idea can work well by using integer
linear programming to find an initial point for iteration in a plane within the sieve cuboid. In section 4 we
propose a novel method to amortize memory communication overhead which applies regardless of dimen-
sion. In section 5 we give details of a new record discrete log computation in Fp6 . The previous record due to
Grémy et al [11] had p6 with 422 bits, and this paper has p6 with 423 bits. We deliberately chose a field size
just one bit larger in order to attempt a direct comparison of methods and timings. In section 6 we present
a record pairing break with the same prime p. Finally we conclude in section 7 and mention some possible
future research ideas.

2 Number Field Sieve
We start with a very brief sketch of the NFS in the most naive form suitable for computing discrete logs in Fpn .
Consider the following commutative diagram:
The polynomials f0(x) and f1(x) are irreducible in Z[x] of degree n, and they define the number fields Q(α)

a − bx ∈ Q[x]

Q[x]/⟨f0(x)⟩ ∼= Q(α) Q[x]/⟨f1(x)⟩ ∼= Q(β)

(Z/pZ)[x]/⟨ψ(x)⟩ ∼= Fpn

Figure 1: Commutative diagram of NFS for discrete log in Fpn .

andQ(β) respectively. We require that f0(x) and f1(x), when reduced modulo p, share a factor ψ(x) of degree
n which is irreducible over Fp. This defines the finite field Fpn as (Z/pZ)[x]/⟨ψ(x)⟩. Usually ψ(x) is simply the
reduction of f0(x) modulo p.

In two-dimensional sieving, for a bound B, we inspect many pairs of integers (a, b) with 0 < a ≤ B and
−B ≤ b ≤ B in the hope of finding many pairs such that

Res (f0, a − bx) and Res (f1, a − bx)

are both divisible only by primes up to a bound B2. This B2 is called the smoothness bound, or the large prime
bound. The set of all polynomials a − bx that we inspect is called the search space.

There is also a bound B1, called the factor base bound, which is the largest prime used in sieving. The
factor base consists of all primes up to this bound B1. In brief, we seek two different representations of (the
image of) a − bx over the factor base. There are excellent detailed explanations of the NFS, see [3, 10, 11, 16].
We refer the reader to those papers for further details. Recently, new variations of NFS have been described
where the norms (i.e. resultants) are even smaller in certain fields, see [18, 21].

2.1 Lattice Sieving

The original lattice sieve (due to J.M. Pollard [20]) has developed into the ‘special-q’ lattice sieve which we
now outline. Let q be a rational prime, let r be an integer with f0(r) ≡ 0 mod q, and let q = ⟨q, θ − r⟩ be an
ideal of K = Q(θ) ∼= Q[x]/⟨f0⟩ lying over q. We choose q to be smaller than our smoothness bound. We fix a

Lattice Sieving in Three Dimensions for Discrete Log in Medium Characteristic | 225

factor base, which will consist of all prime ideals in the ring of integers of K whose norm is smaller than our
pre-determined factor base bound. We look for (integral) ideals of K that are divisible by q, and we do this by
looking for ideals whose norm is divisible by q. We also would like the norm to be divisible by many other
small primes p. We fix q and iterate over all p in the factor base using a sieve.

In 3-dimensional sieving, the pairs (a, b) corresponding to a − bx (in section 2) become triples (a, b, c)
corresponding to a+bx+ cx2. A sieving ideal will have the form ⟨a+bx+ cx2⟩. Relation collection examines a
subset S of the whole set of polynomials A(x) of degree 2. The subset S is called the search space and is made
of the polynomials A(x) of bounded coefficients.

Weperformsieving in threedimensions as follows.Weuseafixed-size sieve regionH = [0, B[×[−B, B[×[−B, B[
where each lattice point will correspond to a norm which is always divisible by q and hopefully divisible by
many p. Define lattices Λq and Λpq by

Lq =

⎡⎢⎣q −r 0
0 1 −r
0 0 1

⎤⎥⎦ , Lpq =

⎡⎢⎣pq −t 0
0 1 −t
0 0 1

⎤⎥⎦
where f0(r) ≡ 0 mod q and f0(t) ≡ 0 mod pq, and the columns are a basis. Compute an LLL-reduced basis
for both Λq and Λpq to get matrices L′q and L′pq. Then let

L′ = (L′q)−1 · L′pq

which is an integer matrix by construction. Let Λ′ be the lattice with basis L′. We mark all (i, j, k) in H ∩ Λ′.
As a result, for a sieve location (i, j, k) that has been marked, if we let⎡⎢⎣ab

c

⎤⎥⎦ = L′q ·

⎡⎢⎣ ij
k

⎤⎥⎦
then we know that the norm of ⟨a + bθ + cθ2⟩ is divisible by both q and p.

We compute and reduce Lq once per special-q, and compute Lpq etc for each p. We compute (a, b, c) only
for (i, j, k) that have been marked for many p (above a pre-determined threshold).

Our new results have two aspects. First, in section 3 we improve the speed of enumeration of points in
dimensions higher than two. Second, in section 4 we give a new way of avoiding cache locality issues by the
use of a histogram of lattice point hits. This applies regardless of dimension.

3 Faster enumeration
In a lattice Λ of rank n recall that the i-th successive minimum is defined by

λi(Λ) = inf{r ∈ R : dim(span(Λ ∩ Br)) ≥ i}

where Br = {x ∈ Rn : ||x|| ≤ r}. In particular, λ1(Λ) is the length of a shortest nonzero vector in Λ. A basis
v1, . . . , vn forΛ is said to be aMinkowski-reducedbasis if, for k = 1, 2, . . . , n, vk is the shortest lattice element
that can be extended to a basis with v1, . . . , vk−1.

We assume we are sieving in three dimensions. We fix a bound B and let

H = [0, B[×[−B, B[×[−B, B[

be the sieving region. Let Λ′ be the lattice defined in section 2. The problem is to list the elements of Λ′ ∩ H
in an efficient way. In previous work this is done by going through the planes parallel to the xy-plane, and
enumerating the lattice points in each of these planes. We propose a different method which uses fewer
planes.

226 | G.McGuire and O. Robinson

Let v1, v2, v3 be vectors having lengths λ1(Λ′), λ2(Λ′), λ3(Λ′), the first three successive minima of Λ′.
These three vectors are guaranteed to exist and we can either find all three, or an acceptably close approx-
imation (see Remark 1). The origin together with v1 and v2 define a plane which we call P. Let

cmax = max{c ∈ N : H ∩ (P − c · v3) ≠ ∅}.

We refer to the plane G = P − cmax · v3 as the ‘ground plane’.
Our approach is very simple: to enumerate all lattice points in H, we enumerate all points in the ground

plane G that lie in H, and then all points in the translates G + kv3 for k = 1, 2, 3, ... that lie in H, until we
reach the last translate intersecting H.

Remark 1. Finding v1, v2, v3 is done with the LLL algorithm. In practice, in very small dimension such as
three, this is sufficient to find aMinkowski-reduced basis, or a close approximation which is good enough for
our purposes.

Remark 2. To easily enumerate points in a plane G + kv3, we first locate one point p0 that is contained within
the plane and the sieving region H. For this, we use integer linear programming (described in this context
below). Once we have located p0, we proceed to enumerate points in this plane by adding and subtracting
multiples of v1 and v2 from p0, until by doing so we are no longer within H. This is done inductively, by first
enumerating all p0 + c1v1 where c1 runs over all integers such that p0 + c1v1 is in H. Then we add v2 and
enumerate all p0 + v2 + c1v1 where c1 runs over all integers such that p0 + v2 + c1v1 is in H. Then we add v2
again, and repeat. This may not be the optimal method of enumerating points in G + kv3, however it worked
well in our computations and is sufficient for our purposes. Pseudo-code for this can be seen in Algorithm 1.

This inductive procedure will extend to higher dimensions, as long as the integer linear programming
problem required to find the corresponding feasible points is tractable. We expect this to be the case certainly
up to dimension six, and perhaps further.

Remark 3. If the lattice is very skewed, it is possible that the last valid sieving point in the plane is pk =
pk−1 + v1 + c · v2, where c ≥ 2 (and pk−1 is the previous point). It would be preferable to be able to reach all
points by unit additions of v2 so for practical purposes, we do this and ignore the cases where such ‘outlier’
points are missed.

We have quantified the percentage of missed points, based on test data from the record computation and
comparison with an exhaustive search. We consistently found about 1.8% of points were missed per special-
q. Since there are usually up to hundreds of thousands of primes on a sieving side, and multiple planes per
prime, it would only take a small number ofmissed points per prime to account for this percentage. This likely
happens at planes intersecting only corners of the sieve region.

Remark 4. In two dimensions, the sieving method of Franke and Kleinjung [7] is very efficient. Our approach
works in the 2d case also, using the first two successive minima of the 2d lattice, but it will not quite compete
with the method in [7] in terms of speed of enumeration because we must do a little extra work when dealing
with boundaries. This shows that dealing with the boundaries of the sieving region is not trivial.

We summarize the above description in Algorithm 1.

Remark 5. The observer may notice that in Algorithm 1 as presented, there is no guarantee upon adding
(v1, v2, v3) to (x, y, z) to move to the next row, that (x, y, z) is still within the sieving plane and boundary.
We have written the algorithm like this to get across the main idea, but in the code every time we switch to a
new row,we solve amini integer linear programming task to get amultiple of (u1, u2, u3) to subtract from and
pin (x, y, z) to the start of the row while keeping it within the boundary. Solving a one-dimensional integer
linear programming problem can be done in-line, and does not lead to much extra code complexity.

Lattice Sieving in Three Dimensions for Discrete Log in Medium Characteristic | 227

Algorithm 1 3D Lattice Sieve
Input:

Boundary [0, B[×[−B, B[×[−B, B[, special-q prime q, polynomial f , memory array M.
Output:

List of prime divisibility events contained in M
procedure

r ← root of f mod q

L ←

⎡⎢⎣n −r 0
0 1 −r
0 0 1

⎤⎥⎦
Reduce L in-place via L2 algorithm (i.e. efficient LLL)
m ← 0
for every factor base prime p do

for every root s of f mod p do
n ← p · q
t ← q ·

(︀
s ·

(︀
q−1mod p

)︀
mod p

)︀
+ p ·

(︀
r ·

(︀
p−1mod q

)︀
mod q

)︀
// Chinese remainder theorem

If t >= n, t ← t − n

L2 ←

⎡⎢⎣n t 0
0 1 t
0 0 1

⎤⎥⎦
Reduce L2 in-place via L2 algorithm
L3 ← q · L−1 · L2
L3 ← L3/q (all entries)
Reduce L3 in-place via L2 algorithm
u = (u1 , u2 , u3)← first column of L3
v = (v1 , v2 , v3)← second column of L3
w = (w1 , w2 , w3)← third column of L3
(nx , ny , nz)← (u2v3 − u3v2 , u3v1 − u1v3 , u1v2 − u2v1) // Compute normal
(x, y, z)← (w1 , w2 , w3)
Repeatedly subtract (w1 , w2 , w3) from (x, y, z) until we are at the ground plane
while Plane defined by (nx , ny , nz) and (x, y, z) intersects box [0, B[×[−B, B[×[−B, B[do

(ws1 , ws2 , ws3)← (x, y, z) // Remember starting w vector
(a, b)← (0, 0)
Compute (a, b) using algorithm 2 to place (x, y, z) within boundary
(x, y, z)← (x, y, z) + a · (u1 , u2 , u3) + b · (v1 , v2 , v3)
(s1 , s2 , s3)← (x, y, z) // Remember starting vector
while (x, y, z) ∈ [0, B[×[−B, B[×[−B, B[do

Subtract (u1 , u2 , u3) from (x, y, z) until we are at the ‘start of the row’
for every vector in current row do

id ← x + ((y + B)«log2(B)) + ((z + B)«log2(B2))
M[m++]← {id, log2(p)}
(x, y, z)← (x, y, z) + (u1 , u2 , u3)

end for
(x, y, z)← (x, y, z) + (v1 , v2 , v3)

end while
(x, y, z)← (s1 , s2 , s3) − (v1 , v2 , v3)
Repeat the above while loop in the opposite direction in the plane
That is, by subtracting (v1 , v2 , v3) from (x, y, z) to move to the next row.
We can still progress within each row by pinning to start, then adding (u1 , u2 , u3).
When finished in both directions, move to next plane:
(x, y, z)← (ws1 , ws2 , ws3) + (w1 , w2 , w3)

end while
end for

end for

end procedure

228 | G.McGuire and O. Robinson

3.1 Previous Lattice Enumeration Methods

Lattice enumeration is widely used in algorithms to solve certain lattice problems, such as the Closest Vector
Problem. However, sieving in a cuboid introduces many complications that do not occur when sieving in a
ball.

Our enumeration here is similar to Fincke-Pohst-Kannan’s algorithm (FPK) for lattice enumeration [6, 17].
However, it is significantly different in that we sieve in a box, as opposed to a sphere. Further, we do not
compute a norm for every point to test if it is within the boundary - use of a box allows us to separate many
points which may be treated in fast loops with no individual boundary checking. In practice this makes a
huge difference. Note that L. Grémy’s space sieve is 120 times faster than the FPK algorithm (see [10]). We
outperform the space sieve by over 2.5×. Note also that sieving in a rectangular region is fundamental to
Franke and Kleinjung’s 2d lattice sieve algorithm, and its success depends on the shape of this region.

x y

z

x y

z

x y

z

x y

z

x y

z

x y

z

Figure 2: Six dense sublattices cover every point in the sieve region.

Lattice Sieving in Three Dimensions for Discrete Log in Medium Characteristic | 229

3.2 Example

The lattice used in Figure 2 is the following: ⎡⎢⎣ 10 18 35
−12 18 13
−7 −22 18

⎤⎥⎦
The sieve region is [−100, 100] × [−100, 100] × [0, 100]. In this example, using our method, 6 planes cover
every valid sieving point. With traditional plane sieving, using planes that are parallel to the base of the
sieving cuboid, 101 planes are needed, each with at most four lattice points.

3.3 Integer Linear Programming

Given a plane defined by u, v and a point R, with R not necessarily contained in the sieving region defined
by H = [0, B[×[−B, B[×[−B, B[, the task is to find a point p0 = (x0, y0, z0) that is provably contained in the
intersection of the plane and H, if such a point exists. We look for a, b ∈ Z such that p0 = R + a · u + b · v and
p0 ∈ H.

This can be formulated as an integer linear programming problem, where the aim is to either minimize
x, subject to

A · x ≤ C

where x = (a, b) ∈ Z2 and A ∈ Z6×2, C ∈ Z6, depend on u, v, B, or find any feasible point, if one exists. This
problem is well studied, and though it is NP-hard in general, can be solved easily in small dimensions. It is
computationally trivial in dimension 3, for example, which we use in this article.

We shall give more details now. Our approach is based on ‘Fourier-Motzkin’ elimination. Given R =
(x, y, z), u = (u1, u2, u3), v = (v1, v2, v3) we seek a, b such that R + a · u + b · v is feasible. We set up the
following system of inequalities based on the boundary [0, B[×[−B, B[×[−B, B[:⎡⎢⎢⎢⎢⎢⎢⎢⎣

u1 v1
u2 v2
u3 v3
−u1 −v1
−u2 −v2
−u3 −v3

⎤⎥⎥⎥⎥⎥⎥⎥⎦
[︃
a
b

]︃
≤

⎡⎢⎢⎢⎢⎢⎢⎢⎣

B − x − 1
B − y − 1
B − z − 1

x
B + y
B + z

⎤⎥⎥⎥⎥⎥⎥⎥⎦
.

Our approach is to eliminate a, deduce b and then compute a.We first transform the system so that the entries
of the first column of A are normalized (i.e. wemultiply across by the least commonmultiple of u1, u2, u3 and
divide across respectively by |u1|, |u2|, |u3|. Thus each entry in column 1 of A is ±k for some k ∈ Z).We look for
all pairs of rows of A such that a cancels. We achieve this with a nested loop in (i, j) and where we disregard
a pair of rows if both a and b cancel (this happens e.g. if |i − j| = 3). For a given pair of rows where we have
eliminated the term in a, it is then easy to compute

b =
⌊︂ Ci + Cj
Vi + Vj

⌋︂
where Ci are the constants in the RHS vector, and Vi are the coefficients of the vector v in A, as long as Vi+Vj ≠
0 (otherwise we skip this (i, j)). When we consider all pairs, we keep the smallest value of b found. We then
compute the smallest corresponding value of a by back-substitution in all 6 rows. This is summarized in
algorithm 2.

Remark 6. It is possible that no feasible point exists or is found, but we can detect this by checking if p0 is
within bounds.

230 | G.McGuire and O. Robinson

Algorithm 2 Integer Linear Programming
Input:

Boundary [0, B[×[−B, B[×[−B, B[, plane P defined by u = (u1, u2, u3), v = (v1, v2, v3), R = (x, y, z)
such that R ∈ P, but R not necessarily in boundary.

Output:
(a, b) such that p0 = R + a · u + b · v contained in both P and boundary.

procedure
U ← {u1, u2, u3, −u1, −u2, −u3}T

V ← {v1, v2, v3, −v1, −v2, −v3}T

C ← {B − x − 1, B − y − 1, B − z − 1, x, B + y, B + z}T

L ← |LCM (u1, u2, u3)|
Normalize system - multiply all entries by L, divide Ui , Vi , Ci by original |Ui|
a ← B, b ← B
for all pairs of rows (i, j) do

if Ui = 0 and Vi > 0 then
bTRIAL = ⌊Ci/Vi⌋
if bTRIAL < b then b ← bTRIAL

else
if Ui < 0 and Uj > 0 and |i − j| ≠ 3 then

D ← Vi + Vj
if D > 0 then

bTRIAL =
⌊︀(︀
Ci + Cj

)︀
/D

⌋︀
if bTRIAL < b then b ← bTRIAL

end if
end if

end if
end for
for the best value of b, compute a by back substitution.
Return (a, b)

end procedure

4 Dealing with Cache Locality Issues
Representing a 3d lattice inmemory can be done in different ways. One problemwith arranging points first by
adjacent lines, then adjacent planes etc is that the storage/retrieval of points tends to result in randommem-
ory access patterns, which severely impacts performance. This is a fundamental concern in large-scale com-
putation. Computer manufacturers address this by providing various levels of ‘cache’, i.e. a limited quantity
of high-speedmemory, too costly formainmemory, which is used as a temporary store of frequently-accessed
or burst-access data. Traditionally, lattice-sieving has always had to make use of cache to minimize the cost
of the random memory access patterns that occur in practice. The usual way this is handled is via ‘bucket
sorting’ [1].

Our idea to improve cache locality without using bucket sorting is simple: list and sort. We encode the
x, y, z coordinates of each latticepoint as a 32-bit integer.A sieve ‘hit’ is anorderedpair (integer, log p)where p
is a rational prime that divides the normof the ideal corresponding to the lattice point/integer. Here 2 ≤ p ≤ B1
where B1 is the factor base bound. We store all sieve hits in a list of increasing size. Because the list increases
strictly linearly, this is ideally suited to fastmemory access and is compatible with all levels of cache. By itself,
this is not an advantage because we havemerely collected a long list of randomly ordered pairs. However, we
can sort this list by sorting the integers in increasing order, i.e., we sort these pairs by the integers only. We

Lattice Sieving in Three Dimensions for Discrete Log in Medium Characteristic | 231

can then recover lattice pointswith a large smooth part via a linear scan of the sorted list, because if an integer
appears K times as the first coordinate of a pair then it will appearwith K different values of p. Themore times
it appears, the smoother the lattice point is.

Remark 7. Our list/sort approach must be considered carefully in terms of memory because we must store
log p and full co-ordinates for every sieve event. While in practice sorting the list of all sieve events is still
fast, the memory required to store the full list is considerable (it certainly does not fit in cache all at once, but
cache is still essential and is used implicitly in the sorting routine, which is cache-friendly). This meant we
had to ensure our sieving parameters could be set to fully utilize the compute capacity of our sieving nodes.
See section 5 for further details.

Remark 8. For our record computation (see next section) we used a sieving region H of size 29 × 210 × 210. A
traditional lattice sieve would thus take 229 bytes, or exactly 512MB to store the sieve (assuming one byte to
store log p per sieve location). We need to store 5 bytes per sieve hit, one byte for log p plus 4 bytes for the
(x, y, z) coordinates, but note that we do not have to represent every possible sieve location, only the hits. In
practice, for the parameters we used to set the record, each instance of the sieve program records roughly 500
million sieve events, and so requires about 5×500million bytes = 2500MB of RAM in total per special-q. This
is approximately a fivefold increase over 512MB for a traditional lattice sieve, but it was not a problem for us
as our production nodes had the memory to cope.

Remark 9. We avoid sieving the smallest primes, as the corresponding lattices are very dense and greatly
increase the memory required for the list + sort approach. This would not really be an issue if we used bucket
sorting, but either way these smallest primes can probably be left out, because they tend to appear in almost
every relation. The less dense lattices (not for small primes) should be sieved, and our lattice enumeration
method will be very fast here.

Remark 10. Grémy et al’s [11] sieve does not include bucket sort, and neither do we. It could be a possible
improvement to replace our list/sort with enumerate/bucket sieve (and we could retain our fast enumeration
idea as bucket sorting relates only to memory access).

We compare sieving statistics in Table 1 between our implementation and that of [11]. Note that all of these
times give total special-q time excluding the cofactorization time. In [11], sieving and memory access are in-
tertwined and so we compare this to our combined sieving/listing/sorting time. Our siever is over 4.5× faster.
Sieving speed in our case is not the bottleneck. The extra sieving speed is gained at the expense of increased
memory requirements.

Table 1: Sieve performance comparison (times in seconds)

Authors factor base
bound

H qmin qmax #{q} av. time min time max time

GGMT 221 210 × 210 × 28 16000000 16001000 7 143.93 142.17 145.28
GGMT 221 210 × 210 × 28 86500000 86501000 14 142.07 140.53 143.82
GGMT 221 210 × 210 × 28 262000000 262001000 9 142.40 140.95 144.34
GGMT 222 210 × 210 × 28 16000000 16001000 7 169.74 166.12 171.82
GGMT 222 210 × 210 × 28 86500000 86501000 14 167.53 166.01 173.55
GGMT 222 210 × 210 × 28 262000000 262001000 9 167.50 165.02 172.17

this work 224 29 × 210 × 210 16000000 16001000 7 35.47 34.94 36.95
this work 224 29 × 210 × 210 86500000 86501000 14 35.80 35.39 37.16
this work 224 29 × 210 × 210 262000000 262001000 9 36.37 35.71 37.54

232 | G.McGuire and O. Robinson

5 Record computation in Fp6

We implemented the 3d case of our lattice sieving idea in C and used it to set a new record in solving the
discrete log in the multiplicative subgroup (Fp6)×. Previous records were set by Zajac [24], Hayasaka et al
(HAKT) [15], and Grémy et al (GGMT) [11]. All computations were done on the main compute nodes of the Kay
cluster at ICHEC, the Irish Center for High-End Computing. Each node consists of dual 20-core Intel Xeon
Gold 6148 (Skylake) processors @ 2.4 GHz, with 192Gb RAM per node. All timings have been normalized to a
nominal 2.0GHz clock speed.

With ϕ = (1+
√
5)/2, we chose the prime p = ⌊1021 ·ϕ⌋+29. Our target field is Fp6 , where p6 has 423 bits.

This is comparable to the field size of the previous record at 422 bits [11]. One consequence of our choice is to
allow a fair comparison of the total effort required to solve discrete logs in a field of this order of magnitude.

5.1 Polynomial selection

We implemented the Joux-Lercier-Smart-Vercauteren (JLSV1) algorithm and ranking polynomials by their 3d
Murphy E-score, after about 100 core hours found the following polynomial pair from the cyclic family of
degree six described in [9]:

f0 = x6 − 40226000394x5 − 100565001000x4 − 20x3 + 100565000985x2 + 40226000400x + 1

f1 = 80447172120x6 + 104483881186x5 − 945497878835x4 − 1608943442400x3

− 261209702965x2 + 378199151534x + 80447172120

We computed the 3d alpha score for these and found α(f0) = −3.6 and α(f1) = −12.6.

5.2 Relation collection

Our implementationwaswritten as a standalone executable, independent of CADO-NFS, producing relations
in the format that CADO-NFS can use. We carry out cofactorization using Pollard’s p − 1 algorithm and two
rounds of Edwards elliptic curve factorization. The cofactorisation implementation uses a standard approach
and is not an improvement on CADO-NFS’s cofactorization rig. Cofactorization typically takes between 120-
130 seconds, this is the bottleneck.

Our program is extremely fast to sieve. This allowed us not only to use a larger factor base, but also to
search for relations that are ‘twice as difficult’ to find, i.e. to use a smoothness bound of 228 as opposed to
the 229 used in the 422-bit record. We were able to use a factor base bound of 224 with no major loss of speed.
Typically sieving takes less than 40 seconds per special-q, including sorting.

The time per special-q was roughly constant across the entire range, at between 150-170 seconds. The
total time per special-q is made up of sieving plus cofactorization. There were about 500 million sieve hits
per special-q. As we explained in Remark 8 each sieve hit takes exactly 5 bytes of memory, so we need about
5×500million bytes = 2500MBof RAMper special-q.Wewere able to utilize all 40 cores on our sieving nodes,
where each node has 192Gb of memory. We needed about 2500MB ×40 = 100GB in total.

Wewere able to use a larger sieve region due to the speed of lattice enumeration.We used a sieving region
of size 29 × 210 × 210, compared to the region 210 × 210 × 28 used in the previous record.

We sieved most special-qs on the f0 side with norm between 16M and 263M. Our program sieves only one
ideal in each Galois orbit. We apply the Galois automorphism as a post-processing step. We found 7,152,855
unique relations and thenapplied theGalois automorphism (which is trivial in core-hours) andafter removing
duplicates we were left with 34,115,391 unique relations. The total sieving effort was 69,120 core hours.

Lattice Sieving in Three Dimensions for Discrete Log in Medium Characteristic | 233

Table 2: Key statistics of record computations in Fp6 . All timings in core hours. Recall that S is the search space, q is the norm
of q, H0 , H1 , H2 are the bit lengths of sieving dimensions, and qmax is the largest special-q norm we encounter (which will be
just below the smoothness bound).

Authors GGMT This work
Field size (bits) 422 423
α-values −2.4,−14.3 −3.6,−12.6
Murphy-E 2−20.51259 2−20.45961

Sieving region H 210 × 210 × 28 29 × 210 × 210

Factor base bounds 221, 221 224, 224

Smoothness bounds 229, 229 228, 228

#S = qmax2H0+H1+H2 255 257

Special-q side 0 0
Range of q]221, 227.9[]223.9, 230[
Galois action 6 6
#unique relations 71,850,465 34,115,391
#required relations ≈ 56M 29,246,136
purged 18,335,401 7,598,223
filtered 5,218,599 2,754,009
Total sieving time 201,600 69,120

5.3 Construction of matrix

We modified CADO-NFS [23] to produce a matrix arising from degree-2 sieving ideals for the linear algebra
step.

5.4 Linear algebra

We used the Block Wiedemann implementation in CADO-NFS (we compiled commit d6962f667d3c... with
MPI enabled), with parameters n = 10 andm = 20. Due to time constraints, we needed tominimizewall clock
time so we chose to run the computation on 4 nodes, to reduce the iteration time for the Krylov sequences.
Also, to avoid complications, we did not run the 10 Krylov sequences in parallel. The net result was that we
spent 11,760 core hours on the Krylov step, which is suboptimal (but got us the result in time). It took 24
core hours (on one core) to compute the linear generator and 672 core hours for the solution step. This gave
2, 754, 009 of the factor base ideal virtual logarithms. We ran the log reconstruction to give a final total of
25, 215, 976 known virtual logarithms out of a possible total of 29, 246, 136 factor base ideals.

We note that a similar-sized matrix was solved in [11], which used 1,920 core hours for the Krylov step.
However, due to our choice of smoothness bound, set to 228, our linear algebra effort to set the new record
was considerably less than that of the previous record of 422 bits, which involved a Krylov step taking 23,390
core hours for a smoothness bound set to 229.

5.5 Individual logarithm

Take the element g = x + 2 ∈ Fp6 = Fp[x]/⟨f0(x)⟩. Let

ℓ = 9589868090658955488259764600093934829209,

a large prime factor of p2 −p+1. Let h =
(︁
p6 − 1

)︁
/ℓ. Note that g is not a generator of the entire multiplicative

subgroup of Fp6 , but we do have that gh is a generator of the subgroup of size ℓ. It is easy to compute vlog(g)
since N0(g) = −33.

234 | G.McGuire and O. Robinson

We have vlog(g) = 8951069617162908953536183274937613985265. We chose the target

t = 314159265358979323846x5 + 264338327950288419716x4 + 939937510582097494459x3

+ 230781640628620899862x2 + 803482534211706798214x + 808651328230664709384

We implemented the initial splitting algorithm of A. Guillevic [13] in SAGE, and after a few core hours found
that

g74265t = uvw(−129592286880919x2 − 103570474976165x − 5550010113050)

where u ∈ Fp2 , v ∈ Fp3 , w ∈ Fp, so that their logarithm modulo ℓ is zero. The norm of the latter term is
−11 · 37 · 71 · 97 · 197 · 821 · 24682829· 33769709 · 83609989 · 13978298429383 · 21662603713879 ·
74293619085767· 141762919001833 · 381566853770521. We had 5 special-q to descend, the largest hav-
ing 49 bits.We used our 3d lattice sieve implementation to descend from these ideals of unknown log to factor
base elements with known logarithms. This was a somewhat manual process and took about 8 hours.

Table 3: Comparison with other record computations in Fp6 . All timings in core hours.

year size of pn authors algorithm rel. col. lin. alg. total
2008 240 Zajac NFS-HD 580 322 912
2015 240 HAKT NFS-HD 527 - -
2017 240 GGMT NFS-HD 22 5 27
2017 300 GGMT NFS-HD 164 39 203
2017 389 GGMT NFS-HD 18,960 2,400 21,360
2017 422 GGMT NFS-HD 201,600 26,880 228,480
2019 423 this work NFS-HD 69,120 12,480 81,600

We obtained vlog(t) = 2619623637064116359346428467068287245870, so that

logg(t) ≡ vlog(t)/vlog(g) ≡ 7435826750517015269718230402645557947880mod ℓ.

6 Pairing break
Let p be the same prime as in the previous section. Define Fp2 = Fp[i]/⟨i2 + 2⟩. The curve E/Fp2 : y2 = x3 + b,
b = i + 7 is supersingular of trace p, hence of order p2 − p + 1. Define Fp6 = Fp2 [j]/⟨j3 − b⟩. The embedding
field of the curve E is Fp6 . We take

G0 = (5, 751568328314480688740i + 751642554083315688493)

and we check that G1 = [273]G0 is a generator of E(Fp2)[ℓ]. The distortion map ϕ : (x, y) ↦→
(︁
xp/

(︁
jb(p−2)/3

)︁
,

yp/
(︁
b(p−1)/2

)︁)︁
gives a generator G2 = ϕ(G1) of the second dimension of the ℓ-torsion. We take the point

P0 = (314159265358979323846i + 264338327950288419717,

1560320966141767888064i + 368067364535991558380)

from the decimals of π, and P1 = [273]P0 ∈ E(Fp2)[ℓ] is our challenge. We aim to compute the discrete
logarithm of P1 to base G1. To do so, we transfer G1 and P1 to Fp6 , and obtain g = eTate

(︀
G1, ϕ(G1)

)︀
and

t = eTate
(︀
P1, ϕ(G1)

)︀
, or

t = 709659446396572245219x5 + 760855550263311226560x4 + 459517758627469463106x3

Lattice Sieving in Three Dimensions for Discrete Log in Medium Characteristic | 235

+ 1075867962756498791880x2 + 966415406496231787507x + 759380554536416832249,
g = 1445115464416256318145x5 + 608219705720308630653x4 + 1328213831161031326049x3

+ 104723931403852502861x2 + 1118264722333528462011x + 551285267384030855316

The initial splitting gave a 50-bit smooth generator

g289236 = uvw
(︁
−207659249318101x2 − 32084626907475x + 36052674649889

)︁
where u ∈ Fp2 , v ∈ Fp3 , w ∈ Fp, so that their logarithm modulo ℓ is zero. The norm of the latter term is
11 · 71 · 79 · 1453 · 433123 · 85478849 · 34588617703· 40197196124443 · 76694584420127 · 370667620290007 ·
419573910884273 · 823157513981483. We had 6 special-q to descend. We also got a 49-bit smooth challenge of
norm 23 ·292 · 41 · 563 · 2917 ·1245103 ·12006859· 107347203833 ·506649149393 ·39018481981309 ·
138780153403907 · 174514280440993 · 302260510161053:

g91260t = uvw
(︁
−59788863574984x2 + 62066870577408x + 88384197770333

)︁
We obtained vlog(g) = 7599151482912535295281621925658364195913 and
vlog(t) = 4642225023760573112152590887355819325364, so that
logg(t) ≡ vlog(t)/vlog(g) ≡ 4325953856049730257332335443497115431763mod ℓ.

7 Conclusion
Wehave presented a new approach to lattice sieving in higher dimensions for the number field sieve, together
with a novel approach to avoiding inefficient memory access patterns which applies regardless of dimension.
In addition, we implemented the 3d case of our idea and used it to set a record in solving discrete log in Fp6 , a
typical target in cryptanalysis of pairing-based cryptography, in time a factor ofmore than 2.5× better (in core
hours) than the previous record, which was of a directly comparable size. It should be possible to improve
the code further with more effort put into optimization. We have indicated that the sieving enumeration gen-
eralizes to higher dimensions as long as a certain integer linear programming problem is tractable. This has
immediate implications for the possibility of implementation of the Tower Number Field Sieve and e.g. the
Extended Tower Number Field Sieve, the latter of which is dependent on sieving in dimension at least four.
The recent preprint [14] addresses one major prerequisite to the realization of TNFS and ExTNFS, concerning
polynomial selection, while in the present work we give a strong indication that another obstruction, that of
sieving efficiently in small dimensions of four and above, may be easier than first thought.

References
[1] Aoki, K., Ueda, H.: Sieving using bucket sort. In: Advances in cryptology—ASIACRYPT 2004, Lecture Notes in Comput. Sci.,

vol. 3329, pp. 92–102. Springer, Berlin (2004)
[2] Babai, L.: On Lovász’ lattice reduction and the nearest lattice point problem. Combinatorica 6(1), 1–13 (1986).

10.1007/BF02579403, https://doi.org/10.1007/BF02579403
[3] Barbulescu, R., Gaudry, P., Guillevic, A., Morain, F.: Improving NFS for the discrete logarithm problem in non-prime finite

fields. In: Advances in cryptology—EUROCRYPT 2015. Part I, Lecture Notes in Comput. Sci., vol. 9056, pp. 129–155. Springer,
Heidelberg (2015)

[4] Barbulescu, R., Gaudry, P., Joux, A., Thomé, E.: A heuristic quasi-polynomial algorithm for discrete logarithm in finite fields
of small characteristic. In: Advances in cryptology—EUROCRYPT 2014, Lecture Notes in Comput. Sci., vol. 8441, pp. 1–16.
Springer, Heidelberg (2014)

[5] Cohen, H.: A course in computational algebraic number theory, Graduate Texts in Mathematics, vol. 138. Springer-Verlag,
Berlin (1993)

[6] Fincke, U., Pohst, M.: A new method of computing fundamental units in algebraic number fields. In: EUROCAL ’85, Vol. 2 (Linz,
1985), Lecture Notes in Comput. Sci., vol. 204, pp. 470–478. Springer, Berlin (1985)

http://dx.doi.org/10.1007/BF02579403
https://doi.org/10.1007/BF02579403

236 | G.McGuire and O. Robinson

[7] Franke, J., Kleinjung, T.: Continued fractions and lattice sieving. In: Workshop record of SHARCS (2005) (2005), available at
http://www.ruhr-uni-bochum.de/itsc/tanja/SHARCS/talks/FrankeKleinjung.pdf

[8] Gaudry, P., Grémy, L., Videau, M.: Collecting relations for the number field sieve in GF(p6). LMS J. Comput. Math. 19(suppl. A),
332–350 (2016)

[9] Gras, M.N.: Special units in real cyclic sextic fields. Math. Comp. 48(177), 179–182 (1987)
[10] Gremy, L.: Sieve algorithms for the discrete logarithm in medium characteristic finite fields. In: Ph.D. thesis, Universite de

Lorraine (2017), available at https://tel.archives-ouvertes.fr/tel-01647623
[11] Grémy, L., Guillevic, A., Morain, F., Thomé, E.: Computing discrete logarithms in Fp6 . In: Selected areas in cryptography—SAC

2017, Lecture Notes in Comput. Sci., vol. 10719, pp. 85–105. Springer, Cham (2018)
[12] Guillevic, A.: Computing individual discrete logarithms faster inGF(pn)with theNFS-DL algorithm. In: Advances in cryptology—

ASIACRYPT 2015. Part I, Lecture Notes in Comput. Sci., vol. 9452, pp. 149–173. Springer, Heidelberg (2015)
[13] Guillevic, A.: Faster individual discrete logarithms in finite fields of composite extension degree. Math. Comp. 88(317),

1273–1301 (2019)
[14] Guillevic, A., Singh, S.: On the Alpha Value of Polynomials in the Tower Number Field Sieve Algorithm (Aug 2019), https:

//hal.inria.fr/hal-02263098, working paper or preprint
[15] Hayasaka, K., Aoki, K., Kobayashi, T., Takagi, T.: An experiment of number field sieve for discrete logarithm problem over

gf (p12). JSIAM Letters 6 (Jan 2013)
[16] Joux, A., Lercier, R., Smart, N., Vercauteren, F.: The number field sieve in the medium prime case. In: Advances in cryptology—

CRYPTO 2006, Lecture Notes in Comput. Sci., vol. 4117, pp. 326–344. Springer, Berlin (2006)
[17] Kannan, R.: Improved algorithms for integer programming and related lattice problems. In: Proceedings of the Fifteenth

Annual ACM Symposium on Theory of Computing. p. 193–206. STOC ’83, Association for Computing Machinery, New York, NY,
USA (1983), https://doi.org/10.1145/800061.808749

[18] Kim, T., Barbulescu, R.: Extended tower number field sieve: a new complexity for the medium prime case. In: Advances in
cryptology—CRYPTO 2016. Part I, Lecture Notes in Comput. Sci., vol. 9814, pp. 543–571. Springer, Berlin (2016)

[19] Kim, T., Jeong, J.: Extended tower number field sieve with application to finite fields of arbitrary composite extension degree.
In: Public-key cryptography—PKC 2017. Part I, Lecture Notes in Comput. Sci., vol. 10174, pp. 388–408. Springer, Berlin (2017)

[20] Pollard, J.M.: The lattice sieve. In: The development of the number field sieve, Lecture Notes in Math., vol. 1554, pp. 43–49.
Springer, Berlin (1993)

[21] Sarkar, P., Singh, S.: A general polynomial selection method and new asymptotic complexities for the tower number field
sieve algorithm. In: Advances in cryptology—ASIACRYPT 2016. Part I, Lecture Notes in Comput. Sci., vol. 10031, pp. 37–62.
Springer, Berlin (2016)

[22] Schirokauer, O.: Discrete logarithms and local units. Philos. Trans. Roy. Soc. London Ser. A 345(1676), 409–423 (1993)
[23] The CADO-NFS development team: Cado-nfs, an implementation of the number field sieve algorithm (2019), available at

http://cado-nfs.gforge.inria.fr/
[24] Zajac, P.: Discrete logarithm problem in degree six finite fields. In: Ph.D. thesis, Slovak University of Technology (2008),

http://www.kaivt.elf.stuba.sk/kaivt/Vyskum/XTRDL

http://www.ruhr-uni-bochum.de/itsc/tanja/SHARCS/talks/FrankeKleinjung.pdf
https://tel.archives-ouvertes.fr/tel-01647623
https://hal.inria.fr/hal-02263098
https://hal.inria.fr/hal-02263098
https://doi.org/10.1145/800061.808749
http://cado-nfs.gforge.inria.fr/
http://www.kaivt.elf.stuba.sk/kaivt/Vyskum/XTRDL

	1 Introduction
	2 Number Field Sieve
	2.1 Lattice Sieving

	3 Faster enumeration
	3.1 Previous Lattice Enumeration Methods
	3.2 Example
	3.3 Integer Linear Programming

	4 Dealing with Cache Locality Issues
	5 Record computation in Fp6
	5.1 Polynomial selection
	5.2 Relation collection
	5.3 Construction of matrix
	5.4 Linear algebra
	5.5 Individual logarithm

	6 Pairing break
	7 Conclusion

