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Abstract: We generalize our earlier works on computing short discrete logarithms with tradeoffs, and bridge
them with Seifert’s work on computing orders with tradeoffs, and with Shor’s groundbreaking works on
computing orders and general discrete logarithms. In particular, we enable tradeoffs when computing general
discrete logarithms. Compared to Shor’s algorithm, this yields a reduction by up to a factor of two in the
number of group operations evaluated quantumly in each run, at the expense of having to perform multiple
runs. Unlike Shor’s algorithm, our algorithm does not require the group order to be known. It simultaneously
computes both the order and the logarithm. We analyze the probability distributions induced by our algorithm,
and by Shor’s and Seifert’s order-finding algorithms, describe how these algorithms may be simulated when
the solution is known, and estimate the number of runs required for a given minimum success probability
when making different tradeoffs.
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1 Introduction

Asin [5, 7, 8], let G under ® be a finite cyclic group of order r generated by g, and

x=[dlg=gogo---0g.
N———
d times

The discrete logarithm problem is to compute d = log, x given the group elements g and x. In cryptographic
applications, the group G is typically a subgroup of ]F;,, for some prime p, or an elliptic curve group.

In the general discrete logarithm problem O < d < r, whereas d is smaller than r by some order of magnitude
in the short discrete logarithm problem.

1.1 Earlier works

In 1994, in a groundbreaking publication, Shor [25, 26] introduced polynomial time quantum algorithms for
factoring integers and for computing general discrete logarithms in IE‘;,. The latter algorithm may be trivially
adapted to compute general discrete logarithms in any finite cyclic group, provided that the group operation
can be implemented efficiently quantumly.

Ekera [5] initiated a line of research in 2016 by introducing a modified version of Shor’s algorithm for
computing discrete logarithms that more efficiently solves the short discrete logarithm problem. This work
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is of cryptographic relevance as the short discrete logarithm problem underpins the security of many imple-
mentations of cryptosystems instantiated with safe-prime groups. A notable example is Diffie-Hellman key
exchange [3] in TLS, IKE and NIST SP 800-56A [2, 9, 13].

In a follow-up work, Ekera and Hastad [8] enabled tradeoffs in Ekerd’s algorithm using ideas that directly
parallel those of Seifert [24] in his work on enabling tradeoffs in Shor’s order-finding algorithm; the quantum
part of Shor’s factoring algorithm. Ekera and Hastad furthermore showed how the RSA integer factoring
problem, that underpins the widely deployed RSA cryptosystem [21], may be reduced via [11] to a short discrete
logarithm problem and attacked quantumly. This gives rise to a quantum algorithm that more efficiently
solves the RSA integer factoring problem when making tradeoffs and comparing to Shor’s original factoring
algorithm, or to Seifert’s factoring algorithm.

Ekera [7] subsequently refined the classical post-processing in [8] to render it more efficient. With this
improved post-processing, the algorithm of Ekerd and Hastad is shown in [7] to outperform Shor’s and Seifert’s
factoring algorithms when targeting RSA integers, irrespective of whether tradeoffs are made.

A key component to this result was the development of a classical simulator for the quantum algorithm
for computing short discrete logarithms: For problem instances for which the solution is classically known,
this simulator allows outputs to be generated that are representative of outputs that would be generated by
the quantum algorithm if executed on a quantum computer. This in turn allows the efficiency of the classical
post-processing to be experimentally assessed.

1.2 Our contributions

We generalize and bridge our earlier works on computing short discrete logarithms with tradeoffs, Seifert’s
work on computing orders with tradeoffs and Shor’s groundbreaking works on computing orders and general
discrete logarithms. In particular, we enable tradeoffs when computing general discrete logarithms.

Compared to Shor’s algorithm for computing general discrete logarithms, this yields a reduction by up
to a factor of two in the number of group operations evaluated quantumly in each run, at the expense of
having to perform multiple runs. Unlike Shor’s algorithm, our algorithm does not require the group order to be
known. It simultaneously computes both the order and the logarithm. This allows our algorithm to outperform
Shor’s original algorithms with respect to the overall number of group operations that need to be evaluated
quantumly in some cases even when not making tradeoffs. One cryptographically relevant example of such a
case is the computation of discrete logarithms in Schnorr groups of unknown order.

We analyze the probability distributions induced by our algorithm, and by Shor’s and Seifert’s order-
finding algorithms, describe how all of these algorithms may be simulated when the solution to the problem
instance is known, and estimate the number of runs required for a given minimum success probability when
making different tradeoffs.

1.2.1 On the cryptographic significance of this work

The security of virtually all currently widely deployed asymmetric cryptosystems is based on the intractability
of either the discrete logarithm problem or the integer factoring problem.

In this work, we further the understanding of how hard these two key problems are to solve quantumly
when not on special form. We hope that our results may prove useful when developing cost estimates for
quantum attacks, and that they may inform decisions on when to mandate migration from the currently
deployed asymmetric cryptosystems to post-quantum secure cryptosystems.

1.2.2 Further details and overview

Our algorithm for computing general discrete logarithms in turn consists of two algorithms;
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— a quantum algorithm, that upon input of a generator g of order r, and an element x = [d] g where
0 < d < r, outputs a pair (j, k), and

— aclassical probabilistic post-processing algorithm, that upon input of a set of n pairs (j, k), produced by
n runs of the quantum algorithm, computes d.

In addition to the above post-processing algorithm, we furthermore specify

— a classical probabilistic post-processing algorithm, that upon input of a set of n integers j computes
the order r. Note that the same set of integers j may be used as input to both this and the above post-
processing algorithm, by breaking out j from the pairs (j, k).

The quantum algorithm is identical to the algorithm in [7, 8] for computing short discrete logarithms with
tradeoffs. The key difference in this work is that we admit general discrete logarithms and comprehensively
analyze the probability distribution that the algorithm induces for such logarithms.

The post-processing algorithm for d is a tweaked version of the lattice-based algorithm in [7], whereas the
algorithm for r is a natural generalization of the lattice-based algorithm in [7] first sketched in a pre-print of
[8]. It is similar to the post-processing in [24].

The quantum algorithm is parameterized under a tradeoff factor s. This factor controls the tradeoff between
the requirements that the algorithm imposes on the quantum computer, and the number of runs, n, required
to attain a given minimum probability g of recovering d and r in the classical post-processing.

Following [7], we estimate n for a given problem instance, represented by d and r, and fixed s and g, by
simulating the quantum algorithm. We first use simulated output to heuristically estimate n, and then verify
the estimate by executing the two post-processing algorithms with respect to simulated output.

The simulator is based on a high-resolution two-dimensional histogram of the probability distribution
induced by the quantum algorithm. By sampling the histogram, we generate pairs (j, k) that very closely
approximate output that would be produced by the quantum algorithm if executed on a quantum computer.

To construct the histogram, we first derive a closed-form expression that approximates the probability of
the quantum algorithm yielding (j, k) as output, and an upper bound on the error in the approximation. We
then integrate this expression and the error bound numerically in different regions of the plane.

Our simulations show that when not making tradeoffs, a single run suffices to compute d or r with > 99%
success probability. When making tradeoffs, slightly more than s runs are typically required to achieve a
similar success probability. In Appendix A we show that these results extend to order finding and factoring.

Note that the simulator requires d and r to be explicitly known: It cannot be used for problem instances
represented by group elements g and x = [d] g.

1.2.3 Structure of this paper

The quantum algorithm is described in Section 2. In Section 3, we analyze the probability distribution it
induces, and derive a closed-form expression that approximates the probability of it yielding (j, k) as output. In
Sections 4 and 5, we describe how the high-resolution histogram is constructed by integrating the closed-form
expression, and how the histogram is sampled to simulate the quantum algorithm.

In Section 6, we describe the two post-processing algorithms for recovering d and r from a set of n pairs
(j, k). In Section 7, we use the simulator to estimate the number of runs n required to solve a given problem
instance for d and r, with minimum success probability g, as a function of the tradeoff factor s.

We summarize past and new results, and discuss related applications, such as order finding and integer
factoring, in Sections 8 and 9, and in the appendices.

1.3 Notation

The below notation is used throughout this paper:
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u mod n denotes u reduced modulo n constrained to [0, n).

{u}n denotes u reduced modulo n constrained to [-n/2, n/2).

— [u], |u] and [u] denotes u rounded up, down and to the closest integer.
- |la +ib| = Va? + b2 where a, b € R denotes the Euclidean norm of a + ib.
- |u| denotes the Euclidean norm of the vector u = (ug, ..., Uy-1) € R™.

- u ~ visused to denote that u and v are approximately of similar size.

1.4 Randomization

Given two group elements g and x” = [d’] g to be solved for d’, the general discrete logarithm problem may be
randomized as follows:

1. Select arandom integert. Letx = x’ © [t] g = [d] g.
2. Solve g and x for d = d’ + t (mod r) and optionally for r.
3. Compute and return d’ = d -t (mod r).

Hence, we may assume without loss of generality that d is selected uniformly at random on [0, r) in the analysis
of the quantum algorithm.

If r is known, t should be selected uniformly at random on [0, r), otherwise on [0, 2™*€) for m the bit
length of r and ¢ a sufficiently large integer constant for the selection of x to be indistinguishable from a
uniform selection from G. Solving for r in step 2 is only necessary if r is unknown and d’ must be on [0, r)
when returned.

2 The quantum algorithm

In this section we describe the quantum algorithm, that upon input of a generator g and an element x = [d] g,
where O < d < r, outputs a pair (j, k) and element y.

As stated earlier, the algorithm is parameterized under a small integer constant s = 1, referred to as the
tradeoff factor, that controls the tradeoff between the number of runs required and the requirements imposed
on the quantum computer.

1. Let m be the integer such that 2™ 1 < r < 2™, let ¢ = [m/s], and let

2m+£ 1 2[

2m+2 Z Z‘abo
a=0 b=0

2. Compute [a] g ® [-b] x = [a - bd] g to the third register to obtain

2m+ﬁ 1 21/

2m+2 Z Z|ab[a bdlg).
a=0 b=0

3. Compute QFTs of size 2™+ and 2¢ of the first two registers to obtain

2m+/£ 1 2/ 1 2m+1’ 1 22

2m+2e g Z IZO g 2n1(a]+2’"bk)/2'"*£

4. Observe the system to obtain (j, k) and y = [e] g where e = (a — bd) mod r.
Note that y is observed only to highlight that the system is forced to collapse to combinations of a and b
such that e = (a — bd) mod r for fixed e.

jrk,la-bdlg).

The above steps may be interleaved, rather than executed sequentially, so as to allow the qubits in the first
two registers to be recycled [10, 18, 19]. A single control qubit then suffices to implement the first two control
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registers. This is possible as the qubits in the control registers are not initially entangled; the registers are
initialized to uniform superpositions of 2™** and 2¢ values, respectively.

In Shor’s algorithm for computing general discrete logarithms, the two control registers are instead of
length m qubits. Both registers are initialized to uniform superpositions of r values. This makes the single
control qubit optimization less straightforward to apply, and the initial superpositions harder to induce. Apart
from this difference, the implementation complexity of Shor’s algorithm and our algorithm may be compared
in a fair manner in terms of the total exponent lengths.

In practice, the exponentiation of group elements would typically be performed by computing a group
operation controlled by each bit in the exponent. Hence, a total of 2m group operations are performed in
Shor’s algorithm, compared to m + 2m/s in our algorithm. As s increases, this tends to m operations, providing
an advantage over Shor’s original algorithm by up to a factor of two at the expense of having to execute the
algorithm multiple times. This reduction in the number of group operations translates into a corresponding
reduction in the coherence time and circuit depth requirements of our quantum algorithm.

Note that our algorithm does not require r to be known. It suffices that the size of r is known. For comparison,
Shor’s algorithm requires r to be known. This explains why Shor needs to perform only 2m operations, whilst
we need 3m operations when not making tradeoffs. As we shall see, we do in fact compute both d and r
simultaneously, whilst Shor computes d given r.

3 The probability of observing (j, k) and y

In step 4 of the algorithm in Section 2, we obtain (j, k) and y = [e] g with probability
2mi o, . 2Mpk
D DD | S (@ +27bI)
a b

where the sum is over all pairs (a, b), such that 0 < a < 2™ and 0 < b < 2, respecting the condition

e = a-bd (mod r). In this section, we seek a closed-form error-bounded approximation to (1) summed over all

= [e] g € G. To this end, we first perform a variable substitution to obtain contiguous summation intervals.
As a = e + bd + n,r for n, an integer such that0 < a = e + bd + n,r < 2m+¢ it follows that

2
1

22(m+2£)

@)

[-(e+bd)/r] <ny< {(Zm% —(e+ bd))/rw . 2

Substituting a for e + bd + n,r in (1) and adjusting the phase therefore yields

201 [@™(erbd)/r]-1 2

2
22(m+2€) Z > exp |:2m+é (nerj + b(dj + 2'"/())] . 3

b=0 n,=[-(e+bd)/r]
By introducing arguments a; and a;, and corresponding angles 6,4 and 8,, where

2nay
om+l

2mxd 9, =
r=

O(d = {dj + zmk}2m+£ Qay = {rj}2m+2 ed = e(ad) = W

=0(ar) =

we may write (3) as a function of a; and a,, and e, as

1 [@™~(e+bd)/r] -1 2

2
22("“'2[) Z Z €Xp |:2m+2 (nrar + bad):| (4)

b=0  n,=[-(e+bd)/r]

or of ,; and 6,, and e, as

1 201 |—(2”’*£—(e+bd))/r-‘ -1

_ i64b i6,n,

P(ed, 0r,e) = W Ze d Z e . (5)
b=0 n,=[-(e+bd)/r]
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This implies that the probability of observing the pair (j, k) and y = [e] g depends only on (a4, a;) and e,
or equivalently on (8,4, 6;) and e. The probability is virtually independent of e in practice, as e can at most
shift the endpoints of the summation interval in the inner sums in (4) and (5) by one step.

As was stated above, we seek a closed-form approximation to p(64, 6r, e) summed over all r group elements
y = [e] g € G. Hereinafter, we denote this probability

r-1 1 -1 |2%-1 |_(2"”£—(e+bd))/r.| -1
_ _ i04b i0,n,
P(ed,er)—zp(ed,er,e)—mz Ze a Z €
e=0 e=0 | b=0 n,=[-(e+bd)/r]

and we furthermore use angles and arguments interchangeably, depending on which representation best
lends itself to analysis in each step of the process.

3.1 Preliminaries

To gain some intuition, we write p(6,, 0r, €) as

1 201 [@™¢~(e+bd))/r|-[-(e+bd)/r]-1
ei(edb+0, [-(e+bd)/r]) Z eiB,n,
JiD | D
22(m+ pard =

and note that there are two obstacles to placing this expression on closed form:

Firstly, the summation interval in the inner sum over n, depends on the summation variable b of the outer
sum. Secondly, the exponent of the summand in the outer sum over b contains a rounding operation that
depends on b.

By using that [(2’"“ —(e+ bd))/ rw - (—(e + bd)/ r} = [2’"% / r—‘ we may remove the dependency between

the inner and outer sums, and by using that [—(e + bd)/ r} ~ —(e+bd)/r we may remove the rounding operation.

By making these two approximations, and by adjusting the phase, we may derive an approximation to
p(8y4, 6, e) that is independent of e, enabling us to sum p(6y, 0:, e) over the r values of e, corresponding to
the r group elements y = [e] g € G, simply by multiplying by r. This yields

2 [_ZMM/Y.I 1 2

2°-1
T i(64-6,d/1b i0,n,
P(ed;er)”‘m Ze Z e
b=0 n,=0

2 2

ei2(0a-6,d/1) _ 1
ei(Gd—G,d/r) — 1

ei|—2"”z/r-| 9y _ 1
by 1

_ r
T 92(m+20)

(6)

where we furthermore need to assume in (6) that 8,; — 8,d/r # 0 and 6, # O.

This closed-form approximation captures the general characteristics of the probability distribution induced
by the quantum algorithm. However, it is seemingly non-trivial to derive a good bound for the error in this
approximation.

In what follows, we use techniques similar to those employed above to derive an error-bounded closed-
form approximation to p(6y, 6r, ) such that the error is negligible in the regions of the plane where the
probability mass is concentrated. As was the case above, we will find that the error-bounded approximation of
p(84, 0r, e) is independent of e, enabling us to approximate P(8,, 6r) simply by multiplying the closed-form
approximation to p(6,, 0:, e) by r.

3.1.1 Constructive interference
Before we proceed to develop the closed-form approximation, we note that for a fixed problem instance and

fixed e, the sums in p(8y, 6r, e) are over a constant number of unit vectors in the complex plane. For such
sums, constructive interference arises when all vectors point in approximately the same direction.
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In regions of the plane where 6, and 8, — 6,d/r are both small, we hence expect constructive interference
to arise. The probability mass is expected to concentrate in regions where constructive interference arises, and
where the concentration of pairs (64, 6;) yielded by the integers pairs (j, k) is great.

In what follows, we therefore seek to derive a closed-form approximation to p(8y4, 6r, e), and an associated
bound on the error in the approximation, such that the error is small when 6, and 8, — 6,d/r are small.

3.2 Closed-form approximation with error bounds

To derive a closed-form approximation to p(8y, 6r, e), we first observe that the sums in the expression for
p(04, 6y, e) may be regarded as sums over the points in a region R in a lattice L%P a5 is illustrated in Figure 1.
Note that this figure also contains other elements to which we shall return as the analysis progresses.
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Figure 1: The lattice L%? foroc = 2,m = ¢ = 5,e = 0,7 = 31and d = 27. All red filled points are in R. The region A and its

translated replicas are drawn as dashed rectangles. All blue outlined points are in A or in one of its replicas. The gray triangles
outline the points that are in A or one of its replicas, but not in R, and vice versa.

Definition 3.1. Let L%” be the lattice spanned by (d, 1) and (r, 0) so that the set of points in L*? is given by
(a-e,b)=b(d,1)+ n.(r,0) for integers b and n,.

Definition 3.2. Let R be the region in L%? where 0 < a < 2™ and 0 < b < 2¢.
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Definition 3.3. Let

Sq = s/ where sg = Z ex 2 (aj + 2™bk)
R = 22(m+26) R = P ym+e ] .
(a,b)eR

Claim 3.4. The probability p(04, 6r, €) = Sx.

Proof. The points in R are given by (a — e, b) = b(d, 1) + n,(r,0), for 0 < b < 2¢ and n, on (2) so that
0<a=e+bd+n,r< 2™ which implies that

2tc1 [@™-(e+bd)/r]-1

1 2mi . .
S2= Jman |0 2. emakEJOun+mm+zmM)
b=0  n,=[-(e+bd)/r]
L | [@"*~(exbd))/r] -1 2
= e |- D €| =p(Ba, 1)
b=0 n,=[-(e+bd)/r]

by the preliminary analysis in Section 3 and so the claim follows. O

In what follows, we derive a closed-form approximation to p(8y, 6r, e) = S, and an associated error bound,
in three steps.

3.2.1 Preliminaries

Before proceeding as outlined above, we first introduce some preliminary claims.

Claim 3.5. Foru,v € Cand A = u - v it holds that

[uf? = 1v| < 2 ul 4] + 14P.

Proof. First verify that

[ul® = v)* = [ul> - [u -4 = uu - (u-2)u-4)

=uti - (u-A)U-24) = uld +ul - |A]?
where the overlines denote complex conjugates. This implies that

|1 = 1vP?| = ul ]+ (3] 4] + A = 21|u] 4] + |A

and so the claim follows. O

Claim 3.6. |e!? - 1| < |¢| for any ¢ € R.

Proof. It suffices to show that [e!? — 1|2 = 2(1 - cos ¢) < ¢? from which the claim follows as cos ¢ > 1 — ¢?/2
forany ¢ € R. O

3.2.2 Bounding |sx|

Before proceeding to the first approximation step, we furthermore bound |s| in this section, as this bound is
needed in the following analysis.

Lemma 3.7. The sum s, is bounded by |sg| < 22¢1.
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Proof. By Claim 3.4 the sum

201 [@™“~(e+bd))/r]-1
S = Z olfab Z oo,
b=0

n,=[-(e+bd)/r]

where the outer sum over b is over 2¢ values and the inner sum over n; is over at most 2°*! values by Claim 3.8
below. As sy, is a sum of at most 22! complex unit vectors, it follows that [s| < 22¢*1, and so the lemma
follows. O

Claim 3.8. For 4 = [(2"" - (e + bd))/r| - [~(e + bd)/r], it holds that

A= [2’”/@ —t<2"1 forsome te {0,1}.
Proof. Forsome fi, f, € [0, 1), it holds that
a=[[2m ] = fi+ [~e + bd/r] - fo] - [~(e + ba)/1]
- [2"’*%} + [~(e+ bd)/r] - [~(e + bd)/r] + [~f1 - f]

-0

= [2mtr| = e ) = [2mr] -

where t = |f1 +f2| € {0,1}as f; + f> € [0, 2). Furthermore, recall that r > 2™1 Hence, it follows that
2mHl [y < 281 g0 A = [2'"*@/& -t <21 and so the claim follows. O

3.2.3 Approximating Sz by S 4 T4

In the first approximation step, we approximate Sy by first summing the points in a small region A in R,
and by then replicating and translating the points in A, and the associated sum over these points, so as to
approximately cover R, see Figure 1.

Definition 3.9. Let A be the region in L%? where 0 < a < 2™ and 0 < b < 27 for ¢ an integer parameter
selectedon 0 < 0 < /.

Definition 3.10. Let

2 .
S4= 54l where sy, = Z exp[zr{1 (aj +2™bk)| .

- 22(m+2¢) 2m+l
(a,b)e A
Claim 3.11.
. 201 [(@™~(e+bd))/r]-1 2
— i0qb i0,n,
SA - 22(m+2£) Z e Z e
b=0 n,=[-(e+bd)/r]

Proof. The points in A are given by (a - e, b) = b(d, 1) + n,(r,0) for 0 < b < 2% and n, on (2) so that
0<a=e+bd+nr< 2™ which implies that

L 201 |’(2’"*2—(e+bd))/r—|—1 -
m . .
Sa= 22(m+2£) Z Z exp [2’"*@ (nyrj + b{dj + ka))
b=0 n,=[-(e+bd)/r]

L [@"(esbdyir]-1 2

20-
1 i0,4b i0,n,
~ 92(m+2¢) Z e Z e
b=0

n,=[-(e+bd)/r]
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in analogy with the analysis in Section 3, but with bon 0 < b < 29 as opposed to 0 < b < 2¢ and so the claim
follows. 0

To replicate and translate the points in A so as to approximately cover R, we furthermore introduce t 4 and
T 4, as defined below:

Definition 3.12. Let
209

Ty =|ty|*> where ty,= Z gl(0a2’+6,[-27d/r)t
=0

The error when approximating S¢ by S 4 T 4 may now be bounded as follows:

Lemma 3.13. The error when approximating s by s 4t 5 is bounded by
ISk —Satal <2270,

Proof. The exponential sum ¢ 4 replicates and translates the partial sum over A so as to approximately cover
R as is illustrated in Figure 1. Every time the region is replicated, it is translated by a vector in L%P that
corresponds to ela2’+0r[-27d/rT)

The error that arises when s, is approximated by s 4t 4 is hence due to points that are in R but excluded
from the sum, and conversely to points not in R that are erroneously included in the sum. Hereinafter these
points will be referred to as the erroneous points.

The erroneous points fall within the two gray triangles in Figure 1. Both triangles are of horizontal side
length 2¢ and vertical side length 2¢7?(2°d mod r), as the region A is replicated and translated 2¢ times in
total, and as it is shifted horizontally by 2? and vertically by 2°d mod r every time it is translated.

To upper-bound the number of lattice points in each triangle, note that the lattice points are on 2¢ vertical
lines, evenly separated horizontally by a distance of one. The points on each vertical line are evenly separated
vertically by a distance of r, with varying starting positions on each line. For h(b) = 2¢-9(2°d mod r)(b/2%)
the height of each triangle at b, we have that at most

N(b) =1+ V&’”J <14 Mb)_y, 2%dmodr b, b

r r 2‘7_1+F

lattice points are then on the vertical line that cuts through the triangle at b, as may be seen by maximizing
over all possible starting points. By summing N(b) over all 2¢ lines, we thus obtain an upper bound of

-1 1 2 1 26(2é—1) -
N(b 4 0 20-0
E ()52 +72‘7 E b=2 +—07<2

on the number of points in each triangle, where we have used that 229" > 2 as o'is an integer on 0 < 0 < /.

As there are two triangles, the total number of erroneous points is upper-bounded by 2 - 22679 = 22¢-0+1,
Each erroneous point corresponds to a unit vector in the complex sum s — S 4t 4, Which implies |s¢ =S 4t4| <
226-0+1 and so the lemma follows. O

Lemma 3.14. The error when approximating S by S, T 4 is bounded by
IS =S4T 4| <272m 0,
Proof. By Claim 3.5, it holds that

2 2 2
[SR|” = [satal” |=2[sx|ISk —Satal+|Sr —Satal

<2. 22[+1 . 22€—U+1 + 24(—20+2 <3. 24é—a+2 < 24(€+1)—0

as|sg —Satal <2%°°"1 by Lemma 3.13 and |sg| < 22*! by Lemma 3.7.



DE GRUYTER Computing general discrete logarithms and orders with tradeoffs =—— 369

From the above, and Definitions 3.3, 3.10 and 3.12, we have that

2 2 —
spl” = [satal®| 24&D-0 o

ISk =SaTal= 32(m+20) = Ja(m20)

and so the lemma follows. O

As t, is a geometric sum T, = |t4|*> may be placed on closed form. It remains to derive a closed-form
approximation to S 4. In what follows, we do this in two additional approximation steps.

3.2.4 Approximating S4 by 4

In the second approximation step, we derive a closed-form approximation to S 4, by first approximating S 4
by the product S’; of two sums, such that the leading sum may be placed on closed form, and such that the
trailing sum may be placed on closed form by means of a third approximation step.

Definition 3.15. Let

|s |2 -1 [2m¢/r]-1
A ! i(04b+6,[-(e+bd)/r]) i0,n,
Sy = where s/y = E !V ror E e,
22(m+2¢£)
b=0 n,=0

Lemma 3.16. The error when approximating s 4 by s'; is bounded by
|sq -5y <2°.

Proof. As s, and s’; are sums of complex unit vectors, and as the sums differ by at most 27 vectors, as may be
seen by comparing the summation intervals using Claim 3.8, it follows that |s 4 — 4| < 29, and so the lemma
follows. O

Lemma 3.17. The sum s’ is bounded by |s';| < 2¢7°*1.

Proof. In the expression for s'A in Definition 3.15, the sum over b assumes 2 values and the sum over n,
assumes at most 2°*1 values as the order r > 2™1. As s/, is a sum of at most 2¢**! complex unit vectors, it
follows that || < 2¢**1, and so the lemma follows. O

Lemma 3.18. The error when approximating S 4 by S’ is bounded by
‘SA _ S‘/A_l < 2—2m—3£+20+3.
Proof. By Claim 3.5, it holds that

542 =152 < 2|8 s - 5| + |54 — 5’

<2. 2(7,+0+1 L 220 <3. 2€+20+1 < 2€+20+3

as|s4 - s/;| < 2% by Lemma 3.16 and |s/; | < 2°*°*! by Lemma 3.17.
From the above, and Definitions 3.10 and 3.15, we have that

2 2
|SA| _|si4| ’ < 2€+20+3 _ 9-2m-3£+20+3
22(m+2¢) ~ 2(m+20)

S-Sl -
and so the lemma follows. O

The trailing sum in s, is geometric. Hence, it may be trivially placed on closed form. Due to the rounding
operation in the exponent, this approach is not valid for the leading sum; we need a third approximation step.
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3.2.5 Approximating S’; by S’}

For 0,4 and 0, such that the angles 6;b + 0, [—(e + bd)/ﬂ ~ (64 - 6,d/r) b in the leading sum in S’; are small
forall bon 0 < b < 27, all 2 terms in the sum are approximately one. In the third and final step of the
approximation, we bound the error when simply approximating all terms in the leading sum by one.

Definition 3.19. Let

£
|s"h 2 [2m4/r]-1 0
"o_ A 1"o_ 50 i6,n,
S S26n+20 where s, =2 E e,
n,=0

Lemma 3.20. The difference between s'; and s'; is bounded by
% = 4l <277 (16a] + 16r]) IS ]-

Proof. First observe that

20_1 |’2m+1/r“_1
i(64b+6,[-(e+bd i0,n,
'y = s'4| = (el( ab+0,[-(e+bd)/r]) _ 1) § elfrnr|
b=0 n,=0

4]

By using Claim 3.6 and the triangle inequality, it follows that

4| = ZZl (ei(Gdb+9, [-(e+bd)/r]) _ 1) < Zzl ei(edbﬂ‘}, [-(e+bd)/r]) _ 1‘
b=0 b=0
29-1 29-1
<> |6ab+ 6y [-(e+bd)/r]| =) |6ab - 6r |(e + bd)/1]|
b=0 b=0
— 2°2°-1) _ 201
< (10al +16r) Y b < (164l +16r]) =5 <2777 (184l + |6/])
b=0

where we use that [-x] = — |x] and {(e +bd)/ rJ < b. To verify the latter claim, note that f; = e/r € [0, 1) and
f,=bd[r€[0,b)ase,d c [0, r). This implies that |(e + bd)/r| = |f1 +f>] € [0, blasf1 +f, € [0, b +1).
By combining the above results, we now have that

|'2m+l/r“_1
%~ sl <2271 (10al + 16,) | S0 O] =271 (16] + 164y s 4]
n,=0
and so the lemma follows. O

Lemma 3.21. The error when approximating S'; by S'; is bounded by
1Sa = Sl = 2°7 (8l + 16D (2 + 277 (9l + 16:D) S

Proof. By Claim 3.5, it holds that

7 2

Is%a 1% = IsTal? | < 2 |s'a | |s'a = S| + |s'a - %A

<2271 (104] +16:]) |54 |* + 227D (16,4] + 16:])? [s%4 |

=207 (6l +16+) (2+2°7 (8al + 16:D) [sA|”

as|s’y - s <2°71(104] +6:]) |s’4 | by Lemma 3.20.
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From the above, and Definitions 3.15 and 3.19, we have that

! 17 ||slfl‘2 - |s/f/l|2| o-1 o-1 1"
S = Sa] = =4 g =27 (0al + 16:D) (2+ 27 (64l + 16:D) S
and so the lemma follows. O

This yields an approximation S’) to §’; that may be placed on closed form.

3.2.6 Main approximability result

By combining the previous results, the main approximability result follows:

Theorem 3.22. The probability P(64, 6;) of observing a specific pair (j, k) with angle pair (04, 6r), summed over
ally € G, may be approximated by

220, |21 2| f2m -1
5 _ i(042°+6,[-2%d[r]) t i0,n,
P(Gd’ or) = 22(m+2£) Z € Z €
t=0 n,=0
2y oi(0a2°+6,[-2a/) 20 _ 4 2 Qi [27 7] _ 4 2
- 22(m+2¢) ei(942”+9y [-29d/r]) _ 1 eifr — 1

assuming 6,42° + 6, (—Zod / r] # 0 and 0, # 0 when placing the expression on closed form. The approximation
error |P(04, 6r) - P(6,, 6)| < &(6,, 6:) where

4 3
204, 01) = > + 2

2m+o - ym+l

20’ 20’ —
+ 7(‘9d| + ‘9r|) (2 + 7(‘9d| + ‘9r|)) P(Gd, Gr).

Proof. The probability p(6,, 0r, e) of observing a specific pair (j, k), with angle pair (64, 8;), and some group
element y = [e] g € G, is Sg by Claim 3.4.
The error when approximating Sy by S 4 T 4 is bounded by

|Sy _ S/L TA' < 2*2"[*0%4
by Lemma 3.14. The error when approximating S T 4 by S’y T 4 is bounded by
|SA TA _ S‘/A TA| < 2—2m—3£+20+3 TA
by Lemma 3.18. The error when approximating S’y T 4 by S’} T 4 is bounded by
[SaTa = SATal<2°71(10a] +16:D(2 +2771(164] + |6+])) SL T A
by Lemma 3.21. By the triangle inequality
ISr =SATal =Sk =SaTa) +(SaTa -SuTa) +(SuTa~SHTa)l
< S =SaTal+TalSa—Sul+TalSy-Shl

Neither of these three error terms, nor the expression for S’f’1 T 4, depend on e. Hence, we may sum over all r
elements y = [e] g € G by multiplying by r. It therefore follows that P(6y, 6;) = rS’; T 4 is an approximation to
P(6,, 6;), and that the error that arises in this approximation is bounded by

r[Sp=SaTal+1TalSa—Sal+1TalSy-Syl

< 2—2m—o+4 -2m-3/4+20+3

r+2 T+

297110 +16- D2 +271(164] + | 6: D) ST
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24 23

= m+o + m+Ll

20 20 -
- 20041+16:) (2+ 5641 +10:1)) P, 60

where we use that 7 < 2™, and that T4 < 22"9 as it is the square norm of a sum of 2°~% unit vectors by
Definition 3.12, and so the theorem follows. O

In Appendix C we demonstrate the soundness of this approximation.

4 The distribution of pairs (a4, a,)

In this section, we identify and count all pairs (j, k) that yield (a4, ar) and analyze the distribution and density
of pairs (a4, ar) in the plane.

Definition 4.1. An argument pair (a4, a;) is said to be admissible if there exists an integer pair (j, k), for j on
0<j<2™%and konO < k < 2%, such that

ag={dj+2"k}ome and ar={rj}ome.

Definition 4.2. Let kx; denote the greatest integer such that 2 divides d, and let k; denote the greatest integer
such that 2% divides r.

Definition 4.3. Let L* be the lattice generated by the rows in

6r ZKY r -1 m-
[zmv 0] where 5r=d(ﬁ) mod 2™77

and v = max(0, kr — (£ + kz)).

Lemma 4.4. The admissible argument pairs (a4, ay) are vectors in L% in the region of the plane where —2™+*~1 <
&g, ar < 2™1 There are 2™+27%*7 distinct admissible argument pairs, each occurring with multiplicity 277,

Proof. As ay = rj (mod 2™*%), the set of integers j that yield a; are given by

-1
=9 (35) +2™t (mod2™)

as t, runs through all integers on 0 < t, < 2%". As ay = dj + 2™k (mod 2™**), we need

-1
d (ar ( r ) +2m+€—K,tr> + 2™k (7)

%a 2% \ 2%

_ Qr r\1 m+l—K,+kq dt, m m+¢
:zxrd(ﬁ) +2 ﬁ+2 k (mod2™")
B

A
for k an integer on O < k < 2¢, to ensure compatibility. As 2™~ is the largest power of two to divide both 2™ and
2m+-XrXa Yy the definition of ~, the congruence relation a; = (a;/2%) d (r/2%)™* (mod 2™ ) must hold.

As t, and k run through all pairwise combinations, the set of 2¢** arguments a4 generated by (7) is equal
to that generated by

a r\1 _
= ged(50) +2"7t ®)
a r\! _ _
= zxrr <d (ﬁ) mod 2™ 7) +2™77¢, (mod M+ 9)

as t., or equivalently t/,, runs through all integers on 0 < t.,, t/, < b
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To go from (7) to (8), first note that B runs through all values in [2™, 2™*). If v = 0, term A introduces
multiplicity by repeating the sequence generated by B with various offsets. These offsets are of no significance
to this analysis, as we only account for which values occur in the set and with what multiplicity.

If v > 0, term A runs through all values in [2™7, 2™ 7*%), As x, > v when ~ > 0, term A runs through
all values in the subrange [2™7, 2™). When A assumes values greater than or equal to 2™, it introduces
multiplicity by repeating the sequence of all values on [2™~7, 2™*/) generated by A and B with various offsets.

This implies that (A + B) mod 2™*¢ runs through all 2™*¢/2™7 = 27 values on [2™7, 2™*) with
multiplicity 2¢*% /27 = 257 and this is exactly what is stated in (8). To go from (8) to (9) is trivial.

As there are 2% admissible argument pairs, and as each pair occurs with multiplicity 2/~7, there are
2m+26-5+7 distinct admissible argument pairs.

The lattice L* is constructed from (9), as the admissible arguments a, are multiples of 2*", and as the

admissible ag = (ar / 2¥) 6, + 2™7t,, (mod 2™**), in the region of the plane where -2"™*"! < a4, a, < 2™*71,
O

and so the lemma follows.
In Figure 2 the distribution of admissible argument pairs (a4, a;) in the region of the plane where -2™*1 <
ag, ar < 2™*1is depicted for various combinations of d and r.

d=14,r=1 X ym—ry
g
o 9
3 3
+ +
z :
3 3
| |
2 2
&d ad
d=13, r=14 Ar om—y d=7,r=8 Ar ym—ry Y
T
o'.o..o.‘o..o.‘o..o..c.‘ z
I........l.............. . . . . e . . . |
2
.......‘..‘.....‘....... L . L] . L] L] L] L] ~
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ettt P e e, e,
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Figure 2: The distribution of admissible argument pairs (a4, ay) in the region where -2™*¢-1 < g, a, < 2™ 1form = 4
and ¢ = 3, and example combinations of d and r, as indicated. The lattice may be constructed by replicating the fundamental

parallelogram (blue) or a rectangle (gray) of size 2M~7 x 2M+kr=v,
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4.1 Pairs (j, k) yielding (ag4, a,)
In this section we identify all pairs (j, k) that yield (ag, ar).

Lemma 4.5. The set of integer pairs (j, k), for jon 0 < j < 2™* and k on O < k < 2¢, that yield the admissible
argument pair (a4, ar) is given by

. a r\1 - ag - dj
j= (2; (2&) + QMK t,) mod 2™ and k= dzm ) mod 2°

as ty runs through all integer multiples of 27 on 0 < t, < 2%,

Proof. As a; = rj (mod 2™**), solving for j yields

-1
. Qar r L-Ky 7
j= <2Kr (27(> 4 2mrEx tr> mod 2™*
for t; an integer O < t, < 2%,

As ay = dj + 2™k (mod 2™*%), for compatibility 2™ must divide 2™~ dt, for all t, # 0. As 2™***a %" jg
the greatest power of two to divide 2m+=Kr g it follows that ¢, must be a multiple of 27, and so the lemma
follows. O

4.2 The density of pairs (a4, a,)
In this section we analyze the density of admissible argument pairs (a4, a;) in the argument plane.

Claim 4.6. The density of admissible argument pairs (a4, ay) in the region of the plane where 2™ < a4, a, <
2™+ s 27 when accounting for multiplicity.

Proof. Thereare 2m*+2¢ 3dmissible argument pairs (a4, ar), when accounting for multiplicity, in the region of the
plane where -2™*-1 < a;, a, < 2™**~1, This region is of area 220"*%), The density is hence 2™+2¢/22(m+0) = p-m
and so the claim follows. O

To construct the histogram for the probability distribution, the argument plane is divided into small rectangular
subregions. Lemma 4.7 below bounds the error when approximating the density in such subregions by 27™.

Lemma 4.7. Let D be the density of admissible argument pairs (a4, ar), when accounting for multiplicity, in a
rectangle R of area A and circumference C in the region of the plane where -2 < a;, ay < 2™, Then

1

’D 1 2CA; +4(245)* _ 2CA; +4(24,)°
2m

Adet L 2mA

<28

for A1 the norm of the shortest non-zero vector wy € L%, and A, the norm of the shortest non-zero vector w, € L%
that is linearly independent to w.

Proof. By Lemma 4.4, the admissible argument pairs (@, a,) are vectors in L? in the region of the argument
plane where -2™"1 < a;, &, < 2™**~1, Each admissible argument pair occurs with multiplicity 2%~7.

The fundamental parallelogram in L* contains a single lattice vector. It is spanned by w; and w,, and
has area det L% = A; |[w, | = 2™™™7, where w, is the component in w; perpendicular to w,. This implies
Az 2 A1 2 |w |. To bound the number of argument pairs (a4, ;) € R, we lower- and upper-bound the number
of fundamental parallelograms that can at most fit into R, as described below, paying particular attention to
the border areas:

To upper-bound the number of vectors in R, we extend each side of R by 2 A, length units, to ensure
that any parallelogram that is only partly in R is included in the count, and divide the area of the resulting
rectangle by the area of the fundamental parallelogram. This yields (A + 2CA, + 4 (2 A5)?) / det L®.
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Conversely, to lower-bound the number of vectors in R, we retract each side of R by 2A; length units, to
ensure that all parallelograms that are only partly in the rectangle are excluded from the count, and divide the
area of the resulting rectangle by det L%. This yields (A - 2CA, + 4 (2A,)?) / det L.

By combining the upper and lower bounds, dividing by the area A of R, and multiplying by 2% to
account for multiplicity, the lemma follows. O

For known d and r, Lemma 4.7 above provides a bound on the error when approximating the density in a
rectangle in LY by 27™ as A, may then be computed. To bound the error for general problem instances, and
when d and r are unknown, we introduce the following less tight lemma:

Lemma 4.8. Let D be the density of admissible argument pairs (ay, ar), when accounting for multiplicity, in
a rectangle of side lengths l; and I, in the a4 and a, directions, respectively, in the region of the plane where
—2ml <y < 2™ Then

1

=

T2amle vl Ll

Proof. By Lemma 4.4, the admissible argument pairs (a4, ar) are vectors in L in the region of the plane where
—2m1 < g, ay < 2™71 Each admissible argument pair occurs with multiplicity 2777,

The vectors in L* are on horizontal lines (for fixed a,) evenly separated by a vertical distance of 2*". The
number of such lines that intersect the rectangle is upper-bounded by Uf/ 2"'J +1 < I;/2% + 1 and lower-
bounded by |I;/2*| > I;/2* - 1 as may be seen by positioning the rectangle to maximize or minimize the
number of lines that intersect the rectangle.

On each line, the vectors in L* are evenly spaced by a distance of 2™~ with varying starting positions.
The number of vectors in L* that fall within the rectangle on each line is upper-bounded by le/ 2’"‘” +1¢<
1;/2™7 + 1 and lower-bounded by le / Zm‘VJ 2 13/2™7 - 1, when not accounting for multiplicity, as may be
seen by positioning the line to maximize or minimize the number of vectors that fall within the rectangle.

Hence the number of lattice vectors in the rectangle is upper-bounded by

25TV + (A2 + 1) = Ll 2T + 12 2T+ )27 + 1
and lower-bounded by
25TV )25 = 1)(15/2™Y = 1) = 1L [ 2™ - 1,2 2™ - 127 + 1

as each vector corresponds to a pair that occurs with multiplicity 277, By combining these bounds, and
dividing by the rectangle area 1,1, the lemma follows. O

For unknown d and r, Lemma 4.8 above provides an error bound, assuming only some bounds on the parame-
ters xr and ~. Asymptotically, the error in the approximation tends to zero as the side lengths of the rectangle
tend to infinity. For rectangular subregions of specific dimensions, it may furthermore be shown that the error
is zero, as is demonstrated in the following lemma:

Lemma 4.9. The density of admissible argument pairs (a4, ar) in a rectangle of side lengths positive integer
multiples of 2™~ and 2™ 7** in a; and av, respectively, in the region of the plane where —2™*"! < a;, ay <
2m+-1 is 27™ when accounting for multiplicity.

Proof. By Lemma 4.4, the admissible argument pairs (a4, ar) are vectors in L in the region of the plane where
—2m1 < g,y < 2™71 Each admissible argument pair occurs with multiplicity 277,

From the definition of L* in Lemma 4.4, it follows that the lattice is cyclic with period 2™ " in a; and
2™M=7*%r in a,. This is illustrated in Figure 2 where rectangular regions of these dimensions are highlighted
in gray. The highlighted regions all extend from the origin in Figure 2 but the starting point may of course
be arbitrarily selected. This implies that the lattice L* may be generated by replicating and translating any
rectangle of side lengths positive multiples of 2™ and 2™ "** in a; and ar, respectively, see Figure 2,
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throughout the plane. The same holds if the rectangle is replicated and translated cyclically throughout the
region of the plane where -2™""1 < a;, a, < 2™*°1,

The number of rectangles that fit in the region when replicated and translated cyclically is

22(m+2)/22(m—'y)+x, = 92k

as the area of the region is 220™*% and the area of the rectangle is 220" Y+ The total number of lattice vectors
in the region is 22™*/, so each rectangle contains 2™*2¢/22+)~% — Jm-27+& yactors when accounting for

multiplicity. By dividing by the area of the rectangle, we see that the density of points in each rectangle is
QM=27+Ky [2(m=Kr _ =M and g0 the lemma follows. O

5 Simulating the quantum algorithm

In close analogy with [7], we now proceed to construct a high-resolution histogram for the probability dis-

tribution induced by the quantum algorithm, for given d and r, and to sample it to simulate the quantum
algorithm.

5.1 Constructing the histogram

Except for the fact that the probability distribution is two-dimensional, and that we need to account for
the closed-form expression being an approximation, we exactly follow [7] to construct the high-resolution
histogram: We subdivide the argument plane into regions and subregions, and integrate the closed-form
probability approximation 13(9d, 0;) and associated error bound é(8, 8;) numerically in each subregion.
First, we subdivide each quadrant of the argument plane into (30 + u)? rectangular regions where y =
min(/ - 2, 11). Each region thus formed is uniquely identified by (174, 1r) € Z? by requiring that for all (g, ar)

in the region
2l < |@y| < 21Ma*L and 210l < |ay| < 210010,
and furthermore that sgn(a,) = sgn(rn,4) and sgn(a,) = sgn(n,), where n, and n; are such that
m =30 < ngl, nr| s m+p-1,

see the illustration in Figure 3.

sgn(a,) lo; «
gu(ar) log, (|a ) 1
)
m 3
+
2 N N {?
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= N+ 2/2 + + 3£
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) ) Nr % i 3
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= ~ ~
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AN < o
—m 4
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Figure 3: The subdivision of the plane into regions and subregions. The gray box illustrates Simpson’s rule applied to a subre-
gion. The probability is computed in the blue corner points, the four red border mid-points and the red center-point.
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Then, we subdivide each region into rectangular subregions identified by an integer pair (¢, &) by
requiring that for all (a4, ar) in the subregion

ynal+éal2" . lay| < 2IMal+Ga+DD/2" g ll+&/2Y |ar| < o || +(&+1)/2"

where 0 < &;,& < 2V forv € {6,7,8,9} aresolution parameter adaptively selected as a function of the
probability mass and variance in each region.

For each subregion, we compute the approximate probability mass contained within the subregion, and an
associated error bound, by applying Simpson’s rule in two dimensions, followed by Richardson extrapolation
to cancel the linear error term, and division by 2™ to account for the density of pairs.

Simpson’s rule is hence applied 22'(1 + 22) times in each region. Each application requires P(6,, 6;)
and é(6,, 6) to be evaluated in up to nine points, for which purpose we use the closed-form expressions in
Theorem 3.22, with o adaptively selected to suppress &(6,, 6;).

The optimal ¢ may be found by searching exhaustively. A computationally more efficient method for
selecting o is to use the heuristic in Appendix C.5.3. We use the heuristic in all cases except when s is large in
relation to m causing the error in the closed-form approximation to be large. For such m and s we accept an
extra computational burden to get slightly better o and slightly smaller errors.

In what follows, we refer to the total probability mass captured as the sum of the integral of 13(6(1, 0) over
all subregions, and to the total approximation error as the sum of the integral of (64, 6r) over all subregions.
Note that the total approximation error is an upper bound, by this definition, that is by no means tight. The
actual error in the approximation is likely smaller than the bound indicates.

In order to save space when storing the histogram, we discard regions that capture insignificant shares of
the probability mass. Note furthermore that for m and s such that the total approximation error is large, the
error may often be reduced at the expense of capturing a smaller fraction of the probability mass by simply
discarding selected regions where the error is large. The errors we report in this paper are without accounting
for such additional filtering.

Note that this method of constructing the histogram assumes x; and x; to be small in relation to m. Note
also that it follows from Section 4.2 that it is sound to approximate the density by 27 in the four regions of
interest in the plane. For the m and s that we consider, the error in the density approximation is negligible.

5.2 Understanding the probability distribution

To illustrate the distribution that arises, a histogram is plotted in the signed logarithmic argument plane in
Figure 4 for m = 2048 and s = 30, and for d and r selected as explained in Section 7.3. It captures approximately
99.99% of the probability mass. The total approximation error is less than 1073.

The histogram plotted in Figure 4 captures the characteristic appearance of the probability distribution
when d and r are both of length m bits and not divisible by large powers of two.

The probability mass is located in the regions where (| a4 |, | ar |) ~ (2™, 2™), whereas for random pairs
(j, k) the arguments would both be of size ~ 2™**, This implies that a single run of the quantum algorithm
yields ~ £ ~ m/s bits of information on d and r, respectively.

The distribution is symmetric, in that the top right and lower left quadrants are mirrored, as are the top
left and lower right quadrants. It hence suffices to compute only two quadrants to construct the histogram. To
see why this is, note that flipping the sign of both arguments in the expression for 13(9,1, 6;) in Theorem 3.22
has no effect. Flipping the sign of only one argument, on the other hand, may lead to cancellation or lack of
cancellation in the angle 6,;,2° +6, [—Zad / r} . This explains the concentration of probability mass in the top right
and lower left quadrants, and in the tail that extends along the diagonal in Figure 4 where 6,2° + 0, [—Zod / r}
is small.

If the size of d in relation to r is gradually reduced, the tail along the diagonal gradually disappears, as
the cancellation effect weakens when d/r is reduced in size. When d is approximately of length m - 5 bits, the
tail is nearly gone, and all four quadrants are nearly mirrored. Further reducing d has no significant effect
on the distribution. Varying r on the interval 2™ < r < 2™ only slightly affects the distribution. Scaling m
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Figure 4: The probability distribution for general discrete logarithms computed as in Section 5.1 for m = 2048, s = 30, and d
and r selected as in Section 7.3. To facilitate printing, the resolution has been reduced in this figure.
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Figure 5: The probability distribution for short discrete logarithms computed as in Appendix B from the closed-form expression
in [7], for m = 2048 and s = 30, and d selected as in Section 7.3. The resolution has been reduced in this figure.



DE GRUYTER Computing general discrete logarithms and orders with tradeoffs =——— 379

and s has virtually no effect on the distribution, for as long as m/s does not become so small so as to cause
constructive interference not to arise, or the plot to be cropped.

The marginal distribution along the a; axis in Figure 4 is virtually identical to the distribution induced by
r when performing order finding, see Appendix A and Figure A1 for comparison. In Appendix D we prove this
correspondence analytically by summing 13(0(1, 0;) over all admissible angles 6,; with multiplicity. Analogously,
the marginal distribution along the a, axis is seemingly virtually identical to the probability distribution
induced by d when regarded as a short discrete logarithm, see [7] and Figure 5 for comparison. We have not as
of yet been able to prove this correspondence analytically but it may be evidenced numerically by comparing
the distributions for specific problem instances.

The above observations imply that the lattice-based post-processing algorithm introduced in [7] may be
used to solve sets of pairs (j, k) for both short and general d, with minor modifications, see Section 6.1. An
analogous lattice-based algorithm may be used to solve sets of integers j for r, see Section 6.2. The hardest
instances to solve are those where d is large in relation to r, and r is large in relation to 2™, as in Figure 4, due
to the tail that then extends along the diagonal.

5.3 Sampling the probability distribution

Except for the fact that the probability distribution is two-dimensional, we exactly follow [7] to sample the
distribution: To sample an argument pair (ag, ar), we first sample a subregion and then sample (a,, ar) from
this subregion.

To sample the subregion, we first order all subregions in the histogram by probability, and compute the
cumulative probability up to and including each subregion in the resulting ordered sequence. Then, we sample
a pivot uniformly at random from [0, 1), and return the first subregion in the ordered sequence for which the
cumulative probability is greater than or equal to the pivot. Note that this procedure may fail: This occurs if
the pivot is greater than the total cumulative probability.

To sample an argument pair (4, ar) from the subregion, we first sample a point (a};, a}) € 72 uniformly
at random from the subregion. Then, we map (a/;, a;) to the closest admissible argument pair (a4, ar) € L* by
reducing the basis for L* given in Definition 4.3 and applying Babai’s algorithm [1].

To sample an integer pair (j, k) from the distribution, we first sample (a4, ar) as described above, and
then sample (j, k) uniformly at random from the set of all integer pairs (j, k) yielding (a4, @r) using Lemma 4.5.
More specifically, we first sample an integer ¢, uniformly at random from the set of all admissible values for ¢,
and then compute (j, k) from (a4, ar) and ¢, as described in Lemma 4.5.

6 The classical post-processing algorithms

In this section, we describe how d and r are classically recovered from a set {(j1, k1), ..., (jn, kn)} of pairs
produced by performing n independent runs of the quantum algorithm.

6.1 Recovering d from a set of n pairs

To recover d, we exactly follow [7], and use the set of n pairs to form a vector

VE = ((=2Mk1 b ymees ovvy {=2Mkn}ymee, O) € ZP
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and a D-dimensional integer lattice L’ with basis matrix

J1 jaoor jn 1
2m+€ O cee 0
o 2™ ... 0 0
0 0o ... 2™t o
where D = n + 1. For some constants mq, ..., mp € Z, the vector
W, = ({dj1}yme + mi2™ L {din}gmee + ma2™, d) € U
is such that the distance
. n n
Ry =|u),-vk| = ({dji}omer + M2 = {2k} 50e)* + d2 = > {dji + 2" ki ome +d2
: S
i=1 i=1

b
Xy i

n

_ 2 2
= Zad’i+d.
i=1

To recover d, it hence suffices to find “{1 by enumerating all vectors in L within a D-dimensional hyper-
sphere of radius R, centered on vX. Its volume is

nD/Z D

—— R
r@en

where I' is the Gamma function, whilst the fundamental parallelepiped in L, that by definition contains a
single lattice vector, is of volume det L/ = 2(m+0n,

Heuristically, the hypersphere is hence expected to contain approximately v, = Vp(R,) / det L/ lattice
vectors. The exact number depends on the placement of the hypersphere in Z”, and on the shape of the
fundamental parallelepiped in L.

Vp(Ry) =

6.1.1 Estimating the minimum n required to solve for d

The radius R,; depends on (j;, k;) via a4 ; for 1 < i < n. For fixed n and probability g4, we exactly follow [7] and
estimate the minimum radius R, such that

n
Pr |R, := Zaé’i+d2 <R4| 2qy (10)

i=1

by sampling a ; from the probability distribution. For details on how the estimate is computed, see Section 6.3.
It follows from (10) that

- VoRa) _ Vp(Ry)

Priva:= g1 = 20mron

24dq. (11)

This provides a heuristic bound on the number of lattice vectors v, that at most have to be enumerated to
solve for d, and that holds with probability at least g.

6.1.2 Selecting n and solving for d
A simple strategy when solving for d is to select n as described in Section 6.1.1 such that v, is below a bound

equal to the maximum number of vectors that it is computationally feasible to enumerate with probability q.
This strategy minimizes n at the expense of performing potentially computationally expensive post-processing.
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Another strategy is to select n such that v4 < 2 with probability g4, so that there is only one vector in
the hypersphere by the heuristic. In theory, this enables us to find u’;, with probability g4 by mapping v’,jl to
the closest vector in I’ without enumerating vectors in L’. In practice, however, the situation is a bit more
complicated as u’; = ({rj1}tomees oo s {Tinkomee, 1) € L and this vector is short in L’ by construction. To further
complicate matters, u’} /z may be in L/ when r is composite, for z some factor of r, see Section 6.2.3. To recover
u{i, we therefore first map v’;, to the closest vector in I/, and then add or subtract small integer multiples of the
shortest vector in the reduced basis for L’ to find u{i. This is efficient, except if r has very many small prime
factors, and n is close to one, in which case an additional classical post-processing step may be required, see
Section 6.2.5.

Note that this complication arises only for general discrete logarithms. It does not arise in [7] when post-
processing short discrete logarithms, as the order then does not enter into the equation. Note furthermore that
the fact that the order now does play a part may be leveraged in the post-processing, see the next sections.

6.1.3 Selecting n and solving for d by exhausting subsets

The greatest argument a ; essentially determines the bound on R, and hence on v,. A plausible strategy is
therefore to make n runs, but to independently post-process all subsets of n — t pairs from the resulting n pairs,
for t a constant.

To select n when using this strategy, we specify a bound B on the number of vectors v, that we accept to
enumerate in each lattice of dimension n -t + 1, and follow Section 6.1.1 to select the minimum n respecting
this bound with probability at least g4, including only the smallest n - t arguments @, ; when bounding R.

With probability g4, the post-processing then heuristically requires at most B lattice vectors to be enumer-
ated in at most (’t’) lattices of dimension n — t + 1. Note that t must be small as the binomial coefficient grows
rapidly in t.

6.1.4 Optimizations when r is known

Note that when r is known, the argument a, ; = {rj;},n is known for 1 < i < n, and a, ; provides information
on ay ; as the arguments are pairwise correlated. When constructing subsets of n - ¢ pairs from the n pairs
(ji» k;), the pairs should be included in ascending order sorted by |a;, ;|. In general, pairs such that |a;, ;| exceeds
some bound may be rejected as large |a, ;| identify erroneous runs.

6.2 Recovering r from a set of n pairs

To recover r, we instead use that u’; = ({rj1}amses ++vs {Tin}amee, 1) € L is a short vector by construction. More
specifically, we use that w, is within a D-dimensional hypersphere in L/ of radius

n n
. S
R =|W|= E {rjiYomee +72 = E aZ. +r2
T N—— — ’
i=1 ol i=1

i

centered at the origin. In close analogy with [7] and the previous section, we may recover u’} and hence
r by enumerating all vectors in this hypersphere. Heuristically, we expect the hypersphere to contain v, =
Vp(Ry) / det L lattice vectors.

This generalization was hinted at in the pre-print of [8]. Furthermore, it is similar to the method employed
by Seifert in [24], where he uses what he refers to as simultaneous Diophantine approximation techniques to
generalize Shor’s [25] continued fractions expansion-based post-processing to higher dimensions. In the case
of Shor’s original order-finding algorithm, the fact that the problem of finding a continued fraction may be
perceived as a lattice problem is observed in [14].
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We prefer to describe the post-processing in terms of a shortest vector problem, as this gives us two lattice
problems in the same lattice L’, and as we may re-use the tools previously introduced to estimate the number
of runs n required to solve the problem.

6.2.1 Estimating the minimum n required to solve for r

The radius R; depends on j; via a, ; for 1 < i < n. For fixed n and probability g, we proceed in analogy with [7]
and estimate the minimum radius R; such that

n
Pr |R; := Za3i+r2s§r > qr (12)
i-1

by sampling a;, ; from the probability distribution. For details on how the estimate is computed, see Section 6.3.
It follows from (12) that

Vp(Ry) _ Vo(Ry)

detD) = 20meon | =9 (13)

Pr v, :=

This provides a heuristic bound on the number of lattice vectors v, that at most have to enumerated to solve
for r, and that holds with probability at least g;.

6.2.2 Selecting n and solving for r

One strategy when solving for r is to use the heuristic to select n such that v, is below a bound equal to the
maximum number of vectors that it is computationally feasible to enumerate, with probability g,. This strategy
minimizes n at the expense of performing potentially computationally expensive post-processing.

Another strategy is to select n such that v, < 2 with probability g, so that there is only one lattice vector
in the hypersphere by the heuristic. In theory, this enables us to find u’} with probability g, by computing the
shortest non-zero vector in L.

In practice, the heuristic is good when r is prime, as is typically the case when computing discrete
logarithms in cryptographic settings. If r is composite, the heuristic is still good, but it may be necessary
to perform a small search to find r if r has one or more small prime factors, see Section 6.2.3. If r has many
small prime factors, and n is close to one, an additional classical post-processing step may be required to
solve efficiently for r, as there may then exist an artificially short non-zero vector in I/. This additional step is
described in Section 6.2.4.

A third strategy is to independently post-process subsets of the pairs output by the quantum computer, in
analogy with the procedure described in Section 6.1.3.

6.2.3 Handling composite r

Assume that r is composite. Let gcd(ay 1, - .., &rn, 1) = 270 for 0 odd. Let t be the greatest integer on [0, ;]
for which

a,,i/(2'0) = {rj;}yme /(210) = {1ji/(2'0)}ymee

foralli € [1, n]. Then |w}|/(2%0) € L and [w|/(2!0) < |u|, so w}/(2!0) and r/(2!0) will likely be recovered in
the post-processing instead of u’; and r.

For g an odd prime divisor of r, the probability of g also dividing a, ; for all i € [1, n] is approximately g™".
This implies that r may in general be recovered from r/(2{0) by exhausting ¢ and o, as the search space is
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expected to be small: It is only if r has very many small odd prime divisors, and if n is close to one, that problems
may potentially arise. Such problematic cases may be handled efficiently by introducing an additional classical
post-processing step, see the next section.

6.2.4 Handling partially smooth r

Let P be the set of all prime factors < cm, for ¢ = 1 some small constant, and let v, be the greatest integer such
that g¥7 < 2™. Furthermore, for r' = r/(2%0) let

8= Hq"‘l g and gr=|r H q'| g for fe?,
qe?P q€P\{f}

where bracket notation is used to denote generalized exponentiations. Computing g requires at most 2m - #P <
2cm? group operations? to be evaluated classically, for #7P the cardinality of P. It may hence be done efficiently.

As previously explained, when r is partially very smooth, the classical post-processing algorithm is likely
to return ' = r/(2%0), where o may be large, but where all prime factors of o are small. Assume that all prime
factors of 20 are < cm. It must then be that [r’] & = 1, enabling us to quickly test if 7 is on said form. Once
r' = r/(2!0) is found, it is easy to find r: For all f € P, compute 8r and find the smallest non-negative integer
es such that [f¥] §; = 1. Then

20 =[] r*

fe®

allowing r = 2%0 - ' to be recovered. Computing 8y requires at most 2cm? group operations for each f € P, for
a total of at most 2cm? - #P < 2c>m> group operations. The recovery procedure is hence efficient. Note that
the procedure may be optimized in various ways. The above description conveys the basic idea.

6.2.5 Computing discrete logarithms when r is partially smooth

If r is partially very smooth, it may be hard to determine d, as there may exist an artificially short vector
|u]}| /2'0 € L/, where o is smooth. Note however that it is still possible to determine d mod r’/, by reducing the
last component of the vector u’;j sought for in the classical post-processing algorithm modulo r’ = r/2%o.

Provided we classically solve the discrete logarithm problem in the residual subgroups of small prime
power orders f¢ dividing 2¢o, which can be done efficiently, the full logarithm d may then be found via the
Chinese remainder theorem. This was originally observed by Pohlig and Hellman [20].

6.3 Estimating INQd and ﬁ,

To estimate Ed and INQr for m, s and n, known d and r, and a given target success probability g, or gr, we
exactly follow [7] and sample N sets of n argument pairs {(a4 1, ar,1), ..., (&g n, @r,n)} from the probability
distribution. For each set, we compute R, sort the resulting list of values in increasing order, and select the
value at index L(N -1) qd] to arrive at our estimate for INQd. The estimate of R, is then computed analogously.
The constant N controls the accuracy. If N to be sufficiently large in relation to g4 and gr, and to the variance
in the arguments, we expect this approach to yield sufficiently good estimates.

If we fail to sample one or more argument pairs in a set, we closely follow [7] and over-estimate ﬁd and R,
by letting R; = Ry = oo for the set. The entries for the failed sets will then all be sorted to the end of the lists. If
the value of INQd or R, selected from the sorted lists is oo, no estimate is produced.

1 when using the square-and-multiply or double-and-add approach to exponentiation
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Let p be the total probability mass covered by the histogram. The probability of all n pairs in a set being
in regions covered by the histogram is then p"™. When sampling N sets, the expected number of sets with
finite R4 and R, is Np". As Nq; and Ng, entries, respectively, in the two lists must be finite for the algorithm
to produce an estimate, it follows that it is required that g4, g > p™, with some margin to account for the
sampling variance, for estimates to be produced.

7 Estimating the number of runs required

We now have the necessary framework in place to compute concrete estimates for the number of runs n
required to attain a given minimum success probability g when recovering both d and r for tradeoff factor s
for specific problem instances.

In this section, we describe and exemplify the procedure by computing estimates for a a set of concrete
problem instances selected in a randomized manner. We furthermore consider how to conjecturally obtain
worst case estimates of n.

7.1 Estimating n

To estimate n for a problem instance given by d and r, and for tradeoff factor s, we proceed as follows:

Forn=s+1, s+2, ... wefirst estimate ﬁd and R, by sampling N = 10° sets of n argument pairs (ag, ay),
as explained in Section 6.3. We stop and record the smallest n for which the volume quotients v; < 2 and v, < 2
with probability q; and gy, respectively, where g4, gr > q > 99%. As the volume quotients each decrease by
approximately a constant factor for every increment in n, the minimum n may in practice be found efficiently
by interpolation once a few quotients have been computed.

For selected problem instances, we verify the above initial estimate of n by simulating the quantum
algorithm and post-processing the simulated output. More specifically, with the initial estimate of n as our
starting point, we sample M = 10> sets of n pairs (j, k), as explained in Section 5.3, and test whether recovery
of both d and r is successful for at least [ Mq] sets when executing the post-processing algorithms in Sections
6.1 and 6.2 without enumerating L’. Depending on the outcome of the test, we either increment or decrement
n, and repeat the process, recursively, until the smallest n such that the test passes has been identified. We
record this n alongside the initial estimate of n.

In practice, we compute the closest vector in I’ by reducing the lattice basis and applying Babai’s [1]
nearest plane algorithm. The shortest non-zero vector in L’ is the shortest non-zero vector in the reduced basis.
Enumeration is performed using Kannan’s [12] original approach, as this is sufficient for our purposes. Note
however that there are more efficient approaches in the literature.

To reduce the basis, we closely follow [7] and employ LLL and BKZ [15, 16, 22, 23], as implemented in fpLLL
v5.0, with default parameters and a block size of min(n + 1, 10) for all combinations of m, s and n. We first
compute a LLL reduction. If it yields no solution, we proceed to compute a BKZ reduction.

7.2 Selectingmands

Since the cost of estimating n for a given problem instance is non-negligible, we seek to minimize the number
of problem instances considered, whilst selecting problem instances that are representative of those that
underpin the currently most widely deployed asymmetric cryptosystems.

To this end, for m € {128, 256, 384, 512, 1024, ..., 8192}, we pick a single combination of d and r
using the method described in Section 7.3, and estimate n for a subset of tradeoff factors s € {1, 2, ..., 8, 10,
20, ..., 50, 80}, such that the total approximation error is negligible.

In terms of group size, the above choices of m capture most currently widely deployed elliptic curve
groups, Schnorr groups and safe-prime groups.
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7.3 Selecting d and r given m

For each value of m, we select d and r such that 2™ < d < r < 2™ in a randomized manner.
For as long as d and r do not have very special properties, such as being divisible by large powers of two
or being otherwise smooth, the exact values of d and r are of no great significance, however: It is the size of d
in relation to r, and the size of r in relation to 2™, that primarily affects the appearance of the distribution
and hence the estimates. To avoid having to tabulate d and r for the m we consider, we read d and r from the
decimal expansion of Catalan’s constant
= (-1) 1 1 1 1
G= T s e s et i
; 2i+1)2 12 32 52 72
Specifically, we let ¢, x = Z}ZBZ 2Mm2geio k+j for g; the i bit in the decimal expansion of G, and select
r=2""14cpoandd=2""1+(cpq mod cp o).

7.4 Experiments and results

The estimates of n in Table 1 were produced by executing the procedure described in the previous sections. As
may be seen in the table, n asymptotically tends to s + 1 as m tends to infinity for fixed s. For fixed m, it holds
that n = s + 1 up to some cutoff point in s.

The estimates are for not enumerating the lattice L. By enumerating a bounded number of vectors in the
lattice, n may potentially be further reduced. In particular, our experiments show that a single run suffices to
solve with probability g = 99% for s = 1, provided we accept to enumerate up to ~ 1.3 - 10> vectors.

Table 1: The estimated number of runs n required to solve for both a general discrete logarithm d and group order r, selected as
described in Section 7.3, with > 99% success probability and without enumerating the lattice. For details, see Section 7.4. For A
the initial and B the simulated estimate, we print B / A, unless B = A; we then only print A. Dash indicates no estimate. For € the
total approximation error, an asterisk indicates that 107 < € < 1073, For all other estimates € < 1074,

group and logarithm size m
128 | 256 | 384 | 512 | 1024 | 2048 4096 | 8192

1 2 2 2 2 2 2 2 2

2 *3 3 3 3 3 3 3 3

3 - 4 4 4 4 4 4 4

4 - *5 5 5 5 5 5 5

» 5 - - 6 6 6 6 6 6
% 6 - - *7 7 7 7 7 7
i 7 - - - 8 8 8 8 8
T 8| -] -| -|*w 9 9 9 9
= 10 - - - - 11 11 11 11
S 20| - | -| - - 22 21 21
30 - - - - - | *35|33/32 31

40 - - - - - - 44 42

50 - - - - - - 57 | 54/53

80 - - - - - - -| -/88

As may furthermore be seen in the table, the initial estimates of n are in general verified by the simulations.
In general v4 > v;. Hence v, determines the initial estimate for n. Note however that when the heuristic
estimate of v is close to two, minor discrepancies between the initial estimates and the simulations may arise.
This phenomenon is discussed in [7]: For large tradeoff factors s in relation to m, increasing or decreasing n
typically has a small effect on v; and v,. This may lead to slight instabilities in the estimates, as v; may be
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close to two for several values of n. Discrepancies may also arise, especially for large n, if we fail to find the
closest and shortest non-zero vectors in L/, or if sampling fails. Such discrepancies may be amplified by the
difference in the sample sizes N and M.

7.5 Generalizing the results to compute worst case estimates

Recall from Section 5.2 that the larger d is permitted to grow in relation to r, and the larger r is permitted to
grow in relation to 2™, the harder it in general becomes to solve for d and r, assuming neither d nor r to be
divisible by large powers of two. This may be seen by computing estimates for various combinations of d and r,
or simply by examining the appearance of the two-dimensional distribution for various d and r.

Furthermore, recall from Section 5.2 that the marginal distributions along the a; and a, axes in the two-
dimensional distribution for general discrete logarithms may be seen to correspond to the distributions induced
by the quantum algorithms for computing short discrete logarithms with tradeoffs, and orders with tradeoffs,
respectively. Both correspondences may be observed numerically by comparing distributions computed for
specific problem instances. The correspondence in a, may furthermore be shown analytically, see Appendix D.

As v4 > vy in general when d is large in relation to r, and neither d nor r are divisible by large powers of
two, we therefore in general expect estimates of n for computing the general discrete logarithm d in a group
of m bit order r to agree with estimates of n for computing the short discrete logarithm d, when m is taken
as the upper bound on the bit length of d. For d and r selected as in Section 7.3, this correspondence may be
observed in practice by comparing the estimates in Table 1 to those in Table B1 in Appendix B.

The above implies that we may conjecturally claim to obtain worst case estimates of n for general discrete
logarithms by computing estimates of n for maximal short discrete logarithms d = 2™ - 1 when m is taken as
an upper bound on the bit length of d. Such estimates are provided in Table B2 in Appendix B.

Note that when comparing estimates of n for general discrete logarithms to those for short discrete
logarithms and orders, the comparison must of course be restricted to combinations of m and s such that
the total approximation error is negligible. It is reasonable to presume that the correspondence between the
distributions would continue to hold even if s was to be permitted to grow a bit past the point where the
total approximation error becomes non-negligible for a given m, since the error bound is by no means tight.
However, we can not demonstrate the correspondence for such m and s.

8 Order finding with tradeoffs

The algorithm for computing general discrete logarithms in this paper does not require the group order to be
known, as neither the quantum algorithm nor the classical post-processing algorithm makes explicit use of
the order. If the order of the group is unknown, it may be computed from the same set of pairs (j, k) output by
the quantum computer as is used to compute the logarithm.

This implies that the algorithm may be used as an order-finding algorithm. When only the order is of
interest, only j need to be computed, as k is not used by the post-processing algorithm that recovers the order.
The second stage of the quantum algorithm where k is computed need therefore not be executed when the goal
is to perform order finding. If the second stage is removed, the quantum algorithm reduces to the algorithm
proposed by Seifert [24]. For s = 1 this algorithm in turn reduces to Shor’s order-finding algorithm.

This provides a link between our works on computing discrete logarithms, Seifert’s work on order finding,
and Shor’s original work. As for post-processing, Seifert generalizes Shor’s continued fractions-based post-
processing algorithm to higher dimensions. We instead use lattice-based post-processing.

In Appendix A, we provide a description of Shor’s and Seifert’s quantum algorithms for order finding, a
complete analysis of the probability distributions that they induce, and estimates for the number of runs n
required to solve various problem instances for r when using lattice-based post-processing.
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9 Summary and conclusion

We generalize and bridge our earlier works on computing short discrete logarithms with tradeoffs, Seifert’s
work on computing orders with tradeoffs and Shor’s groundbreaking works on computing orders and general
discrete logarithms. In particular, we enable tradeoffs when computing general discrete logarithms.

Compared to Shor’s algorithm for computing general discrete logarithms, this yields a reduction by up to
a factor of two in the number of group operations evaluated quantumly in each run, at the expense of having
to perform multiple runs. The runs are independent, and may hence be executed in parallel.

Unlike Shor’s algorithm, our algorithm does not require the group order to be known. It simultaneously
computes both the order and the logarithm. This allows it to outperform Shor’s original algorithms with respect
to the overall number of group operations that need to be evaluated quantumly in some cases even when
not making tradeoffs. One cryptographically relevant example of such a case is the computation of discrete
logarithms in Schnorr groups of unknown order.

We analyze the probability distributions induced by our algorithm, and by Shor’s and Seifert’s order-
finding algorithms, describe how all of these algorithms may be simulated when the solution is known, and
estimate the number of runs required for a given minimum success probability when making different tradeoffs.

When solving using lattice-based post-processing without enumerating L/, the number of runs n required
for a fixed tradeoff factor s tends to s + 1 asymptotically as m tends to infinity. By enumerating, n may be
further reduced. Notably, when not making tradeoffs, a single run suffices to solve with at least 99% success
probability, provided a small number of lattice vectors are enumerated.

Throughout this work, we have assumed the bit length of r to be known. However, it should be straight-
forward to generalize the analysis to handle situations where only an upper bound on the bit length of r is
known.
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A Order finding with tradeoffs

In this appendix, we recall Shor’s [25] and Seifert’s [24] order-finding algorithms, analyze the probability
distributions they induce, show how they may be simulated, and estimate the number of runs n required to
solve for r when using lattice-based post-processing.

A.1 The quantum algorithm

Given a generator g of a finite cyclic group of order r of length ~ m bits, Shor’s order-finding algorithm [25]
outputs an integer j that yields ~ m bits on r. Seifert [24] enabled tradeoffs in Shor’s algorithm by modifying it
to yield ~ m/s bits on r in each run, for s the tradeoff factor. For s = 1 Seifert’s algorithm reverts to Shor’s
algorithm. This allows us to conveniently describe both algorithms below:

1. Let m be the integer such that 2™ < r < 2™ let ¢ = [m/s], and let

1 2m+[_1
W:W Z |(1,0>.

a=0
2. Compute [a] g and store the result in the second register to obtain
2m+£ -1

1
‘[’=W Z |a,lalg).

a=0

2m+€

3. Compute a QFT of size of the first register to obtain

2m+l_1 2m+l7_1

1 2mi aj/2™+*
V= ym+{ Z Z e
a=0 j=0

4. Observe the system to obtain j and y = [e] g where e = a mod r.

j,lalg).

Note that Seifert’s interpretation of the advantage of his algorithms is that he saves control qubits. This is
not the case when recycling control qubits; see the discussion in Section 2 for a more modern interpretation of
the advantage.

A.2 The probability of observing jand y

Above, in step 4, the integer j and element y = [e] g are obtained with probability
27i ?
moo.
Z exp [2m+€ a]:| ‘ (Al)
a

where the sum is over all a on 0 < a < 2™ such that a = e (mod r).
In this section, we seek to place (A1) on closed form. To this end, we first perform a variable substitution to

obtain a contiguous summation interval. As all a that fulfill the condition that a = e (mod r) are on the form

a = e+ n,rwhere 0 < n, < (2™ - 1 - e)/r, substituting a for e + n,r in (A1) and adjusting the phase yields

2

1
22(m+£)

|@™-1-e)/r] |@™-1-¢)/r] 2

1 2mi 1 i0,n,
22(m+0) Z €xp [2m+l (erlr:| T 2(m+0) Z €
n,=0 n,=0
where &y = {rj},m and 0, = 0(a;) = 270,/ 2™ Summing over all e yields

2 2

. |[@™¢-1-e)/r] . 5 [@™*-1)/r] . r-p [@™*-1)/r]-1 .
10y ny _ 16y ny i0, n,
220m+0) > > e = S52(m+l) > e * S2m+) >, e (42)
e=0

n,=0 n,=0 n,=0
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for B such that 8 = 2™** (mod r), as for all e on O < e < f it then holds that
(@™ -1-e)fr| = |@™ - 1/r]
whereas for all e on 8 < e < r, it holds that
(@™ -1-e)fr| = |@™ - D/r| -1,

Note that 8 0 (mod r) since we require r to be on 2™ < r < 2™,

A.2.1 Closed-form expressions
Assuming 6, # 0, we may write (A2) on closed form as

o6 [@™-0)/r| _q |7
elfr — 1

2
g et (lem™-virj+1) _4 r-B
22(m+d) aif, _ 1 * 520

Otherwise, if 6, = 0, we may write (A2) on closed form as

B (|- nr| +1)2+ﬂ Q(zm“’--l)/rJ)z.

22(m+£) 22(m+£)

This step of the analysis is similar to a step in the analysis of Einarsson [4].

A.3 Distribution of integers j

In this section we analyze the distribution of integers j that yield a;.
Definition A.1. Let k; denote the greatest integer such that 2% divides r.
Definition A.2. Anargument a, is admissible if there exists an integer j on 0 < j < 2™ such that a, = {rj}omee.

Claim A.3. All admissible arguments &y = {rj},m.. are multiples of 2.

Proof. As 2" | r and the modulus is a power of two the claim follows. O

Lemma A.4. The set of integers j on O < j < 2™** that yield the admissible argument a, is given by

-1
].= (O(r ( r ) +2m+£—x,tr> mod 2m+£

26 \ 2%
as tr runs trough all integers on 0 < t, < 2", Each admissible argument ar hence occurs with multiplicity 2.

Proof. As ay = rj (mod 2™**), the lemma follows by solving for j. O

A.4 Simulating the quantum algorithm

In this section, we first construct a high-resolution histogram for the probability distribution induced by the
quantum algorithm for known r. We then proceed to sample the histogram to simulate the quantum algorithm.
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A.4.1 Constructing the histogram

To construct the histogram, we exactly follow [7]: We divide the argument axis into regions and subregions
and integrate the closed-form probability expression numerically in each subregion.

First, we subdivide the negative and positive sides of the argument axis into 30 + y regions where y =
min(¢ - 2, 11). Each region thus formed may be uniquely identified by an integer 1, by requiring that for all a,
in the region

20l < laty| < 2+ and  sgn(ay) = sgn(nr)

where m — 30 < |ny| < m + u — 1. Then, we subdivide each region into subregions identified by an integer &; by
requiring that for all a, in the subregion

zlrlrl*"fr/zv < |ar| < 2|rlr|+(£r+1)/2v

for & an integer on 0 < &; < 2” and v a resolution parameter.

For each subregion, we compute the approximate probability mass contained within the subregion by
applying Simpson’s rule, followed by Richardson extrapolation to cancel the linear error term. Simpson’s rule
is hence applied 2"(1 + 2) times in each region. Each application requires the probability to be computed in
up to three points (the two endpoints and the midpoint), for which purpose we use the closed-form expression
developed in Section A.2.1.

Note that we should furthermore multiply by the multiplicity of arguments 2, see Lemma A.4 in Sec-
tion A.3, and divide by 2% to account for the density of distinct pairs in the region. However, these operations
cancel. Note also that this method of constructing the histogram assumes k; to be small in relation to m.

To obtain a high degree of accuracy in the tail, we fix to v = 11 for all regions. This enables us use this
histogram as a reference when adaptively selecting the resolution for the two-dimensional histogram in
Section 5.1, see Lemma D.1.

A.4.2 Understanding the probability distribution

The probability distribution is plotted on the signed logarithmic argument axis in Figure 4 for m = 2048 and
s = 30, and for r selected as explained in Section 7.3. The regions form two contiguous symmetric areas on the
argument axis, as is illustrated in Figure Al. As expected, the distribution plotted is virtually identical to the
marginal distribution along the vertical a, axis in Figure 4.

The probability mass is located in the regions where |a;| ~ 2™, whereas for random outputs the argument
would be of size ~ 2™**, Hence, a single run of the quantum algorithm yields ~ ¢ ~ m/s bits of information
onr.

wn
i
3§
Q
3
o
9
N
B
Y\ Adsp > =
—m — 5 —m —m + 5 m — 5 m m + 5

Figure A1: The probability distribution induced by the order-finding algorithm, computed as in Section A.4.1, for m = 2048 and
s = 30, and for r selected as in Section 7.3. To facilitate printing, the resolution has been reduced in this figure.
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A.4.3 Sampling the probability distribution

To sample an argument a, from the distribution, we exactly follow [7]: We first sample a subregion from the
histogram and then sample a, uniformly at random this subregion, with the restriction that 2** must divide a;,
so that a, is admissible. To sample a subregion from the histogram, we order all subregions in the histogram
by probability, and compute the cumulative probability up to and including each subregion in the resulting
ordered sequence, in analogy with Section 5.3.

Then, we sample a pivot uniformly at random from [0, 1), and return the first subregion in the ordered
sequence for which the cumulative probability is greater than or equal to the pivot. The sampling operation
fails if the pivot is greater than the cumulative probability of the last subregion in the sequence.

To sample an integer j from the distribution, we first sample an argument a, and then select an integer j
yielding a, uniformly at random from the set of all such integers using Lemma A.4. More specifically, we first
sample an integer ¢, uniformly at random on the admissible interval for ¢, and then compute j from &, and t,
as described in Lemma A.4.

A.5 Classical post-processing

The probability distribution induced by the quantum algorithm in Section A.1 is virtually identical to the
marginal distribution along the a;, axis in Section 5.1. Hence, the classical post-processing algorithm in
Section 6.2 may be used to solve sets of n integers j output by the quantum algorithm in Section A.1 for r.

A.6 Estimating the number of runs required

To estimate n for problem instance given by r, we exactly follow [7]:

Forn=s+1, s+2, ... we first estimate R, by sampling N = 10° sets of n arguments a,, as explained
in Sections A.4.3 and 6.3, and record the smallest n for which the volume quotient v, < 2 with probability
qr = q = 99%. With this estimate of n as our starting point, we then sample M = 10> sets of n integers j, as
explained in Section A.4.3, and test whether recovery of r is successful for at least [Mq] sets when executing
the post-processing algorithm in Section 6.2 without enumerating L. Depending on the outcome of the test,
we either increment or decrement n, and repeat the process, recursively, until the smallest n such that the test
passes has been identified.

Executing this procedure, for m and s selected as described in Section 7.2, both for r selected as explained
in Section 7.3, and for maximal r = 2™ — 1, produced the estimates in Table Al and Table A2, respectively. Note
that for A the initial and B the simulated estimate, we print B / A, unless B = A, we then only print A. Note
furthermore that we have excluded m = 384 to reduce the table width.

The tabulated estimates are for not enumerating the lattice L. By enumerating a bounded number of
vectors in the lattice, n may potentially be further reduced. In particular, our experiments show that a single
run suffices to solve with probability g = 99% for s = 1, provided we accept to enumerate up to ~ 3.5 - 102
vectors.

A.7 Applications of order finding to integer factoring

Quantum algorithms for order finding may be used to factor integers, as was first proposed by Shor [25] using
a reduction due to Miller [17]. To factor a composite integer N, that is odd and not a perfect prime power, Shor
originally proposed to proceed as follows: Pick an integer g € (1, N) and compute D = gcd(g, N). If D # 1,
then D is a non-trivial factor of N. In practice, small and moderate size factors of N would typically be removed
before attempting to factor N via order finding. Hence, it is unlikely that factors would be found in this manner.
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Table A1: The estimated number of runs n required to solve for an order r, selected as in Section 7.3, with > 99% success
probability, without enumerating the lattice.

group size m

128 | 256 512 | 1024 | 2048 | 4096 | 8192

1 2 2 2 2 2 2 2

2 3 3 3 3 3 3 3

3 4 4 4 4 4 4 4

4 6 5 5 5 5 5 5

o 5 7 6 6 6 6 6 6
g 6 9 8 7 7 7 7 7
& 7 12/11 9 8 8 8 8 8
T 8 |16/15 11 10 9 9 9 9
S 10| -/25 14 12 11 11 11 11
S 20 ~ | -/54|28/29 24 22 21 21
30 - | -/53|39/38 34 32 31

40 - - | -/58|48/47 44 42
50 - - - - -/63 56 53
80 - - - - -1 -/95| -/87

Table A2: The estimated number of runs n required to solve for a maximal order r = 2™ — 1 with > 99% success probability,
without enumerating the lattice.

group size m

128 | 256 512 | 1024 | 2048 | 4096 | 8192

1 2 2 2 2 2 2 2

2 3 3 3 3 3 3 3

3 4 4 4 4 4 4 4

4 6 5 5 5 5 5 5

o 5 8/7 6 6 6 6 6 6
g 6 9 8 7 7 7 7 7
S 7 ]11/12 9 8 8 8 8 8
T 8 |17/16 11 10 9 9 9 9
S 10| -/25 14 12 11 11 11 11
S 20 ~| -/55]30/29 | 23/24 22 21 21
30 _ | -/53[37/39 34 32 31

40 - - | -/59 | 48/47 44 42
50 - - - - -/63|57/56 53
80 - - - - ~| —/95| -/87

If D = 1, then g may be perceived as a generator of a cyclic subgroup (g) C Zy, and its order r computed using
a quantum algorithm for order finding.

Asg" =1 (mod N), it must be that g" - 1 = 0 (mod N). If r is even and g’/2 # — 1 (mod N), we have that
g"7? + 10 (mod N), whilst

g-1=E"?-1E"?+1)=0 (modN),

so non-trivial factors of N may be found by computing gcd((g”/? mod N) + 1, N). This reduces the integer
factoring problem to an order finding problem.

Shor originally proposed to use this reduction, and to simply re-run the whole algorithm if any of the
above requirements are not fulfilled, or if the order-finding algorithm fails to yield r. In [25], Shor lower-bounds
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the probability of his order-finding algorithm yielding r in a single run, and of non-trivial factors of N being
found given r, so as to obtain a lower bound on the overall success probability. A number of improvements
have since been proposed, see the introduction to [6] for an overview.

In this appendix, we have shown that the probability of Shor’s original order-finding algorithm yielding r
in a single run is very close to one. Furthermore, we have estimated the number of runs required to obtain
a similarly high success probability when making tradeoffs in Seifert’s order-finding algorithm. In [6], it is
shown that any integer N may be completely factored classically into all of its constituent prime factors with
very high probability after a single call to an order-finding algorithm. Hence, the estimates we provide of the
number of runs required for Shor’s and Seifert’s order-finding algorithms to yield r are also estimates of the
number of runs required to completely factor N via these order-finding algorithms.

A.7.1 Factoring RSA integers

Note that if N is an RSA [21] integer, as is typically the case in cryptographic applications, a more efficient
approach to factoring N is to use the algorithm of Ekera and Hastad [8]. This algorithm reduces the RSA integer
factoring problem to a short discrete logarithm problem via [11] and solves this problem quantumly.

As is shown in [7], the quantum part of Ekerd-Hastad’s algorithm imposes less requirements on the
quantum computer than Shor’s or Seifert’s order-finding algorithms, in each run and overall, both when
making and not making tradeoffs. The probability of recovering the logarithm d is very close to one. The two
prime factors of N may then be recovered deterministically from d.
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B Short discrete logarithms with tradeoffs

The experiments in Appendix A for order finding are analogous with those for short discrete logarithms in [7].
For completeness, and so as to enable comparisons, we have run additional experiments for short discrete
logarithms following [7], both for maximal d = 2™ - 1, and for d selected as described in Section 7.2. These
experiments produced the estimates in Table B1 and Table B2, respectively. Note that for A the initial and B the

simulated estimate, we print B / A, unless B = A, we then only print A.

Table B1: The estimated number of runs n required to solve for a short logarithm d, selected as in Section 7.3, with > 99%

success probability, without enumerating.

logarithm size m
128 256 512 1024 2048 4096 8192

1 2 2 2 2 2 2 2

2 3 3 3 3 3 3 3

3 4 4 4 4 4 4 4

4 6 5 5 5 5 5 5

© 5 8 6 6 6 6 6 6
g 6 10 8 7 7 7 7 7
8 7 13| 10/9 8 8 8 8 8
T s 18 11 10 9 9 9 9
T 10 |-/32 15 12 11 11 11 11
s 20 ~ | -/71]32/30 24 22 21 21
30 - - -/60 40 35 | 33/32 31

40 - - - | -/62|50/48 44 42

50 - - - - -/ 65 57 | 54 /53

80 - - - - - -/97 -/ 88

Table B2: The estimated number of runs n required to solve for a maximal short logarithm d = 2™ — 1 with > 99% success

probability, without enumerating.

logarithm size m

128 256 | 512 | 1024 | 2048 | 4096 | 8192

1 2 2 2 2 2 2 2

2 3 3 3 3 3 3 3

3 4 4 4 4 4 4 4

4 6 5 5 5 5 5 5

o 5 8 6 6 6 6 6 6
g 6 10 8 7 7 7 7 7
& 7 13 9 8 8 8 8 8
T 8 18 11 10 9 9 9 9
S 10 |-/32|16/15 12 11 11 11 11
s 20 - 31 | 25/ 24 22 21 21
30 - ~|-/60 40 35 32 | 32/31
40 - - | -/62 | 49/48 | 4544 42
50 - - - - -/65 57 | 54/53
80 - - - - | -/797| -/88
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C Soundness of the closed-form approximation

In this appendix, we demonstrate the fundamental soundness of the closed-form approximation to P(64, 6;)
that we derived in Section 3. This appendix is rather technical and may be considered to constitute supple-
mentary material.

C.1 Introduction and recapitulation
Recall that by Theorem 3.22, the probability P(0, 0;) of the quantum algorithm yielding (j, k), with associated
angle pair (04, 6r), summed over all r group elements y = [e] g € G, may be approximated by

~ 220y
P(64,0r) = Wf(er) 864, 06r)

where we have introduced some new notation in the form of the two functions

[2m)r]-1 2 2671 2
f(er) _ Z ei@,n, g(ed’ 9}’) _ Z ei(2”9d+ [-2°d[r]6,)t
ny=0 t=0

that we shall use throughout this section, and that may both be placed on closed form. The error when
approximating P(6,, 6;) by P(0,, ;) is bounded by

[P(64. 6r) - P(64, 6)| < (64, 61).

again by Theorem 3.22, where the function &(8, 0;) is defined.

C.1.1 Overview of the soundness argument

In what follows, we demonstrate the fundamental soundness of the above closed-form approximation, by
summing 13(9d, 6,) analytically to show that a large fraction of the probability mass is within a specific region
of the plane, and by summing &(68, 6;) analytically to show that the total approximation error in this region is
negligible. Asymptotically, in the limit as m tends to infinity for fixed s, the fraction of the probability mass
captured tends to one whilst the error tends to zero. This implies that 13(6,1, 0;) asymptotically captures the
probability distribution completely and exactly.

C.2 Preliminaries

Before we proceed as outlined above, we first introduce some preliminaries.

Lemma C.1. Let ¢ € R and 6(u) = 2rtu/2% for w > O an integer. Then

2

2961 |N-1
Z Zei(zfe(u)ﬂp)t — QWS
u=0 t=0

for integers ¢, ¢ and N such that c 20,0 < ¢ < wand 0 < N < 2975,
Proof. For any ¢ € R it holds that

N-1 o
Z e1(2 P+p)t
t=0

2 (N—l e N1 )
_ Z ei(Z P+ t) <Z e—i(z P+o t)
t=0

t=0
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N-1
> (V- e elerer
t=—N+1
N-1
=N+ Z(N ) (ei(2¢¢+<p)t i e—i(2¢¢+<p)t)‘

t=1
Hence

QW6 _q

>

u=0

N-1
Z e1(2¢(9(u)+(p)t

u=0

206 q N-1
_ <N + Z(N ) (ei(zqe(u)ﬂp)t + ei(2¢9(u)+<p)t)>

QWre=s_q

— QU Z(N_ ) Z (ei(zge(u)ﬂp)t +e—i(2¢9(u)+(p)t)

=0
as for any integer t on 0 < |t| < N < 2% and ¢ < w, the sum

29751 125(271/2%) 2¢+¢S¢
Z ei(2§9(u)+(p)t - elot el2(2n/2%) -1

27i 26t
ipt €
ei2s(2m/29)t _

-1
e2mi2s ot _ 1 0

as the denominator is non-zero, and so the lemma follows

C.2.1 Bounding tail regions

Claim C.2. For A and N integers such that 1 < A < N it holds that

N N-1
du 1 du 1 2
=< =< == <=,
u? z2 u A 1A
2 z=4 A-1
Proof. As
z+1 z
dw_ 1 1 1 fdu
uz  z+z2 22 72—z u?
z z-1

for z any integer such that z > 1, it follows that

u | ) u?
z=4 \ % z=A z=4 \ 721 A-1
where, for A and N integers on 1 < A < N, it holds that
N-1
du _ 1 1 1 2
u2 A-1 N-1 A-1 A
A-1

and so the claim follows.

Claim C.3. Forany ¢ € Rsuch that 0 < |¢| < m it holds that

24

< —0.

it

— 397
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Proof. As ¢ # 0, we have by Claim C.4 below that
eiNo _ 1|2
el -1

2
%ei‘l’ = < 2’ < 2
t=0 i - 1|2 ¢

and so the claim follows. O

Claim C.4. |e'? — 1| > |¢|/2 for any ¢ € R such that |¢p| < 7.

Proof. Tt suffices to show that [e!? — 1| = 2(1 - cos ¢) > ¢?/4 from which the claim follows as cos ¢ < 1 - ¢?/8
for any ¢ € R such that |¢]| < 7. O

C.2.2 Intervals of admissible arguments and angles

To facilitate the analysis, we need notation to handle intervals of admissible angles:
Definition C.5. Let ©,(I) be the set of distinct admissible 6, on the interval I.

Definition C.6. For a fixed admissible 0, let @4(I, 8,) be the set of distinct admissible 8, on the interval I.

C.2.3 Parameterizing the admissible arguments and angles

Furthermore, we need a convenient method for parameterizing the distinct admissible argument pairs (a4, ar),
or angle pairs (64, 6r).

Claim C.7. The admissible arguments a; and ar may be parameterized by
ag(uy, ur) = (6rur mod 2™77) + 2™ Yuy ar(uy) = 2%u,

and the corresponding admissible angles 6, and 8, may be parameterized by

2

2n
04(ug, ur) = Sm+t ag(ug, ur) 0:(ur) = Fm+l ar(ur)

for integers uy € [-2771, 247 Y and u, € [-2m9L, 2mH%-1) when not accounting for multiplicity.

Proof. By Lemma 4.4, the admissible argument pairs (a4, ar) are vectors in L* in the region of the plane where
ag, ar € [-2m*é-1 om+-1y The parameterization takes u, times the first row and u, times second row of the
basis matrix for L%. It furthermore uses the second row to reduce the starting point §,u, modulo 2™, The
claim follows from this analysis. O

C.3 Establishing a baseline

We begin by proving that the sum of 13(96,, 0;) over all admissible angle pairs (64, 6r), with multiplicity, in
the region where 6, € [-m1, 7) and 0,4 € [-71/2°, n/2°), tends to one asymptotically in the limit as m tends to
infinity for fixed s.

C.3.1 Theinner sum over g(0,4, 0;)

Lemma C.8. For 0, € 0,4([-n/2°, n/2°), O,), the inner sum

Zg(ed’ 9r) _ 22(£—o)+7.
04€04([-m/2°, m/2°), 6,)
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Proof. The function g(6,, 6;) is non-negative and periodic in 8 for fixed 6;. It cycles exactly 27 times on the
interval 6, € [-m, ), as may be seen in Figure C1 where g(6y4, 6r) is plotted continuously in 6, for 6, fixed to
zero. Fixing a different value of 6, shifts the graph cyclically along the 6, axis.

9(04,0)

22(t=0)

|
3
[

3

3

Figure C1: The function g(8, 0) plotted continuously in 6, on the interval |0,| < 7 for o = 3 and sample parameters selected to
make the figure readable.

This implies that we may parameterize 6, in u, and u, using Claim C.7 and sum 6,(u4, ur) over any consec-
utive sequence of 2777 values of u for the fixed u, given by 6, to sum over all 8, € 6 ,4([-71/2°, 11/29), 6,).
By using this approach and Lemma C.1 we obtain
267 2
Z g(6,,6r) = Z Qi(2°64+[-27d/r10)t
04€04(-/27, n[2),6,)  04€04(-n/2°,7/2°),6,) | t=0

2£+'y—u—1_1 2[—0_1 2

Z Z ei(2”0,1(u,1,u,)+ [-2°9d/r]6,(u,))t

ud:_zlwyfafl t=0

2£+~/—U—1_1 2(—0_1 2

Z Z el2°Qm 2" ug /2" )t

ud=_2l+'yfafl t=0

244—"(—071 2(—071 2

5 L+y-0 _ _
Z Z e1(2nud/2 +o)t| _ 2€+—y o, ZZ o
uyg=0 t=0

where we have used that we may shift the interval in u 4, and introduced the constant phase
¢ = 2°Q2mn(8ur mod M) 2l [-29d/r] 6:(uy),

and so the lemma follows. O

C.3.2 The outer sum over f(6,)

Lemma C.9. For 6, € O,([-nt, m)), the outer sum
S f(6r) = 2 [W}
— -
0,€0,(-n, m))

Proof. The function f(6y) is non-negative and periodic in 0. It cycles exactly once on the interval 6, ¢ [-m, 7).
This implies that we may parameterize 6, in u, using Claim C.7, and sum over all 2™~* values of u, to sum
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over all 8, € O,([-m, m)). By using this approach and Lemma C.1, we thus obtain

gmeee1_g | [2™)r]-1 2

PNCOREEDY >, et

0:€6,(-m,m)  u=—2mrbrr-d n,=0

Jmrlokr_q |’2m+€/r“_1 2

> 3 i 2™ | etk [2";%}

u,=0 n,=0

by using that we may shift the interval in u,, and so the lemma follows. O

C.3.3 Combined result

Lemma C.10. The combined sum over all distinct admissible angle pairs (64, 6;), in the region where 6, <
[-m/2°,m/2°) and 6, € [-7, ), is

¥4
p _ ok T [ 2™
ZP(Gd,Gr)—Z W’V r .
0,€0,([-m, m))
04€04(-7/27, 1/2°), 6y)

Proof. By combining Lemmas C.8 and C.9, we obtain

- 20
S P00, 60 - sy SS6D S (04, 6)

6,€0,([-n, m) 0,€0,(-n, 1) 64€604(-11/2°, 1[29), 6,)
04€604([-1/2°, 1/2°), 6,)
_ 22%r . 92(l=0)y  ymrl-k om+t 27K, r om+t
N 22(m+2£) r - ym+é rf
as the inner sum reduces to a constant, and so the lemma follows. O

It follows from Lemma C.10 above that the sum of 13(9,1, 6:) over all admissible angle pairs (64, 6r) in the region
where 0, € [-71/2°, 1/2°) and 6, < [-m1, ) tends to one as m tends to infinity for fixed s, when accounting for
the fact that each distinct admissible angle pair (64, 6;) occurs with multiplicity 2”7 by Lemma 4.4.

The total approximation error, as upper-bounded by summing é(8, 8;) over all admissible angle pairs
(84, 6r), with multiplicity, in the region, is non-negligible however. In the next section we address this problem
by reducing the size of the region.

C.4 Adapting the region to reduce the error

In this section, we show that the sum of 13(961, 6;) over all admissible angle pairs (6,4, 8;), with multiplicity, in
the central region as defined below, captures a fraction of the probability mass in 7.

Definition C.11. The central region is the part of the plane where |8,| < B4 and |6y| < B, for By = 271
and By = B;/2, and for 7 an integer constant such that 1 < 7 < /-0 - 1.

In the next section, we describe how the approximation error, as upper-bounded by summing &(6,, 6,) over
all admissible angle pairs (6,4, 8;), with multiplicity, in the central region, depends on 7. For appropriate ¢
and 7, a large fraction of the probability mass is in the central region, whilst the total approximation error is
negligible in the region.

Note that by the above definition of B; and By, all argument pairs (a4, ar) such that |ayz| < 2™ and
lay| < 2™~ are in the central region. Note furthermore that By < By = 27 *171 < 2797171, 50 the central region
is a subregion of the region we considered in the previous section.
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C.4.1 The inner sum over g(0,4, 0;)

Lemma C.12. For 0r € 0,([-Br, B:]), the inner sum
> 88y, 6r) 2 22 (1 - 22;) )
04€64([-Bg, Bal, 6)) d
Proof. First observe that for I; = [-1/2°, -B,] U [Bg, 7/2°] we have
> 804, 61> 2°CT =N " g(0,, 61)
04€64([-Bqg, Bal, 6,) 04€64(l4, 6y)

as g(8,, 0;) is non-negative, and as by dividing the interval

Zg(ed) er) = Zg(ed) 9r)+
0a€04([-71/27, 1/2°),0,)  04€04(-71/29,-By), 6,)
Zg(ed’ 97)+

04€04([-Bg, Bal, 6,)

580y, 6)= 2200
04€64((By4, 1/29), 6,)

where we also used Lemma C.8. We hence seek an upper bound to

> g, 0= > g0a+[-2°d/r] 6,/2°,0)< Y h(Bq+[-2°d/r]| 6,/2°) (C1)

04€0,(14, 6;) 04€6,(1g, 6;) 04€0,(14, 6;)

that is independent of 8,, where we have used Claim C.3 to obtain (C1), by introducing the function h(6,) =
2%/(296,4)? that is strictly decreasing in |0].

The situation is depicted in Figure C2, where g(6,, ;) for 6, = 0 is plotted continuously in 8y, for |0,4| < 7
in the top graph, and |0,| < 77/2° in the middle graph.

Fixing a non-zero 6, < O,([-Bs, By)) shifts the top and middle graphs in Figure C2 cyclically by
[-2°d[r] 6,/2°. As | [-2°d[r] 6:/2° } < |0¢| < By, the maximum cyclic shift in 6, is upper-bounded by
By, see the bottom graph in Figure C2 where g(6, + Br, 0) is plotted in yellow and g(6, — By, 0) in green.

To upper-bound (C1) it therefore suffices to sum over all distinct admissible 8,4 on I = [-71/2°,-B/] U
[B:, m/2°], as this captures all distinct admissible 6 in the left and right tail regions under any cyclic shift.

We have that

€)= h6g+[-2°d/r] 6:/2°)

04€64(14, 6y)

< max E h(6 C2
Greer([_Br; Br]) ( d) ( )
04€0,(1;, 6,)

= Y hy) = > 2h(64) (C3)

04€04(Iy, 0) 04€04([By, 1/2°], 0)

due to symmetry, where we have maximized the set of admissible 8, over 6;.

Recall that by Lemma 4.4 there is one distinct admissible argument a; on the interval [0, 2™7) for a given
fixed ar. Hence there is one distinct admissible 64 on the interval [0, 2771 ) fora given fixed 6,. All other
distinct admissible 8, spread out from the starting point, equidistantly separated by a distance of 27¢~7*1 7,
The distinct admissible 8,; may occur with multiplicity; however all distinct admissible 6,; occur with the same
multiplicity, again see Lemma 4.4.

This implies that the sum in (C2) is maximized for 6, equal to zero, as both endpoints of the interval
Br < 16,4] < /27 are then admissible, maximizing both the number of distinct admissible 8, on the interval,
and the contribution from each distinct admissible 6, as h(8,) is strictly decreasing in |6].

By Claim C.7, the distinct admissible 6,; may be parameterized in u; and u, where

0,4(ug, ur) = 27 ((8;uy mod 2™7) + 2™ Yy )/ 2™+,
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9(04,0)
92(L—0)
04
- - o T
92(£=0)
H 9(04,0)
B h(0a) = 2"/(2704)*
04
\ I | w W g
5 q
» 0w ®
[19(04 + Br,0)
= g(0a — Br,0)
T T T T T T ed
| | | o] Jos] ”‘:.
| 5 < q
3 & p

Figure C2: The functions g(8,4, 0) and h(6,) = 2%/(2°6,)? plotted foro = 3,¢ = 9and t = 3. The maximum cyclic shift is
bounded by B, = B;/2.

Now 6, = 0 implies u, = 0, which in turn implies 277t = B;/2 = By < 2muy/2*" < /27, or more succinctly
27771 <y, < 2477971 which yields

2l+y-0-1 9 tty-0-1 25
C3) = 2h(0,(ug, uy)) =
( ) Z ( d( d r)) Z (20 27 ud/ze""Y)z
ud:zﬂ'y—l ud:zﬂ—y—l
3 224—'\{—0—1 3 5
_ 2o+ 2” Z 1 o2 2 oy 2 1
T2 u2 - 2 2T+-1 m2 27
ud=2”“f’1 d

where we have used Claim C.2 and that v = 0 and 7 > 1. This implies

5 5
-0ty ~20-0)4y 27 1 o(-0)4y 2° 1
> 864,61 = 2° -2 =2 (1—
27 207
04€0,4([-Bg,B4l, 6;) T T

and so the lemma follows.

C.4.2 The outer sum over f(0,)

Lemma C.13. For 0, € O,([-By, Br], the outer sum

mel—x, 2m+é 25 1
> f6)=2 {Tl (1—??).

60,€0,([-B, B,])
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Proof. First observe that for I, = [-m, -B] U [By, 1] it holds that
y 2m+€
Zf(er) 2 QMK ’77—‘ - Zf(er)
6,€6,([-B,, B,]) 6,€0,(I,)

as f(0,) is non-negative and
S f6)= S fO)+ S f60+ S f6n
0,€6,(-n, m)) 0,€06,(-n, -By)) 0,€6,([-B;, B;]) 0,€6,((B,, m)

where, by Lemma C.9, the left hand sum

_ Am+l—k;, 2m+€
Sofe) -ame | 2

60,€0,([-n, m))

To prove the lemma, we seek an upper bound to

24 2°
NYICOEEDS 5 c = (c4)

6,€0,1,) 0,€6,(I,) ' 6,€6,(B,, al) o

where we have used Claim C.3, that f(0;) is symmetric around the origin, and that the distinct admissible 6,
are equidistantly separated by a distance of 2% around the origin by Lemma 4.4. The distinct admissible 6,
may occur with multiplicity; however all distinct admissible 8, occur with the same multiplicity.

By Claim C.7, the distinct admissible 6, may be parameterized in u, where 0,(uy) = 271 (2u,)/2™¢, which
implies 277 = By < 271 (2% u,)/2™" < m, or more succinctly 2™ %1 < y, < 2™*~%~1 which yields

2m+£—xy—1 5 3 2m+l—xr—1
(C4) = Z 2— _ 22(m+£—x,)27 Z 1
((2m 2Ky [2mE)2 m? u?
u'=2m+r Kr-1 uy=2m+r Kr-1
< 22(m+€—1<,)273 2 _ 2m+2£—x,£i < 2m+é—x, "W-‘ 2751
- 7-[2 2m+‘r—K,—1 7-[2 27T © r 7-[2 27

where we have used Claim C.2 and that v > 0 and 7 > 1. This implies

m+0-K, 2m+€ m+l-K, 2m+€ 25 1
Zf(er)zz [T -2 5 |22

6,€0,([-B, B;])

_ 2m+£—x, 2m+l 1- isi
r 2 27

and so the lemma follows. O

C.4.3 Combined result

Lemma C.14. The combined sum over all distinct admissible angle pairs (04, 8:), in the central region where
|64] < B4 and |6;| < By, is

—~ —x r 2m+€ 25 1 2
0022 i [ 2] (1-5ge)

97 € @r([_Br; Br])
8a€04([-Ba, B4l, 6r)

Proof. From Lemmas C.12 and C.13 it follows that

. 20
S P00 00- s SfO) 3 804,60

ereer([’Bn Br]) ereer([’Bn Br]) edeed([’Bd; Bd]: er)
04€6,4([-Ba, Bal, 6;)
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2
N 220r 2m+£—x, . 22(5—0)*—’7 ﬂ 1- 275i
= 22(m+20) r m2 27

_ r 2m+£ 1 25 1 2
ST e =

and so the lemma follows. O

C.5 Main soundness result

In this section, we combine results from the previous sections into our main soundness result.

C.5.1 Bounding the probability mass in the central region

Theorem C.15. The sum of 13(6,1, 0;) over all admissible angle pairs (6,4, 6;), with multiplicity, in the central
region where |0,| < By and |0;| < By, is bounded by

r 2m+£ 25 1 2 K-y S r 2m+l
2m+€’7 - -‘<1_PF> szz P(Gd,Gy)s—zmM[ . -‘

gre @r([_Br; Br])
64€04([-Ba, Bal, 6r)

Proof. The theorem follows by combining Lemmas C.10 and C.14. O

Theorem C.15 above lower-bounds the fraction of the probability mass that is located within the central
region as a function of 7. The fraction of the probability mass that falls outside the central region decreases
exponentially in 7.

C.5.2 Bounding the total error in the central region

Theorem C.16. The total error when approximating P(0,4, 6;) by 13(6,1, 0:), as upper-bounded by summing
é(8y4, 0r) over all admissible angle pairs (04, 6r), with multiplicity, in the central region where |0,4| < B,z and
|0r| < By, is bounded by

6 5 T+0+2 T+0 m+4
Koy % maarn (202 2 2 r o [2
E 2 e(04,6r) <2 D (F+?>+ 57 b1 <1+ 57 b4 Sl .

97667([_137; Br])
04€04([-Bq, Bal, 6r)

where D is the density of admissible angle pairs (04, 0;) in the region.

Proof. The error when approximating P(64, 6;) by P(6,, ;) is bounded by

. 24 22 2° 20 ~

e(ed, er) = W + W + 7(‘9d| + ‘6r|) <2 + 7(‘6d| + |9r|)) P(ed, er)

by Theorem 3.22. We sum &(8, 6;) over all admissible angle pairs (6,4, 8;), with multiplicity, in the region
where |0,| < B; and |6;| < By, where By = 2! r and B, = B,/2 by Definition C.11. This is equivalent to
summing over all admissible argument pairs (a4, ar), with multiplicity, in the region where |a | < 2™ and
‘ar| < pmtT-1

As m > O0and 7 > 1 by Definition C.11, the area of this region is

(2 LT 1)(2 . 2m+1'—1 n 1) _ 22(m+‘r)+1 " 2m+‘r+1 $2MHT 4 q

< 22(m+1+1)
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from which it follows that the region contains at most 22(™*7*D D admissible pairs (8,4, 6;), where D is the
density of admissible pairs with multiplicity.

If we furthermore use that |64] + |6y < 272

m, this implies that

Z 257 80,4, 0y) < 52m+T+1) ) 2¢ i 2’ + zr—£+0+2n(1 . 21—£+0n) r amt
d> Vr7 = om+o " ym+é ym+é r
0,€0,([-B, B))

04€04([-Ba, Ba), 6r)

6 5 T+0+2 T+0 m+/¢
mi2T 2 2 2 2 r 2
<2 D(F+?)+ 27 n(1+ 57 n) 2m+£’7 - —‘

where we have used that

SN r 2m+£
> 2 P04, 60 < 5y [—, 1

6,€6,(-By, B/])
64€0,4(-Ba; Bal, 6;)

by Theorem C.15, and so the theorem follows. O

By Lemmas 4.7 and 4.8, the density D of admissible argument pairs (a4, ar), or equivalently angle pairs
(84, 6r), when accounting for multiplicity, in the region is approximately 2™ for random problem instances.
Asymptotically, the density tends to 27™ as m tends to infinity for fixed s.
Furthermore, the density is exactly 27™ in rectangular regions of the plane of side length multiples of 2™
and 2™ 7**r by Lemma 4.9. The region in Theorem C.16 above may be adapted to meet these requirements.
To understand the implications of the above theorem for the upper bound on the total approximation
error in the central region, it remains to select o to minimize the bound.

C.5.3 Selecting o to minimize the bound on the total error in the central region

To select the integer parameter ¢ on 0 < 0 < £ so as to minimize the bound on the total error given in
Theorem C.16, we first approximate the error bound by

221’+6 221’+5 21'+o+2 1 2T+0+2 2
+ + n+ | = b4
20 2¢ 2¢ (2 2¢ )

| 7
€1 €2 €3 €4
where we have used that D ~ 27" and (r/2™*) |2™*/r| ~ 1, with equality in the limit as m tends to infinity
for fixed s. The approximation is only good when all error terms are less than one, so the term €3 is greater
than e, = (e3/2)%. As €, does not depend on ¢, we hence seek to select o to equate €, and e3. This yields
221+6 21+a+2
20 T T 2f

n = 0= E(£+T+4—log2n)-‘.

If o is fixed accordingly, the error bound obtained by summing (6, 6,) analytically over all admissible
angle pairs (64, 6r), with multiplicity, in the region where |0,4| < B; and |6;| < By, is heuristically minimized.
For this o, the two main error terms

231/2+4

€1 = €3 = \/E (CS)

2£/2

For as long as 237/2*4 /7t is much smaller than 2¢/2, we heuristically expect the upper bound on the total
error given in Theorem C.16 to be negligible.
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C.5.4 Asymptotic soundness results

Theorem C.17. For fixed s and T, and o = L(Z +T+4-log, n)/ﬂ , the sum ofl~3(6d, 6r) over all admissible angle
pairs (64, 6r), with multiplicity, in the central region where |04| < By and |6y| < By, is bounded by

2
2° 1 . S
(1 - F?) < ”}gnw Z 2V P64, 0,) < 1 (C6)
6,€0,([-B;, B/])
04€04([-Bqg, Bal, 6))
in the limit as m tends to infinity. The error |P(04, 6r) - 13(6,1, 0:)| < (8,4, 6r) and the sum of &(84, 0;) over all
admissible angle pairs (04, 6;), with multiplicity, in the central region tends to

i K= 5 -
”}gnw E 2577 e(04,0,) =0 (C7)
6,€6,((-B, B,))
04€0,4([-Bg, Ba), 6r)
in the same limit.

Proof. The bound in (C6) follows immediately by taking the limit, as m tends to infinity for fixed s and 7, of
the bound given in Theorem C.15. Analogously (C7) follows by taking the limit, as m tends to infinity for fixed
s and 7, and for ¢ as in the formulation of this theorem, of Theorem C.16, where D tends to 27™ in the limit by
Lemma 4.8, and so the theorem follows. O

The above theorem states that an arbitrarily large constant fraction of the probability mass may be captured
asymptotically by expanding the region in 7.

As the bound on the error when approximating P(6,, 6;) by P(6,, 6,) in the region tends to zero asymp-
totically, 13(6,1, 6r) equals P(6,, 6;) asymptotically in the region. Furthermore, all probability mass is in the
region asymptotically when 7 tends to infinity with m at a moderated rate. This implies that 13(9,1, 0;) asympto-
tically captures the probability distribution completely and exactly. Corollary C.18 below formalizes these
observations:

Corollary C.18. For fixed s, for T = |¢/6] and 0 = L(Z +T+4-log, n)/ﬂ , the sum ofﬁ(@d, 6,) over all admis-
sible angle pairs (64, 0,), with multiplicity, in the central region where |04| < B4 and |0y| < By, tends to

lim > 2T P(6y, 60 = 1 (C8)
m-—-oo
0,€06,(-By, B,])
64€0,([-Bg, B4l, 6r)
in the limit as m tends to infinity. The error |P(04, 6r) - 13(6,1, 0:)| < (8,4, 6r) and the sum of &(84, 0;) over all
admissible angle pairs (04, 6;), with multiplicity, in the central region tends to

i K= 3 _
"}E)noo Z 2 e(Gd, 6,) =0 (C9)
6,€6,((-B, B,))
04€0,4([-Bg, Ba), 6r)
in the same limit.

Proof. The bound in (C8) follows immediately by taking the limit as m tends to infinity for fixed s, and for T as
in the formulation of this corollary, of the bound given in Theorem C.15. Analogously (C9) follows by taking the
limit, as m tends to infinity for fixed s, and for o and 7 as in the formulation of this corollary, of Theorem C.16,
where D tends to 27™ in the limit by Lemma 4.8. This is easy to see, as the two main error terms €; and €3 in
(C5) tend to

23L€/6'\ [2+4 2[/4+4 24

lim =———/m= lim Va= lim ——+/m=0,

m—soo 26/2 m—oco 2@/2 m—roo 25/4
where we may remove the rounding operation in the limit, and as the requirement that 1 < 7 < - ¢ - 1in

Definition C.11 is respected in the limit. Furthermore €4 < €3 in the limit, and it is easy to see that €, tends to
zero in the limit. The corollary follows from this analysis. O
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D Marginal distributions

By using results and notation from the soundness analysis in Appendix C, we may immediately derive a
closed-form expression for the marginal distribution that arises when summing P(6,, 6,) over all admissible
angles 0; with multiplicity.

Lemma D.1. For 6, € ©,([-n, m]), the marginal probability distribution that arises when summing f’(@d, 6r)
overall 04 € 04([-n/2%, n/2°), 6;) is

2Kr= r |’2m+f/r'|,1 s
Z 2kKr P(ed’ er) = 22(m+£) Z eler”r
edEQd([—ﬂ/Zo, /29), 6,) n,=0
when accounting for multiplicity.
Proof. By Lemma C.8 we have that
~ 220,
Zp(ed, r) = Wf(er) Zg(ed’ 0r)
04€04([-n1/2°, 1/29), 6,) 02€6,(-n1/2°, 11/29), 6,)
2
|'2m+l/r“ -1
_27r _27r i6,n,
© 92(m+0) f(6r) = 22(m+6) ZO €
n,=

from which the lemma follows, as the pairs (64, 8;) occur with multiplicity 2"~ by Lemma 4.4, and the angles
0, with multiplicity 2* by Lemma A.4. O

The above expression for the marginal probability distribution is derived from the approximation T’(Od, o).
It corresponds to the exact expression derived in Appendix A for the order-finding algorithm with tradeoffs.
Note that there are minor differences between the two expressions. These are explained by T’(Gd, 0;) being an
approximation to P(6, 6;), whilst the expression in Appendix A is exact.

Another way to understand why this correspondence arises is to observe that when using qubit recycling, j
may first be computed, after which k may be computed. At the point in time when j has been computed and
read out, but the computation of k has not yet begun, we will have executed Shor’s or Seifert’s order-finding
algorithms. Hence j, a; and 0, are distributed as in these algorithms.

A closed-form analytical expression for the marginal distribution that arises when summing over all
admissible 6, is seemingly less straightforward to derive. Numerically, the marginal distribution may however
be seen to correspond to that for short logarithms as stated in Section 5.2.
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