
Open Access. © 2021 M. Ekerå, published by De Gruyter. This work is licensed under the Creative Commons
Attribution 4.0 License

J. Math. Cryptol. 2021; 15:359–407

Research Article

Martin Ekerå*

Quantum algorithms for computing general
discrete logarithms and orders with tradeoffs
https://doi.org/10.1515/jmc-2020-0006
Received Feb 08, 2020; accepted Nov 20, 2020

Abstract:We generalize our earlier works on computing short discrete logarithms with tradeoffs, and bridge

them with Seifert’s work on computing orders with tradeoffs, and with Shor’s groundbreaking works on

computing orders and general discrete logarithms. In particular, we enable tradeoffs when computing general

discrete logarithms. Compared to Shor’s algorithm, this yields a reduction by up to a factor of two in the

number of group operations evaluated quantumly in each run, at the expense of having to perform multiple

runs. Unlike Shor’s algorithm, our algorithm does not require the group order to be known. It simultaneously

computes both the order and the logarithm. We analyze the probability distributions induced by our algorithm,

and by Shor’s and Seifert’s order-finding algorithms, describe how these algorithms may be simulated when

the solution is known, and estimate the number of runs required for a given minimum success probability

when making different tradeoffs.

Keywords: Discrete logarithms, Order finding, Shor’s algorithms

2020 Mathematics Subject Classification: 68Q12, 81P68, 94A60

1 Introduction
As in [5, 7, 8], letG under⊙ be a finite cyclic group of order r generated by g, and

x = [d] g = g ⊙ g ⊙ · · ·⊙ g⏟  ⏞  
d times

.

The discrete logarithm problem is to compute d = logg x given the group elements g and x. In cryptographic
applications, the groupG is typically a subgroup of F*p, for some prime p, or an elliptic curve group.

In the general discrete logarithmproblem0 ≤ d < r, whereas d is smaller than r by some order ofmagnitude

in the short discrete logarithm problem.

1.1 Earlier works

In 1994, in a groundbreaking publication, Shor [25, 26] introduced polynomial time quantum algorithms for

factoring integers and for computing general discrete logarithms in F*p. The latter algorithm may be trivially

adapted to compute general discrete logarithms in any finite cyclic group, provided that the group operation

can be implemented efficiently quantumly.

Ekerå [5] initiated a line of research in 2016 by introducing a modified version of Shor’s algorithm for

computing discrete logarithms that more efficiently solves the short discrete logarithm problem. This work

Article note: Funding and support was provided by the Swedish NCSA that is a part of the Swedish Armed Forces.

*Corresponding Author: Martin Ekerå: KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden; Swedish NCSA,

Swedish Armed Forces, SE-107 85 Stockholm, Sweden; Email: ekera@kth.se

https://doi.org/10.1515/jmc-2020-0006


360 | M. Ekerå

is of cryptographic relevance as the short discrete logarithm problem underpins the security of many imple-

mentations of cryptosystems instantiated with safe-prime groups. A notable example is Diffie-Hellman key

exchange [3] in TLS, IKE and NIST SP 800-56A [2, 9, 13].

In a follow-up work, Ekerå and Håstad [8] enabled tradeoffs in Ekerå’s algorithm using ideas that directly

parallel those of Seifert [24] in his work on enabling tradeoffs in Shor’s order-finding algorithm; the quantum

part of Shor’s factoring algorithm. Ekerå and Håstad furthermore showed how the RSA integer factoring

problem, that underpins the widely deployed RSA cryptosystem [21], may be reduced via [11] to a short discrete

logarithm problem and attacked quantumly. This gives rise to a quantum algorithm that more efficiently

solves the RSA integer factoring problem when making tradeoffs and comparing to Shor’s original factoring

algorithm, or to Seifert’s factoring algorithm.

Ekerå [7] subsequently refined the classical post-processing in [8] to render it more efficient. With this

improved post-processing, the algorithm of Ekerå and Håstad is shown in [7] to outperform Shor’s and Seifert’s

factoring algorithms when targeting RSA integers, irrespective of whether tradeoffs are made.

A key component to this result was the development of a classical simulator for the quantum algorithm

for computing short discrete logarithms: For problem instances for which the solution is classically known,

this simulator allows outputs to be generated that are representative of outputs that would be generated by

the quantum algorithm if executed on a quantum computer. This in turn allows the efficiency of the classical

post-processing to be experimentally assessed.

1.2 Our contributions

We generalize and bridge our earlier works on computing short discrete logarithms with tradeoffs, Seifert’s

work on computing orders with tradeoffs and Shor’s groundbreaking works on computing orders and general

discrete logarithms. In particular, we enable tradeoffs when computing general discrete logarithms.

Compared to Shor’s algorithm for computing general discrete logarithms, this yields a reduction by up

to a factor of two in the number of group operations evaluated quantumly in each run, at the expense of

having to performmultiple runs. Unlike Shor’s algorithm, our algorithm does not require the group order to be

known. It simultaneously computes both the order and the logarithm. This allows our algorithm to outperform

Shor’s original algorithms with respect to the overall number of group operations that need to be evaluated

quantumly in some cases even when not making tradeoffs. One cryptographically relevant example of such a

case is the computation of discrete logarithms in Schnorr groups of unknown order.

We analyze the probability distributions induced by our algorithm, and by Shor’s and Seifert’s order-

finding algorithms, describe how all of these algorithms may be simulated when the solution to the problem

instance is known, and estimate the number of runs required for a given minimum success probability when

making different tradeoffs.

1.2.1 On the cryptographic significance of this work

The security of virtually all currently widely deployed asymmetric cryptosystems is based on the intractability

of either the discrete logarithm problem or the integer factoring problem.

In this work, we further the understanding of how hard these two key problems are to solve quantumly

when not on special form. We hope that our results may prove useful when developing cost estimates for

quantum attacks, and that they may inform decisions on when to mandate migration from the currently

deployed asymmetric cryptosystems to post-quantum secure cryptosystems.

1.2.2 Further details and overview

Our algorithm for computing general discrete logarithms in turn consists of two algorithms;



Computing general discrete logarithms and orders with tradeoffs | 361

– a quantum algorithm, that upon input of a generator g of order r, and an element x = [d] g where
0 ≤ d < r, outputs a pair (j, k), and

– a classical probabilistic post-processing algorithm, that upon input of a set of n pairs (j, k), produced by
n runs of the quantum algorithm, computes d.

In addition to the above post-processing algorithm, we furthermore specify

– a classical probabilistic post-processing algorithm, that upon input of a set of n integers j computes

the order r. Note that the same set of integers j may be used as input to both this and the above post-

processing algorithm, by breaking out j from the pairs (j, k).

The quantum algorithm is identical to the algorithm in [7, 8] for computing short discrete logarithms with

tradeoffs. The key difference in this work is that we admit general discrete logarithms and comprehensively

analyze the probability distribution that the algorithm induces for such logarithms.

The post-processing algorithm for d is a tweaked version of the lattice-based algorithm in [7], whereas the

algorithm for r is a natural generalization of the lattice-based algorithm in [7] first sketched in a pre-print of

[8]. It is similar to the post-processing in [24].

The quantum algorithm is parameterized under a tradeoff factor s. This factor controls the tradeoff between
the requirements that the algorithm imposes on the quantum computer, and the number of runs, n, required
to attain a given minimum probability q of recovering d and r in the classical post-processing.

Following [7], we estimate n for a given problem instance, represented by d and r, and fixed s and q, by
simulating the quantum algorithm. We first use simulated output to heuristically estimate n, and then verify
the estimate by executing the two post-processing algorithms with respect to simulated output.

The simulator is based on a high-resolution two-dimensional histogram of the probability distribution

induced by the quantum algorithm. By sampling the histogram, we generate pairs (j, k) that very closely
approximate output that would be produced by the quantum algorithm if executed on a quantum computer.

To construct the histogram, we first derive a closed-form expression that approximates the probability of

the quantum algorithm yielding (j, k) as output, and an upper bound on the error in the approximation. We

then integrate this expression and the error bound numerically in different regions of the plane.

Our simulations show that when not making tradeoffs, a single run suffices to compute d or r with ≥ 99%
success probability. When making tradeoffs, slightly more than s runs are typically required to achieve a

similar success probability. In Appendix A we show that these results extend to order finding and factoring.

Note that the simulator requires d and r to be explicitly known: It cannot be used for problem instances

represented by group elements g and x = [d] g.

1.2.3 Structure of this paper

The quantum algorithm is described in Section 2. In Section 3, we analyze the probability distribution it

induces, and derive a closed-form expression that approximates the probability of it yielding (j, k) as output. In
Sections 4 and 5, we describe how the high-resolution histogram is constructed by integrating the closed-form

expression, and how the histogram is sampled to simulate the quantum algorithm.

In Section 6, we describe the two post-processing algorithms for recovering d and r from a set of n pairs
(j, k). In Section 7, we use the simulator to estimate the number of runs n required to solve a given problem
instance for d and r, with minimum success probability q, as a function of the tradeoff factor s.

We summarize past and new results, and discuss related applications, such as order finding and integer

factoring, in Sections 8 and 9, and in the appendices.

1.3 Notation

The below notation is used throughout this paper:



362 | M. Ekerå

– u mod n denotes u reduced modulo n constrained to [0, n).
– {u}n denotes u reduced modulo n constrained to [−n/2, n/2).
– ⌈u⌉, ⌊u⌋ and ⌊u⌉ denotes u rounded up, down and to the closest integer.
– |a + ib| =

√
a2 + b2 where a, b ∈ R denotes the Euclidean norm of a + ib.

– |u| denotes the Euclidean norm of the vector u = (u0, . . . , un−1) ∈ Rn.
– u ∼ v is used to denote that u and v are approximately of similar size.

1.4 Randomization

Given two group elements g and x′ = [d′] g to be solved for d′, the general discrete logarithm problem may be

randomized as follows:

1. Select a random integer t. Let x = x′ ⊙ [t] g = [d] g.
2. Solve g and x for d ≡ d′ + t (mod r) and optionally for r.
3. Compute and return d′ ≡ d − t (mod r).

Hence, wemay assumewithout loss of generality that d is selected uniformly at random on [0, r) in the analysis
of the quantum algorithm.

If r is known, t should be selected uniformly at random on [0, r), otherwise on [0, 2

m+c
) for m the bit

length of r and c a sufficiently large integer constant for the selection of x to be indistinguishable from a

uniform selection from G. Solving for r in step 2 is only necessary if r is unknown and d′ must be on [0, r)
when returned.

2 The quantum algorithm
In this section we describe the quantum algorithm, that upon input of a generator g and an element x = [d] g,
where 0 ≤ d < r, outputs a pair (j, k) and element y.

As stated earlier, the algorithm is parameterized under a small integer constant s ≥ 1, referred to as the
tradeoff factor, that controls the tradeoff between the number of runs required and the requirements imposed

on the quantum computer.

1. Let m be the integer such that 2

m−1
≤ r < 2m, let ℓ = ⌈m/s⌉, and let

Ψ =

1√
2
m+2ℓ

2

m+ℓ
−1∑︁

a=0

2

ℓ
−1∑︁

b=0

| a, b, 0 ⟩ .

2. Compute [a] g ⊙ [−b] x = [a − bd] g to the third register to obtain

Ψ =

1√
2
m+2ℓ

2

m+ℓ
−1∑︁

a=0

2

ℓ
−1∑︁

b=0

⃒⃒
a, b, [a − bd] g

⟩︀
.

3. Compute QFTs of size 2

m+ℓ
and 2

ℓ
of the first two registers to obtain

Ψ =

1

2
m+2ℓ

2

m+ℓ
−1∑︁

a=0

2

ℓ
−1∑︁

b=0

2

m+ℓ
−1∑︁

j=0

2

ℓ
−1∑︁

k=0

e

2πi (aj+2mbk)/2m+ℓ ⃒⃒ j, k, [a − bd] g ⟩︀ .
4. Observe the system to obtain (j, k) and y = [e] g where e = (a − bd) mod r.

Note that y is observed only to highlight that the system is forced to collapse to combinations of a and b
such that e = (a − bd) mod r for fixed e.

The above steps may be interleaved, rather than executed sequentially, so as to allow the qubits in the first

two registers to be recycled [10, 18, 19]. A single control qubit then suffices to implement the first two control



Computing general discrete logarithms and orders with tradeoffs | 363

registers. This is possible as the qubits in the control registers are not initially entangled; the registers are

initialized to uniform superpositions of 2

m+ℓ
and 2

ℓ
values, respectively.

In Shor’s algorithm for computing general discrete logarithms, the two control registers are instead of

length m qubits. Both registers are initialized to uniform superpositions of r values. This makes the single

control qubit optimization less straightforward to apply, and the initial superpositions harder to induce. Apart

from this difference, the implementation complexity of Shor’s algorithm and our algorithm may be compared

in a fair manner in terms of the total exponent lengths.

In practice, the exponentiation of group elements would typically be performed by computing a group

operation controlled by each bit in the exponent. Hence, a total of 2m group operations are performed in

Shor’s algorithm, compared tom+2m/s in our algorithm. As s increases, this tends tom operations, providing

an advantage over Shor’s original algorithm by up to a factor of two at the expense of having to execute the

algorithm multiple times. This reduction in the number of group operations translates into a corresponding

reduction in the coherence time and circuit depth requirements of our quantum algorithm.

Note that our algorithmdoesnot require r to be known. It suffices that the size of r is known. For comparison,

Shor’s algorithm requires r to be known. This explains why Shor needs to perform only 2m operations, whilst

we need 3m operations when not making tradeoffs. As we shall see, we do in fact compute both d and r
simultaneously, whilst Shor computes d given r.

3 The probability of observing (j, k) and y
In step 4 of the algorithm in Section 2, we obtain (j, k) and y = [e] g with probability

1

2
2(m+2ℓ)

⃒⃒⃒⃒
⃒∑︁a

∑︁
b

exp

[︂
2πi
2
m+ℓ (aj + 2

mbk)
]︂⃒⃒⃒⃒
⃒
2

(1)

where the sum is over all pairs (a, b), such that 0 ≤ a < 2

m+ℓ
and 0 ≤ b < 2

ℓ
, respecting the condition

e ≡ a−bd (mod r). In this section, we seek a closed-form error-bounded approximation to (1) summed over all

y = [e] g ∈ G. To this end, we first perform a variable substitution to obtain contiguous summation intervals.

As a = e + bd + nrr for nr an integer such that 0 ≤ a = e + bd + nrr < 2m+ℓ, it follows that⌈︀
−(e + bd)/r

⌉︀
≤ nr <

⌈︁
(2

m+ℓ
− (e + bd))/r

⌉︁
. (2)

Substituting a for e + bd + nrr in (1) and adjusting the phase therefore yields

1

2
2(m+2ℓ)

⃒⃒⃒⃒
⃒⃒2

ℓ
−1∑︁

b=0

⌈(2m+ℓ−(e+bd))/r⌉−1∑︁
nr=⌈−(e+bd)/r⌉

exp

[︂
2πi
2
m+ℓ (nrrj + b(dj + 2

mk))
]︂⃒⃒⃒⃒⃒⃒

2

. (3)

By introducing arguments αd and αr, and corresponding angles θd and θr, where

αd = {dj + 2mk}
2
m+ℓ αr = {rj}

2
m+ℓ θd = θ(αd) =

2παd
2
m+ℓ θr = θ(αr) =

2παr
2
m+ℓ

we may write (3) as a function of αd and αr, and e, as

1

2
2(m+2ℓ)

⃒⃒⃒⃒
⃒⃒2

ℓ
−1∑︁

b=0

⌈(2m+ℓ−(e+bd))/r⌉−1∑︁
nr=⌈−(e+bd)/r⌉

exp

[︂
2πi
2
m+ℓ (nrαr + bαd)

]︂⃒⃒⃒⃒⃒⃒
2

(4)

or of θd and θr, and e, as

ρ(θd , θr , e) =
1

2
2(m+2ℓ)

⃒⃒⃒⃒
⃒⃒2

ℓ
−1∑︁

b=0

e

iθdb
⌈(2m+ℓ−(e+bd))/r⌉−1∑︁
nr=⌈−(e+bd)/r⌉

e

iθrnr

⃒⃒⃒⃒
⃒⃒
2

. (5)



364 | M. Ekerå

This implies that the probability of observing the pair (j, k) and y = [e] g depends only on (αd , αr) and e,
or equivalently on (θd , θr) and e. The probability is virtually independent of e in practice, as e can at most

shift the endpoints of the summation interval in the inner sums in (4) and (5) by one step.

Aswas stated above,we seek a closed-form approximation to ρ(θd , θr , e) summed over all r group elements

y = [e] g ∈ G. Hereinafter, we denote this probability

P(θd , θr) =
r−1∑︁
e=0

ρ(θd , θr , e) =
1

2
2(m+2ℓ)

r−1∑︁
e=0

⃒⃒⃒⃒
⃒⃒2

ℓ
−1∑︁

b=0

e

iθdb
⌈(2m+ℓ−(e+bd))/r⌉−1∑︁
nr=⌈−(e+bd)/r⌉

e

iθrnr

⃒⃒⃒⃒
⃒⃒
2

,

and we furthermore use angles and arguments interchangeably, depending on which representation best

lends itself to analysis in each step of the process.

3.1 Preliminaries

To gain some intuition, we write ρ(θd , θr , e) as

1

2
2(m+2ℓ)

⃒⃒⃒⃒
⃒⃒2

ℓ
−1∑︁

b=0

e

i(θdb+θr⌈−(e+bd)/r⌉)
⌈(2m+ℓ−(e+bd))/r⌉−⌈−(e+bd)/r⌉−1∑︁

nr=0
e

iθrnr

⃒⃒⃒⃒
⃒⃒
2

and note that there are two obstacles to placing this expression on closed form:

Firstly, the summation interval in the inner sum over nr depends on the summation variable b of the outer
sum. Secondly, the exponent of the summand in the outer sum over b contains a rounding operation that
depends on b.

By using that

⌈︁
(2

m+ℓ
− (e + bd))/r

⌉︁
−

⌈︀
−(e + bd)/r

⌉︀
≈

⌈︁
2

m+ℓ
/r
⌉︁
we may remove the dependency between

the inner and outer sums, and by using that

⌈︀
−(e + bd)/r

⌉︀
≈ −(e+bd)/rwemay remove the rounding operation.

By making these two approximations, and by adjusting the phase, we may derive an approximation to

ρ(θd , θr , e) that is independent of e, enabling us to sum ρ(θd , θr , e) over the r values of e, corresponding to
the r group elements y = [e] g ∈ G, simply by multiplying by r. This yields

P(θd , θr) ≈
r

2
2(m+2ℓ)

⃒⃒⃒⃒
⃒⃒2

ℓ
−1∑︁

b=0

e

i(θd−θrd/r)b

⃒⃒⃒⃒
⃒⃒
2

⃒⃒⃒⃒
⃒⃒⌈2

m+ℓ
/r⌉−1∑︁

nr=0
e

iθrnr

⃒⃒⃒⃒
⃒⃒
2

=

r
2
2(m+2ℓ)

⃒⃒⃒⃒
⃒ei2

ℓ
(θd−θrd/r)

− 1

e
i(θd−θrd/r)

− 1

⃒⃒⃒⃒
⃒
2

⃒⃒⃒⃒
⃒ei⌈2

m+ℓ
/r⌉θr

− 1

e
iθr
− 1

⃒⃒⃒⃒
⃒
2

(6)

where we furthermore need to assume in (6) that θd − θrd/r ≠ 0 and θr ≠ 0.
This closed-formapproximation captures the general characteristics of the probability distribution induced

by the quantum algorithm. However, it is seemingly non-trivial to derive a good bound for the error in this

approximation.

In what follows, we use techniques similar to those employed above to derive an error-bounded closed-

form approximation to ρ(θd , θr , e) such that the error is negligible in the regions of the plane where the

probability mass is concentrated. As was the case above, we will find that the error-bounded approximation of

ρ(θd , θr , e) is independent of e, enabling us to approximate P(θd , θr) simply by multiplying the closed-form

approximation to ρ(θd , θr , e) by r.

3.1.1 Constructive interference

Before we proceed to develop the closed-form approximation, we note that for a fixed problem instance and

fixed e, the sums in ρ(θd , θr , e) are over a constant number of unit vectors in the complex plane. For such

sums, constructive interference arises when all vectors point in approximately the same direction.



Computing general discrete logarithms and orders with tradeoffs | 365

In regions of the plane where θr and θd − θrd/r are both small, we hence expect constructive interference

to arise. The probability mass is expected to concentrate in regions where constructive interference arises, and

where the concentration of pairs (θd , θr) yielded by the integers pairs (j, k) is great.
In what follows, we therefore seek to derive a closed-form approximation to ρ(θd , θr , e), and an associated

bound on the error in the approximation, such that the error is small when θr and θd − θrd/r are small.

3.2 Closed-form approximation with error bounds

To derive a closed-form approximation to ρ(θd , θr , e), we first observe that the sums in the expression for

ρ(θd , θr , e) may be regarded as sums over the points in a region R in a lattice La,b, as is illustrated in Figure 1.
Note that this figure also contains other elements to which we shall return as the analysis progresses.

a− e

b

2` − 1

2m+` − e− 1

−e
0

A

Figure 1: The lattice La,b for σ = 2, m = ℓ = 5, e = 0, r = 31 and d = 27. All red filled points are in R. The regionA and its
translated replicas are drawn as dashed rectangles. All blue outlined points are inA or in one of its replicas. The gray triangles
outline the points that are inA or one of its replicas, but not in R, and vice versa.

Definition 3.1. Let La,b be the lattice spanned by (d, 1) and (r, 0) so that the set of points in La,b is given by
(a − e, b) = b(d, 1) + nr(r, 0) for integers b and nr.

Definition 3.2. Let R be the region in La,b where 0 ≤ a < 2

m+ℓ
and 0 ≤ b < 2

ℓ
.



366 | M. Ekerå

Definition 3.3. Let

SR =

|sR|2

2
2(m+2ℓ) where sR =

∑︁
(a,b)∈R

exp

[︂
2πi
2
m+ℓ (aj + 2

mbk)
]︂
.

Claim 3.4. The probability ρ(θd , θr , e) = SR.

Proof. The points in R are given by (a − e, b) = b(d, 1) + nr(r, 0), for 0 ≤ b < 2

ℓ
and nr on (2) so that

0 ≤ a = e + bd + nrr < 2m+ℓ, which implies that

SR =

1

2
2(m+2ℓ)

⃒⃒⃒⃒
⃒⃒2

ℓ
−1∑︁

b=0

⌈(2m+ℓ−(e+bd))/r⌉−1∑︁
nr=⌈−(e+bd)/r⌉

exp

[︂
2πi
2
m+ℓ (nrrj + b(dj + 2

mk))
]︂⃒⃒⃒⃒⃒⃒

2

=

1

2
2(m+2ℓ)

⃒⃒⃒⃒
⃒⃒2

ℓ
−1∑︁

b=0

e

iθdb
⌈(2m+ℓ−(e+bd))/r⌉−1∑︁
nr=⌈−(e+bd)/r⌉

e

iθrnr

⃒⃒⃒⃒
⃒⃒
2

= ρ(θd , θr , e)

by the preliminary analysis in Section 3 and so the claim follows.

In what follows, we derive a closed-form approximation to ρ(θd , θr , e) = SR, and an associated error bound,
in three steps.

3.2.1 Preliminaries

Before proceeding as outlined above, we first introduce some preliminary claims.

Claim 3.5. For u, v ∈ C and ∆ = u − v it holds that⃒⃒⃒
|u|2 − |v|2

⃒⃒⃒
≤ 2 |u| |∆| + |∆|2.

Proof. First verify that

|u|2 − |v|2 = |u|2 − |u − ∆|2 = uu − (u − ∆)(u − ∆)
= uu − (u − ∆)(u − ∆) = u∆ + u∆ − |∆|2

where the overlines denote complex conjugates. This implies that⃒⃒⃒
|u|2 − |v|2

⃒⃒⃒
≤ |u| |∆| + |u| |∆| + |∆|2 = 2 |u| |∆| + |∆|2

and so the claim follows.

Claim 3.6. |eiϕ − 1| ≤ |ϕ| for any ϕ ∈ R.

Proof. It suffices to show that |eiϕ − 1|2 = 2(1 − cosϕ) ≤ ϕ2

from which the claim follows as cosϕ ≥ 1 − ϕ2

/2

for any ϕ ∈ R.

3.2.2 Bounding |sR|

Before proceeding to the first approximation step, we furthermore bound |sR| in this section, as this bound is
needed in the following analysis.

Lemma 3.7. The sum sR is bounded by |sR| ≤ 22ℓ+1.



Computing general discrete logarithms and orders with tradeoffs | 367

Proof. By Claim 3.4 the sum

sR =

2

ℓ
−1∑︁

b=0

e

iθdb
⌈(2m+ℓ−(e+bd))/r⌉−1∑︁
nr=⌈−(e+bd)/r⌉

e

iθrnr

where the outer sum over b is over 2ℓ values and the inner sum over nr is over at most 2

ℓ+1
values by Claim 3.8

below. As sR is a sum of at most 2

2ℓ+1
complex unit vectors, it follows that |sR| ≤ 22ℓ+1, and so the lemma

follows.

Claim 3.8. For ∆ =

⌈︁
(2

m+ℓ
− (e + bd))/r

⌉︁
−

⌈︀
−(e + bd)/r

⌉︀
, it holds that

∆ =

⌈︁
2

m+ℓ
/r
⌉︁
− t ≤ 2ℓ+1 for some t ∈ {0, 1}.

Proof. For some f
1
, f

2
∈ [0, 1), it holds that

∆ =

⌈︁⌈︁
2

m+ℓ
/r
⌉︁
− f

1
+

⌈︀
−(e + bd)/r

⌉︀
− f

2

⌉︁
−

⌈︀
−(e + bd)/r

⌉︀
=

⌈︁
2

m+ℓ
/r
⌉︁
+

⌈︀
−(e + bd)/r

⌉︀
−

⌈︀
−(e + bd)/r

⌉︀⏟  ⏞  
=0

+ ⌈−f
1
− f

2
⌉

=

⌈︁
2

m+ℓ
/r
⌉︁
− ⌊f

1
+ f

2
⌋ =
⌈︁
2

m+ℓ
/r
⌉︁
− t

where t = ⌊f
1
+ f

2
⌋ ∈ {0, 1} as f

1
+ f

2
∈ [0, 2). Furthermore, recall that r ≥ 2

m−1
. Hence, it follows that

2

m+ℓ
/r ≤ 2ℓ+1, so ∆ =

⌈︁
2

m+ℓ
/r
⌉︁
− t ≤ 2ℓ+1, and so the claim follows.

3.2.3 Approximating SR by SATA

In the first approximation step, we approximate SR by first summing the points in a small region A in R,

and by then replicating and translating the points inA, and the associated sum over these points, so as to

approximately cover R, see Figure 1.

Definition 3.9. Let A be the region in La,b where 0 ≤ a < 2

m+ℓ
and 0 ≤ b < 2

σ
for σ an integer parameter

selected on 0 < σ < ℓ.

Definition 3.10. Let

SA =

|sA|2

2
2(m+2ℓ) where sA =

∑︁
(a,b)∈A

exp

[︂
2πi
2
m+ℓ (aj + 2

mbk)
]︂
.

Claim 3.11.

SA =

1

2
2(m+2ℓ)

⃒⃒⃒⃒
⃒⃒2

σ
−1∑︁

b=0

e

iθdb
⌈(2m+ℓ−(e+bd))/r⌉−1∑︁
nr=⌈−(e+bd)/r⌉

e

iθrnr

⃒⃒⃒⃒
⃒⃒
2

.

Proof. The points in A are given by (a − e, b) = b(d, 1) + nr(r, 0) for 0 ≤ b < 2

σ
and nr on (2) so that

0 ≤ a = e + bd + nrr < 2m+ℓ, which implies that

SA =

1

2
2(m+2ℓ)

⃒⃒⃒⃒
⃒⃒2

σ
−1∑︁

b=0

⌈(2m+ℓ−(e+bd))/r⌉−1∑︁
nr=⌈−(e+bd)/r⌉

exp

[︂
2πi
2
m+ℓ (nrrj + b(dj + 2

mk))
]︂⃒⃒⃒⃒⃒⃒

2

=

1

2
2(m+2ℓ)

⃒⃒⃒⃒
⃒⃒2

σ
−1∑︁

b=0

e

iθdb
⌈(2m+ℓ−(e+bd))/r⌉−1∑︁
nr=⌈−(e+bd)/r⌉

e

iθrnr

⃒⃒⃒⃒
⃒⃒
2



368 | M. Ekerå

in analogy with the analysis in Section 3, but with b on 0 ≤ b < 2

σ
as opposed to 0 ≤ b < 2

ℓ
, and so the claim

follows.

To replicate and translate the points inA so as to approximately cover R, we furthermore introduce tA and

TA, as defined below:

Definition 3.12. Let

TA = |tA|2 where tA =

2

ℓ−σ
−1∑︁

t=0
e

i(θd2σ+θr⌈−2σd/r⌉) t
.

The error when approximating SR by SATA may now be bounded as follows:

Lemma 3.13. The error when approximating sR by sAtA is bounded by

|sR − sAtA| ≤ 22ℓ−σ+1.

Proof. The exponential sum tA replicates and translates the partial sum overA so as to approximately cover

R as is illustrated in Figure 1. Every time the region is replicated, it is translated by a vector in La,b that
corresponds to e

i(θd2σ+θr⌈−2σd/r⌉)
.

The error that arises when sR is approximated by sAtA is hence due to points that are in R but excluded

from the sum, and conversely to points not in R that are erroneously included in the sum. Hereinafter these

points will be referred to as the erroneous points.

The erroneous points fall within the two gray triangles in Figure 1. Both triangles are of horizontal side

length 2

ℓ
and vertical side length 2

ℓ−σ
(2

σd mod r), as the regionA is replicated and translated 2

ℓ−σ
times in

total, and as it is shifted horizontally by 2

σ
and vertically by 2

σd mod r every time it is translated.

To upper-bound the number of lattice points in each triangle, note that the lattice points are on 2

ℓ
vertical

lines, evenly separated horizontally by a distance of one. The points on each vertical line are evenly separated

vertically by a distance of r, with varying starting positions on each line. For h(b) = 2

ℓ−σ
(2

σd mod r)(b/2ℓ)
the height of each triangle at b, we have that at most

N(b) = 1 +

⌊︂
h(b)
r

⌋︂
≤ 1 +

h(b)
r = 1 +

2

σd mod r

r
b
2
σ ≤ 1 +

b
2
σ

lattice points are then on the vertical line that cuts through the triangle at b, as may be seen by maximizing

over all possible starting points. By summing N(b) over all 2ℓ lines, we thus obtain an upper bound of

2

ℓ
−1∑︁

b=0

N(b) ≤ 2ℓ + 1

2
σ

2

ℓ
−1∑︁

b=0

b = 2

ℓ
+

1

2
σ
2

ℓ
(2

ℓ
− 1)

2

≤ 2

2ℓ−σ

on the number of points in each triangle, where we have used that 2

2ℓ−σ−1
≥ 2

ℓ
as σ is an integer on 0 < σ < ℓ.

As there are two triangles, the total number of erroneous points is upper-bounded by 2 · 2

2ℓ−σ
= 2

2ℓ−σ+1
.

Each erroneous point corresponds to a unit vector in the complex sum sR − sAtA, which implies |sR − sAtA| ≤
2

2ℓ−σ+1
, and so the lemma follows.

Lemma 3.14. The error when approximating SR by SATA is bounded by

|SR − SATA| ≤ 2−2m−σ+4.

Proof. By Claim 3.5, it holds that⃒⃒⃒
|sR|2 − |sAtA|2

⃒⃒⃒
≤ 2 |sR| |sR − sAtA| + |sR − sAtA|2

≤ 2 · 2

2ℓ+1
· 2

2ℓ−σ+1
+ 2

4ℓ−2σ+2
≤ 3 · 2

4ℓ−σ+2
≤ 2

4(ℓ+1)−σ

as |sR − sAtA| ≤ 22ℓ−σ+1 by Lemma 3.13 and |sR| ≤ 22ℓ+1 by Lemma 3.7.



Computing general discrete logarithms and orders with tradeoffs | 369

From the above, and Definitions 3.3, 3.10 and 3.12, we have that

|SR − SATA| =
⃒⃒
|sR|2 − |sAtA|2

⃒⃒
2
2(m+2ℓ) ≤

2

4(ℓ+1)−σ

2
2(m+2ℓ) = 2

−2m−σ+4

and so the lemma follows.

As tA is a geometric sum TA = |tA|2 may be placed on closed form. It remains to derive a closed-form

approximation to SA. In what follows, we do this in two additional approximation steps.

3.2.4 Approximating SA by S′A

In the second approximation step, we derive a closed-form approximation to SA, by first approximating SA
by the product S′A of two sums, such that the leading summay be placed on closed form, and such that the

trailing summay be placed on closed form by means of a third approximation step.

Definition 3.15. Let

S′A =

⃒⃒
s′A
⃒⃒
2

2
2(m+2ℓ) where s′A =

2

σ
−1∑︁

b=0

e

i(θdb+θr⌈−(e+bd)/r⌉)
⌈2m+ℓ/r⌉−1∑︁

nr=0
e

iθrnr
.

Lemma 3.16. The error when approximating sA by s′A is bounded by

|sA − s′A| ≤ 2σ .

Proof. As sA and s′A are sums of complex unit vectors, and as the sums differ by at most 2

σ
vectors, as may be

seen by comparing the summation intervals using Claim 3.8, it follows that |sA − s′A| ≤ 2σ, and so the lemma

follows.

Lemma 3.17. The sum s′A is bounded by |s′A| ≤ 2ℓ+σ+1.

Proof. In the expression for s′A in Definition 3.15, the sum over b assumes 2

σ
values and the sum over nr

assumes at most 2

ℓ+1
values as the order r ≥ 2m−1. As s′A is a sum of at most 2

ℓ+σ+1
complex unit vectors, it

follows that |s′A| ≤ 2ℓ+σ+1, and so the lemma follows.

Lemma 3.18. The error when approximating SA by S′A is bounded by

|SA − S′A| ≤ 2−2m−3ℓ+2σ+3.

Proof. By Claim 3.5, it holds that⃒⃒⃒
|sA|2 − |s′A|2

⃒⃒⃒
≤ 2

⃒⃒
s′A
⃒⃒ ⃒⃒
sA − s′A

⃒⃒
+

⃒⃒
sA − s′A

⃒⃒
2

≤ 2 · 2

ℓ+σ+1
· 2

σ
+ 2

2σ
≤ 3 · 2

ℓ+2σ+1
≤ 2

ℓ+2σ+3

as |sA − s′A| ≤ 2σ by Lemma 3.16 and |s′A| ≤ 2ℓ+σ+1 by Lemma 3.17.

From the above, and Definitions 3.10 and 3.15, we have that

⃒⃒
SA − S′A

⃒⃒
=

⃒⃒
|sA|2 − |s′A|2

⃒⃒
2
2(m+2ℓ) ≤

2

ℓ+2σ+3

2
2(m+2ℓ) = 2

−2m−3ℓ+2σ+3

and so the lemma follows.

The trailing sum in s′A is geometric. Hence, it may be trivially placed on closed form. Due to the rounding

operation in the exponent, this approach is not valid for the leading sum; we need a third approximation step.



370 | M. Ekerå

3.2.5 Approximating S′A by S′′A

For θd and θr such that the angles θdb + θr
⌈︀
−(e + bd)/r

⌉︀
≈ (θd − θrd/r) b in the leading sum in S′A are small

for all b on 0 ≤ b < 2

σ
, all 2

σ
terms in the sum are approximately one. In the third and final step of the

approximation, we bound the error when simply approximating all terms in the leading sum by one.

Definition 3.19. Let

S′′A =

|s′′A|2

2
2(m+2ℓ) where s′′A = 2

σ
⌈2m+ℓ/r⌉−1∑︁

nr=0
e

iθrnr
.

Lemma 3.20. The difference between s′A and s′′A is bounded by

|s′A − s′′A| ≤ 2σ−1 (|θd| + |θr|) |s′′A|.

Proof. First observe that

|s′A − s′′A| =

⃒⃒⃒⃒
⃒⃒2

σ
−1∑︁

b=0

(︁
e

i(θdb+θr⌈−(e+bd)/r⌉)
− 1

)︁⃒⃒⃒⃒⃒⃒⏟  ⏞  
|∆|

⃒⃒⃒⃒
⃒⃒⌈2

m+ℓ
/r⌉−1∑︁

nr=0
e

iθrnr

⃒⃒⃒⃒
⃒⃒ .

By using Claim 3.6 and the triangle inequality, it follows that

|∆| =

⃒⃒⃒⃒
⃒⃒2

σ
−1∑︁

b=0

(︁
e

i(θdb+θr⌈−(e+bd)/r⌉)
− 1

)︁⃒⃒⃒⃒⃒⃒ ≤ 2

σ
−1∑︁

b=0

⃒⃒⃒
e

i(θdb+θr⌈−(e+bd)/r⌉)
− 1

⃒⃒⃒

≤

2

σ
−1∑︁

b=0

⃒⃒
θdb + θr

⌈︀
−(e + bd)/r

⌉︀⃒⃒
=

2

σ
−1∑︁

b=0

⃒⃒
θdb − θr

⌊︀
(e + bd)/r

⌋︀⃒⃒
≤ (|θd| + |θr|)

2

σ
−1∑︁

b=0

b ≤ (|θd| + |θr|)
2

σ
(2

σ
− 1)

2

≤ 2

2σ−1
(|θd| + |θr|)

where we use that ⌈−x⌉ = − ⌊x⌋ and
⌊︀
(e + bd)/r

⌋︀
≤ b. To verify the latter claim, note that f

1
= e/r ∈ [0, 1) and

f
2
= bd/r ∈ [0, b) as e, d ∈ [0, r). This implies that

⌊︀
(e + bd)/r

⌋︀
= ⌊f

1
+ f

2
⌋ ∈ [0, b] as f

1
+ f

2
∈ [0, b + 1).

By combining the above results, we now have that

|s′A − s′′A| ≤ 22σ−1 (|θd| + |θr|)

⃒⃒⃒⃒
⃒⃒⌈2

m+ℓ
/r⌉−1∑︁

nr=0
e

iθrnr

⃒⃒⃒⃒
⃒⃒ = 2

σ−1
(|θd| + |θr|) |s′′A|

and so the lemma follows.

Lemma 3.21. The error when approximating S′A by S′′A is bounded by

|S′A − S′′A| ≤ 2σ−1 (|θd| + |θr|)
(︁
2 + 2

σ−1
(|θd| + |θr|)

)︁
S′′A.

Proof. By Claim 3.5, it holds that⃒⃒⃒
|s′A|2 − |s′′A|2

⃒⃒⃒
≤ 2

⃒⃒
s′′A
⃒⃒ ⃒⃒
s′A − s′′A

⃒⃒
+

⃒⃒
s′A − s′′A

⃒⃒
2

≤ 2 · 2

σ−1
(|θd| + |θr|)

⃒⃒
s′′A
⃒⃒
2

+ 2

2(σ−1)
(|θd| + |θr|)2

⃒⃒
s′′A
⃒⃒
2

= 2

σ−1
(|θd| + |θr|)

(︁
2 + 2

σ−1
(|θd| + |θr|)

)︁ ⃒⃒
s′′A
⃒⃒
2

as |s′A − s′′A| ≤ 2σ−1(|θd| + |θr|) |s′′A| by Lemma 3.20.



Computing general discrete logarithms and orders with tradeoffs | 371

From the above, and Definitions 3.15 and 3.19, we have that

⃒⃒
S′A − S′′A

⃒⃒
=

⃒⃒
|s′A|2 − |s′′A|2

⃒⃒
2
2(m+2ℓ) ≤ 2

σ−1
(|θd| + |θr|)

(︁
2 + 2

σ−1
(|θd| + |θr|)

)︁
S′′A

and so the lemma follows.

This yields an approximation S′′A to S′A that may be placed on closed form.

3.2.6 Main approximability result

By combining the previous results, the main approximability result follows:

Theorem 3.22. The probability P(θd , θr) of observing a specific pair (j, k)with angle pair (θd , θr), summed over
all y ∈ G, may be approximated by

̃︀P(θd , θr) = 2

2σr
2
2(m+2ℓ)

⃒⃒⃒⃒
⃒⃒2

ℓ−σ
−1∑︁

t=0
e

i(θd2σ+θr⌈−2σd/r⌉) t

⃒⃒⃒⃒
⃒⃒
2

⃒⃒⃒⃒
⃒⃒⌈2

m+ℓ
/r⌉−1∑︁

nr=0
e

iθrnr

⃒⃒⃒⃒
⃒⃒
2

=

2

2σr
2
2(m+2ℓ)

⃒⃒⃒⃒
⃒ei(θd2

σ
+θr⌈−2σd/r⌉) 2ℓ−σ

− 1

e
i(θd2σ+θr⌈−2σd/r⌉)

− 1

⃒⃒⃒⃒
⃒
2

⃒⃒⃒⃒
⃒eiθr⌈2

m+ℓ
/r⌉
− 1

e
iθr
− 1

⃒⃒⃒⃒
⃒
2

assuming θd2σ + θr
⌈︀
−2

σd/r
⌉︀
≠ 0 and θr ≠ 0 when placing the expression on closed form. The approximation

error |P(θd , θr) − ̃︀P(θd , θr)| ≤ ẽ(θd , θr) where
ẽ(θd , θr) =

2

4

2
m+σ +

2

3

2
m+ℓ +

2

σ

2

(|θd| + |θr|)
(︂
2 +

2

σ

2

(|θd| + |θr|)
)︂ ̃︀P(θd , θr).

Proof. The probability ρ(θd , θr , e) of observing a specific pair (j, k), with angle pair (θd , θr), and some group

element y = [e] g ∈ G, is SR by Claim 3.4.

The error when approximating SR by SATA is bounded by

|SR − SATA| ≤ 2−2m−σ+4

by Lemma 3.14. The error when approximating SATA by S′ATA is bounded by

|SATA − S′ATA| ≤ 2−2m−3ℓ+2σ+3TA

by Lemma 3.18. The error when approximating S′ATA by S′′ATA is bounded by

|S′ATA − S′′ATA| ≤ 2σ−1(|θd| + |θr|)(2 + 2σ−1(|θd| + |θr|)) S′′ATA

by Lemma 3.21. By the triangle inequality

|SR − S′′ATA| = |(SR − SATA) + (SATA − S′ATA) + (S′ATA − S′′ATA)|
≤ |SR − SATA| + TA |SA − S′A| + TA |S′A − S′′A|.

Neither of these three error terms, nor the expression for S′′ATA, depend on e. Hence, we may sum over all r
elements y = [e] g ∈ G by multiplying by r. It therefore follows that ̃︀P(θd , θr) = rS′′ATA is an approximation to

P(θd , θr), and that the error that arises in this approximation is bounded by

r | SR − SATA | + rTA | SA − S′A | + rTA | S′A − S′′A |

≤ 2

−2m−σ+4 r + 2−2m−3ℓ+2σ+3 rTA +

2

σ−1
(| θd | + | θr |) (2 + 2σ−1(| θd | + | θr |)) rS′′ATA



372 | M. Ekerå

≤

2

4

2
m+σ +

2

3

2
m+ℓ +

2

σ

2

(| θd | + | θr |)
(︂
2 +

2

σ

2

(| θd | + | θr |)
)︂ ̃︀P(θd , θr)

where we use that r < 2

m
, and that TA ≤ 2

2(ℓ−σ)
as it is the square norm of a sum of 2

ℓ−σ
unit vectors by

Definition 3.12, and so the theorem follows.

In Appendix C we demonstrate the soundness of this approximation.

4 The distribution of pairs (αd, αr)
In this section, we identify and count all pairs (j, k) that yield (αd , αr) and analyze the distribution and density
of pairs (αd , αr) in the plane.

Definition 4.1. An argument pair (αd , αr) is said to be admissible if there exists an integer pair (j, k), for j on
0 ≤ j < 2m+ℓ and k on 0 ≤ k < 2ℓ, such that

αd = {dj + 2mk}
2
m+ℓ and αr = {rj}

2
m+ℓ .

Definition 4.2. Let κd denote the greatest integer such that 2κd divides d, and let κr denote the greatest integer
such that 2

κr
divides r.

Definition 4.3. Let Lα be the lattice generated by the rows in[︃
δr 2

κr

2

m−𝛾
0

]︃
where δr = d

(︁ r
2
κr

)︁
−1

mod 2

m−𝛾

and 𝛾 = max(0, κr − (ℓ + κd)).

Lemma 4.4. The admissible argument pairs (αd , αr) are vectors in Lα in the region of the plane where −2m+ℓ−1 ≤
αd , αr < 2m+ℓ−1. There are 2m+2ℓ−κr+𝛾 distinct admissible argument pairs, each occurring with multiplicity 2κr−𝛾 .

Proof. As αr ≡ rj (mod 2

m+ℓ
), the set of integers j that yield αr are given by

j ≡ αr
2
κr

(︁ r
2
κr

)︁
−1

+ 2

m+ℓ−κr tr (mod 2

m+ℓ
)

as tr runs through all integers on 0 ≤ tr < 2κr . As αd ≡ dj + 2mk (mod 2

m+ℓ
), we need

αd ≡ d
(︂
αr
2
κr

(︁ r
2
κr

)︁
−1

+ 2

m+ℓ−κr tr
)︂
+ 2

mk (7)

≡ αr
2
κr d

(︁ r
2
κr

)︁
−1

+ 2

m+ℓ−κr+κd dtr
2
κd⏟  ⏞  

A

+ 2

mk⏟  ⏞  
B

(mod 2

m+ℓ
)

for k an integer on 0 ≤ k < 2ℓ, to ensure compatibility. As 2

m−𝛾
is the largest power of two to divide both 2

m
and

2

m+ℓ−κr+κd
, by the definition of 𝛾, the congruence relation αd ≡ (αr/2κr ) d (r/2κr )−1 (mod 2

m−𝛾
) must hold.

As tr and k run through all pairwise combinations, the set of 2

ℓ+κr
arguments αd generated by (7) is equal

to that generated by

αd ≡ αr
2
κr d

(︁ r
2
κr

)︁
−1

+ 2

m−𝛾 t𝛾 (8)

≡ αr
2
κr

(︂
d
(︁ r
2
κr

)︁
−1

mod 2

m−𝛾
)︂
+ 2

m−𝛾 t′𝛾 (mod 2

m+ℓ
) (9)

as t𝛾 , or equivalently t′𝛾 , runs through all integers on 0 ≤ t𝛾 , t′𝛾 < 2

ℓ+κr
.



Computing general discrete logarithms and orders with tradeoffs | 373

To go from (7) to (8), first note that B runs through all values in [2

m
, 2

m+ℓ
). If 𝛾 = 0, term A introduces

multiplicity by repeating the sequence generated by B with various offsets. These offsets are of no significance

to this analysis, as we only account for which values occur in the set and with what multiplicity.

If 𝛾 > 0, term A runs through all values in [2

m−𝛾
, 2

m−𝛾+κr
). As κr ≥ 𝛾 when 𝛾 > 0, term A runs through

all values in the subrange [2

m−𝛾
, 2

m
). When A assumes values greater than or equal to 2

m
, it introduces

multiplicity by repeating the sequence of all values on [2

m−𝛾
, 2

m+ℓ
) generated by A and B with various offsets.

This implies that (A + B) mod 2

m+ℓ
runs through all 2

m+ℓ
/2

m−𝛾
= 2

ℓ+𝛾
values on [2

m−𝛾
, 2

m+ℓ
) with

multiplicity 2

ℓ+κr
/2

ℓ+𝛾
= 2

κr−𝛾
, and this is exactly what is stated in (8). To go from (8) to (9) is trivial.

As there are 2

m+2ℓ
admissible argument pairs, and as each pair occurs with multiplicity 2

κr−𝛾
, there are

2

m+2ℓ−κr+𝛾
distinct admissible argument pairs.

The lattice Lα is constructed from (9), as the admissible arguments αr are multiples of 2

κr
, and as the

admissible αd ≡ (αr / 2κr ) δr +2m+𝛾 t′𝛾 (mod 2

m+ℓ
), in the region of the plane where −2

m+ℓ−1
≤ αd , αr < 2m+ℓ−1,

and so the lemma follows.

In Figure 2 the distribution of admissible argument pairs (αd , αr) in the region of the plane where −2m+ℓ−1 ≤
αd , αr < 2m+ℓ−1 is depicted for various combinations of d and r.

d = 14, r = 15

αd

αr
2m−γ

2
m

+
κ
r
−
γ

d = 13, r = 15

αd

αr
2m−γ

2
m

+
κ
r
−
γ

d = 13, r = 14

αd

αr
2m−γ

2
m

+
κ
r
−
γ

d = 7, r = 8

αd

αr
2m−γ 2

m
+
κ
r
−
γ
/
2

Figure 2: The distribution of admissible argument pairs (αd , αr) in the region where −2m+ℓ−1 ≤ αd , αr < 2

m+ℓ−1 for m = 4

and ℓ = 3, and example combinations of d and r, as indicated. The lattice may be constructed by replicating the fundamental
parallelogram (blue) or a rectangle (gray) of size 2m−𝛾 × 2m+κr−𝛾 .



374 | M. Ekerå

4.1 Pairs (j, k) yielding (αd, αr)

In this section we identify all pairs (j, k) that yield (αd , αr).

Lemma 4.5. The set of integer pairs (j, k), for j on 0 ≤ j < 2m+ℓ and k on 0 ≤ k < 2ℓ, that yield the admissible
argument pair (αd , αr) is given by

j =
(︂
αr
2
κr

(︁ r
2
κr

)︁
−1

+ 2

m+ℓ−κr tr
)︂

mod 2

m+ℓ and k = αd − dj
2
m mod 2

ℓ

as tr runs through all integer multiples of 2𝛾 on 0 ≤ tr < 2κr .

Proof. As αr ≡ rj (mod 2

m+ℓ
), solving for j yields

j =
(︃
αr
2
κr

(︂
r
2
κ
r

)︂
−1

+ 2

m+ℓ−κr tr

)︃
mod 2

m+ℓ

for tr an integer 0 ≤ tr < 2κr .
As αd ≡ dj + 2mk (mod 2

m+ℓ
), for compatibility 2

m
must divide 2

m+ℓ−κr dtr for all tr ≠ 0. As 2m+ℓ+κd−κr is
the greatest power of two to divide 2

m+ℓ−κrd, it follows that tr must be a multiple of 2

𝛾
, and so the lemma

follows.

4.2 The density of pairs (αd, αr)

In this section we analyze the density of admissible argument pairs (αd , αr) in the argument plane.

Claim 4.6. The density of admissible argument pairs (αd , αr) in the region of the plane where −2m+ℓ−1 ≤ αd , αr <
2

m+ℓ−1 is 2−m when accounting for multiplicity.

Proof. There are2m+2ℓ admissible argument pairs (αd , αr),whenaccounting formultiplicity, in the regionof the

planewhere −2

m+ℓ−1
≤ αd , αr < 2m+ℓ−1. This region is of area 22(m+ℓ). The density is hence 2m+2ℓ/22(m+ℓ) = 2

−m
,

and so the claim follows.

To construct the histogram for the probability distribution, the argument plane is divided into small rectangular

subregions. Lemma 4.7 below bounds the error when approximating the density in such subregions by 2

−m
.

Lemma 4.7. Let D be the density of admissible argument pairs (αd , αr), when accounting for multiplicity, in a
rectangle R of area A and circumference C in the region of the plane where −2m+ℓ−1 ≤ αd , αr < 2m+ℓ−1. Then⃒⃒⃒⃒

D − 1

2
m

⃒⃒⃒⃒
≤ 2

κr−𝛾 2Cλ
2
+ 4 (2λ

2
)

2

A det Lα =

2Cλ
2
+ 4 (2λ

2
)

2

2
mA

for λ
1
the norm of the shortest non-zero vector w

1
∈ Lα, and λ

2
the norm of the shortest non-zero vector w

2
∈ Lα

that is linearly independent to w
1
.

Proof. By Lemma 4.4, the admissible argument pairs (αd , αr) are vectors in Lα in the region of the argument

plane where −2

m+ℓ−1
≤ αd , αr < 2m+ℓ−1. Each admissible argument pair occurs with multiplicity 2

κr−𝛾
.

The fundamental parallelogram in Lα contains a single lattice vector. It is spanned by w
1
and w

2
, and

has area det Lα = λ
2
|w⊥| = 2

m+κr−𝛾
, where w⊥ is the component in w

1
perpendicular to w

2
. This implies

λ
2
≥ λ

1
≥ |w⊥|. To bound the number of argument pairs (αd , αr) ∈ R, we lower- and upper-bound the number

of fundamental parallelograms that can at most fit into R, as described below, paying particular attention to
the border areas:

To upper-bound the number of vectors in R, we extend each side of R by 2 λ
2
length units, to ensure

that any parallelogram that is only partly in R is included in the count, and divide the area of the resulting
rectangle by the area of the fundamental parallelogram. This yields (A + 2Cλ

2
+ 4 (2 λ

2
)

2

) / det Lα.



Computing general discrete logarithms and orders with tradeoffs | 375

Conversely, to lower-bound the number of vectors in R, we retract each side of R by 2λ
2
length units, to

ensure that all parallelograms that are only partly in the rectangle are excluded from the count, and divide the

area of the resulting rectangle by det Lα. This yields (A − 2Cλ
2
+ 4 (2λ

2
)

2

) / det Lα.
By combining the upper and lower bounds, dividing by the area A of R, and multiplying by 2

κr−𝛾
to

account for multiplicity, the lemma follows.

For known d and r, Lemma 4.7 above provides a bound on the error when approximating the density in a

rectangle in Lα by 2−m as λ
2
may then be computed. To bound the error for general problem instances, and

when d and r are unknown, we introduce the following less tight lemma:

Lemma 4.8. Let D be the density of admissible argument pairs (αd , αr), when accounting for multiplicity, in
a rectangle of side lengths ld and lr in the αd and αr directions, respectively, in the region of the plane where
−2

m+ℓ−1
≤ αd , αr < 2m+ℓ−1. Then ⃒⃒⃒⃒

D − 1

2
m

⃒⃒⃒⃒
≤

2

κr

2
m lr

+

1

2
𝛾 ld

+

1

ld lr
.

Proof. By Lemma 4.4, the admissible argument pairs (αd , αr) are vectors in Lα in the region of the plane where
−2

m+ℓ−1
≤ αd , αr < 2m+ℓ−1. Each admissible argument pair occurs with multiplicity 2

κr−𝛾
.

The vectors in Lα are on horizontal lines (for fixed αr) evenly separated by a vertical distance of 2κr . The
number of such lines that intersect the rectangle is upper-bounded by

⌊︀
lr/2κr

⌋︀
+ 1 ≤ lr/2κr + 1 and lower-

bounded by

⌊︀
lr/2κr

⌋︀
≥ lr/2κr − 1 as may be seen by positioning the rectangle to maximize or minimize the

number of lines that intersect the rectangle.

On each line, the vectors in Lα are evenly spaced by a distance of 2m−𝛾 with varying starting positions.
The number of vectors in Lα that fall within the rectangle on each line is upper-bounded by

⌊︀
ld/2m−𝛾

⌋︀
+ 1 ≤

ld/2m−𝛾 + 1 and lower-bounded by
⌊︀
ld/2m−𝛾

⌋︀
≥ ld/2m−𝛾 − 1, when not accounting for multiplicity, as may be

seen by positioning the line to maximize or minimize the number of vectors that fall within the rectangle.

Hence the number of lattice vectors in the rectangle is upper-bounded by

2

κr−𝛾
(lr/2κr + 1)(ld/2m−𝛾 + 1) = ld lr/2m + ld2κr /2m + lr/2𝛾 + 1

and lower-bounded by

2

κr−𝛾
(lr/2κr − 1)(ld/2m−𝛾 − 1) = ld lr/2m − ld2κr /2m − lr/2𝛾 + 1

as each vector corresponds to a pair that occurs with multiplicity 2

κr−𝛾
. By combining these bounds, and

dividing by the rectangle area ld lr, the lemma follows.

For unknown d and r, Lemma 4.8 above provides an error bound, assuming only some bounds on the parame-

ters κr and 𝛾. Asymptotically, the error in the approximation tends to zero as the side lengths of the rectangle

tend to infinity. For rectangular subregions of specific dimensions, it may furthermore be shown that the error

is zero, as is demonstrated in the following lemma:

Lemma 4.9. The density of admissible argument pairs (αd , αr) in a rectangle of side lengths positive integer
multiples of 2m−𝛾 and 2m−𝛾+κr in αd and αr, respectively, in the region of the plane where −2m+ℓ−1 ≤ αd , αr <
2

m+ℓ−1, is 2−m when accounting for multiplicity.

Proof. By Lemma 4.4, the admissible argument pairs (αd , αr) are vectors in Lα in the region of the plane where
−2

m+ℓ−1
≤ αd , αr < 2m+ℓ−1. Each admissible argument pair occurs with multiplicity 2

κr−𝛾
.

From the definition of Lα in Lemma 4.4, it follows that the lattice is cyclic with period 2

m−𝛾
in αd and

2

m−𝛾+κr
in αr. This is illustrated in Figure 2 where rectangular regions of these dimensions are highlighted

in gray. The highlighted regions all extend from the origin in Figure 2 but the starting point may of course

be arbitrarily selected. This implies that the lattice Lα may be generated by replicating and translating any

rectangle of side lengths positive multiples of 2

m−𝛾
and 2

m−𝛾+κr
in αd and αr, respectively, see Figure 2,



376 | M. Ekerå

throughout the plane. The same holds if the rectangle is replicated and translated cyclically throughout the

region of the plane where −2

m+ℓ−1
≤ αd , αr < 2m+ℓ−1.

The number of rectangles that fit in the region when replicated and translated cyclically is

2

2(m+ℓ)
/2

2(m−𝛾)+κr
= 2

2(ℓ+𝛾)−κr

as the area of the region is 2

2(m+ℓ)
and the area of the rectangle is 2

2(m−𝛾)+κr
. The total number of lattice vectors

in the region is 2

2m+ℓ
, so each rectangle contains 2

m+2ℓ
/2

2(ℓ+𝛾)−κr
= 2

m−2𝛾+κr
vectors when accounting for

multiplicity. By dividing by the area of the rectangle, we see that the density of points in each rectangle is

2

m−2𝛾+κr
/2

2(m−𝛾)+κr
= 2

−m
, and so the lemma follows.

5 Simulating the quantum algorithm
In close analogy with [7], we now proceed to construct a high-resolution histogram for the probability dis-

tribution induced by the quantum algorithm, for given d and r, and to sample it to simulate the quantum

algorithm.

5.1 Constructing the histogram

Except for the fact that the probability distribution is two-dimensional, and that we need to account for

the closed-form expression being an approximation, we exactly follow [7] to construct the high-resolution

histogram: We subdivide the argument plane into regions and subregions, and integrate the closed-form

probability approximation
̃︀P(θd , θr) and associated error bound ẽ(θd , θr) numerically in each subregion.

First, we subdivide each quadrant of the argument plane into (30 + µ)2 rectangular regions where µ =

min(ℓ − 2, 11). Each region thus formed is uniquely identified by (ηd , ηr) ∈ Z2

by requiring that for all (αd , αr)
in the region

2

|ηd|
≤ |αd| ≤ 2|ηd|+1 and 2

|ηr|
≤ |αr| ≤ 2|ηr|+1,

and furthermore that sgn(αd) = sgn(ηd) and sgn(αr) = sgn(ηr), where ηd and ηr are such that

m − 30 ≤ |ηd|, |ηr| ≤ m + µ − 1,

see the illustration in Figure 3.

sg
n
(α
d
)
lo
g
2
(|α

d |)

sgn(αr) log2(|αr|)

m−m

m

−m

η
d

η
d
+

1
/
2
ν

η
d
+

2
/
2
ν

η
d
+

1

ηr

ηr + 1/2ν
ηr + 2/2ν

ηr + 1

2
η
r
+

(
ξ
r
+

1
)
/
2
ν

2
η
r
+
ξ
r
/
2
ν

αr

αd

2
η
d
+
ξ
d
/
2
ν

2
η
d
+

(
ξ
d
+

1
)
/
2
ν

Figure 3: The subdivision of the plane into regions and subregions. The gray box illustrates Simpson’s rule applied to a subre-
gion. The probability is computed in the blue corner points, the four red border mid-points and the red center-point.



Computing general discrete logarithms and orders with tradeoffs | 377

Then, we subdivide each region into rectangular subregions identified by an integer pair (ξd , ξr) by
requiring that for all (αd , αr) in the subregion

2

|ηd|+ξd/2ν
≤ |αd| ≤ 2|ηd|+(ξd+1)/2

ν
and 2

|ηr|+ξr/2ν
≤ |αr| < 2|ηr|+(ξr+1)/2

ν

where 0 ≤ ξd , ξr < 2

ν
for ν ∈ {6, 7, 8, 9} a resolution parameter adaptively selected as a function of the

probability mass and variance in each region.

For each subregion, we compute the approximate probability mass containedwithin the subregion, and an

associated error bound, by applying Simpson’s rule in two dimensions, followed by Richardson extrapolation

to cancel the linear error term, and division by 2

m
to account for the density of pairs.

Simpson’s rule is hence applied 2

2ν
(1 + 2

2

) times in each region. Each application requires
̃︀P(θd , θr)

and ẽ(θd , θr) to be evaluated in up to nine points, for which purpose we use the closed-form expressions in

Theorem 3.22, with σ adaptively selected to suppress ẽ(θd , θr).
The optimal σ may be found by searching exhaustively. A computationally more efficient method for

selecting σ is to use the heuristic in Appendix C.5.3. We use the heuristic in all cases except when s is large in
relation to m causing the error in the closed-form approximation to be large. For such m and s we accept an
extra computational burden to get slightly better σ and slightly smaller errors.

In what follows, we refer to the total probability mass captured as the sum of the integral of
̃︀P(θd , θr) over

all subregions, and to the total approximation error as the sum of the integral of ẽ(θd , θr) over all subregions.
Note that the total approximation error is an upper bound, by this definition, that is by no means tight. The

actual error in the approximation is likely smaller than the bound indicates.

In order to save space when storing the histogram, we discard regions that capture insignificant shares of

the probability mass. Note furthermore that for m and s such that the total approximation error is large, the

error may often be reduced at the expense of capturing a smaller fraction of the probability mass by simply

discarding selected regions where the error is large. The errors we report in this paper are without accounting

for such additional filtering.

Note that this method of constructing the histogram assumes κd and κr to be small in relation to m. Note
also that it follows from Section 4.2 that it is sound to approximate the density by 2

−m
in the four regions of

interest in the plane. For the m and s that we consider, the error in the density approximation is negligible.

5.2 Understanding the probability distribution

To illustrate the distribution that arises, a histogram is plotted in the signed logarithmic argument plane in

Figure 4 form = 2048 and s = 30, and for d and r selected as explained in Section 7.3. It captures approximately

99.99% of the probability mass. The total approximation error is less than 10

−3

.

The histogram plotted in Figure 4 captures the characteristic appearance of the probability distribution

when d and r are both of length m bits and not divisible by large powers of two.

The probability mass is located in the regions where (| αd |, | αr |) ∼ (2

m
, 2

m
), whereas for random pairs

(j, k) the arguments would both be of size ∼ 2

m+ℓ
. This implies that a single run of the quantum algorithm

yields∼ ℓ ∼ m/s bits of information on d and r, respectively.
The distribution is symmetric, in that the top right and lower left quadrants are mirrored, as are the top

left and lower right quadrants. It hence suffices to compute only two quadrants to construct the histogram. To

see why this is, note that flipping the sign of both arguments in the expression for
̃︀P(θd , θr) in Theorem 3.22

has no effect. Flipping the sign of only one argument, on the other hand, may lead to cancellation or lack of

cancellation in the angle θd2σ+θr
⌈︀
−2

σd/r
⌉︀
. This explains the concentration of probabilitymass in the top right

and lower left quadrants, and in the tail that extends along the diagonal in Figure 4 where θd2σ + θr
⌈︀
−2

σd/r
⌉︀

is small.

If the size of d in relation to r is gradually reduced, the tail along the diagonal gradually disappears, as
the cancellation effect weakens when d/r is reduced in size. When d is approximately of length m − 5 bits, the
tail is nearly gone, and all four quadrants are nearly mirrored. Further reducing d has no significant effect
on the distribution. Varying r on the interval 2m−1 < r < 2m only slightly affects the distribution. Scaling m



378 | M. Ekerå

m − 5 m m + 5−m − 5 −m −m + 5

sgn
(
α
d
)
lo

g
2
(|α

d
|)

m
−

5
m

m
+

5
−

m
−

5
−

m
−

m
+

5

sgn(αr) log2(|αr|)

0.127

0.127

0.112

0.112

0.079

0.079

0.047

0.047

0.042

0.042

0.024

0.024

0.021

0.021

0.012

0.012

0.011

0.011

0.006

0.006

0.005

0.005

0.003

0.003

0.003

0.003

0.002

0.002

0.001

0.001

m − 5 m m + 5−m − 5 −m −m + 5

m − 5 m m + 5−m − 5 −m −m + 5

sgn
(
α
d
)
lo

g
2
(|α

d
|)

0.153

0.153

0.114

0.114

0.063

0.063

0.056

0.056

0.032

0.032

0.024

0.024

0.016

0.016

0.012

0.012

0.008

0.008

0.006

0.006

0.004

0.004

0.003

0.003

0.002

0.002

0.001

0.001

m
−

5
m

m
+

5
−

m
−

5
−

m
−

m
+

5

m
−

5
m

m
+

5
−

m
−

5
−

m
−

m
+

5

sgn(αr) log2(|αr|)

Figure 4: The probability distribution for general discrete logarithms computed as in Section 5.1 for m = 2048, s = 30, and d
and r selected as in Section 7.3. To facilitate printing, the resolution has been reduced in this figure.

0
.1

2
7

0
.1

2
7

0
.1

1
2

0
.1

1
2

0
.0

7
9

0
.0

7
9

0
.0

4
7

0
.0

4
7

0
.0

4
2

0
.0

4
2

0
.0

2
4

0
.0

2
4

0
.0

2
1

0
.0

2
1

0
.0

1
2

0
.0

1
2

0
.0

1
1

0
.0

1
1

0
.0

0
6

0
.0

0
6

0
.0

0
5

0
.0

0
5

0
.0

0
3

0
.0

0
3

0
.0

0
3

0
.0

0
3

0
.0

0
2

0
.0

0
2

0
.0

0
1

0
.0

0
1

m − 5 m m + 5−m − 5 −m −m + 5

m − 5 m m + 5−m − 5 −m −m + 5

s
g
n
(
α
d
)
lo

g
2
(|α

d
|)

Figure 5: The probability distribution for short discrete logarithms computed as in Appendix B from the closed-form expression
in [7], for m = 2048 and s = 30, and d selected as in Section 7.3. The resolution has been reduced in this figure.



Computing general discrete logarithms and orders with tradeoffs | 379

and s has virtually no effect on the distribution, for as long as m/s does not become so small so as to cause

constructive interference not to arise, or the plot to be cropped.

The marginal distribution along the αr axis in Figure 4 is virtually identical to the distribution induced by
r when performing order finding, see Appendix A and Figure A1 for comparison. In Appendix D we prove this

correspondence analytically by summing
̃︀P(θd , θr) over all admissible angles θd withmultiplicity. Analogously,

the marginal distribution along the αd axis is seemingly virtually identical to the probability distribution

induced by d when regarded as a short discrete logarithm, see [7] and Figure 5 for comparison. We have not as

of yet been able to prove this correspondence analytically but it may be evidenced numerically by comparing

the distributions for specific problem instances.

The above observations imply that the lattice-based post-processing algorithm introduced in [7] may be

used to solve sets of pairs (j, k) for both short and general d, with minor modifications, see Section 6.1. An

analogous lattice-based algorithm may be used to solve sets of integers j for r, see Section 6.2. The hardest
instances to solve are those where d is large in relation to r, and r is large in relation to 2m, as in Figure 4, due
to the tail that then extends along the diagonal.

5.3 Sampling the probability distribution

Except for the fact that the probability distribution is two-dimensional, we exactly follow [7] to sample the

distribution: To sample an argument pair (αd , αr), we first sample a subregion and then sample (αd , αr) from
this subregion.

To sample the subregion, we first order all subregions in the histogram by probability, and compute the

cumulative probability up to and including each subregion in the resulting ordered sequence. Then, we sample

a pivot uniformly at random from [0, 1), and return the first subregion in the ordered sequence for which the

cumulative probability is greater than or equal to the pivot. Note that this procedure may fail: This occurs if

the pivot is greater than the total cumulative probability.

To sample an argument pair (αd , αr) from the subregion, we first sample a point (α′d , α
′
r) ∈ Z2

uniformly

at random from the subregion. Then, we map (α′d , α
′
r) to the closest admissible argument pair (αd , αr) ∈ Lα by

reducing the basis for Lα given in Definition 4.3 and applying Babai’s algorithm [1].

To sample an integer pair (j, k) from the distribution, we first sample (αd , αr) as described above, and
then sample (j, k) uniformly at random from the set of all integer pairs (j, k) yielding (αd , αr) using Lemma 4.5.

More specifically, we first sample an integer tr uniformly at random from the set of all admissible values for tr
and then compute (j, k) from (αd , αr) and tr as described in Lemma 4.5.

6 The classical post-processing algorithms
In this section, we describe how d and r are classically recovered from a set {(j

1
, k

1
), . . . , (jn , kn)} of pairs

produced by performing n independent runs of the quantum algorithm.

6.1 Recovering d from a set of n pairs

To recover d, we exactly follow [7], and use the set of n pairs to form a vector

vkd = ({−2mk
1
}
2
m+ℓ , . . . , {−2mkn}

2
m+ℓ , 0) ∈ ZD



380 | M. Ekerå

and a D-dimensional integer lattice Lj with basis matrix⎡⎢⎢⎢⎢⎢⎢⎣
j
1

j
2

· · · jn 1

2

m+ℓ
0 · · · 0 0

0 2

m+ℓ
· · · 0 0

.

.

.

.

.

.

.
.
.

.

.

.

.

.

.

0 0 · · · 2

m+ℓ
0

⎤⎥⎥⎥⎥⎥⎥⎦
where D = n + 1. For some constants m

1
, . . . , mn ∈ Z, the vector

ujd = ({dj
1
}
2
m+ℓ + m

1
2

m+ℓ
, . . . , {djn}

2
m+ℓ + mn2

m+ℓ
, d) ∈ Lj

is such that the distance

Rd = |ujd − v
k
d| =

⎯⎸⎸⎷ n∑︁
i=1

(︀
{dji}2m+ℓ + mi2m+ℓ − {−2mki}2m+ℓ

)︀
2

+ d2 =

⎯⎸⎸⎸⎷ n∑︁
i=1

{dji + 2mki}22m+ℓ⏟  ⏞  
α2d,i

+d2

=

⎯⎸⎸⎷ n∑︁
i=1

α2d,i + d2.

To recover d, it hence suffices to find ujd by enumerating all vectors in Lj within a D-dimensional hyper-

sphere of radius Rd centered on vkd. Its volume is

VD(Rd) =
πD/2

Γ
(︀ D
2

+ 1

)︀RDd
where Γ is the Gamma function, whilst the fundamental parallelepiped in Lj, that by definition contains a
single lattice vector, is of volume det Lj = 2

(m+ℓ)n
.

Heuristically, the hypersphere is hence expected to contain approximately vd = VD(Rd) / det Lj lattice
vectors. The exact number depends on the placement of the hypersphere in ZD, and on the shape of the

fundamental parallelepiped in Lj.

6.1.1 Estimating the minimum n required to solve for d

The radius Rd depends on (ji , ki) via αd,i for 1 ≤ i ≤ n. For fixed n and probability qd, we exactly follow [7] and

estimate the minimum radius
̃︀Rd such that

Pr

⎡⎣Rd :=
⎯⎸⎸⎷ n∑︁

i=1
α2d,i + d2 ≤ ̃︀Rd

⎤⎦
≥ qd (10)

by sampling αd,i from the probability distribution. For details on how the estimate is computed, see Section 6.3.

It follows from (10) that

Pr

[︃
vd :=

VD(Rd)
det Lj

≤

VD(̃︀Rd)
2
(m+ℓ)n

]︃
≥ qd . (11)

This provides a heuristic bound on the number of lattice vectors vd that at most have to be enumerated to

solve for d, and that holds with probability at least qd.

6.1.2 Selecting n and solving for d

A simple strategy when solving for d is to select n as described in Section 6.1.1 such that vd is below a bound

equal to the maximum number of vectors that it is computationally feasible to enumerate with probability qd.
This strategy minimizes n at the expense of performing potentially computationally expensive post-processing.



Computing general discrete logarithms and orders with tradeoffs | 381

Another strategy is to select n such that vd < 2 with probability qd, so that there is only one vector in
the hypersphere by the heuristic. In theory, this enables us to find ujd with probability qd by mapping vkd to
the closest vector in Lj without enumerating vectors in Lj. In practice, however, the situation is a bit more

complicated as ujr = ({rj
1
}
2
m+ℓ , . . . , {rjn}

2
m+ℓ , r) ∈ Lj and this vector is short in Lj by construction. To further

complicate matters, ujr/z may be in Lj when r is composite, for z some factor of r, see Section 6.2.3. To recover
ujd, we therefore first map vkd to the closest vector in L

j
, and then add or subtract small integer multiples of the

shortest vector in the reduced basis for Lj to find ujd. This is efficient, except if r has very many small prime

factors, and n is close to one, in which case an additional classical post-processing step may be required, see

Section 6.2.5.

Note that this complication arises only for general discrete logarithms. It does not arise in [7] when post-

processing short discrete logarithms, as the order then does not enter into the equation. Note furthermore that

the fact that the order now does play a part may be leveraged in the post-processing, see the next sections.

6.1.3 Selecting n and solving for d by exhausting subsets

The greatest argument αd,i essentially determines the bound on Rd and hence on vd. A plausible strategy is

therefore to make n runs, but to independently post-process all subsets of n − t pairs from the resulting n pairs,
for t a constant.

To select n when using this strategy, we specify a bound B on the number of vectors vd that we accept to
enumerate in each lattice of dimension n − t + 1, and follow Section 6.1.1 to select the minimum n respecting
this bound with probability at least qd, including only the smallest n − t arguments αd,i when bounding Rd.

With probability qd, the post-processing then heuristically requires at most B lattice vectors to be enumer-

ated in at most

(︀n
t
)︀
lattices of dimension n − t + 1. Note that t must be small as the binomial coefficient grows

rapidly in t.

6.1.4 Optimizations when r is known

Note that when r is known, the argument αr,i = {rji}2m+ℓ is known for 1 ≤ i ≤ n, and αr,i provides information

on αd,i as the arguments are pairwise correlated. When constructing subsets of n − t pairs from the n pairs
(ji , ki), the pairs should be included in ascending order sorted by |αr,i|. In general, pairs such that |αr,i| exceeds
some bound may be rejected as large |αr,i| identify erroneous runs.

6.2 Recovering r from a set of n pairs

To recover r, we instead use that ujr = ({rj
1
}
2
m+ℓ , . . . , {rjn}

2
m+ℓ , r) ∈ Lj is a short vector by construction. More

specifically, we use that ujr is within a D-dimensional hypersphere in Lj of radius

Rr =
⃒⃒⃒
ujr
⃒⃒⃒
=

⎯⎸⎸⎸⎷ n∑︁
i=1

{rji}22m+ℓ⏟  ⏞  
α2r,i

+r2 =

⎯⎸⎸⎷ n∑︁
i=1

α2r,i + r2

centered at the origin. In close analogy with [7] and the previous section, we may recover ujr and hence

r by enumerating all vectors in this hypersphere. Heuristically, we expect the hypersphere to contain vr =
VD(Rr) / det Lj lattice vectors.

This generalization was hinted at in the pre-print of [8]. Furthermore, it is similar to the method employed

by Seifert in [24], where he uses what he refers to as simultaneous Diophantine approximation techniques to

generalize Shor’s [25] continued fractions expansion-based post-processing to higher dimensions. In the case

of Shor’s original order-finding algorithm, the fact that the problem of finding a continued fraction may be

perceived as a lattice problem is observed in [14].



382 | M. Ekerå

We prefer to describe the post-processing in terms of a shortest vector problem, as this gives us two lattice

problems in the same lattice Lj, and as we may re-use the tools previously introduced to estimate the number

of runs n required to solve the problem.

6.2.1 Estimating the minimum n required to solve for r

The radius Rr depends on ji via αr,i for 1 ≤ i ≤ n. For fixed n and probability qr, we proceed in analogy with [7]
and estimate the minimum radius

̃︀Rr such that
Pr

⎡⎣Rr :=
⎯⎸⎸⎷ n∑︁

i=1
α2r,i + r2 ≤ ̃︀Rr

⎤⎦
≥ qr (12)

by sampling αr,i from the probability distribution. For details on how the estimate is computed, see Section 6.3.

It follows from (12) that

Pr

[︃
vr :=

VD(Rr)
det Lj

≤

VD(̃︀Rr)
2
(m+ℓ)n

]︃
≥ qr . (13)

This provides a heuristic bound on the number of lattice vectors vr that at most have to enumerated to solve

for r, and that holds with probability at least qr.

6.2.2 Selecting n and solving for r

One strategy when solving for r is to use the heuristic to select n such that vr is below a bound equal to the

maximum number of vectors that it is computationally feasible to enumerate, with probability qr. This strategy
minimizes n at the expense of performing potentially computationally expensive post-processing.

Another strategy is to select n such that vr < 2 with probability qr, so that there is only one lattice vector
in the hypersphere by the heuristic. In theory, this enables us to find ujr with probability qr by computing the

shortest non-zero vector in Lj.
In practice, the heuristic is good when r is prime, as is typically the case when computing discrete

logarithms in cryptographic settings. If r is composite, the heuristic is still good, but it may be necessary

to perform a small search to find r if r has one or more small prime factors, see Section 6.2.3. If r has many

small prime factors, and n is close to one, an additional classical post-processing step may be required to

solve efficiently for r, as there may then exist an artificially short non-zero vector in Lj. This additional step is
described in Section 6.2.4.

A third strategy is to independently post-process subsets of the pairs output by the quantum computer, in

analogy with the procedure described in Section 6.1.3.

6.2.3 Handling composite r

Assume that r is composite. Let gcd(αr,1, . . . , αr,n , r) = 2

κro for o odd. Let t be the greatest integer on [0, κr]
for which

αr,i/(2to) = {rji}2m+ℓ /(2
to) = {rji/(2to)}2m+ℓ

for all i ∈ [1, n]. Then |ujr|/(2to) ∈ Lj and |ujr|/(2to) ≤ |ujr|, so ujr/(2to) and r/(2to) will likely be recovered in
the post-processing instead of ujr and r.

For q an odd prime divisor of r, the probability of q also dividing αr,i for all i ∈ [1, n] is approximately q−n.
This implies that r may in general be recovered from r/(2to) by exhausting t and o, as the search space is



Computing general discrete logarithms and orders with tradeoffs | 383

expected to be small: It is only if r has verymany small odd prime divisors, and if n is close to one, that problems

may potentially arise. Such problematic casesmay be handled efficiently by introducing an additional classical

post-processing step, see the next section.

6.2.4 Handling partially smooth r

Let P be the set of all prime factors ≤ cm, for c ≥ 1 some small constant, and let υq be the greatest integer such
that qυq < 2m. Furthermore, for r′ = r/(2to) let

g̃ =

⎡⎣∏︁
q∈P

qυq
⎤⎦ g and g̃f =

⎡⎣r′ ∏︁
q∈P ∖ {f}

qυq
⎤⎦ g for f ∈ P,

where bracket notation is used to denote generalized exponentiations. Computing g̃ requires at most 2m · #P ≤
2cm2

group operations¹ to be evaluated classically, for #P the cardinality of P. It may hence be done efficiently.

As previously explained, when r is partially very smooth, the classical post-processing algorithm is likely

to return r′ = r/(2to), where o may be large, but where all prime factors of o are small. Assume that all prime

factors of 2

to are ≤ cm. It must then be that [r′] g̃ ≡ 1, enabling us to quickly test if r′ is on said form. Once

r′ = r/(2to) is found, it is easy to find r: For all f ∈ P, compute g̃f and find the smallest non-negative integer

ef such that [f ef ] g̃f ≡ 1. Then

2

to =
∏︁
f∈P

f ef

allowing r = 2

to · r′ to be recovered. Computing g̃f requires at most 2cm2

group operations for each f ∈ P, for

a total of at most 2cm2

· #P ≤ 2c2m3

group operations. The recovery procedure is hence efficient. Note that

the procedure may be optimized in various ways. The above description conveys the basic idea.

6.2.5 Computing discrete logarithms when r is partially smooth

If r is partially very smooth, it may be hard to determine d, as there may exist an artificially short vector

|ujr|/2to ∈ Lj, where o is smooth. Note however that it is still possible to determine d mod r′, by reducing the
last component of the vector ujd sought for in the classical post-processing algorithm modulo r′ = r/2to.

Provided we classically solve the discrete logarithm problem in the residual subgroups of small prime

power orders f ef dividing 2to, which can be done efficiently, the full logarithm d may then be found via the

Chinese remainder theorem. This was originally observed by Pohlig and Hellman [20].

6.3 Estimating ̃︀Rd and ̃︀Rr
To estimate

̃︀Rd and ̃︀Rr for m, s and n, known d and r, and a given target success probability qd or qr, we
exactly follow [7] and sample N sets of n argument pairs {(αd,1, αr,1), . . . , (αd,n , αr,n)} from the probability

distribution. For each set, we compute Rd, sort the resulting list of values in increasing order, and select the
value at index

⌊︀
(N − 1) qd

⌉︀
to arrive at our estimate for

̃︀Rd. The estimate of
̃︀Rr is then computed analogously.

The constant N controls the accuracy. If N to be sufficiently large in relation to qd and qr, and to the variance
in the arguments, we expect this approach to yield sufficiently good estimates.

If we fail to sample one or more argument pairs in a set, we closely follow [7] and over-estimate
̃︀Rd and ̃︀Rr

by letting Rd = Rr = ∞ for the set. The entries for the failed sets will then all be sorted to the end of the lists. If

the value of
̃︀Rd or ̃︀Rr selected from the sorted lists is ∞, no estimate is produced.

1 when using the square-and-multiply or double-and-add approach to exponentiation



384 | M. Ekerå

Let p be the total probability mass covered by the histogram. The probability of all n pairs in a set being
in regions covered by the histogram is then pn. When sampling N sets, the expected number of sets with

finite Rd and Rr is Npn. As Nqd and Nqr entries, respectively, in the two lists must be finite for the algorithm

to produce an estimate, it follows that it is required that qd , qr > pn, with some margin to account for the

sampling variance, for estimates to be produced.

7 Estimating the number of runs required
We now have the necessary framework in place to compute concrete estimates for the number of runs n
required to attain a given minimum success probability q when recovering both d and r for tradeoff factor s
for specific problem instances.

In this section, we describe and exemplify the procedure by computing estimates for a a set of concrete

problem instances selected in a randomized manner. We furthermore consider how to conjecturally obtain

worst case estimates of n.

7.1 Estimating n

To estimate n for a problem instance given by d and r, and for tradeoff factor s, we proceed as follows:
For n = s +1, s +2, . . . we first estimate

̃︀Rd and ̃︀Rr by sampling N = 10

6

sets of n argument pairs (αd , αr),
as explained in Section 6.3. We stop and record the smallest n for which the volume quotients vd < 2 and vr < 2
with probability qd and qr, respectively, where qd , qr ≥ q ≥ 99%. As the volume quotients each decrease by

approximately a constant factor for every increment in n, the minimum n may in practice be found efficiently

by interpolation once a few quotients have been computed.

For selected problem instances, we verify the above initial estimate of n by simulating the quantum

algorithm and post-processing the simulated output. More specifically, with the initial estimate of n as our
starting point, we sample M = 10

3

sets of n pairs (j, k), as explained in Section 5.3, and test whether recovery
of both d and r is successful for at least ⌈Mq⌉ sets when executing the post-processing algorithms in Sections

6.1 and 6.2 without enumerating Lj. Depending on the outcome of the test, we either increment or decrement

n, and repeat the process, recursively, until the smallest n such that the test passes has been identified. We

record this n alongside the initial estimate of n.
In practice, we compute the closest vector in Lj by reducing the lattice basis and applying Babai’s [1]

nearest plane algorithm. The shortest non-zero vector in Lj is the shortest non-zero vector in the reduced basis.
Enumeration is performed using Kannan’s [12] original approach, as this is sufficient for our purposes. Note

however that there are more efficient approaches in the literature.

To reduce the basis, we closely follow [7] and employ LLL and BKZ [15, 16, 22, 23], as implemented in fpLLL

v5.0, with default parameters and a block size of min(n + 1, 10) for all combinations of m, s and n. We first

compute a LLL reduction. If it yields no solution, we proceed to compute a BKZ reduction.

7.2 Selectingm and s

Since the cost of estimating n for a given problem instance is non-negligible, we seek to minimize the number

of problem instances considered, whilst selecting problem instances that are representative of those that

underpin the currently most widely deployed asymmetric cryptosystems.

To this end, for m ∈ {128, 256, 384, 512, 1024, . . . , 8192}, we pick a single combination of d and r
using the method described in Section 7.3, and estimate n for a subset of tradeoff factors s ∈ {1, 2, . . . , 8, 10,
20, . . . , 50, 80}, such that the total approximation error is negligible.

In terms of group size, the above choices of m capture most currently widely deployed elliptic curve

groups, Schnorr groups and safe-prime groups.



Computing general discrete logarithms and orders with tradeoffs | 385

7.3 Selecting d and r givenm

For each value of m, we select d and r such that 2m−1 < d < r < 2m in a randomized manner.

For as long as d and r do not have very special properties, such as being divisible by large powers of two
or being otherwise smooth, the exact values of d and r are of no great significance, however: It is the size of d
in relation to r, and the size of r in relation to 2m, that primarily affects the appearance of the distribution

and hence the estimates. To avoid having to tabulate d and r for the m we consider, we read d and r from the

decimal expansion of Catalan’s constant

G =

∞∑︁
i=0

(−1)

i

(2i + 1)2 =

1

1
2

−

1

3
2

+

1

5
2

−

1

7
2

+ · · · .

Specifically, we let cm,k =

∑︀m−2
j=0 2

m−2−jg
8191k+j for gi the ith bit in the decimal expansion of G, and select

r = 2

m−1
+ cm,0 and d = 2

m−1
+ (cm,1 mod cm,0).

7.4 Experiments and results

The estimates of n in Table 1 were produced by executing the procedure described in the previous sections. As
may be seen in the table, n asymptotically tends to s + 1 as m tends to infinity for fixed s. For fixed m, it holds
that n = s + 1 up to some cutoff point in s.

The estimates are for not enumerating the lattice Lj. By enumerating a bounded number of vectors in the

lattice, n may potentially be further reduced. In particular, our experiments show that a single run suffices to

solve with probability q ≥ 99% for s = 1, provided we accept to enumerate up to∼ 1.3 · 10

3

vectors.

Table 1: The estimated number of runs n required to solve for both a general discrete logarithm d and group order r, selected as
described in Section 7.3, with ≥ 99% success probability and without enumerating the lattice. For details, see Section 7.4. For A
the initial and B the simulated estimate, we print B / A, unless B = A; we then only print A. Dash indicates no estimate. For ϵ the
total approximation error, an asterisk indicates that 10−4 ≤ ϵ < 10−3. For all other estimates ϵ < 10−4.

group and logarithm size m
128 256 384 512 1024 2048 4096 8192

tra
de
off

fa
ct
or
s

1 2 2 2 2 2 2 2 2
2 * 3 3 3 3 3 3 3 3
3 – 4 4 4 4 4 4 4
4 – * 5 5 5 5 5 5 5
5 – – 6 6 6 6 6 6
6 – – * 7 7 7 7 7 7
7 – – – 8 8 8 8 8
8 – – – * 10 9 9 9 9

10 – – – – 11 11 11 11
20 – – – – – 22 21 21
30 – – – – – * 35 33 / 32 31
40 – – – – – – 44 42
50 – – – – – – 57 54 / 53
80 – – – – – – – – / 88

Asmay furthermore be seen in the table, the initial estimates of n are in general verified by the simulations.

In general vd > vr. Hence vd determines the initial estimate for n. Note however that when the heuristic

estimate of vd is close to two, minor discrepancies between the initial estimates and the simulations may arise.

This phenomenon is discussed in [7]: For large tradeoff factors s in relation tom, increasing or decreasing n
typically has a small effect on vd and vr. This may lead to slight instabilities in the estimates, as vd may be



386 | M. Ekerå

close to two for several values of n. Discrepancies may also arise, especially for large n, if we fail to find the
closest and shortest non-zero vectors in Lj, or if sampling fails. Such discrepancies may be amplified by the

difference in the sample sizes N and M.

7.5 Generalizing the results to compute worst case estimates

Recall from Section 5.2 that the larger d is permitted to grow in relation to r, and the larger r is permitted to

grow in relation to 2

m
, the harder it in general becomes to solve for d and r, assuming neither d nor r to be

divisible by large powers of two. This may be seen by computing estimates for various combinations of d and r,
or simply by examining the appearance of the two-dimensional distribution for various d and r.

Furthermore, recall from Section 5.2 that the marginal distributions along the αd and αr axes in the two-
dimensional distribution for general discrete logarithmsmay be seen to correspond to the distributions induced

by the quantum algorithms for computing short discrete logarithms with tradeoffs, and orders with tradeoffs,

respectively. Both correspondences may be observed numerically by comparing distributions computed for

specific problem instances. The correspondence in αr may furthermore be shown analytically, see Appendix D.

As vd > vr in general when d is large in relation to r, and neither d nor r are divisible by large powers of
two, we therefore in general expect estimates of n for computing the general discrete logarithm d in a group
of m bit order r to agree with estimates of n for computing the short discrete logarithm d, when m is taken

as the upper bound on the bit length of d. For d and r selected as in Section 7.3, this correspondence may be

observed in practice by comparing the estimates in Table 1 to those in Table B1 in Appendix B.

The above implies that we may conjecturally claim to obtain worst case estimates of n for general discrete
logarithms by computing estimates of n for maximal short discrete logarithms d = 2

m
− 1 when m is taken as

an upper bound on the bit length of d. Such estimates are provided in Table B2 in Appendix B.

Note that when comparing estimates of n for general discrete logarithms to those for short discrete

logarithms and orders, the comparison must of course be restricted to combinations of m and s such that

the total approximation error is negligible. It is reasonable to presume that the correspondence between the

distributions would continue to hold even if s was to be permitted to grow a bit past the point where the

total approximation error becomes non-negligible for a given m, since the error bound is by no means tight.

However, we can not demonstrate the correspondence for such m and s.

8 Order finding with tradeoffs
The algorithm for computing general discrete logarithms in this paper does not require the group order to be

known, as neither the quantum algorithm nor the classical post-processing algorithm makes explicit use of

the order. If the order of the group is unknown, it may be computed from the same set of pairs (j, k) output by
the quantum computer as is used to compute the logarithm.

This implies that the algorithm may be used as an order-finding algorithm. When only the order is of

interest, only j need to be computed, as k is not used by the post-processing algorithm that recovers the order.

The second stage of the quantum algorithmwhere k is computed need therefore not be executed when the goal

is to perform order finding. If the second stage is removed, the quantum algorithm reduces to the algorithm

proposed by Seifert [24]. For s = 1 this algorithm in turn reduces to Shor’s order-finding algorithm.

This provides a link between our works on computing discrete logarithms, Seifert’s work on order finding,

and Shor’s original work. As for post-processing, Seifert generalizes Shor’s continued fractions-based post-

processing algorithm to higher dimensions. We instead use lattice-based post-processing.

In Appendix A, we provide a description of Shor’s and Seifert’s quantum algorithms for order finding, a

complete analysis of the probability distributions that they induce, and estimates for the number of runs n
required to solve various problem instances for r when using lattice-based post-processing.



Computing general discrete logarithms and orders with tradeoffs | 387

9 Summary and conclusion
We generalize and bridge our earlier works on computing short discrete logarithms with tradeoffs, Seifert’s

work on computing orders with tradeoffs and Shor’s groundbreaking works on computing orders and general

discrete logarithms. In particular, we enable tradeoffs when computing general discrete logarithms.

Compared to Shor’s algorithm for computing general discrete logarithms, this yields a reduction by up to

a factor of two in the number of group operations evaluated quantumly in each run, at the expense of having

to perform multiple runs. The runs are independent, and may hence be executed in parallel.

Unlike Shor’s algorithm, our algorithm does not require the group order to be known. It simultaneously

computes both the order and the logarithm. This allows it to outperform Shor’s original algorithmswith respect

to the overall number of group operations that need to be evaluated quantumly in some cases even when

not making tradeoffs. One cryptographically relevant example of such a case is the computation of discrete

logarithms in Schnorr groups of unknown order.

We analyze the probability distributions induced by our algorithm, and by Shor’s and Seifert’s order-

finding algorithms, describe how all of these algorithms may be simulated when the solution is known, and

estimate the number of runs required for a givenminimum success probability whenmaking different tradeoffs.

When solving using lattice-based post-processing without enumerating Lj, the number of runs n required
for a fixed tradeoff factor s tends to s + 1 asymptotically as m tends to infinity. By enumerating, n may be

further reduced. Notably, when not making tradeoffs, a single run suffices to solve with at least 99% success

probability, provided a small number of lattice vectors are enumerated.

Throughout this work, we have assumed the bit length of r to be known. However, it should be straight-
forward to generalize the analysis to handle situations where only an upper bound on the bit length of r is
known.

Acknowledgement: I am grateful to Johan Håstad for valuable comments and advice, and to Lennart Bryniels-

son and other colleagues for their comments on early versions of this manuscript. Funding and support for

this work was provided by the Swedish NCSA that is a part of the Swedish Armed Forces. Computations were

performed at PDC at KTH. Access was provided by SNIC.

References
[1] L. Babai, On Lovász’ lattice reduction and the nearest lattice point problem, Combinatorica 6 (1986), no. 1, 1–13.
[2] E. Barker et al., Recommendation for Pair-Wise Key-Establishment Schemes Using Discrete Logarithm Cryptography, NIST SP

800-56A (2018), rev. 3.
[3] W. Difle and M.E. Hellman, New Directions in Cryptography, IEEE Transactions on Information Theory 22 (1976), no. 6,

644–654.
[4] G. Einarsson, Probability Analysis of a Quantum Computer, ArXiv quant-ph/0303074 (2003).
[5] M. Ekerå, Modifying Shor’s algorithm to compute short discrete logarithms, IACR ePrint Archive Report 2016/1128 (2016).
[6] M. Ekerå, On completely factoring any integer eflciently in a single run of an order finding algorithm, ArXiv 2007.10044

(2020).
[7] M. Ekerå, On post-processing in the quantum algorithm for computing short discrete logarithms, Des. Codes, Cryptogr. 88

(2020), no. 11, 2313–2335.
[8] M. Ekerå and J. Håstad, Quantum algorithms for computing short discrete logarithms and factoring RSA integers. In: Lange T.,

Takagi T. (Eds) Post-Quantum Cryptography, PQCrypto 2017, LNCS (2017), no. 10346, 347–363.
[9] D. Gillmor, Negotiated Finite Field Difle-Hellman Ephemeral Parameters for Transport Layer Security (TLS), RFC 7919 (2016).
[10] R.B. Griflths and C.-S. Niu, Semiclassical Fourier Transform for Quantum Computation, Phys. Rev. Lett. 76 (1996), no. 17,

3228–3231.
[11] J. Håstad, A. Schrift and A. Shamir, The Discrete Logarithm Modulo a Composite Hides O(n) bits, J. Comput. Syst. Sci. 47

(1993), no. 3, 376–404.
[12] R. Kannan, Improved algorithms for integer programming and related lattice problems. In: Proceedings of the 15th Symposium

on the Theory of Computing, STOC ’83 (1983), 99—108.



388 | M. Ekerå

[13] T. Kivinen and M. Kojo, More Modular Exponentiation (MODP) Difle-Hellman groups for Internet Key Exchange, RFC 3526
(2003).

[14] A. Koenecke and P. Wocjan, Recovering the period in Shor’s algorithm with Gauss’ algorithm for lattice basis reduction, ArXiv
1210.3003 (2013).

[15] A. Korkine and G. Zolotareff, Sur les formes quadratiques, Math. Ann. 6 (1873), no. 3, 366–389.
[16] H.W. Lenstra, A.K. Lenstra and L. Lovász, Factoring Polynomials with Rational Coeflcients, Math. Ann. 261 (1982), no. 4,

515–534.
[17] G.L. Miller, Riemann’s hypothesis and tests for primality, J. Comput. Syst. Sci. 13 (1976), no. 3, 300–317.
[18] M. Mosca and A. Ekert: The Hidden Subgroup Problem and Eigenvalue Estimation on a Quantum Computer. In: Proceeding

from the First NASA International Conference, QCQC ’98, LNCS (1999), no. 1509, 174–188.
[19] S. Parker and M.B. Plenio, Eflcient Factorization with a Single Pure Qubit and log N Mixed Qubits, Phys. Rev. Lett. 85 (2000),

no. 14, 3049–3052.
[20] S.C. Pohlig andM.E. Hellman, An Improved Algorithm for Computing Logarithms over GF(p) and Its Cryptographic Significance,

IEEE Trans. Inf. Theory 24 (1978), no. 1, 106–110.
[21] R.L. Rivest, A. Shamir and L. Adleman, A Method for Obtaining Digital Signatures and Public-Key Cryptosystems, Commun.

ACM 21 (1978), no. 2, 120–126.
[22] C.-P. Schnorr, A hierarchy of polynomial time lattice basis reduction algorithms, Theor. Comput. Sci. 53 (1987), no. 2–3,

201–224.
[23] C.-P. Schnorr and M. Euchner: Lattice basis reduction: Improved practical algorithms and solving subset sum problems,

Math. Program. 66 (1994), no. 1–3, 181–199.
[24] J.-P. Seifert, Using fewer qubits in Shor’s factorization algorithm via simultaneous Diophantine approximation. In: Naccache,

D. (ed.) CT-RSA 2001, LNCS (2001), no. 2020, 319–327.
[25] P.W. Shor, Algorithms for quantum computation: discrete logarithms and factoring. In: Proceedings of the 35th Annual

Symposium on Foundations of Computer Science, SFCS ’94 (1994), 124–134
[26] P.W. Shor: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer, SIAM J.

Comput. 26 (1997), no. 5, 1484–1509.



Computing general discrete logarithms and orders with tradeoffs | 389

A Order finding with tradeoffs
In this appendix, we recall Shor’s [25] and Seifert’s [24] order-finding algorithms, analyze the probability

distributions they induce, show how they may be simulated, and estimate the number of runs n required to
solve for r when using lattice-based post-processing.

A.1 The quantum algorithm

Given a generator g of a finite cyclic group of order r of length∼ m bits, Shor’s order-finding algorithm [25]

outputs an integer j that yields∼ m bits on r. Seifert [24] enabled tradeoffs in Shor’s algorithm by modifying it

to yield ∼ m/s bits on r in each run, for s the tradeoff factor. For s = 1 Seifert’s algorithm reverts to Shor’s

algorithm. This allows us to conveniently describe both algorithms below:

1. Let m be the integer such that 2

m−1
< r < 2m, let ℓ = ⌈m/s⌉, and let

Ψ =

1√
2
m+ℓ

2

m+ℓ
−1∑︁

a=0
| a, 0 ⟩ .

2. Compute [a] g and store the result in the second register to obtain

Ψ =

1√
2
m+ℓ

2

m+ℓ
−1∑︁

a=0

⃒⃒
a, [a] g

⟩︀
.

3. Compute a QFT of size 2

m+ℓ
of the first register to obtain

Ψ =

1

2
m+ℓ

2

m+ℓ
−1∑︁

a=0

2

m+ℓ
−1∑︁

j=0
e

2πi aj/2m+ℓ ⃒⃒ j, [a] g ⟩︀ .
4. Observe the system to obtain j and y = [e] g where e = a mod r.

Note that Seifert’s interpretation of the advantage of his algorithms is that he saves control qubits. This is

not the case when recycling control qubits; see the discussion in Section 2 for a more modern interpretation of

the advantage.

A.2 The probability of observing j and y

Above, in step 4, the integer j and element y = [e] g are obtained with probability

1

2
2(m+ℓ)

⃒⃒⃒⃒
⃒∑︁a exp

[︂
2πi
2
m+ℓ aj

]︂⃒⃒⃒⃒
⃒
2

(A1)

where the sum is over all a on 0 ≤ a < 2

m+ℓ
such that a ≡ e (mod r).

In this section, we seek to place (A1) on closed form. To this end, we first perform a variable substitution to

obtain a contiguous summation interval. As all a that fulfill the condition that a ≡ e (mod r) are on the form
a = e + nrr where 0 ≤ nr ≤ (2m+ℓ − 1 − e)/r, substituting a for e + nrr in (A1) and adjusting the phase yields

1

2
2(m+ℓ)

⃒⃒⃒⃒
⃒⃒⌊(2

m+ℓ
−1−e)/r⌋∑︁
nr=0

exp

[︂
2πi
2
m+ℓ αrnr

]︂⃒⃒⃒⃒⃒⃒
2

=

1

2
2(m+ℓ)

⃒⃒⃒⃒
⃒⃒⌊(2

m+ℓ
−1−e)/r⌋∑︁
nr=0

e

iθrnr

⃒⃒⃒⃒
⃒⃒
2

where αr = {rj}
2
m+ℓ and θr = θ(αr) = 2παr/2m+ℓ. Summing over all e yields

1

2
2(m+ℓ)

r−1∑︁
e=0

⃒⃒⃒⃒
⃒⃒⌊(2

m+ℓ
−1−e)/r⌋∑︁
nr=0

e

iθr nr

⃒⃒⃒⃒
⃒⃒
2

=

β
2
2(m+ℓ)

⃒⃒⃒⃒
⃒⃒⌊(2

m+ℓ
−1)/r⌋∑︁

nr=0
e

iθr nr

⃒⃒⃒⃒
⃒⃒
2

+

r − β
2
2(m+ℓ)

⃒⃒⃒⃒
⃒⃒⌊(2

m+ℓ
−1)/r⌋−1∑︁
nr=0

e

iθr nr

⃒⃒⃒⃒
⃒⃒
2

(A2)



390 | M. Ekerå

for β such that β ≡ 2

m+ℓ
(mod r), as for all e on 0 ≤ e < β it then holds that⌊︁

(2

m+ℓ
− 1 − e)/r

⌋︁
=

⌊︁
(2

m+ℓ
− 1)/r

⌋︁
whereas for all e on β ≤ e < r, it holds that⌊︁

(2

m+ℓ
− 1 − e)/r

⌋︁
=

⌊︁
(2

m+ℓ
− 1)/r

⌋︁
− 1.

Note that β /≡ 0 (mod r) since we require r to be on 2m−1 < r < 2m.

A.2.1 Closed-form expressions

Assuming θr ≠ 0, we may write (A2) on closed form as

β
2
2(m+ℓ)

⃒⃒⃒⃒
⃒⃒eiθr

(︀
⌊(2m+ℓ−1)/r⌋+1

)︀
− 1

e
iθr
− 1

⃒⃒⃒⃒
⃒⃒
2

+

r − β
2
2(m+ℓ)

⃒⃒⃒⃒
⃒eiθr ⌊(2

m+ℓ
−1)/r⌋

− 1

e
iθr
− 1

⃒⃒⃒⃒
⃒
2

.

Otherwise, if θr = 0, we may write (A2) on closed form as

β
2
2(m+ℓ)

(︁⌊︁
(2

m+ℓ
− 1)/r

⌋︁
+ 1

)︁
2

+

r − β
2
2(m+ℓ)

(︁⌊︁
(2

m+ℓ
− 1)/r

⌋︁)︁
2

.

This step of the analysis is similar to a step in the analysis of Einarsson [4].

A.3 Distribution of integers j

In this section we analyze the distribution of integers j that yield αr.

Definition A.1. Let κr denote the greatest integer such that 2κr divides r.

Definition A.2. An argument αr is admissible if there exists an integer j on 0 ≤ j < 2m+ℓ such that αr = {rj}
2
m+ℓ .

Claim A.3. All admissible arguments αr = {rj}
2
m+ℓ are multiples of 2κr .

Proof. As 2κr | r and the modulus is a power of two the claim follows.

Lemma A.4. The set of integers j on 0 ≤ j < 2m+ℓ that yield the admissible argument αr is given by

j =
(︂
αr
2
κr

(︁ r
2
κr

)︁
−1

+ 2

m+ℓ−κr tr
)︂

mod 2

m+ℓ

as tr runs trough all integers on 0 ≤ tr < 2κr . Each admissible argument αr hence occurs with multiplicity 2κr .

Proof. As αr ≡ rj (mod 2

m+ℓ
), the lemma follows by solving for j.

A.4 Simulating the quantum algorithm

In this section, we first construct a high-resolution histogram for the probability distribution induced by the

quantum algorithm for known r. We then proceed to sample the histogram to simulate the quantum algorithm.



Computing general discrete logarithms and orders with tradeoffs | 391

A.4.1 Constructing the histogram

To construct the histogram, we exactly follow [7]: We divide the argument axis into regions and subregions

and integrate the closed-form probability expression numerically in each subregion.

First, we subdivide the negative and positive sides of the argument axis into 30 + µ regions where µ =

min(ℓ − 2, 11). Each region thus formed may be uniquely identified by an integer ηr by requiring that for all αr
in the region

2

|ηr|
≤ |αr| ≤ 2|ηr|+1 and sgn(αr) = sgn(ηr)

where m − 30 ≤ |ηr| < m + µ − 1. Then, we subdivide each region into subregions identified by an integer ξr by
requiring that for all αr in the subregion

2

|ηr|+ξr/2ν
≤ |αr| ≤ 2|ηr|+(ξr+1)/2

ν

for ξr an integer on 0 ≤ ξr < 2ν and ν a resolution parameter.

For each subregion, we compute the approximate probability mass contained within the subregion by

applying Simpson’s rule, followed by Richardson extrapolation to cancel the linear error term. Simpson’s rule

is hence applied 2

ν
(1 + 2) times in each region. Each application requires the probability to be computed in

up to three points (the two endpoints and the midpoint), for which purpose we use the closed-form expression

developed in Section A.2.1.

Note that we should furthermore multiply by the multiplicity of arguments 2

κr
, see Lemma A.4 in Sec-

tion A.3, and divide by 2

κr
to account for the density of distinct pairs in the region. However, these operations

cancel. Note also that this method of constructing the histogram assumes κr to be small in relation to m.
To obtain a high degree of accuracy in the tail, we fix to ν = 11 for all regions. This enables us use this

histogram as a reference when adaptively selecting the resolution for the two-dimensional histogram in

Section 5.1, see Lemma D.1.

A.4.2 Understanding the probability distribution

The probability distribution is plotted on the signed logarithmic argument axis in Figure 4 for m = 2048 and

s = 30, and for r selected as explained in Section 7.3. The regions form two contiguous symmetric areas on the

argument axis, as is illustrated in Figure A1. As expected, the distribution plotted is virtually identical to the

marginal distribution along the vertical αr axis in Figure 4.
The probability mass is located in the regions where |αr| ∼ 2

m
, whereas for random outputs the argument

would be of size∼ 2

m+ℓ
. Hence, a single run of the quantum algorithm yields∼ ℓ ∼ m/s bits of information

on r.

0
.1

5
3

0
.1

5
3

0
.1

1
4

0
.1

1
4

0
.0

6
3

0
.0

6
3

0
.0

5
6

0
.0

5
6

0
.0

3
2

0
.0

3
2

0
.0

2
4

0
.0

2
4

0
.0

1
6

0
.0

1
6

0
.0

1
2

0
.0

1
2

0
.0

0
8

0
.0

0
8

0
.0

0
6

0
.0

0
6

0
.0

0
4

0
.0

0
4

0
.0

0
3

0
.0

0
3

0
.0

0
2

0
.0

0
2

0
.0

0
1

0
.0

0
1

m − 5 m m + 5−m − 5 −m −m + 5

m − 5 m m + 5−m − 5 −m −m + 5

s
g
n
(
α
r
)
lo

g
2
(|α

r
|)

Figure A1: The probability distribution induced by the order-finding algorithm, computed as in Section A.4.1, for m = 2048 and
s = 30, and for r selected as in Section 7.3. To facilitate printing, the resolution has been reduced in this figure.



392 | M. Ekerå

A.4.3 Sampling the probability distribution

To sample an argument αr from the distribution, we exactly follow [7]: We first sample a subregion from the

histogram and then sample αr uniformly at random this subregion, with the restriction that 2

κr
must divide αr

so that αr is admissible. To sample a subregion from the histogram, we order all subregions in the histogram

by probability, and compute the cumulative probability up to and including each subregion in the resulting

ordered sequence, in analogy with Section 5.3.

Then, we sample a pivot uniformly at random from [0, 1), and return the first subregion in the ordered

sequence for which the cumulative probability is greater than or equal to the pivot. The sampling operation

fails if the pivot is greater than the cumulative probability of the last subregion in the sequence.

To sample an integer j from the distribution, we first sample an argument αr and then select an integer j
yielding αr uniformly at random from the set of all such integers using Lemma A.4. More specifically, we first

sample an integer tr uniformly at random on the admissible interval for tr and then compute j from αr and tr
as described in Lemma A.4.

A.5 Classical post-processing

The probability distribution induced by the quantum algorithm in Section A.1 is virtually identical to the

marginal distribution along the αr axis in Section 5.1. Hence, the classical post-processing algorithm in

Section 6.2 may be used to solve sets of n integers j output by the quantum algorithm in Section A.1 for r.

A.6 Estimating the number of runs required

To estimate n for problem instance given by r, we exactly follow [7]:

For n = s + 1, s + 2, . . . we first estimate
̃︀Rr by sampling N = 10

6

sets of n arguments αr, as explained
in Sections A.4.3 and 6.3, and record the smallest n for which the volume quotient vr < 2 with probability

qr ≥ q ≥ 99%. With this estimate of n as our starting point, we then sample M = 10

3

sets of n integers j, as
explained in Section A.4.3, and test whether recovery of r is successful for at least ⌈Mq⌉ sets when executing
the post-processing algorithm in Section 6.2 without enumerating Lj. Depending on the outcome of the test,

we either increment or decrement n, and repeat the process, recursively, until the smallest n such that the test
passes has been identified.

Executing this procedure, for m and s selected as described in Section 7.2, both for r selected as explained
in Section 7.3, and for maximal r = 2

m
− 1, produced the estimates in Table A1 and Table A2, respectively. Note

that for A the initial and B the simulated estimate, we print B / A, unless B = A, we then only print A. Note

furthermore that we have excluded m = 384 to reduce the table width.

The tabulated estimates are for not enumerating the lattice Lj. By enumerating a bounded number of

vectors in the lattice, n may potentially be further reduced. In particular, our experiments show that a single

run suffices to solve with probability q ≥ 99% for s = 1, provided we accept to enumerate up to∼ 3.5 · 10

2

vectors.

A.7 Applications of order finding to integer factoring

Quantum algorithms for order finding may be used to factor integers, as was first proposed by Shor [25] using

a reduction due to Miller [17]. To factor a composite integer N, that is odd and not a perfect prime power, Shor

originally proposed to proceed as follows: Pick an integer g ∈ (1, N) and compute D = gcd(g, N). If D ≠ 1,

then D is a non-trivial factor of N. In practice, small and moderate size factors of N would typically be removed

before attempting to factor N via order finding. Hence, it is unlikely that factors would be found in this manner.



Computing general discrete logarithms and orders with tradeoffs | 393

Table A1: The estimated number of runs n required to solve for an order r, selected as in Section 7.3, with ≥ 99% success
probability, without enumerating the lattice.

group size m
128 256 512 1024 2048 4096 8192

tra
de
off

fa
ct
or
s

1 2 2 2 2 2 2 2
2 3 3 3 3 3 3 3
3 4 4 4 4 4 4 4
4 6 5 5 5 5 5 5
5 7 6 6 6 6 6 6
6 9 8 7 7 7 7 7
7 12 / 11 9 8 8 8 8 8
8 16 / 15 11 10 9 9 9 9

10 – / 25 14 12 11 11 11 11
20 – – / 54 28 / 29 24 22 21 21
30 – – – / 53 39 / 38 34 32 31
40 – – – – / 58 48 / 47 44 42
50 – – – – – / 63 56 53
80 – – – – – – / 95 – / 87

Table A2: The estimated number of runs n required to solve for a maximal order r = 2

m
− 1 with ≥ 99% success probability,

without enumerating the lattice.

group size m
128 256 512 1024 2048 4096 8192

tra
de
off

fa
ct
or
s

1 2 2 2 2 2 2 2
2 3 3 3 3 3 3 3
3 4 4 4 4 4 4 4
4 6 5 5 5 5 5 5
5 8 / 7 6 6 6 6 6 6
6 9 8 7 7 7 7 7
7 11 / 12 9 8 8 8 8 8
8 17 / 16 11 10 9 9 9 9

10 – / 25 14 12 11 11 11 11
20 – – / 55 30 / 29 23 / 24 22 21 21
30 – – – / 53 37 / 39 34 32 31
40 – – – – / 59 48 / 47 44 42
50 – – – – – / 63 57 / 56 53
80 – – – – – – / 95 – / 87

If D = 1, then gmay be perceived as a generator of a cyclic subgroup ⟨g⟩ ⊂ Z*N , and its order r computed using

a quantum algorithm for order finding.

As gr ≡ 1 (mod N), it must be that gr − 1 ≡ 0 (mod N). If r is even and gr/2 /≡ − 1 (mod N), we have that
gr/2 ± 1 /≡0 (mod N), whilst

gr − 1 ≡ (gr/2 − 1)(gr/2 + 1) ≡ 0 (mod N),

so non-trivial factors of N may be found by computing gcd((gr/2 mod N) ± 1, N). This reduces the integer
factoring problem to an order finding problem.

Shor originally proposed to use this reduction, and to simply re-run the whole algorithm if any of the

above requirements are not fulfilled, or if the order-finding algorithm fails to yield r. In [25], Shor lower-bounds



394 | M. Ekerå

the probability of his order-finding algorithm yielding r in a single run, and of non-trivial factors of N being

found given r, so as to obtain a lower bound on the overall success probability. A number of improvements

have since been proposed, see the introduction to [6] for an overview.

In this appendix, we have shown that the probability of Shor’s original order-finding algorithm yielding r
in a single run is very close to one. Furthermore, we have estimated the number of runs required to obtain

a similarly high success probability when making tradeoffs in Seifert’s order-finding algorithm. In [6], it is

shown that any integer N may be completely factored classically into all of its constituent prime factors with

very high probability after a single call to an order-finding algorithm. Hence, the estimates we provide of the

number of runs required for Shor’s and Seifert’s order-finding algorithms to yield r are also estimates of the

number of runs required to completely factor N via these order-finding algorithms.

A.7.1 Factoring RSA integers

Note that if N is an RSA [21] integer, as is typically the case in cryptographic applications, a more efficient

approach to factoring N is to use the algorithm of Ekerå and Håstad [8]. This algorithm reduces the RSA integer

factoring problem to a short discrete logarithm problem via [11] and solves this problem quantumly.

As is shown in [7], the quantum part of Ekerå-Håstad’s algorithm imposes less requirements on the

quantum computer than Shor’s or Seifert’s order-finding algorithms, in each run and overall, both when

making and not making tradeoffs. The probability of recovering the logarithm d is very close to one. The two
prime factors of N may then be recovered deterministically from d.



Computing general discrete logarithms and orders with tradeoffs | 395

B Short discrete logarithms with tradeoffs
The experiments in Appendix A for order finding are analogous with those for short discrete logarithms in [7].

For completeness, and so as to enable comparisons, we have run additional experiments for short discrete

logarithms following [7], both for maximal d = 2

m
− 1, and for d selected as described in Section 7.2. These

experiments produced the estimates in Table B1 and Table B2, respectively. Note that for A the initial and B the

simulated estimate, we print B / A, unless B = A, we then only print A.

Table B1: The estimated number of runs n required to solve for a short logarithm d, selected as in Section 7.3, with ≥ 99%

success probability, without enumerating.

logarithm size m
128 256 512 1024 2048 4096 8192

tra
de
off

fa
ct
or
s

1 2 2 2 2 2 2 2
2 3 3 3 3 3 3 3
3 4 4 4 4 4 4 4
4 6 5 5 5 5 5 5
5 8 6 6 6 6 6 6
6 10 8 7 7 7 7 7
7 13 10 / 9 8 8 8 8 8
8 18 11 10 9 9 9 9

10 – / 32 15 12 11 11 11 11
20 – – / 71 32 / 30 24 22 21 21
30 – – – / 60 40 35 33 / 32 31
40 – – – – / 62 50 / 48 44 42
50 – – – – – / 65 57 54 / 53
80 – – – – – – / 97 – / 88

Table B2: The estimated number of runs n required to solve for a maximal short logarithm d = 2

m
− 1 with ≥ 99% success

probability, without enumerating.

logarithm size m
128 256 512 1024 2048 4096 8192

tra
de
off

fa
ct
or
s

1 2 2 2 2 2 2 2
2 3 3 3 3 3 3 3
3 4 4 4 4 4 4 4
4 6 5 5 5 5 5 5
5 8 6 6 6 6 6 6
6 10 8 7 7 7 7 7
7 13 9 8 8 8 8 8
8 18 11 10 9 9 9 9

10 – / 32 16 / 15 12 11 11 11 11
20 – – / 71 31 25 / 24 22 21 21
30 – – – / 60 40 35 32 32 / 31
40 – – – – / 62 49 / 48 45 / 44 42
50 – – – – – / 65 57 54 / 53
80 – – – – – – / 97 – / 88



396 | M. Ekerå

C Soundness of the closed-form approximation
In this appendix, we demonstrate the fundamental soundness of the closed-form approximation to P(θd , θr)
that we derived in Section 3. This appendix is rather technical and may be considered to constitute supple-

mentary material.

C.1 Introduction and recapitulation

Recall that by Theorem 3.22, the probability P(θd , θr) of the quantum algorithm yielding (j, k), with associated
angle pair (θd , θr), summed over all r group elements y = [e] g ∈ G, may be approximated by

̃︀P(θd , θr) = 2

2σr
2
2(m+2ℓ) f (θr) g(θd , θr)

where we have introduced some new notation in the form of the two functions

f (θr) =

⃒⃒⃒⃒
⃒⃒⌈2

m+ℓ
/r⌉−1∑︁

nr=0
e

iθrnr

⃒⃒⃒⃒
⃒⃒
2

g(θd , θr) =

⃒⃒⃒⃒
⃒⃒2

ℓ−σ
−1∑︁

t=0
e

i(2

σθd+⌈−2σd/r⌉θr)t

⃒⃒⃒⃒
⃒⃒
2

that we shall use throughout this section, and that may both be placed on closed form. The error when

approximating P(θd , θr) by ̃︀P(θd , θr) is bounded bỹ⃒⃒⃒︀P(θd , θr) − P(θd , θr)⃒⃒⃒ ≤ ẽ(θd , θr),
again by Theorem 3.22, where the function ẽ(θd , θr) is defined.

C.1.1 Overview of the soundness argument

In what follows, we demonstrate the fundamental soundness of the above closed-form approximation, by

summing
̃︀P(θd , θr) analytically to show that a large fraction of the probability mass is within a specific region

of the plane, and by summing ẽ(θd , θr) analytically to show that the total approximation error in this region is

negligible. Asymptotically, in the limit as m tends to infinity for fixed s, the fraction of the probability mass

captured tends to one whilst the error tends to zero. This implies that
̃︀P(θd , θr) asymptotically captures the

probability distribution completely and exactly.

C.2 Preliminaries

Before we proceed as outlined above, we first introduce some preliminaries.

Lemma C.1. Let φ ∈ R and θ(u) = 2πu/2ω for ω > 0 an integer. Then

2

ω+c−ς
−1∑︁

u=0

⃒⃒⃒⃒
⃒
N−1∑︁
t=0

e

i(2

ςθ(u)+φ)t

⃒⃒⃒⃒
⃒
2

= 2

ω+c−ςN

for integers c, ς and N such that c ≥ 0, 0 ≤ ς < ω and 0 < N ≤ 2ω−ς.

Proof. For any ϕ ∈ R it holds that⃒⃒⃒⃒
⃒
N−1∑︁
t=0

e

i(2

ςϕ+φ)t

⃒⃒⃒⃒
⃒
2

=

(︃N−1∑︁
t=0

e

i(2

ςϕ+φ)t
)︃(︃N−1∑︁

t=0
e

−i(2

ςϕ+φ)t
)︃



Computing general discrete logarithms and orders with tradeoffs | 397

=

N−1∑︁
t=−N+1

(N − |t|) ei(2
ςϕ+φ)t

= N +

N−1∑︁
t=1

(N − t) (ei(2
ςϕ+φ)t

+ e

−i(2

ςϕ+φ)t
).

Hence

2

ω+c−ς
−1∑︁

u=0

⃒⃒⃒⃒
⃒
N−1∑︁
t=0

e

i(2

ςθ(u)+φ)t

⃒⃒⃒⃒
⃒
2

=

2

ω+c−ς
−1∑︁

u=0

(︃
N +

N−1∑︁
t=1

(N − t)
(︁
e

i(2

ςθ(u)+φ)t
+ e

−i(2

ςθ(u)+φ)t
)︁)︃

= 2

ω+c−ςN +

N−1∑︁
t=1

(N − t)
2

ω+c−ς
−1∑︁

u=0

(︁
e

i(2

ςθ(u)+φ)t
+ e

−i(2

ςθ(u)+φ)t
)︁

⏟  ⏞  
=0

as for any integer t on 0 < |t| < N ≤ 2ω−ς and ς < ω, the sum

2

ω+c−ς
−1∑︁

u=0
e

i(2

ςθ(u)+φ)t
= e

iφt e
i2

ς
(2π/2ω) 2ω+c−ς t

− 1

e
i2
ς
(2π/2ω)t

− 1

= e

iφt e
2πi 2c t

− 1

e
2πi 2ς−ω t

− 1

= 0

as the denominator is non-zero, and so the lemma follows.

C.2.1 Bounding tail regions

Claim C.2. For ∆ and N integers such that 1 < ∆ < N it holds that

N∫︁
∆

du
u2 <

N−1∑︁
z=∆

1

z2 <

N−1∫︁
∆−1

du
u2 <

1

∆ − 1 ≤
2

∆ .

Proof. As

z+1∫︁
z

du
u2 =

1

z + z2 <

1

z2 <

1

z2 − z =
z∫︁

z−1

du
u2

for z any integer such that z > 1, it follows that

N∫︁
∆

du
u2 =

N−1∑︁
z=∆

⎛⎝ z+1∫︁
z

du
u2

⎞⎠
<

N−1∑︁
z=∆

1

z2 <

N−1∑︁
z=∆

⎛⎝ z∫︁
z−1

du
u2

⎞⎠
=

N−1∫︁
∆−1

du
u2

where, for ∆ and N integers on 1 < ∆ < N, it holds that

N−1∫︁
∆−1

du
u2 =

1

∆ − 1 −
1

N − 1 <

1

∆ − 1 ≤
2

∆

and so the claim follows.

Claim C.3. For any ϕ ∈ R such that 0 < |ϕ| ≤ π it holds that⃒⃒⃒⃒
⃒
N−1∑︁
t=0

e

iϕt

⃒⃒⃒⃒
⃒
2

≤

2

4

ϕ2

.



398 | M. Ekerå

Proof. As ϕ ≠ 0, we have by Claim C.4 below that⃒⃒⃒⃒
⃒
N−1∑︁
t=0

e

iϕ

⃒⃒⃒⃒
⃒
2

=

⃒⃒⃒⃒
e

iNϕ
− 1

e
iϕ
− 1

⃒⃒⃒⃒
2

≤

2

2⃒⃒
e
iϕ
− 1

⃒⃒
2

≤

2

4

ϕ2

and so the claim follows.

Claim C.4. |eiϕ − 1| ≥ |ϕ|/2 for any ϕ ∈ R such that |ϕ| ≤ π.

Proof. It suffices to show that |eiϕ −1|2 = 2(1−cosϕ) ≥ ϕ2

/4 fromwhich the claim follows as cosϕ ≤ 1−ϕ2

/8

for any ϕ ∈ R such that |ϕ| ≤ π.

C.2.2 Intervals of admissible arguments and angles

To facilitate the analysis, we need notation to handle intervals of admissible angles:

Definition C.5. Let Θr(I) be the set of distinct admissible θr on the interval I.

Definition C.6. For a fixed admissible θr, let Θd(I, θr) be the set of distinct admissible θd on the interval I.

C.2.3 Parameterizing the admissible arguments and angles

Furthermore, we need a convenient method for parameterizing the distinct admissible argument pairs (αd , αr),
or angle pairs (θd , θr).

Claim C.7. The admissible arguments αd and αr may be parameterized by

αd(ud , ur) = (δrur mod 2

m−𝛾
) + 2

m−𝛾ud αr(ur) = 2

κrur

and the corresponding admissible angles θd and θr may be parameterized by

θd(ud , ur) =
2π
2
m+ℓ αd(ud , ur) θr(ur) =

2π
2
m+ℓ αr(ur)

for integers ud ∈ [−2

ℓ+𝛾−1
, 2

ℓ+𝛾−1
) and ur ∈ [−2

m+ℓ−κr−1
, 2

m+ℓ−κr−1
) when not accounting for multiplicity.

Proof. By Lemma 4.4, the admissible argument pairs (αd , αr) are vectors in Lα in the region of the plane where
αd , αr ∈ [−2

m+ℓ−1
, 2

m+ℓ−1
). The parameterization takes ur times the first row and ud times second row of the

basis matrix for Lα. It furthermore uses the second row to reduce the starting point δrur modulo 2

m−𝛾
. The

claim follows from this analysis.

C.3 Establishing a baseline

We begin by proving that the sum of
̃︀P(θd , θr) over all admissible angle pairs (θd , θr), with multiplicity, in

the region where θr ∈ [−π, π) and θd ∈ [−π/2σ , π/2σ), tends to one asymptotically in the limit as m tends to

infinity for fixed s.

C.3.1 The inner sum over g(θd , θr)

Lemma C.8. For θd ∈ Θd([−π/2σ , π/2σ), θr), the inner sum∑︁
θd∈Θd([−π/2σ , π/2σ), θr)

g(θd , θr) = 2

2(ℓ−σ)+𝛾
.



Computing general discrete logarithms and orders with tradeoffs | 399

Proof. The function g(θd , θr) is non-negative and periodic in θd for fixed θr. It cycles exactly 2σ times on the

interval θd ∈ [−π, π), as may be seen in Figure C1 where g(θd , θr) is plotted continuously in θd for θr fixed to
zero. Fixing a different value of θr shifts the graph cyclically along the θd axis.

g(θd, 0)

θd
−π − π

2σ
π
2σ

π

22(`−σ)

Figure C1: The function g(θd , 0) plotted continuously in θd on the interval |θd| ≤ π for σ = 3 and sample parameters selected to
make the figure readable.

This implies that wemay parameterize θd in ud and ur using Claim C.7 and sum θd(ud , ur) over any consec-
utive sequence of 2

ℓ+𝛾−σ
values of ud for the fixed ur given by θr to sum over all θd ∈ Θd([−π/2σ , π/2σ), θr).

By using this approach and Lemma C.1 we obtain

∑︁
θd∈Θd([−π/2σ , π/2σ), θr)

g(θd , θr) =
∑︁

θd∈Θd([−π/2σ , π/2σ), θr)

⃒⃒⃒⃒
⃒⃒2

ℓ−σ
−1∑︁

t=0
e

i(2

σθd+⌈−2σd/r⌉θr)t

⃒⃒⃒⃒
⃒⃒
2

=

2

ℓ+𝛾−σ−1
−1∑︁

ud=−2ℓ+𝛾−σ−1

⃒⃒⃒⃒
⃒⃒2

ℓ−σ
−1∑︁

t=0
e

i(2

σθd(ud ,ur)+⌈−2σd/r⌉θr(ur))t

⃒⃒⃒⃒
⃒⃒
2

=

2

ℓ+𝛾−σ−1
−1∑︁

ud=−2ℓ+𝛾−σ−1

⃒⃒⃒⃒
⃒⃒2

ℓ−σ
−1∑︁

t=0
e

i(2

σ
(2π 2m−𝛾 ud/2m+ℓ)+φ)t

⃒⃒⃒⃒
⃒⃒
2

=

2

ℓ+𝛾−σ
−1∑︁

ud=0

⃒⃒⃒⃒
⃒⃒2

ℓ−σ
−1∑︁

t=0
e

i(2πud/2ℓ+𝛾−σ+φ)t

⃒⃒⃒⃒
⃒⃒
2

= 2

ℓ+𝛾−σ
· 2

ℓ−σ

where we have used that we may shift the interval in ud, and introduced the constant phase

φ = 2

σ
(2π(δrur mod 2

m−𝛾
)/2

m+ℓ
) +

⌈︀
−2

σd/r
⌉︀
θr(ur),

and so the lemma follows.

C.3.2 The outer sum over f (θr)

Lemma C.9. For θr ∈ Θr([−π, π)), the outer sum∑︁
θr∈Θr([−π, π))

f (θr) = 2

m+ℓ−κr
⌈︂
2

m+ℓ

r

⌉︂
.

Proof. The function f (θr) is non-negative and periodic in θr. It cycles exactly once on the interval θr ∈ [−π, π).
This implies that we may parameterize θr in ur using Claim C.7, and sum over all 2

m+ℓ−κr
values of ur to sum



400 | M. Ekerå

over all θr ∈ Θr([−π, π)). By using this approach and Lemma C.1, we thus obtain

∑︁
θr∈Θr([−π, π))

f (θr) =
2

m+ℓ−κr−1
−1∑︁

ur=−2m+ℓ−κr−1

⃒⃒⃒⃒
⃒⃒⌈2

m+ℓ
/r⌉−1∑︁

nr=0
e

iθr(ur)nr

⃒⃒⃒⃒
⃒⃒
2

=

2

m+ℓ−κr
−1∑︁

ur=0

⃒⃒⃒⃒
⃒⃒⌈2

m+ℓ
/r⌉−1∑︁

nr=0
e

i(2πur/2m+ℓ−κr )nr

⃒⃒⃒⃒
⃒⃒
2

= 2

m+ℓ−κr
⌈︂
2

m+ℓ

r

⌉︂

by using that we may shift the interval in ur, and so the lemma follows.

C.3.3 Combined result

Lemma C.10. The combined sum over all distinct admissible angle pairs (θd , θr), in the region where θd ∈
[−π/2σ , π/2σ) and θr ∈ [−π, π), is ∑︁

θr∈Θr([−π, π))
θd∈Θd([−π/2σ , π/2σ), θr)

̃︀P(θd , θr) = 2

𝛾−κr r
2
m+ℓ

⌈︂
2

m+ℓ

r

⌉︂
.

Proof. By combining Lemmas C.8 and C.9, we obtain∑︁
θr∈Θr([−π, π))

θd∈Θd([−π/2σ , π/2σ), θr)

̃︀P(θd , θr) = 2

2σr
2
2(m+2ℓ)

∑︁
θr∈Θr([−π, π))

f (θr)
∑︁

θd∈Θd([−π/2σ , π/2σ), θr)
g(θd , θr)

=

2

2σr
2
2(m+2ℓ) · 2

2(ℓ−σ)+𝛾
· 2

m+ℓ−κr
⌈︂
2

m+ℓ

r

⌉︂
= 2

𝛾−κr
·

r
2
m+ℓ

⌈︂
2

m+ℓ

r

⌉︂
as the inner sum reduces to a constant, and so the lemma follows.

It follows from Lemma C.10 above that the sum of
̃︀P(θd , θr) over all admissible angle pairs (θd , θr) in the region

where θd ∈ [−π/2σ , π/2σ) and θr ∈ [−π, π) tends to one as m tends to infinity for fixed s, when accounting for
the fact that each distinct admissible angle pair (θd , θr) occurs with multiplicity 2

κr−𝛾
by Lemma 4.4.

The total approximation error, as upper-bounded by summing ẽ(θd , θr) over all admissible angle pairs

(θd , θr), with multiplicity, in the region, is non-negligible however. In the next section we address this problem

by reducing the size of the region.

C.4 Adapting the region to reduce the error

In this section, we show that the sum of
̃︀P(θd , θr) over all admissible angle pairs (θd , θr), with multiplicity, in

the central region as defined below, captures a fraction of the probability mass in τ.

Definition C.11. The central region is the part of the plane where |θd| ≤ Bd and |θr| ≤ Br, for Bd = 2

τ−ℓ+1π
and Br = Bd/2, and for τ an integer constant such that 1 < τ < ℓ − σ − 1.

In the next section, we describe how the approximation error, as upper-bounded by summing ẽ(θd , θr) over
all admissible angle pairs (θd , θr), with multiplicity, in the central region, depends on τ. For appropriate σ
and τ, a large fraction of the probability mass is in the central region, whilst the total approximation error is

negligible in the region.

Note that by the above definition of Bd and Br, all argument pairs (αd , αr) such that |αd| ≤ 2m+τ and
|αr| ≤ 2m+τ−1 are in the central region. Note furthermore that Br < Bd = 2

τ−ℓ+1π ≤ 2−σ−1π, so the central region
is a subregion of the region we considered in the previous section.



Computing general discrete logarithms and orders with tradeoffs | 401

C.4.1 The inner sum over g(θd , θr)

Lemma C.12. For θr ∈ Θr([−Br , Br]), the inner sum∑︁
θd∈Θd([−Bd , Bd ], θr)

g(θd , θr) ≥ 22(ℓ−σ)+𝛾
(︂
1 −

2

5

π2
1

2
τ

)︂
.

Proof. First observe that for Id = [−π/2σ , −Bd] ∪ [Bd , π/2σ] we have∑︁
θd∈Θd([−Bd , Bd ], θr)

g(θd , θr) ≥ 22(ℓ−σ)+𝛾 −
∑︁

θd∈Θd(Id , θr)
g(θd , θr)

as g(θd , θr) is non-negative, and as by dividing the interval∑︁
θd∈Θd([−π/2σ , π/2σ), θr)

g(θd , θr) =
∑︁

θd∈Θd([−π/2σ ,−Bd), θr)
g(θd , θr)+∑︁

θd∈Θd([−Bd , Bd ], θr)
g(θd , θr)+∑︁

θd∈Θd((Bd , π/2σ), θr)
g(θd , θr) = 2

2(ℓ−σ)+𝛾

where we also used Lemma C.8. We hence seek an upper bound to∑︁
θd∈Θd(Id , θr)

g(θd , θr) =
∑︁

θd∈Θd(Id , θr)
g(θd +

⌈︀
−2

σd/r
⌉︀
θr/2σ , 0) ≤

∑︁
θd∈Θd(Id , θr)

h(θd +
⌈︀
−2

σd/r
⌉︀
θr/2σ) (C1)

that is independent of θr, where we have used Claim C.3 to obtain (C1), by introducing the function h(θd) =
2

4

/(2

σθd)2 that is strictly decreasing in |θd|.
The situation is depicted in Figure C2, where g(θd , θr) for θr = 0 is plotted continuously in θd, for |θd| ≤ π

in the top graph, and |θd| ≤ π/2σ in the middle graph.

Fixing a non-zero θr ∈ Θr([−Br , Br)) shifts the top and middle graphs in Figure C2 cyclically by⌈︀
−2

σd/r
⌉︀
θr/2σ. As

⃒⃒ ⌈︀
−2

σd/r
⌉︀
θr/2σ

⃒⃒
≤ |θr| ≤ Br, the maximum cyclic shift in θd is upper-bounded by

Br, see the bottom graph in Figure C2 where g(θd + Br , 0) is plotted in yellow and g(θd − Br , 0) in green.
To upper-bound (C1) it therefore suffices to sum over all distinct admissible θd on Ir = [−π/2σ , −Br] ∪

[Br , π/2σ], as this captures all distinct admissible θd in the left and right tail regions under any cyclic shift.
We have that

(C1) =

∑︁
θd∈Θd(Id , θr)

h(θd +
⌈︀
−2

σd/r
⌉︀
θr/2σ)

≤ max

θr∈Θr([−Br , Br ])

∑︁
θd∈Θd(Ir , θr)

h(θd) (C2)

=

∑︁
θd∈Θd(Ir , 0)

h(θd) =
∑︁

θd∈Θd([Br , π/2σ ], 0)
2h(θd) (C3)

due to symmetry, where we have maximized the set of admissible θd over θr.
Recall that by Lemma 4.4 there is one distinct admissible argument αd on the interval [0, 2m−𝛾) for a given

fixed αr. Hence there is one distinct admissible θd on the interval [0, 2−ℓ−𝛾+1π) for a given fixed θr. All other
distinct admissible θd spread out from the starting point, equidistantly separated by a distance of 2

−ℓ−𝛾+1π.
The distinct admissible θd may occur with multiplicity; however all distinct admissible θd occur with the same

multiplicity, again see Lemma 4.4.

This implies that the sum in (C2) is maximized for θr equal to zero, as both endpoints of the interval

Br ≤ |θd| ≤ π/2σ are then admissible, maximizing both the number of distinct admissible θd on the interval,
and the contribution from each distinct admissible θd as h(θd) is strictly decreasing in |θd|.

By Claim C.7, the distinct admissible θd may be parameterized in ud and ur where

θd(ud , ur) = 2π ((δrur mod 2

m−𝛾
) + 2

m−𝛾ud)/2m+ℓ.



402 | M. Ekerå

g(θd, 0)

θd
−π − π

2σ
π
2σ

π

22(`−σ)

−
B
r

−
B
d

B
r

B
d

θd−
π2
σ

π2
σ

22(`−σ)

g(θd, 0)

h(θd) = 24/(2σθd)
2

−
π2
σ

π2
σ

B
d

B
r

−
B
d

−
B
r

θd

g(θd + Br, 0)

g(θd − Br, 0)

Figure C2: The functions g(θd , 0) and h(θd) = 2

4

/(2

σθd)2 plotted for σ = 3, ℓ = 9 and τ = 3. The maximum cyclic shift is
bounded by Br = Bd/2.

Now θr = 0 implies ur = 0, which in turn implies 2

τ−ℓπ = Bd/2 = Br ≤ 2π ud/2ℓ+𝛾 ≤ π/2σ, or more succinctly

2

τ+𝛾−1
≤ ud ≤ 2ℓ+𝛾−σ−1, which yields

(C3) =

2
ℓ+𝛾−σ−1∑︁

ud=2τ+𝛾−1
2h(θd(ud , ur)) =

2

ℓ+𝛾−σ−1∑︁
ud=2τ+𝛾−1

2

5

(2
σ
· 2π ud/2ℓ+𝛾)2

= 2

2(ℓ−σ+𝛾) 2
3

π2
2

ℓ+𝛾−σ−1∑︁
ud=2τ+𝛾−1

1

u2d
≤ 2

2(ℓ−σ+𝛾) 2
3

π2
2

2
τ+𝛾−1 = 2

2(ℓ−σ)+𝛾 2
5

π2
1

2
τ

where we have used Claim C.2 and that 𝛾 ≥ 0 and τ > 1. This implies∑︁
θd∈Θd([−Bd ,Bd ], θr)

g(θd , θr) ≥ 22(ℓ−σ)+𝛾 − 22(ℓ−σ)+𝛾
2

5

π2
1

2
τ = 2

2(ℓ−σ)+𝛾
(︂
1 −

2

5

π2
1

2
τ

)︂

and so the lemma follows.

C.4.2 The outer sum over f (θr)

Lemma C.13. For θr ∈ Θr([−Br , Br], the outer sum∑︁
θr∈Θr([−Br , Br ])

f (θr) ≥ 2m+ℓ−κr
⌈︂
2

m+ℓ

r

⌉︂(︂
1 −

2

5

π2
1

2
τ

)︂
.



Computing general discrete logarithms and orders with tradeoffs | 403

Proof. First observe that for Ir = [−π, −Br] ∪ [Br , π] it holds that∑︁
θr∈Θr([−Br , Br ])

f (θr) ≥ 2m+ℓ−κr
⌈︂
2

m+ℓ

r

⌉︂
−

∑︁
θr∈Θr(Ir)

f (θr)

as f (θr) is non-negative and ∑︁
θr∈Θr([−π, π))

f (θr) =
∑︁

θr∈Θr([−π, −Br))
f (θr) +

∑︁
θr∈Θr([−Br , Br ])

f (θr) +
∑︁

θr∈Θr((Br , π))
f (θr)

where, by Lemma C.9, the left hand sum

∑︁
θr∈Θr([−π, π))

f (θr) = 2

m+ℓ−κr
⌈︂
2

m+ℓ

r

⌉︂
.

To prove the lemma, we seek an upper bound to∑︁
θr∈Θr(Ir)

f (θr) ≤
∑︁

θr∈Θr(Ir)

2

4

θ2r
≤

∑︁
θr∈Θr([Br , π])

2

5

θ2r
(C4)

where we have used Claim C.3, that f (θr) is symmetric around the origin, and that the distinct admissible θr
are equidistantly separated by a distance of 2

κr
around the origin by Lemma 4.4. The distinct admissible θr

may occur with multiplicity; however all distinct admissible θr occur with the same multiplicity.

By Claim C.7, the distinct admissible θr may be parameterized in ur where θr(ur) = 2π (2κrur)/2m+ℓ, which
implies 2

τ−ℓπ = Br ≤ 2π (2κrur)/2m+ℓ ≤ π, or more succinctly 2

m+τ−κr−1
≤ ur ≤ 2m+ℓ−κr−1, which yields

(C4) =

2

m+ℓ−κr−1∑︁
ur=2m+τ−κr−1

2

5

(2π 2κrur/2m+ℓ)2
= 2

2(m+ℓ−κr) 2
3

π2
2

m+ℓ−κr−1∑︁
ur=2m+τ−κr−1

1

u2r

≤ 2

2(m+ℓ−κr) 2
3

π2
2

2
m+τ−κr−1 = 2

m+2ℓ−κr 2
5

π2
1

2
τ ≤ 2

m+ℓ−κr
⌈︂
2

m+ℓ

r

⌉︂
2

5

π2
1

2
τ

where we have used Claim C.2 and that 𝛾 ≥ 0 and τ > 1. This implies

∑︁
θr∈Θr([−Br , Br ])

f (θr) ≥ 2m+ℓ−κr
⌈︂
2

m+ℓ

r

⌉︂
− 2

m+ℓ−κr
⌈︂
2

m+ℓ

r

⌉︂
2

5

π2
1

2
τ

= 2

m+ℓ−κr
⌈︂
2

m+ℓ

r

⌉︂(︂
1 −

2

5

π2
1

2
τ

)︂
and so the lemma follows.

C.4.3 Combined result

Lemma C.14. The combined sum over all distinct admissible angle pairs (θd , θr), in the central region where
|θd| ≤ Bd and |θr| ≤ Br, is

∑︁
θr∈Θr([−Br , Br ])

θd∈Θd([−Bd , Bd ], θr)

̃︀P(θd , θr) ≥ 2𝛾−κr r
2
m+ℓ

⌈︂
2

m+ℓ

r

⌉︂(︂
1 −

2

5

π2
1

2
τ

)︂
2

.

Proof. From Lemmas C.12 and C.13 it follows that∑︁
θr∈Θr([−Br , Br ])

θd∈Θd([−Bd , Bd ], θr)

̃︀P(θd , θr) = 2

2σr
2
2(m+2ℓ)

∑︁
θr∈Θr([−Br , Br ])

f (θr)
∑︁

θd∈Θd([−Bd , Bd ], θr)
g(θd , θr)



404 | M. Ekerå

≥

2

2σr
2
2(m+2ℓ) 2

m+ℓ−κr
· 2

2(ℓ−σ)+𝛾
⌈︂
2

m+ℓ

r

⌉︂(︂
1 −

2

5

π2
1

2
τ

)︂
2

= 2

𝛾−κr r
2
m+ℓ

⌈︂
2

m+ℓ

r

⌉︂(︂
1 −

2

5

π2
1

2
τ

)︂
2

and so the lemma follows.

C.5 Main soundness result

In this section, we combine results from the previous sections into our main soundness result.

C.5.1 Bounding the probability mass in the central region

Theorem C.15. The sum of ̃︀P(θd , θr) over all admissible angle pairs (θd , θr), with multiplicity, in the central
region where |θd| ≤ Bd and |θr| ≤ Br, is bounded by

r
2
m+ℓ

⌈︂
2

m+ℓ

r

⌉︂(︂
1 −

2

5

π2
1

2
τ

)︂
2

≤

∑︁
θr∈Θr([−Br , Br ])

θd∈Θd([−Bd , Bd ], θr)

2

κr−𝛾 ̃︀P(θd , θr) ≤ r
2
m+ℓ

⌈︂
2

m+ℓ

r

⌉︂
.

Proof. The theorem follows by combining Lemmas C.10 and C.14.

Theorem C.15 above lower-bounds the fraction of the probability mass that is located within the central

region as a function of τ. The fraction of the probability mass that falls outside the central region decreases

exponentially in τ.

C.5.2 Bounding the total error in the central region

Theorem C.16. The total error when approximating P(θd , θr) by ̃︀P(θd , θr), as upper-bounded by summing
ẽ(θd , θr) over all admissible angle pairs (θd , θr), with multiplicity, in the central region where |θd| ≤ Bd and
|θr| ≤ Br, is bounded by∑︁

θr∈Θr([−Br , Br ])
θd∈Θd([−Bd , Bd ], θr)

2

κr−𝛾 ẽ(θd , θr) ≤ 2m+2τD
(︂
2

6

2
σ +

2

5

2
ℓ

)︂
+

2

τ+σ+2

2
ℓ

π
(︂
1 +

2

τ+σ

2
ℓ
π
)︂

r
2
m+ℓ

⌈︂
2

m+ℓ

r

⌉︂

where D is the density of admissible angle pairs (θd , θr) in the region.

Proof. The error when approximating P(θd , θr) by ̃︀P(θd , θr) is bounded by
ẽ(θd , θr) =

2

4

2
m+σ +

2

3

2
m+ℓ +

2

σ

2

(|θd| + |θr|)
(︂
2 +

2

σ

2

(|θd| + |θr|)
)︂ ̃︀P(θd , θr)

by Theorem 3.22. We sum ẽ(θd , θr) over all admissible angle pairs (θd , θr), with multiplicity, in the region

where |θd| ≤ Bd and |θr| ≤ Br, where Bd = 2

τ−ℓ+1 π and Br = Bd/2 by Definition C.11. This is equivalent to

summing over all admissible argument pairs (αd , αr), with multiplicity, in the region where |αd| ≤ 2m+τ and
|αr| ≤ 2m+τ−1.

As m > 0 and τ > 1 by Definition C.11, the area of this region is

(2 · 2

m+τ
+ 1)(2 · 2

m+τ−1
+ 1) = 2

2(m+τ)+1
+ 2

m+τ+1
+ 2

m+τ
+ 1

≤ 2

2(m+τ+1)



Computing general discrete logarithms and orders with tradeoffs | 405

from which it follows that the region contains at most 2

2(m+τ+1)D admissible pairs (θd , θr), where D is the

density of admissible pairs with multiplicity.

If we furthermore use that |θd| + |θr| ≤ 2τ−ℓ+2π, this implies that

∑︁
θr∈Θr([−Br , Br))

θd∈Θd([−Bd , Bd), θr)

2

κr−𝛾 ẽ(θd , θr) ≤ 22(m+τ+1)D
(︂

2

4

2
m+σ +

2

3

2
m+ℓ

)︂
+ 2

τ−ℓ+σ+2π (1 + 2τ−ℓ+σπ) r
2
m+ℓ

⌈︂
2

m+ℓ

r

⌉︂

≤ 2

m+2τD
(︂
2

6

2
σ +

2

5

2
ℓ

)︂
+

2

τ+σ+2

2
ℓ

π
(︂
1 +

2

τ+σ

2
ℓ
π
)︂

r
2
m+ℓ

⌈︂
2

m+ℓ

r

⌉︂
where we have used that ∑︁

θr∈Θr([−Br , Br ])
θd∈Θd([−Bd , Bd ], θr)

2

κr−𝛾 ̃︀P(θd , θr) ≤ r
2
m+ℓ

⌈︂
2

m+ℓ

r

⌉︂

by Theorem C.15, and so the theorem follows.

By Lemmas 4.7 and 4.8, the density D of admissible argument pairs (αd , αr), or equivalently angle pairs
(θd , θr), when accounting for multiplicity, in the region is approximately 2

−m
for random problem instances.

Asymptotically, the density tends to 2

−m
as m tends to infinity for fixed s.

Furthermore, the density is exactly 2

−m
in rectangular regions of the plane of side lengthmultiples of 2

m−𝛾

and 2

m−𝛾+κr
by Lemma 4.9. The region in Theorem C.16 above may be adapted to meet these requirements.

To understand the implications of the above theorem for the upper bound on the total approximation

error in the central region, it remains to select σ to minimize the bound.

C.5.3 Selecting σ to minimize the bound on the total error in the central region

To select the integer parameter σ on 0 < σ < ℓ so as to minimize the bound on the total error given in

Theorem C.16, we first approximate the error bound by

2

2τ+6

2
σ⏟  ⏞  
ϵ
1

+

2

2τ+5

2
ℓ⏟  ⏞  
ϵ
2

+

2

τ+σ+2

2
ℓ

π⏟  ⏞  
ϵ
3

+

(︂
1

2

2

τ+σ+2

2
ℓ

π
)︂
2

⏟  ⏞  
ϵ
4

where we have used that D ≈ 2

−m
and

(︁
r/2m+ℓ

)︁⌈︁
2

m+ℓ
/r
⌉︁
≈ 1, with equality in the limit as m tends to infinity

for fixed s. The approximation is only good when all error terms are less than one, so the term ϵ
3
is greater

than ϵ
4
= (ϵ

3
/2)

2

. As ϵ
2
does not depend on σ, we hence seek to select σ to equate ϵ

1
and ϵ

3
. This yields

2

2τ+6

2
σ =

2

τ+σ+2

2
ℓ

π ⇒ σ =
⌊︂
1

2

(ℓ + τ + 4 − log
2
π)
⌉︂
.

If σ is fixed accordingly, the error bound obtained by summing ẽ(θd , θr) analytically over all admissible

angle pairs (θd , θr), with multiplicity, in the region where |θd| ≤ Bd and |θr| ≤ Br, is heuristically minimized.

For this σ, the two main error terms

ϵ
1
≈ ϵ

3
≈

2

3τ/2+4

2
ℓ/2

√
π. (C5)

For as long as 2

3τ/2+4√π is much smaller than 2

ℓ/2
, we heuristically expect the upper bound on the total

error given in Theorem C.16 to be negligible.



406 | M. Ekerå

C.5.4 Asymptotic soundness results

Theorem C.17. For fixed s and τ, and σ =
⌊︀
(ℓ + τ + 4 − log

2
π)/2

⌉︀
, the sum of ̃︀P(θd , θr) over all admissible angle

pairs (θd , θr), with multiplicity, in the central region where |θd| ≤ Bd and |θr| ≤ Br, is bounded by(︂
1 −

2

5

π2
1

2
τ

)︂
2

≤ lim

m→∞

∑︁
θr∈Θr([−Br , Br ])

θd∈Θd([−Bd , Bd ], θr)

2

κr−𝛾 ̃︀P(θd , θr) ≤ 1 (C6)

in the limit as m tends to infinity. The error |P(θd , θr) − ̃︀P(θd , θr)| ≤ ẽ(θd , θr) and the sum of ẽ(θd , θr) over all
admissible angle pairs (θd , θr), with multiplicity, in the central region tends to

lim

m→∞

∑︁
θr∈Θr([−Br , Br))

θd∈Θd([−Bd , Bd), θr)

2

κr−𝛾 ẽ(θd , θr) = 0 (C7)

in the same limit.

Proof. The bound in (C6) follows immediately by taking the limit, as m tends to infinity for fixed s and τ, of
the bound given in Theorem C.15. Analogously (C7) follows by taking the limit, as m tends to infinity for fixed

s and τ, and for σ as in the formulation of this theorem, of Theorem C.16, where D tends to 2

−m
in the limit by

Lemma 4.8, and so the theorem follows.

The above theorem states that an arbitrarily large constant fraction of the probability mass may be captured

asymptotically by expanding the region in τ.
As the bound on the error when approximating P(θd , θr) by ̃︀P(θd , θr) in the region tends to zero asymp-

totically,
̃︀P(θd , θr) equals P(θd , θr) asymptotically in the region. Furthermore, all probability mass is in the

region asymptotically when τ tends to infinity withm at a moderated rate. This implies that
̃︀P(θd , θr) asympto-

tically captures the probability distribution completely and exactly. Corollary C.18 below formalizes these

observations:

Corollary C.18. For fixed s, for τ = ⌊ℓ/6⌉ and σ =
⌊︀
(ℓ + τ + 4 − log

2
π)/2

⌉︀
, the sum of ̃︀P(θd , θr) over all admis-

sible angle pairs (θd , θr), with multiplicity, in the central region where |θd| ≤ Bd and |θr| ≤ Br, tends to

lim

m→∞

∑︁
θr∈Θr([−Br , Br ])

θd∈Θd([−Bd , Bd ], θr)

2

κr−𝛾 ̃︀P(θd , θr) = 1 (C8)

in the limit as m tends to infinity. The error |P(θd , θr) − ̃︀P(θd , θr)| ≤ ẽ(θd , θr) and the sum of ẽ(θd , θr) over all
admissible angle pairs (θd , θr), with multiplicity, in the central region tends to

lim

m→∞

∑︁
θr∈Θr([−Br , Br))

θd∈Θd([−Bd , Bd), θr)

2

κr−𝛾 ẽ(θd , θr) = 0 (C9)

in the same limit.

Proof. The bound in (C8) follows immediately by taking the limit as m tends to infinity for fixed s, and for τ as
in the formulation of this corollary, of the bound given in Theorem C.15. Analogously (C9) follows by taking the

limit, as m tends to infinity for fixed s, and for σ and τ as in the formulation of this corollary, of Theorem C.16,

where D tends to 2

−m
in the limit by Lemma 4.8. This is easy to see, as the two main error terms ϵ

1
and ϵ

3
in

(C5) tend to

lim

m→∞

2

3⌊ℓ/6⌉/2+4

2
ℓ/2

√
π = lim

m→∞

2

ℓ/4+4

2
ℓ/2

√
π = lim

m→∞

2

4

2
ℓ/4

√
π = 0,

where we may remove the rounding operation in the limit, and as the requirement that 1 < τ < ℓ − σ − 1 in
Definition C.11 is respected in the limit. Furthermore ϵ

4
< ϵ

3
in the limit, and it is easy to see that ϵ

2
tends to

zero in the limit. The corollary follows from this analysis.



Computing general discrete logarithms and orders with tradeoffs | 407

D Marginal distributions
By using results and notation from the soundness analysis in Appendix C, we may immediately derive a

closed-form expression for the marginal distribution that arises when summing
̃︀P(θd , θr) over all admissible

angles θd with multiplicity.

Lemma D.1. For θr ∈ Θr([−π, π]), the marginal probability distribution that arises when summing ̃︀P(θd , θr)
over all θd ∈ Θd([−π/2σ , π/2σ), θr) is

∑︁
θd∈Θd([−π/2σ , π/2σ), θr)

2

κr−𝛾

2
κr
̃︀P(θd , θr) = r

2
2(m+ℓ)

⃒⃒⃒⃒
⃒⃒⌈2

m+ℓ
/r⌉−1∑︁

nr=0
e

iθrnr

⃒⃒⃒⃒
⃒⃒
2

when accounting for multiplicity.

Proof. By Lemma C.8 we have that

∑︁
θd∈Θd([−π/2σ , π/2σ), θr)

̃︀P(θd , θr) = 2

2σr
2
2(m+2ℓ) f (θr)

∑︁
θd∈Θd([−π/2σ , π/2σ), θr)

g(θd , θr)

=

2

𝛾 r
2
2(m+ℓ) f (θr) =

2

𝛾 r
2
2(m+ℓ)

⃒⃒⃒⃒
⃒⃒⌈2

m+ℓ
/r⌉−1∑︁

nr=0
e

iθrnr

⃒⃒⃒⃒
⃒⃒
2

from which the lemma follows, as the pairs (θd , θr) occur with multiplicity 2

κr−𝛾
by Lemma 4.4, and the angles

θr with multiplicity 2

κr
by Lemma A.4.

The above expression for the marginal probability distribution is derived from the approximation
̃︀P(θd , θr).

It corresponds to the exact expression derived in Appendix A for the order-finding algorithm with tradeoffs.

Note that there are minor differences between the two expressions. These are explained by
̃︀P(θd , θr) being an

approximation to P(θd , θr), whilst the expression in Appendix A is exact.

Another way to understand why this correspondence arises is to observe that when using qubit recycling, j
may first be computed, after which k may be computed. At the point in time when j has been computed and

read out, but the computation of k has not yet begun, we will have executed Shor’s or Seifert’s order-finding
algorithms. Hence j, αr and θr are distributed as in these algorithms.

A closed-form analytical expression for the marginal distribution that arises when summing over all

admissible θr is seemingly less straightforward to derive. Numerically, the marginal distribution may however

be seen to correspond to that for short logarithms as stated in Section 5.2.


	1 Introduction
	1.1 Earlier works
	1.2 Our contributions
	1.2.1 On the cryptographic significance of this work
	1.2.2 Further details and overview
	1.2.3 Structure of this paper

	1.3 Notation
	1.4 Randomization

	2 The quantum algorithm
	3 The probability of observing (j,k) and y
	3.1 Preliminaries
	3.1.1 Constructive interference

	3.2 Closed-form approximation with error bounds
	3.2.1 Preliminaries
	3.2.2 Bounding | sR |
	3.2.3 Approximating SR by SA TA
	3.2.4 Approximating SA by SA
	3.2.5 Approximating SA by SA
	3.2.6 Main approximability result


	4 The distribution of pairs (d, r)
	4.1 Pairs (j, k) yielding (d, r)
	4.2 The density of pairs (d, r)

	5 Simulating the quantum algorithm
	5.1 Constructing the histogram
	5.2 Understanding the probability distribution
	5.3 Sampling the probability distribution

	6 The classical post-processing algorithms
	6.1 Recovering d from a set of n pairs
	6.1.1 Estimating the minimum n required to solve for d
	6.1.2 Selecting n and solving for d
	6.1.3 Selecting n and solving for d by exhausting subsets
	6.1.4 Optimizations when r is known

	6.2 Recovering r from a set of n pairs
	6.2.1 Estimating the minimum n required to solve for r
	6.2.2 Selecting n and solving for r
	6.2.3 Handling composite r
	6.2.4 Handling partially smooth r
	6.2.5 Computing discrete logarithms when r is partially smooth

	6.3 Estimating R"0365Rd and R"0365Rr

	7 Estimating the number of runs required
	7.1 Estimating n
	7.2 Selecting m and s
	7.3 Selecting d and r given m
	7.4 Experiments and results
	7.5 Generalizing the results to compute worst case estimates

	8 Order finding with tradeoffs
	9 Summary and conclusion
	A Order finding with tradeoffs
	A.1 The quantum algorithm
	A.2 The probability of observing j and y
	A.2.1 Closed-form expressions

	A.3 Distribution of integers j
	A.4 Simulating the quantum algorithm
	A.4.1 Constructing the histogram
	A.4.2 Understanding the probability distribution
	A.4.3 Sampling the probability distribution

	A.5 Classical post-processing
	A.6 Estimating the number of runs required
	A.7 Applications of order finding to integer factoring
	A.7.1 Factoring RSA integers


	B Short discrete logarithms with tradeoffs
	C Soundness of the closed-form approximation
	C.1 Introduction and recapitulation
	C.1.1 Overview of the soundness argument

	C.2 Preliminaries
	C.2.1 Bounding tail regions
	C.2.2 Intervals of admissible arguments and angles
	C.2.3 Parameterizing the admissible arguments and angles

	C.3 Establishing a baseline
	C.3.1 The inner sum over g(d, r)
	C.3.2 The outer sum over f(r)
	C.3.3 Combined result

	C.4 Adapting the region to reduce the error
	C.4.1 The inner sum over g(d, r)
	C.4.2 The outer sum over f(r)
	C.4.3 Combined result

	C.5 Main soundness result
	C.5.1 Bounding the probability mass in the central region
	C.5.2 Bounding the total error in the central region
	C.5.3 Selecting  to minimize the bound on the total error in the central region
	C.5.4 Asymptotic soundness results


	D Marginal distributions

