
Open Access. © 2020 D. Rudy and C. Monico, published by De Gruyter. This work is licensed under
the Creative Commons Attribution 4.0 License

J. Math. Cryptol. 2021; 15:280–283

Research Article

Dylan Rudy and Chris Monico*

Remarks on a Tropical Key Exchange System
https://doi.org/10.1515/jmc-2019-0061
Received Nov 22, 2019; accepted Sep 08, 2020

Abstract:We consider a key-exchange protocol based onmatrices over a tropical semiringwhichwas recently
proposed in [2]. We show that a particular private parameter of that protocol can be recovered with a simple
binary search, rendering it insecure.
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1 Introduction
Let S be any nonempty subset of R which is closed under addition. Define two operations⊕ and⊗ on S by

a ⊕ b = min{a, b},
a ⊗ b = a + b.

Both operations are associative and commutative and ⊗ distributes over ⊕, and hence S is a commutative
semiring, called a tropical semiring. The setM = Matk×k(S) of k×kmatrices over S is therefore a semiring with
the induced operations

(aij)⊕ (bij) = (aij ⊕ bij),
(aij)⊗ (bij) = (cij), where cij = (ai1 ⊗ b1j)⊕ (ai2 ⊗ b2j)⊕ · · ·⊕ (aik ⊗ bkj).

In [1], the authors proposed two key exchange protocols based on the structure M. Shortly after, an ef-
fective attack was given on one of those protocols in [3]. Subsequently, a new key exchange protocol was
proposed in [2] (in fact, two new protocols, but they are very closely related to each other). It is this protocol
that we consider in this paper.

In [2], the authors give two semigroup operations onM×M each arising as a semidirect product induced
by a specified action of these matrices on themselves. The two semigroup operations are given by

(M, G) ∘ (S, H) =
(︁
M ⊕ S ⊕ H ⊕ (M ⊗ H), G ⊕ H ⊕ (G ⊗ H)

)︁
, (1)

(M, G) * (S, H) =
(︁
(H ⊗MT)⊕ (MT ⊗ H)⊕ S, G ⊗ H

)︁
. (2)

Note that for each of these operations, the first component of the product does not depend on G. This fact
plays a key role in the two key exchange protocols they then propose (one corresponding to each operation):

1. Alice and Bob agree on public matricesM, H ∈ Mwhose entries are integers in the range [−N, N], and
they agree on a positive integer K. Alice selects a private positive integer m < 2K and Bob selects a
private positive integer n < 2K .
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2. Alice computes (M, H)m = (A, PA) and sends A to Bob.
3. Bob computes (M, H)n = (B, PB) and sends B to Alice.
4. Alice determines the first component of (M, H)m+n = (M, H)n(M, H)m = (B, PB)(A, PA) from her knowl-

edge of A, PA , and B (knowledge of PB is not necessary for either of the operations (1) or (2).
5. Bob similarly determines the first component of (M, H)m+n = (M, H)m(M, H)n = (A, PA)(B, PB) from

his knowledge of B, PB , and A.

In the next section, we show that an eavesdropper can find a positive integer m′ for which the first com-
ponent of (M, H)m

′
is A; she can then use this m′ to compute the shared secret key in essentially the same

way as Alice. Furthermore, such an m′ can be found using O(K2) operations (1) or (2).

2 The attack
Since addition of matrices inM is idempotent, i.e., G ⊕ G = G, we have a partial order onM defined by

X ≤ Y if X ⊕ Y = X.

Clearly we have that X ≤ Y iff xij ≤ yij for all i, j ∈ {1, 2, . . . , k}. Furthermore, this partial order respects both
operations onM; if X ≤ Y and Z ∈ M, then X ⊕ Z ≤ Y ⊕ Z and X ⊗ Z ≤ Y ⊗ Z.

Proposition 2.1. Consider the semigroupM ×M equipped with either of the two operations defined by (1) and
(2). Let (M, H) ∈ M ×M, and for each positive integer ℓ let (Mℓ, Hℓ) = (M, H)ℓ. Then the sequence {Mℓ} is
monotonically decreasing: M1 ≥ M2 ≥ M3 ≥ . . . .

Proof. Let ℓ ≥ 2. For the operation ∘ we have

(Mℓ, Hℓ) = (Mℓ−1, Hℓ−1) ∘ (M, H)

=
(︁
Mℓ−1 ⊕M ⊕ H ⊕ (Mℓ−1 ⊗ H), Hℓ−1 ⊕ H ⊕ (Hℓ−1 ⊗ H)

)︁
,

so that Mℓ = Mℓ−1 ⊕M ⊕ H ⊕ (Mℓ−1 ⊗ H). In particular, Mℓ ⊕Mℓ−1 = Mℓ, and hence Mℓ ≤ Mℓ−1.
Similarly, for the operation * we have that

(Mℓ, Hℓ) = (M, H) * (Mℓ−1, Hℓ−1)

=
(︁
(Hℓ−1 ⊗MT)⊕ (MT ⊗ Hℓ−1)⊕Mℓ−1, H ⊗ Hℓ−1

)︁
,

and hence Mℓ = (Hℓ−1 ⊗MT)⊕ (MT ⊗ Hℓ−1)⊕Mℓ−1. Again, Mℓ ⊕Mℓ−1 = Mℓ, so that Mℓ ≤ Mℓ−1.

The problem alluded to at the end of the introduction is now easily solvedwith a binary search. LetM, H ∈ M

and (M, H)ℓ = (Mℓ, Hℓ). Suppose A ∈ M satisfies A = Mm for some positive integer m < 2K . First, obtain an
upper bound on m by computing successive squares

M1,M2,M4,M8, . . .

until finding a positive integer t for which A ≤ M2t . Since it is then known that 1 ≤ m ≤ 2t, a simple binary
search will find an integer m′ for which Mm′ = A. The sequence M1,M2, . . . is generally strictly decreasing,
in which case m′ = m. However, even if m′ ≠ m, finding such an integer m′ is enough for the eavesdropper
to recover the shared secret key. Let π1 : M ×M −→ M be the map π1(C, D) = C. Suppose (M, H)n = (B, PB),
(M, H)m = (A, PA) and (M, H)m

′
= (A, PE). Then for each of the operations (1) and (2), the shared secret key

satisfies
π1((M, H)m+n) = π1((M, H)m

′+n).

This is clear, since this shared secret key can be expressed in terms of A, B, and PB only, but it may also be
explicitly verified. For example, with the operation (1),

π1((M, H)m+n) = π1((A, PA) ∘ (B, PB))



282 | D. Rudy and C. Monico

= A ⊕ B ⊕ PB ⊕ (A ⊗ PB)
= π1((A, PE) ∘ (B, PB))

= π1((M, H)m
′+n).

In particular, the eavesdropper may recover the shared secret key via

π1((M, H)m+n) = π1((M, H)n ∘ (M, H)m
′
)

= π1((B, PB) ∘ (A, PE))
= B ⊕ A ⊕ PE ⊕ (B ⊗ PE).

Finding t as described above requires at most K semigroup operations in M × M. The binary search,
done in the most obvious way, would compute K powers of (M, H), each of which requires no more than 2K
semigroup operations in M ×M, for a total complexity of at most 2K2 + K operations in M ×M. This can
be reduced to K2 + K by storing the successive squares (M1, H1), (M2, H2), (M4, H4), . . . and using them to
compute each power of (M, H) during the binary search phase.

Addition of k× kmatrices can be accomplished withO(k2) integer max operations, andmultiplication ac-
complished using O(k3) integer addition and max operations. Therefore this attack requires O(K2k3) integer
operations. We argue below that the typical entry of A has about K bits. In that case, each integer addition
and max operation requires no more than K bit operations, for a total of O(K3k3) bit operations. If we let α
denote the number of bits required to represent A (i.e., the key size) it follows that α ≈ Kk2, and this attack
requiresO(α3) bit operations, a polynomial-time function of the input size. If K is fixed, as in our experiments,
then it requires O(α1.5) bit operations.

We coded this method in C, and performed some experiments on a single core of an i7 CPU at 3.10GHz.
Using M = Matk×k(S) for various values of k, and the parameters N = 1000, K = 200 suggested in [2], we
performed 40 experiments for each value of k. In each experiment, we generated randommatricesM, H and
chose random positive integers m, n < 2K and measured the time to recover an m′ as described above. The
results of these experiments are summarized in Table 1. For reference, we also report the average number of
bits α in the matrix A that would be shared by Alice, and the values t/k3 and t/α1.5 for comparison with the
asymptotic runtime estimates given above.

Table 1: Average number of bits α to represent A (Alice’s matrix, from Section 1), and average time t (in seconds) to recover m′

for various sized (k × k) matrices, with N = 1000 and K = 200.

k α t t/k3 t/α1.5

5 5222 0.12 0.00096 3.2e−7
10 20885 0.66 0.00066 2.2e−7
15 47025 2.43 0.00072 2.4e−7
20 83710 4.76 0.00060 2.0e−7
25 130594 10.53 0.00067 2.2e−7
30 188145 17.75 0.00066 2.2e−7
35 256484 24.05 0.00056 1.9e−7
40 334040 40.92 0.00064 2.1e−7
45 422111 45.80 0.00050 1.7e−7
50 523312 78.33 0.00063 2.1e−7
55 631091 98.19 0.00059 2.0e−7
60 752490 122.57 0.00057 1.9e−7

We would like to make one final remark about the key sizes in this system. With the notation as above
and the operation (1), for example, we have

Mℓ+1 = Mℓ ⊕M ⊕ H ⊕ (Ml ⊗ H).
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Since M2 ≤ M and M2 ≤ H and Mℓ+1 ≤ M2 for all ℓ ≥ 2, it follows that

Mℓ+1 = Mℓ ⊕ (Mℓ ⊗ H), for ℓ ≥ 2.

This means that, on average, the entries of Mℓ+1 decrease from those of Mℓ by an approximately constant
amount, proportional to the size of the entries of H. With Alice’s m ≈ 2K, this means that the entries of A are
on the order of −c × 2K, or about K bits each. With the parameter sizes K = 200, k = 30, N ≈ 1000 suggested
in [2], one would haveM and H consisting of about 9000 bits each and Awith about 30×30×200 = 180, 000
bits.

3 Conclusion
The attack presented here exploits the fact that the sequence {(M, H)ℓ} is linearly ordered. It is quite effective
and practical against the protocols described in [2]. For those protocols, Alice and Bobmust do approximately
O(K) operations in the semigroupM ×M, and this attack requires about O(K2) operations in that same semi-
group, so an increase of parameter sizes does not help.

We thank the referees for their thoughtful reading of this manuscript and their feedback.
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