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Abstract:ElGamal cryptosystemhas emerged as one of themost important construction inPublic KeyCryptog-
raphy (PKC) since Diffie-Hellman key exchange protocol was proposed. However, public key schemes which
are based on number theoretic problems such as discrete logarithm problem (DLP) are at risk because of the
evolution of quantum computers. As a result, other non-number theoretic alternatives are a dire need of en-
tire cryptographic community.
In 2016, Saba Inam and Rashid Ali proposed a ElGamal-like cryptosystem based onmatrices over group rings
in ‘Neural Computing & Applications’. Using linear algebra approach, Jia et al. provided a cryptanalysis for
the cryptosystem in 2019 and claimed that their attack could recover all the equivalent keys. However, this
is not the case and we have improved their cryptanalysis approach and derived all equivalent key pairs that
can be used to totally break the ElGamal-like cryptosystem proposed by Saba and Rashid. Using the decom-
position of matrices over group rings to larger size matrices over rings, we have made the cryptanalysing
algorithmmore practical and efficient. We have also proved that the ElGamal cryptosystem proposed by Saba
and Rashid does not achieve the security of IND-CPA and IND-CCA.
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1 Introduction
The security of ElGamal encryption scheme depends on the difficulty of solving the discrete logarithm prob-
lem. The standard security notion for ElGamal encryption scheme is indistinguishability under a chosen
plaintext attack (IND-CPA) whereas a stronger notion of security is indistinguishability under a chosen ci-
phertext attack (IND-CCA).

Due to the inability of resisting quantum attacks, various traditional cryptosystem based on DLP are not
considered secure and there has been interest in constructing ElGamal encryption scheme via non-number
theoretic platform structures. In this context, Majid Khan et al. [6] proposed two new ElGamal public key
encryption schemes based on the large commutative subgroups of general linear groups on the residual ring
which was later cryptanalyzed by Jia et al. [4] using structural attack.

In 2016, Inam and Ali improved it [3] and proposed a new ElGamal-like cryptosystem based on matrices
over group ring. The authors claimed that the cryptosystem is safe against known plaintext attacks and has
the potential to resist quantum attacks. But using a linear algebra attack, this proposed cryptosystem was
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rendered insecure in [5] where the authors also claimed that they could retrieve all the equivalent keys which
can be used for decryption. Inam andAli also provided a simple fix for their cryptosystemwhich they claimed
that it has the ability to defend chosen ciphertext attacks.

Our Contribution: In this paper, we have proved that the ElGamal cryptosystem proposed by Saba and
Rashid does not achieve the security of IND-CPA and IND-CCA which makes the cryptosystem completely
insecure. We have developed a cryptanalytic attack and derived all equivalent keys (including the keys gen-
erated by authors in [5]) that can be used to totally break the ElGamal-like cryptosystem by Saba and Rashid.
We have decomposed group ring elements tomatrices over base ring and it makes the proposed cryptanalytic
algorithm more efficient and practical.

The rest of this article is organized as follows. The second section provides necessary background for
this work. In section 3, we present the ElGamal-like cryptosystem proposed by Saba Inam and Rashid Ali. In
section 4 and 5, we prove that the proposed scheme is not secure against IND-CPA and IND-CCA adversary. In
section 6, we develop a stronger attack which derives all the equivalent keys for the proposed cryptosystem.
We also discuss the computational complexity of the scheme. Conclusions are finally drawn in section 7.

2 Preliminaries
Definition 1 (Group Ring). : Let R be a Commutative ring with unity and G = {g1, g2, · · · , gk} be a finite mul-
tiplicative group. The group ring consist of all finite sums of the form

p =
∑︁
g∈G

αgg

where αg ∈ R and is denoted by GR. Let q =
∑︀

g∈G βgg and r =
∑︀

h∈G 𝛾hh be elements of GR, then the addition
and multiplication is defined as follows:

p + q =
(︃∑︁
g∈G

αgg
)︃
+
(︃∑︁
g∈G

βgg
)︃
=
∑︁
g∈G

(αg + βg)g

and

pr =
(︃∑︁
g∈G

αgg
)︃(︃∑︁

h∈G
𝛾hh
)︃
=
∑︁
g,h∈G

αg𝛾h(gh) =
∑︁
t∈G

ηt t

where gh = t and
ηt =

∑︁
gh=t

αg𝛾h =
∑︁
g
αg𝛾g−1 t =

∑︁
h
αth−1𝛾h .

Remark 1. [Decomposition of group ring] Corresponding to every element p =
∑︀

g∈G αgg ∈ GR, we can define
a matrix Mp ∈ Mk(R) as

Mp =

⎡⎢⎢⎢⎢⎢⎣
αg1g−11 αg1g−12 . . . αg1g−1k
αg2g−11 αg2g−12 . . . αg2g−1k
...

...
. . .

...
αgkg−11 αgkg−12 . . . αg1g−1k

⎤⎥⎥⎥⎥⎥⎦
which clearly has k entries αg1 , αg2 , · · · , αgk in row 1 in some order and rest all other entries are permutation of
this row. Thus for each p ∈ GR, the associated matrix Mp can be defined by only k unknowns αg1 , αg2 , · · · , αgk
and their permutations. Thus, for any matrix A ∈ Mn(GR), say,

A =

⎡⎢⎢⎢⎢⎣
a11 a12 . . . a1n
a21 a22 . . . a2n
...

...
. . .

...
an1 an2 . . . ann

⎤⎥⎥⎥⎥⎦
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we can define a corresponding matrix A ∈ Mnk(R) as

A =

⎡⎢⎢⎢⎢⎣
Ma11 Ma12 . . . Ma1n
Ma21 Ma22 . . . Ma2n
...

...
. . .

...
Man1 Man2 . . . Mann

⎤⎥⎥⎥⎥⎦
where Maij are k × k matrices corresponding to the elements aij ∈ GR. The previous remark and computations
are summarized in Theorem 1.

Theorem 1. For a finite group Gwith k elements anda commutative ring R with unity, Mn(GR) canbe embedded
in Mnk(R) via the map ϕ : A ↦→ A [9].

Theorem 2. For a matrix A ∈ Mn(GR), we have [8]

A ∈ GLn(GR) ⇐⇒ ϕ(A) = A ∈ GLnk(R).

Definition 2 (Circulant matrices and their properties [1]). let F be a finite field. We define a k × k circulant
matrix C over F as

C = circ(c1, c2, . . . , ck) =

⎡⎢⎢⎢⎢⎣
c1 c2 . . . ck
ck c1 . . . ck−1
...

...
. . .

...
c2 c3 . . . c1

⎤⎥⎥⎥⎥⎦
where the elements of each row of C are identical to those of the previous row, but are moved one position to the
right and wrapped around.

Circulant matrices have the following important properties:

(i) If A and B are two n × n circulant matrices then so is AB and the matrix product is commutative, that
is,

AB = BA

(ii) If A is circulant matrix, A−1 is also circulant (provided it exists).

Corollary 1. Using Theorem 1, for any circulant matrix C ∈ Mn(GR) we have a corresponding block circulant
matrix C ∈ Mnk(R) defined by

C =

⎡⎢⎢⎢⎢⎣
Ma1 Ma2 . . . Man
Man Ma1 . . . Man−1
...

...
. . .

...
Ma2 Ma3 . . . Ma1

⎤⎥⎥⎥⎥⎦
nk×nk

which can be defined clearly by nk elements only of the first row of all Mai .

3 Description of the public key cryptosystem
In this section, we describe the ElGamal-like cryptosystem proposed by Saba Inam and Rashid Ali [3].

Let Mn(GR) be the set of all n × n matrices over the group ring GR and H ⊂ Mn(GR) be the subgroup of
all n × n invertible circulant matrices over GR. Bob and Alice communicate in the following steps.
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Key generation (KeyGen):

(i) Alice Choose random A, B ∈ H and compute

M1 = AB2,M2 = BA2

(ii) Select a random invertible matrix N ∈ GLn(GR) and generate the key pairs (pk, sk) given by

pk = (P1, P2) = (M−11 NM1,M−12 N−1M2) and sk = (A, B)

where pk is public key and sk is secret key.

Encryption (Encpk(m)):

(i) Bob represents the message m as an element M ∈ Mn(GR).
(ii) Choose a random invertiblematrix X ∈ H and η, a unit of the group ring GR and compute the ciphertext

as Encpk(m) = C = (C1, C2), where

C1 = η−1X−1P2X and C2 = ηMX−1P1X.

Decryption (Decsk(C)):

(i) Using her secret keys A, B Alice computes

S = AB−1C1BA−1.

(ii) She obtains the message using C2 and S as

C2S = M

Thus, Decsk(C) = M

Correctness of the protocol: Since S = AB−1C1BA−1, we have

S = AB−1η−1X−1P2XBA−1

= η−1AB−1X−1M−12 N−1M2XBA−1

= η−1AB−1X−1A−2B−1N−1BA2XBA−1

= η−1A−1B−2X−1N−1XB2A

and hence

C2S = ηMX−1P1Xη−1A−1B−2X−1N−1XB2A
= MX−1M−11 NM1XA−1B−2X−1N−1XB2A
= MX−1B−2A−1NAB2XA−1B−2X−1N−1XB2A
= MX−1B−2A−1NXX−1N−1B2AX
= MX−1B−2A−1B2AX
= MX−1X
= M

Remark 2. The authors in [3] have used the commutative circulant matrices over the group ring GR, where R is
a commutative ring with unity and G is a finite group. We believe that the authors wanted the group G to be an
abelian group, otherwise the circulant matrices will not commute and the proposed cryptosystem will not work.
Hence from now onwards we assume that G is a finite abelian group.
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4 Analysis of IND-CPA security of the cryptosystem
Consider the following IND-CPA experiment with the challenger C and and efficient adversaryA:

(i) Challenger C generates the key pair (pk, sk) and publishes pk = (P1, P2) = (M−11 NM1,M−12 N−1M2) to
the adversaryA.

(ii) AdversaryA chooses D0, D1 ← Mn(GR) and submits these to C.
(iii) Challenger C selects a bit b ← {0, 1} uniformly at random and sends the challenge ciphertext

C = (C1, C2) = (η−1X−1P2X, ηDbX−1P1X)

to the adversaryA.
(iv) The adversaryA outputs a bit b′.

The adversary is successful in the above experiment and outputs 1 if and only if b = b
′

In step two, if the adversaryA chooses twomessages D0 and D1 such that det(D0) ≠ det(D1), then it can
compute

det(C1C2)
det(P1P2)

= det(η
−1X−1P2XηDbX−1P1X)

det(P1P2)
= det(Db)

and if
det(C1C2)
det(P1P2)

= det(D0) A outputs b′ = 0

otherwise A outputs b′ = 1. Thus the adversary A succeeds in the above IND-CPA security experiment with
probability 1. Hence the proposed scheme is not secure against a chosen plaintext attack.

5 Analysis of IND-CCA security of the cryptosystem
The authors in [3] have presented a chosen cipher text attack for their scheme and they proposed a fix where
they replace the one sided ciphertext with the two sided ciphertext as follows:

C = (C1, C2) where
C1 = η−1X−1P2X and C2 = η2X−1P1XMX−1P1X

Consider the following IND-CPA experiment with the challenger C and and efficient adversaryA:

(i) Challenger C generates the key pair (pk, sk) and publishes pk = (P1, P2) = (M−11 NM1,M−12 N−1M2) to
the adversaryA.

(ii) Adversary A has access to a decryption oracle Decsk(.). Adversary A chooses D0, D1 ← Mn(GR) and
submits these to C.

(iii) Challenger C selects a bit b ← {0, 1} uniformly at random and sends the challenge ciphertext

C = (C1, C2) = (η−1X−1P2X, η2X−1P1XMX−1P1X)

to the adversaryA.
(iv) A continues to query the decryption oracle except for the challenge ciphertext C.
(v) The adversaryA outputs a bit b′.

The adversary is successful in the above experiment and outputs 1 if and only if b = b
′

In step two, if the adversaryA chooses twomessages D0 and D1 such that det(D0) ≠ det(D1), then it can
compute

det(C21C2)
det(P21P22)

= det(η
−2X−1P22Xη2X−1P1XDbX−1P1X)

det(P21P22)
= det(Db)
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and if
det(C21C2)
det(P21P22)

= det(D0) A outputs b′ = 0

otherwise A outputs b′ = 1. Thus the adversary A succeeds in the above IND-CCA security experiment with
probability 1.

Additionally, an adversary can decrypt any plaintext M by playing the following game with the challenger:

AdversaryA Challenger C

M* = dIn(d ≠ 1 is unit inGR)← Mn(GR)
M ← Mn(GR)

C←− C = (C1, C2)← Encpk(M)
(C1,M*C2) = C* ≠ C C*−→

M*M←− M*M ← Decsk(C*)
M = (M*)−1M*M

Hence the proposed fix for the scheme is not secure against a chosen ciphertext attack as claimed by authors
in [3].

6 Key recovery attack
In this section, we propose a method where we generate all the equivalent key pairs for the cryptosystem in
[3] from the public key pk only.

From the public information any adversary A has the ability to get the public keys pk = (P1, P2). A find
a solution of the following system to obtain all equivalent key pairs (P, Q).

– Choose arbitrary circulant matrices P and Q and hence

PX = XP and QX = XQ

– P and Q satisfies
PP2Q = P−11 (1)

The above system has atleast a solution namely P = AB−1 and Q = A−1B as

PP2Q = PM−12 N−1M2Q
= PA−2B−1N−1BA2Q
= AB−1A−2B−1N−1BA2A−1B
= A−1B−2N−1B2A
= B−2A−1N−1AB2

= M−11 N−1M1

= P−11

Theorem 3. If the adversary is able to find a solution P, Q to the equation (1), then the ElGamal-like cryptosys-
tem proposed by Saba and Rashid is completey broken with equivalent keys P, Q.
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Proof. Using the equivalent keys P and Q, plaintext M can be retrieved from a ciphertext pair (C1, C2) as

C2PC1Q = ηMX−1P1XPη−1X−1P2XQ
= ηη−1MX−1P1PP2QX
= MX−1X
= M

Thus, the proposed scheme is not secure and a total break of the scheme is performed where equivalent key
pairs (P, Q) are computed from the public key pair (P1, P2).

In Example 1 in appendix, we derive all the equivalent key pairs (P, Q) for the toy example provided in
[3] and obtain the plaintext M.

Remark 3. Out of 16 choices for the solution set in appendix, 8 are non-invertible and remaining 8 invertible
choices are listed in Example 1. Equations A4-A7 are solutions to equation 1 which satisfy P = Q−1 and these
solutions can also be recovered by the method of cryptanalysis of Jia et al. They claim that they can obtain all
equivalent keys by their cryptanalysis but their method only allows them to obtain those equivalent key pairs
(P, Q) which satisfies P = Q−1 in equation 1. But our cryptanlysis is more of a generic kind and it allows us to
obtain all the equivalent key pairs (P, Q) which can be used along with Theorem 3 to retrieve the plaintext M.

6.1 Algorithm for deriving the private keys and decrypting ciphertexts

Remark 4. Equation 1 can be rewritten as

PP2 − P−11 Q−1 = 0

and then using the Theorem 1 we can embed P, P1, P2 and Q in Mnk(R) and rewrite the corresponding equation
as

P P2 − P
−1
1 Q −1 = 0 (2)

which is a system of n2k2 linear equations in 2nk unknowns over the commutative ring R and it can further be
written as

AX = 0 (3)

where A ∈ Mn2k2×2nk(R) and X ∈ M2nk×1(R) is the unknwon vector.
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Algorithm 1 Generating equivalent key pairs and retrieving plaintext

Step 1: Input public information (P1, P2, C1, C2)
Step 2: Choose random elements (a1, a2, · · · , an), (b1, b2, · · · , bn) ∈ GRn and form corresponding circu-

lant matrices P and Q−1 respectively.
Step 3: Using the embedding of Theorem 1 obtain the matrices P, Q −1, P1, P2, C1 and C2.
Step 4: Solve for a system of equations over ring R

P P2 − P
−1
1 Q −1 = 0

using equation 3 and formulate the invertible matrices P and Q −1.
Step 5: Find ai and bj using P, Q

−1 and formulate key pairs P, Q.
Step 6: Compute M = C2PC1Q

In example 2 in appendix, we execute our proposed algorithm to cryptanalyze the toy example provided in
[3]. We decompose the elements of group ring to matrices over same ring and use it to obtain equivalent key
pairs and the corresponding plaintext from the given public key pairs and ciphertext.

6.2 Computational complexity of the proposed algorithm over finite field Fp

In this section, we compute the complexity of Algorithm 1where the commutative ring R is a prime field, that
is, R = Fp.

– The number of bit operations required to compute product of two m × m matrices is O(mω), where
ω ≈ 2.3755.

– Inverse of a m × m matrix can be found using complexity O(mω).
– Inverses in finite field Fp can be computed using (log p)3 bit operations [7].
– Solving a system of p equation in r unknowns over Zn has complexity [11] of O(prω−1) .

Using above complexity results, we have the following complexity:

(i) The embedding in step 3 is nothing but the rearrangement of the coefficients of the elements of the
group ring GR and hence its complexity is neglected.

(ii) In step 4 we need to perform 2 matrix multiplications, 1 matrix inversion and 1 subtraction and then
solve the systemgiven in equation 3. Hence the complexity of step 3 isO((nk)ω(log p)3+2(nk)ω(log p)2+
(nk)2(2nk)ω−1(log p)3) = O((nk)ω+1(log p)3).

(iii) In step 5, the complexity of matrix inversion to find Q from Q −1 is O((nk)ω(log p)3). We then rearrange
to obtain P and Q from P and Q respectively. .

(iv) Step 6 requires 3 matrix multiplications with complexity O((nk)ω(log p)2).

Thus the overall complexity of Algorithm 1 is O((nk)ω+1(log p)3), which is polynomial in the size of the entry
of the matrices.

Remark 5. Jia et al. have also computed the complexity of their attack which is not exactly correct as they have
computed it over matrices over group rings but the complexity results of Zn are used.

7 Conclusion
We have presented a generic kind of cryptanalysis of a new ElGamal-like cryptosystem based on matrices
over group ring. Though the author claimed that their cryptographic protocol seems to be resistant to known
plaintext attacks, ciphertext only attacks and chosen plaintext attacks, we have proved that the proposed



274 | A. Pandey et al.

scheme is not even secure against the weaker security notion IND-CPA and also against IND-CCA of ElGamal
cryptosystem. We then designed a strong linear algebra attack which requires polynomial time to compute
all the equivalent keys for a given public key pair.
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Appendix
Example 1. Consider the ring R = Z2 = {0, 1} and the cyclic group G = C2 = {1, y} = ⟨y⟩, then the group ring
is defined as

GR =
{︂ ∑︁
g∈C2

agg : ag ∈ R
}︂
= {0, 1, y, 1 + y}

The addition and multiplication table for the group ring GR are provided in Table A1 and Table A2 respectively:

Table A1: Addition table for group ring

+ 0 1 y 1+y
0 0 1 y 1+y
1 1 0 1+y y
y y 1+y 0 1

1+y 1+y y 1 0

Table A2:Multiplication table for group ring

· 0 1 y 1+y
0 0 0 0 0
1 0 1 y 1+y
y 0 y 1 1+y

1+y 0 1+y 1+y 0

In the 2 × 2matrix semi group M2(GR), consider the public key elements

P1 =
[︃

1 0
1 + y y

]︃
and P2 =

[︃
1 0

1 + y y

]︃

and for some plaintext M, the ciphertext pair (C1, C2) given by

C1 =
[︃

y 0
1 + y 1

]︃
and C2 =

[︃
y 1
1 y

]︃

Suppose P and Q−1 be arbitrary invertible circulant matrices with elements in GR, then

P =
[︃
a b
b a

]︃
and Q−1 =

[︃
c d
d c

]︃

and PP2Q = P−11 can be written as
PP2 = P−11 Q−1

which implies [︃
a b
b a

]︃[︃
1 0

1 + y y

]︃
=
[︃

1 0
1 + y y

]︃[︃
c d
d c

]︃
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which results in the following system of 4 linear equations in 4 variables a, b, c and d.

a + b(1 + y) + c = 0
yb + d = 0

a(1 + y) + b + (1 + y)c + yd = 0
ay + cy + d(1 + y) = 0

which can further be written as

c = a + b(1 + y)
d = by

where a, b are free parameters. Hence, a solution to the above system is given by⎛⎜⎜⎜⎝
a
b
c
d

⎞⎟⎟⎟⎠ =
{︃
s

⎛⎜⎜⎜⎝
1
0
1
0

⎞⎟⎟⎟⎠ + t

⎛⎜⎜⎜⎝
0
1

1 + y
y

⎞⎟⎟⎟⎠ ⃒⃒s, t ∈ GR
}︃

The following are the invertible key pairs obtained by these solutions

P1 =
[︃
1 0
0 1

]︃
and Q1 =

[︃
1 0
0 1

]︃
(A4)

P2 =
[︃
y 0
0 y

]︃
and Q2 =

[︃
y 0
0 y

]︃
(A5)

P3 =
[︃

1 1 + y
1 + y 1

]︃
and Q3 =

[︃
1 1 + y

1 + y 1

]︃
(A6)

P4 =
[︃

y 1 + y
1 + y y

]︃
and Q4 =

[︃
y 1 + y

1 + y y

]︃
(A7)

P5 =
[︃
0 1
1 0

]︃
and Q5 =

[︃
1 + y y
y 1 + y

]︃
(A8)

P6 =
[︃
0 y
y 0

]︃
and Q6 =

[︃
1 + y 1
1 1 + y

]︃
(A9)

P7 =
[︃
1 + y y
y 1 + y

]︃
and Q7 =

[︃
0 1
1 0

]︃
(A10)

P8 =
[︃
1 + y 1
1 1 + y

]︃
and Q8 =

[︃
0 y
y 0

]︃
(A11)

Using any of these possible pairs, say

P =
[︃
0 y
y 0

]︃
and Q =

[︃
1 + y 1
1 1 + y

]︃
we can obtain the plaintext M as

C2PC1Q =
[︃
y 1
1 y

]︃[︃
0 y
y 0

]︃[︃
y 0

1 + y 1

]︃[︃
1 + y 1
1 1 + y

]︃

=
[︃
y 1
1 y

]︃[︃
1 + y y
1 0

]︃

=
[︃
y 1
1 y

]︃
= M
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which is the original plaintext which was encrypted in toy example in [3].

Example 2. Consider the ring R = Z2 = {0, 1} and the cyclic group G = C2 = {g1 = 1, g2 = y} = ⟨y⟩, then the
group ring is defined as

GR =
{︂ ∑︁
g∈C2

agg : ag ∈ R
}︂
= {0, 1, y, 1 + y}

Also, g1g−11 = 1 = g1, g1g−12 = y = g2 and g2g−11 = y = g2, g2g−12 = 1 = g1. Then the embedding of the group
ring elements are given by

0↔
[︃
0 0
0 0

]︃
, 1↔

[︃
1 0
0 1

]︃
, y ↔

[︃
0 1
1 0

]︃
. 1 + y ↔

[︃
1 1
1 1

]︃

Step 1: Now consider the public key elements

P1 =
[︃

1 0
1 + y y

]︃
and P2 =

[︃
1 0

1 + y y

]︃
and for some plaintext M, the ciphertext pair (C1, C2) given by

C1 =
[︃

y 0
1 + y 1

]︃
and C2 =

[︃
y 1
1 y

]︃

Step 2: Choose arbitrary (a, b), (c, d) ∈ GR2 and form circulant matrices P and Q−1 as

P =
[︃
a = a1g1 + a2g2 b = b1g1 + b2g2
b = b1g1 + b2g2 a = a1g1 + a2g2

]︃
and

Q−1 =
[︃
c = c1g1 + c2g2 d = d1g1 + d2g2
d = d1g1 + d2g2 c = c1g1 + c2g2

]︃

Step 3: Then the embedded matrices are

P =

⎡⎢⎢⎢⎣
a1 a2 b1 b2
a2 a1 b2 b1
b1 b2 a1 a2
b2 b1 a2 a1

⎤⎥⎥⎥⎦ Q −1 =

⎡⎢⎢⎢⎣
c1 c2 d1 d2
c2 c1 d2 d1
d1 d2 c1 c2
d2 d1 c2 c1

⎤⎥⎥⎥⎦
The embedded public key elements are given by

P1 ↔

⎡⎢⎢⎢⎣
1 0 0 0
0 1 0 0
1 1 0 1
1 1 1 0

⎤⎥⎥⎥⎦ = P1 P2 ↔

⎡⎢⎢⎢⎣
1 0 0 0
0 1 0 0
1 1 0 1
1 1 1 0

⎤⎥⎥⎥⎦ = P2

and the embedded ciphertext matrices are

C1 ↔

⎡⎢⎢⎢⎣
0 1 0 0
1 0 0 0
1 1 1 0
1 1 0 1

⎤⎥⎥⎥⎦ = C1 C2 ↔

⎡⎢⎢⎢⎣
0 1 1 0
1 0 0 1
1 0 0 1
0 1 1 0

⎤⎥⎥⎥⎦ = C2

Step 4: The equation P P2 − P
−1
1 Q −1 = 0 can be written as⎡⎢⎢⎢⎣

a1 + b1 + b2 − c1 a2 + b1 + b2 − c2 b2 − d1 b1 − d2
a2 + b2 + b1 − c2 a1 + b2 + b1 − c1 b1 − d2 b2 − d1

b1 + a1 + a2 − (c1 + c2 + d2) b2 + a1 + a2 − (c2 + c1 + d1) a2 − (d1 + d2 + c2) a1 − (d2 + d1 + c1)
b2 + a2 + a1 − (c1 + c2 + d1) b1 + a2 + a1 − (c2 + c1 + d2) a1 − (d1 + d2 + c1) a2 − (d2 + d1 + c2)

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎤⎥⎥⎥⎦
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This can be written as a new system of equations given by⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 1 1 1 0 0 0
0 1 1 1 0 1 0 0
0 0 0 1 0 0 1 0
0 0 1 0 0 0 0 1
1 1 1 0 1 1 0 1
1 1 0 1 1 1 1 0
0 1 0 0 0 1 1 1
1 0 0 0 1 0 1 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a1
a2
b1
b2
c1
c2
d1
d2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0
0
0
0
0
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
which is equivalent to ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 1 0 1 1
0 1 0 0 0 1 1 1
0 0 1 0 0 0 0 1
0 0 0 1 0 0 1 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a1
a2
b1
b2
c1
c2
d1
d2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0
0
0
0
0
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
which corresponds to the following system of equations

a1 = c1 + d1 + d2
a2 = c2 + d1 + d2
b1 = d2
b2 = d1

Step 5: Thus for different values of (c1, c2, d1, d2) ∈ Z4
2 we get 16 pairs of different matrices (P, Q −1). The

choices of tuple which makes the matrix Q invertible are:

(i) (1, 0, 0, 0):

Q =

⎡⎢⎢⎢⎣
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤⎥⎥⎥⎦↔ Q1 P =

⎡⎢⎢⎢⎣
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤⎥⎥⎥⎦↔ P1

(ii) (0, 1, 0, 0):

Q =

⎡⎢⎢⎢⎣
0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

⎤⎥⎥⎥⎦↔ Q2 P =

⎡⎢⎢⎢⎣
0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

⎤⎥⎥⎥⎦↔ P2

(iii) (1, 0, 1, 1):

Q =

⎡⎢⎢⎢⎣
1 0 1 1
0 1 1 1
1 1 1 0
1 1 0 1

⎤⎥⎥⎥⎦↔ Q3 P =

⎡⎢⎢⎢⎣
1 0 1 1
0 1 1 1
1 1 1 0
1 1 0 1

⎤⎥⎥⎥⎦↔ P3

(iv) (0, 1, 1, 1):

Q =

⎡⎢⎢⎢⎣
0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0

⎤⎥⎥⎥⎦↔ Q4 P =

⎡⎢⎢⎢⎣
0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0

⎤⎥⎥⎥⎦↔ P4
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(v) (1, 1, 0, 1):

Q =

⎡⎢⎢⎢⎣
1 1 0 1
1 1 1 0
0 1 1 1
1 0 1 1

⎤⎥⎥⎥⎦↔ Q5 P =

⎡⎢⎢⎢⎣
0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

⎤⎥⎥⎥⎦↔ P5

(vi) (1, 1, 1, 0):

Q =

⎡⎢⎢⎢⎣
1 1 1 0
1 1 0 1
1 0 1 1
0 1 1 1

⎤⎥⎥⎥⎦↔ Q6 P =

⎡⎢⎢⎢⎣
0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

⎤⎥⎥⎥⎦↔ P6

(vii) (0, 0, 1, 0):

Q =

⎡⎢⎢⎢⎣
0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

⎤⎥⎥⎥⎦↔ Q7 P =

⎡⎢⎢⎢⎣
1 1 0 1
1 1 1 0
0 1 1 1
1 0 1 1

⎤⎥⎥⎥⎦↔ P7

(viii) (0, 0, 0, 1):

Q =

⎡⎢⎢⎢⎣
0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

⎤⎥⎥⎥⎦↔ Q8 P =

⎡⎢⎢⎢⎣
1 1 1 0
1 1 0 1
1 0 1 1
0 1 1 1

⎤⎥⎥⎥⎦↔ P8

Hence the equivalent key pairs are given by (Pi , Qi) or (P1, Qi), 1 ≤ i ≤ 8 which are exactly the same as
extracted in Example 1.

Step 6: Using any of these possible pairs, say

P =
[︃
0 y
y 0

]︃
and Q =

[︃
1 + y 1
1 1 + y

]︃

we can obtain the plaintext M as

C2PC1Q =
[︃
y 1
1 y

]︃[︃
0 y
y 0

]︃[︃
y 0

1 + y 1

]︃[︃
1 + y 1
1 1 + y

]︃

=
[︃
y 1
1 y

]︃[︃
1 + y y
1 0

]︃

=
[︃
y 1
1 y

]︃
= M

which is the original plaintext which was encrypted in toy example in [3].
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