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Abstract: ElGamal cryptosystem has emerged as one of the most important construction in Public Key Cryptog-
raphy (PKC) since Diffie-Hellman key exchange protocol was proposed. However, public key schemes which
are based on number theoretic problems such as discrete logarithm problem (DLP) are at risk because of the
evolution of quantum computers. As a result, other non-number theoretic alternatives are a dire need of en-
tire cryptographic community.

In 2016, Saba Inam and Rashid Ali proposed a ElGamal-like cryptosystem based on matrices over group rings
in ‘Neural Computing & Applications’. Using linear algebra approach, Jia et al. provided a cryptanalysis for
the cryptosystem in 2019 and claimed that their attack could recover all the equivalent keys. However, this
is not the case and we have improved their cryptanalysis approach and derived all equivalent key pairs that
can be used to totally break the ElGamal-like cryptosystem proposed by Saba and Rashid. Using the decom-
position of matrices over group rings to larger size matrices over rings, we have made the cryptanalysing
algorithm more practical and efficient. We have also proved that the ElGamal cryptosystem proposed by Saba
and Rashid does not achieve the security of IND-CPA and IND-CCA.
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1 Introduction

The security of ElGamal encryption scheme depends on the difficulty of solving the discrete logarithm prob-
lem. The standard security notion for ElGamal encryption scheme is indistinguishability under a chosen
plaintext attack (IND-CPA) whereas a stronger notion of security is indistinguishability under a chosen ci-
phertext attack (IND-CCA).

Due to the inability of resisting quantum attacks, various traditional cryptosystem based on DLP are not
considered secure and there has been interest in constructing ElGamal encryption scheme via non-number
theoretic platform structures. In this context, Majid Khan et al. [6] proposed two new ElGamal public key
encryption schemes based on the large commutative subgroups of general linear groups on the residual ring
which was later cryptanalyzed by Jia et al. [4] using structural attack.

In 2016, Inam and Ali improved it [3] and proposed a new ElGamal-like cryptosystem based on matrices
over group ring. The authors claimed that the cryptosystem is safe against known plaintext attacks and has
the potential to resist quantum attacks. But using a linear algebra attack, this proposed cryptosystem was
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rendered insecure in [5] where the authors also claimed that they could retrieve all the equivalent keys which
can be used for decryption. Inam and Ali also provided a simple fix for their cryptosystem which they claimed
that it has the ability to defend chosen ciphertext attacks.

Our Contribution: In this paper, we have proved that the ElGamal cryptosystem proposed by Saba and
Rashid does not achieve the security of IND-CPA and IND-CCA which makes the cryptosystem completely
insecure. We have developed a cryptanalytic attack and derived all equivalent keys (including the keys gen-
erated by authors in [5]) that can be used to totally break the ElGamal-like cryptosystem by Saba and Rashid.
We have decomposed group ring elements to matrices over base ring and it makes the proposed cryptanalytic
algorithm more efficient and practical.

The rest of this article is organized as follows. The second section provides necessary background for
this work. In section 3, we present the ElGamal-like cryptosystem proposed by Saba Inam and Rashid Ali. In
section 4 and 5, we prove that the proposed scheme is not secure against IND-CPA and IND-CCA adversary. In
section 6, we develop a stronger attack which derives all the equivalent keys for the proposed cryptosystem.
We also discuss the computational complexity of the scheme. Conclusions are finally drawn in section 7.

2 Preliminaries

Definition 1 (Group Ring). : Let R be a Commutative ring with unity and G = {g1, 82, -, 8« } be a finite mul-
tiplicative group. The group ring consist of all finite sums of the form

b= Z ag§
g€6

where ag € R and is denoted by GR. Let q =}, Bgg andr =3, ; ynh be elements of GR, then the addition
and multiplication is defined as follows:

p+q= (Zagg) + (Zﬁgg) = (ag+Bg)g

geG g€eG geG

and
pr= (Z agg) (Z%h> = Z agx(gh) = Z’ltt
geG heG g,heG teG
where gh = t and

ne= Z QAgVh = Z AgYg1t = Z QXeh-17n-
h

gh=t g

Remark 1. [Decomposition of group ring] Corresponding to every element p = > _geG Ag8 € GR, we can define
a matrix My € My(R) as

Ugigt  Agigyt -+ Ggigt
(nggil agzggl e (nggzl
My = . . .
Ugrgt  Rggyt o0 Ggig!
which clearly has k entries ag,, ag,, -+ , Qg, inrow 1 in some order and rest all other entries are permutation of
this row. Thus for each p € GR, the associated matrix My can be defined by only k unknowns ag,, ag,, - , dg,

and their permutations. Thus, for any matrix A € M,(GR), say,

apy di2 ... Qdin
dzy Az ... AQjpn

dn1 QAn2 ... Qnn
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we can define a corresponding matrix A € M,;(R) as

Ma,, Mg, ... Mg,
_ Mﬂzl Mazz e MaZn
A=| | . )

Ma,, Mg, ... Mg,

where Mg, are k x k matrices corresponding to the elements a;; € GR. The previous remark and computations
are summarized in Theorem 1.

Theorem 1. For afinite group G with k elements and a commutative ring R with unity, Mn(GR) can be embedded
in M (R) via themap ¢ : A — A [9].

Theorem 2. For a matrix A € My(GR), we have [8]
A € GLy(GR) <= ¢(A) = 4 € GLyu(R).

Definition 2 (Circulant matrices and their properties [1]). let F be a finite field. We define a k x k circulant
matrix C over F as

c1 Cy Ck

) Ck C1 Cik-1
C=circ(cy,Cayen, Cp) = .

Cy C3 C1

where the elements of each row of C are identical to those of the previous row, but are moved one position to the
right and wrapped around.
Circulant matrices have the following important properties:

(i) If A and B are two n x n circulant matrices then so is AB and the matrix product is commutative, that
is,
AB = BA

(i) If A is circulant matrix, A~! is also circulant (provided it exists).

Corollary 1. Using Theorem 1, for any circulant matrix C € Mn(GR) we have a corresponding block circulant
matrix C € M, (R) defined by

Mo, Mg, ... Ma,
_ |Ma, Ma, ... Mq,,
C= . . .

Ma, Mg, ... Ma,

nkxnk
which can be defined clearly by nk elements only of the first row of all Mg;,.

3 Description of the public key cryptosystem

In this section, we describe the ElGamal-like cryptosystem proposed by Saba Inam and Rashid Ali [3].
Let Mu(GR) be the set of all n x n matrices over the group ring GR and H ¢ M,(GR) be the subgroup of
all n x n invertible circulant matrices over GR. Bob and Alice communicate in the following steps.
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Key generation (KeyGen):

(i) Alice Choose random A, B € H and compute
M, = AB*, M, = BA?
(ii) Select a random invertible matrix N € GLn(GR) and generate the key pairs (pk, sk) given by
pk = (P1, Py) = (M{*NM;, M5 N"*M,) and sk = (4, B)

where pk is public key and sk is secret key.
Encryption (Enc,(m)):

(i) Bob represents the message m as an element M € M,(GR).
(ii) Choose arandom invertible matrix X € H and r, a unit of the group ring GR and compute the ciphertext
as Encpy(m) = C = (Cy, C,), where

C1=n"'X"'P,X and C, = nMX " 'P; X.

Decryption (Decg (C)):
(i) Using her secret keys A, B Alice computes

S=AB'C;BA™™.
(ii) She obtains the message using C, and S as
C,S=M

Thus, Decg(C) = M

Correctness of the protocol: Since S = AB™1C;BA™!, we have

S=AB 'y 'Xx'P,XBA!
=n'AB' X 'M;'NM,XBA!
=n'AB X 'A?B'NBA’XBA™!
=n A 'B2X 'N1XB%A

and hence

C,S =nMX P, Xn A7 B2 X 'N"1XB%A
= MX 'M{'NM, XA 'B2X 'N"'XB*A
- MX'B2A'NAB’XA'B2X 'N1XB%A
= MX'B?AT'NXX 'N'B*AX
- MX'B2A'B’AX
= MX'X
=M

Remark 2. The authors in [3] have used the commutative circulant matrices over the group ring GR, where R is
a commutative ring with unity and G is a finite group. We believe that the authors wanted the group G to be an
abelian group, otherwise the circulant matrices will not commute and the proposed cryptosystem will not work.
Hence from now onwards we assume that G is a finite abelian group.
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4 Analysis of IND-CPA security of the cryptosystem

Consider the following IND-CPA experiment with the challenger € and and efficient adversary A:

(i) Challenger C generates the key pair (pk, sk) and publishes pk = (P1, P,) = (M;'NM;, M5*N~*M,) to
the adversary A.
(ii) Adversary.A chooses Dy, D1 + Mn(GR) and submits these to C.
(iii) Challenger C selects a bit b < {0, 1} uniformly at random and sends the challenge ciphertext

C= (Cl, CZ) = (nilX?lPZX, ’]DbX{lPlX)

to the adversary A.
(iv) The adversary A outputs a bit b’.

The adversary is successful in the above experiment and outputs 1 if and only if b = b
In step two, if the adversary A chooses two messages Dy and D4 such that det(Dy) # det(D1), then it can
compute

det(C1 Cz) _ det(rl_lX_1P2XrlDbX_1P1X)

det(P,P,) det(P1P,) = det(Dy)

and if
det(C1Cy)

det (P 1 P 2)
otherwise A outputs b’ = 1. Thus the adversary A succeeds in the above IND-CPA security experiment with
probability 1. Hence the proposed scheme is not secure against a chosen plaintext attack.

= det(Dy) Aoutputsb’ =0

5 Analysis of IND-CCA security of the cryptosystem

The authors in [3] have presented a chosen cipher text attack for their scheme and they proposed a fix where
they replace the one sided ciphertext with the two sided ciphertext as follows:

C=(Cy, C;) where
C1=n"'X'P,X and C, = n?X P, XMX P, X

Consider the following IND-CPA experiment with the challenger € and and efficient adversary A:

(i) Challenger C generates the key pair (pk, sk) and publishes pk = (P1, P;) = (M;*NMy, M5*N"1M,) to
the adversary A.
(ii) Adversary A has access to a decryption oracle Decgy(.). Adversary A chooses Dy, D1 + Mn(GR) and
submits these to C.
(iii) Challenger C selects a bit b < {0, 1} uniformly at random and sends the challenge ciphertext

C=(C1,C) = (X7 1PoX, > X 1P XMX 1P, X)

to the adversary A.
(iv) A continues to query the decryption oracle except for the challenge ciphertext C.
(v) The adversary A outputs a bit b’.

The adversary is successful in the above experiment and outputs 1 if and only if b = b
In step two, if the adversary A chooses two messages Do and D, such that det(Dy) # det(D1), then it can
compute

det(C3Cy) _ det(n?X 'P3Xn?X'P1XD,X 'P1X)

_ — det(D
det(P2P2) det(P2P2) etDy)
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and if
det(C%Cz)

221220 det(Dy) A outputs b’ =0
det(P2P3)

otherwise A outputs b’ = 1. Thus the adversary A succeeds in the above IND-CCA security experiment with
probability 1.

Additionally, an adversary can decrypt any plaintext M by playing the following game with the challenger:

Adversary A Challenger C

M" = dI,(d # 1is unitin GR) + Mn(GR)
M « Mn(GR)

C = (Cy, C2) + Encp(M)

(C1,M'Cy)=C" #C

15 1n 1o

MM «+ Decg(C")

M=M)M'M

Hence the proposed fix for the scheme is not secure against a chosen ciphertext attack as claimed by authors
in [3].

6 Key recovery attack

In this section, we propose a method where we generate all the equivalent key pairs for the cryptosystem in
[3] from the public key pk only.

From the public information any adversary A has the ability to get the public keys pk = (P1, P>). A find
a solution of the following system to obtain all equivalent key pairs (P, Q).

— Choose arbitrary circulant matrices P and Q and hence
PX = XP and QX = XQ

— Pand Q satisfies
PP,Q =Pi! 6))

The above system has atleast a solution namely P = AB* and Q = A™'Bas

PP,Q = PM;'N"M,Q

= PAT?B'N'BA%Q

=AB'A’B'N"'BA’A7'B

=A'B*N'B’A

=B 2A'N'AB?

= M{'N" M4

=pit
Theorem 3. Ifthe adversary is able to find a solution P, Q to the equation (1), then the ElGamal-like cryptosys-
tem proposed by Saba and Rashid is completey broken with equivalent keys P, Q.
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Proof. Using the equivalent keys P and Q, plaintext M can be retrieved from a ciphertext pair (C1, C,) as

C,PC1Q = nMX ' P1XPn ' X' P,XQ
= nn *MX'P,PP,QX
= MX'X
=M

O

Thus, the proposed scheme is not secure and a total break of the scheme is performed where equivalent key
pairs (P, Q) are computed from the public key pair (P, P>).

In Example 1 in appendix, we derive all the equivalent key pairs (P, Q) for the toy example provided in
[3] and obtain the plaintext M.

Remark 3. Out of 16 choices for the solution set in appendix, 8 are non-invertible and remaining 8 invertible
choices are listed in Example 1. Equations A4-A7 are solutions to equation 1 which satisfy P = Q™! and these
solutions can also be recovered by the method of cryptanalysis of Jia et al. They claim that they can obtain all
equivalent keys by their cryptanalysis but their method only allows them to obtain those equivalent key pairs
(P, Q) which satisfies P = Q! in equation 1. But our cryptanlysis is more of a generic kind and it allows us to
obtain all the equivalent key pairs (P, Q) which can be used along with Theorem 3 to retrieve the plaintext M.

6.1 Algorithm for deriving the private keys and decrypting ciphertexts

Remark 4. Equation 1 can be rewritten as
PP, -Pi'Ql=0

and then using the Theorem 1 we can embed P, P1, P, and Q in M,,;(R) and rewrite the corresponding equation
as

—— —-1=-1

PP,-P; Q =0 )

which is a system of n’k? linear equations in 2nk unknowns over the commutative ring R and it can further be
written as
AX=0 €)

where A € M, 2j2,0n(R) and X € My 1 (R) is the unknwon vector.
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Algorithm 1 Generating equivalent key pairs and retrieving plaintext

Step 1: Input public information (Py, P>, C1, C5)

Step 2: Choose random elements (aq, a, -+ , an), (b1, b2, -+, bn) € GR™ and form corresponding circu-
lant matrices P and Q™! respectively.

Step 3: Using the embedding of Theorem 1 obtain the matrices P, 6_1, Py, P5,Cqand C,.

Step 4: Solve for a system of equations over ring R

PP,-P;'Q =0
using equation 3 and formulate the invertible matrices P and Q .
Step 5: Find a; and b; using P, Q' and formulate key pairs P, Q.
Step 6: Compute M = C,PC1Q

In example 2 in appendix, we execute our proposed algorithm to cryptanalyze the toy example provided in
[3]. We decompose the elements of group ring to matrices over same ring and use it to obtain equivalent key
pairs and the corresponding plaintext from the given public key pairs and ciphertext.

6.2 Computational complexity of the proposed algorithm over finite field I,

In this section, we compute the complexity of Algorithm 1 where the commutative ring R is a prime field, that
iS, R = F p-

— The number of bit operations required to compute product of two m x m matrices is O(m®), where
w = 2.3755.

Inverse of a m x m matrix can be found using complexity O(m®).

Inverses in finite field F, can be computed using (log p)* bit operations [7].
Solving a system of p equation in r unknowns over Z, has complexity [11] of O(pr

(u—l) X

Using above complexity results, we have the following complexity:

(i) The embedding in step 3 is nothing but the rearrangement of the coefficients of the elements of the
group ring GR and hence its complexity is neglected.

(ii) In step 4 we need to perform 2 matrix multiplications, 1 matrix inversion and 1 subtraction and then
solve the system given in equation 3. Hence the complexity of step 3 is O((nk)“ (log p)> +2(nk)® (log p)? +
(nk)*(2nk)*~*(log p)?) = O((nk)**' (log p)*).

(iii) In step 5, the complexity of matrix inversion to find Q from Q is O((nk)®(log p)?). We then rearrange
to obtain P and Q from P and Q respectively. .
(iv) Step 6 requires 3 matrix multiplications with complexity O((nk)“ (log p)?).

Thus the overall complexity of Algorithm 1 is O((nk)*'(log p)?), which is polynomial in the size of the entry

of the matrices.

Remark 5. Jia et al. have also computed the complexity of their attack which is not exactly correct as they have
computed it over matrices over group rings but the complexity results of Zn are used.

7 Conclusion

We have presented a generic kind of cryptanalysis of a new ElGamal-like cryptosystem based on matrices
over group ring. Though the author claimed that their cryptographic protocol seems to be resistant to known
plaintext attacks, ciphertext only attacks and chosen plaintext attacks, we have proved that the proposed
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scheme is not even secure against the weaker security notion IND-CPA and also against IND-CCA of ElGamal
cryptosystem. We then designed a strong linear algebra attack which requires polynomial time to compute
all the equivalent keys for a given public key pair.
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Appendix

Example 1. Consider the ring R = Z, = {0, 1} and the cyclic group G = C, = {1, y} = (y), then the group ring
is defined as

GR={Zagg:ageR}={0,1,y,1+y}

gel;

The addition and multiplication table for the group ring GR are provided in Table A1 and Table A2 respectively:

Table A1: Addition table for group ring

+ 0 y 1+y
0 0 1 y 1+y
1 1 1+y y
y y 1+y 0 1
14y | 14y y 1 0

Table A2: Multiplication table for group ring

0 1 y 1+y
0O o0 0 0
1 0 1 y 1+y
y 0 y 1 1+y
1+y | 0 1+y 14y 0

In the 2 x 2 matrix semi group M,(GR), consider the public key elements

P1=|:1 0:|andP2=|:l O:|
1+y vy 1+y vy

and for some plaintext M, the ciphertext pair (C1, C,) given by

C1=[y O}andcz=[y 1}
1+y 1 1 vy

Suppose P and Q™! be arbitrary invertible circulant matrices with elements in GR, then
a b 1 c d
P= and =

pp, = Pi'Q!

R P

and PP,Q = Py! can be written as

which implies
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which results in the following system of 4 linear equations in 4 variables a, b, c and d.
a+b(l1+y)+c=0
yb+d=0
al+y)+b+(1+y)c+yd=0
ay+cy+d(1+y)=0

which can further be written as

c=a+b(l+y)
d = by
where a, b are free parameters. Hence, a solution to the above system is given by
a 1 0
b =<5 0 +t 1 s,t € GR
c 1 1+
d 0 y

The following are the invertible key pairs obtained by these solutions

10 1 0]
Pl_[o 1} a"dQl_[o 1

y 0 y 0]
P, = -

1 1+y_ 1 1+y_
P3 = and
3 {1+y 1 Qs 1+y 1

P4:{y 1+y and Q, y 1+y

1+y y 1+y y
-0 1- _1 +y y |
Ps = d Qs =
> 1 0 and Qs y 1+y
0 y— 1+ y 1|
Pg = d Qg =
6 y O and Qs 1 1+y
1+y  y 0 1]
p; = d Q7 =
4 y 1 +y} and Q7 [1 0
-1 +y 1 0 y-
Pg = d Qg =
8 1 1 +y} and Qs [y 0
Using any of these possible pairs, say
P= 0 andQ={1+y 1 }
y 1 1+y

we can obtain the plaintext M as

C,PC,Q = y 0 y} [ y 0} [1+y 1 }
1 1+y

[N
A N N
(=Y
o

DE GRUYTER

(A4)

(A5)

(A6)

(A7)

(A8)

(A9)

(A10)

(A11)
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which is the original plaintext which was encrypted in toy example in [3].

Example 2. Consider thering R = Z, = {0, 1} and the cyclic group G = C; = {g1 = 1,82 =y} = (y), then the
group ring is defined as

GR={Zagg:ageR}={0,1,y,1+y}

geCy

Also, 8187 =1 =g1,818" =y =8 and g,87* =y = 82,8285" = 1 = g1. Then the embedding of the group
ring elements are given by

00 1 0 0 1 1 1
0« , 1« , V& o l+y e
A ERERY O 2 L PRS2

Step 1: Now consider the public key elements

P1=[1 O}andP2={1 O}
1+y vy 1+y vy

and for some plaintext M, the ciphertext pair (C1, C,) given by

C1=[y O}andcz=[y 1}
1+y 1 1 vy

Step 2: Choose arbitrary (a, b), (c, d) € GR? and form circulant matrices P and Q™! as

p_ 4=+, b =big1+brg
b=big1+byg a=aig1+axg

and

Q1= |CTC181+ 28 d=dig +dy8
d=dig1+d282 C=cC181+C282

Step 3: Then the embedded matrices are

a, ap b1 bz c1 Cy d1 dz
- a ai b2 b1 —-1 Co C1 dz d1
P= Q =
b] bz a, dap dl dz c1 C
b, by a a d di ¢ ¢
The embedded public key elements are given by
[1 0 0 0] [1 0 0 0]
Py 01 0 O _P, Py 01 0 O -5,
1 1 0 1 1 1 0 1
11 1 0 11 1 0
and the embedded ciphertext matrices are
[0 1 0 0] [0 1 1 0]
1 — 1 1 _
C1 < 000 =01 C2 < 00 = Cz
1 1 1 0 1 0 0 1
1 1 0 1] 0 1 1 0

Step 4: The equation PP, — P;'Q " = 0 can be written as

a;+by+by-cq a,+by+by-cy by, -d; by -d, 0 0 0O
a,+by+b1-cy aj;+by;+by1-cq by -d, by -d; |00 00
bi+aj+ay;-(c1+cy+dy) by+ai+a,-(ca+ci+dy) ar-(di+dy+cy) ai-(dy+di+cy) 0 00O
by+ay+a;-(ci+cy+dy) bi+ay+a;-(c;+c1+dy) ay-(di+dy+c1) ay—(dy+di+c¢y) 0 00O
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This can be written as a new system of equations given by

101110 0 0][a 0
0111010 0f|a 0
000100 1 0f]|b 0
001 00 0 0 1||by] |0
11101 10 1f|ci] O
1101111 0|fc 0
0100011 1||d 0
1 0 001 0 1 1] |d2| |O]

which is equivalent to
(1 0 0 01 0 1 1] [ay] [O]
0100011 1| |a 0
001000 O 1||bh 0
0 00 10 0 1 0f/[by] |0
0 00 O0OO O 0| |c| |0
0 000 OO O 0|c 0
000 O0OUOO0 Of |d 0
0 000 00 0 0f |d |O]

which corresponds to the following system of equations

aj=cy+dy+d>
a, =c,+di +d,
by =d;
by =d;

Step 5: Thus for different values of (c1, c2, d1, d2) € 73 we get 16 pairs of different matrices (P, 6_1). The
choices of tuple which makes the matrix Q invertible are:

() (1,0,0,0): -~ ) -~ _
100 0 100 0
_ o1 0 0 _lo10 0
- p- p
Q=19 0 1 ol @@ 00 1 o 7"
00 0 1 0 0 0 1
(i) (0,1,0,0): ) ] ] )
010 0 010 0
_ 1100 0 _ 11000
- p- p
Q=1p 0 0 1| 7@ 000 1|77
0 0 1 0 0 0 1 0
(iii) (1,0,1,1): ) ) _ _
101 1 101 1
_ o1 1 1 o111
- P- p
Q=1;, 1 1 oG 111 0/ 773
11 0 1 11 0 1]
(iv) (0,1,1,1): ) ) } i}
01 1 1 01 1 1
_ 1 0 1 1 11011
_ P- P
Q=11 1 0 1| 9% 110 1| 7"
11 1 o 111 0
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(v) (1,1,0,1): - - r .
1101 0010
—~ 1110 5_10 0 0 1
- P- P
@=lo 11 1|79 100 o7
1 0 1 1] 0 1 0 O]
(vi) (1,1,1,0): _ . r T
1110 0 00 1
~ 110 1 5_10 0 10
_ o P-= <~ P
Q=11 01 1| 7% o100 '°
0 1 1 1] 1 0 0 O]
(vii) (0,0, 1,0): i - r T
0010 1101
— lo o o0 1 5_|1 110
_ o P= <P
9=11 00 o 7% 0111 !
0 1 0 0] 1 0 1 1]
(vii) (0,0,0, 1): i - r y
000 1 1110
—_ oo 10 5_11 1 01
_ o P= <P
9=lo 1 0 o 7% 101 1] °°
1 0 0 O 0 1 1 1]

Hence the equivalent key pairs are given by (P;, Q;) or (P1, Q;), 1 < i < 8 which are exactly the same as
extracted in Example 1.

Step 6: Using any of these possible pairs, say

PZ[O y} andQ=[1+y 1}
y O 1 1+y

we can obtain the plaintext M as

C,PC,Q = y 1 {0 y} [ y O} {1+y 1 }
1 y||ly O]|1+y 1 1 1+y
__y 1_ 1+y vy
1oyl 1 o
_-y 1
1y
=M

which is the original plaintext which was encrypted in toy example in [3].
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