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Abstract: In this paper, we show a “direct” equivalence between certain authentication codes and robust
threshold schemes. It was previously known that authentication codes and robust threshold schemes are
closely related to similar types of designs, but direct equivalences had not been considered in the literature.
Our new equivalences motivate the consideration of a certain “key-substitution attack.” We study this attack
and analyze it in the setting of “dual authentication codes.”We also show how this viewpoint provides a nice
way to prove properties and generalizations of some known constructions.
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1 Background and Our Contributions
In this paper, we study various aspects of optimal authentication codes and robust threshold schemes. We
only consider unconditionally secure authentication codes and threshold schemes in this paper. Detailed
definitions and basic results on authentication codes and robust threshold schemes can be found in Sections
2.1 and 2.2. In this section, we just give a brief overview of previous results along with a summary of our
contributions.

A (k, n)-threshold scheme allows a secret to be split into n shares so that k shares are necessary and suffi-
cient for the secret to be reconstructed. Such a scheme is robust if a “fake” share, alongwith k−1 valid shares,
does not result in an incorrect secret being reconstructed. Robust threshold schemes are often constructed
by a two-step process: First, the secret is “encoded” using a suitable combinatorial structure such as a dif-
ference set [1], EDF [2] or AMD code [3, 4]. Second, the encoded secret is shared using a traditional Shamir
threshold scheme. Robust (k, n)-threshold schemes were introduced in 1988 by Tompa andWoll [5] and they
have received considerable study by many authors since then; see, for example, [1, 2, 6–8]. Recent papers on
this topic include [9–11].

An authentication code provides a method for a sender to encode a message using a secret key so that
a designated receiver can decode the message using the same key. An active adversary should not be able
to find a “bogus” message which the receiver would accept as valid. Optimal authentication codes also have
a long history. Some important early papers include [2, 12–15]. Some additional papers, which specifically
discuss “splitting” authentication codes, include [16–18]. Finally, [19, 20] are two recent works on this topic.
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There has been previous work, for example in [1, 2], discussing constructions for “optimal” authentica-
tion codes and robust threshold schemes In the context of authentication codes, “optimal” means that the
deception probabilities are as small as possible and the number of encoding rules (or keys) is also as small as
possible. For a robust threshold scheme, “optimal” means that the deception probabilities meet a specified
bound that is expressed in terms of the number of possible shares and the number of possible secrets.

Previouswork has used combinatorial structures such as BIBDs, difference sets, external BIBDs (EBIBDs),
external difference families (EDFs) and splittingBIBDs in order to construct optimal robust threshold schemes
and authentication codes. Additionally, some partial converses have been proven, which show that optimal
authentication codes and robust threshold schemes imply the existence of some of the above-mentioned
combinatorial structures.

Without going into details, the following are the main previous results along this line:

– In [2] it is shown that a robust threshold scheme can be constructed from an EDF with λ = 1. (This con-
struction incorporates a Shamir threshold scheme as an ingredient.) Conversely, certain robust thresh-
old schemes give rise to certain EBIBDs.

– In [1] it is shown that a robust threshold scheme can be constructed from a difference set. (This con-
struction also incorporates a Shamir threshold scheme as an ingredient.) Conversely, certain robust
threshold schemes give rise to certain symmetric BIBDs (SBIBDs).

– In [2], a construction is given for splitting authentication codes from EDFs with λ = 1. This paper also
constructs certain authentication codes from splitting BIBDs with λ = 1, as well as proving a converse
result.

The above results suggest that there could be connections between authentication codes and robust
threshold schemes, as they are closely related to similar (and sometimes identical) types of designs. For ex-
ample, the combinatorial designs generated by EDFs (which include difference sets as a special case) can be
used to construct both robust threshold schemes and authentication codes.

One of the main contributions of this paper is to show a “direct” equivalence between certain authenti-
cation codes and (2, 2)-robust threshold schemes. We also study a key-substitution attack for authentication
codes and interpret it in light of what we term “dual authentication codes.”

The rest of this paper is organized as follows. Detailed definitions of authentication codes and robust
threshold schemes are given in Sections 2.1 and 2.2, along with some basic results that we use in the rest of
the paper.We also introduce key-substitution attacks, which have not been studied previously, in this section.
In Section 3,we prove ourmain equivalence result involving authentication codes and (2, 2)-robust threshold
schemes. Various combinatorial constructions for authentication codes that are studied in Section 4. These
constructions, which are based on designs such as BIBDs (including symmetric and splitting BIBDs) and ex-
ternal difference families, produce authentication codes that in turn yield (2, 2)-robust threshold schemes via
the equivalences proven in Section 3. The notion of “dual authentication codes” is introduced and explored
in Section 5. This allows a deeper understanding of key-substitution attacks. Finally, some closing remarks
are given in Section 6.

2 Definitions and Basic Results
We present definitions of authentication codes and robust threshold schemes on this section, along with a
few basic results.

2.1 Authentication Codes

We follow Simmons’ model for unconditionally secure authentication [12]. A key K determines an encoding
rule eK, which is a possibly randomized mapping eK : S→M. Elements in S are called sources and elements
of M are messages. In general, we view eK(s) as a set of messages in the case that encoding is randomized
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(this is often called authentication with splitting). The key K is chosen from a keyspace K. The key and the
source can be treated as independent random variables. If |eK(s)| = c for all s ∈ S and all K ∈ K, the code is
called a c-splitting authentication code.

Given a key K and a message m, at most one source should be “possible.” That is, for every key K, we
require that eK(s) ∩ eK(s′) = ∅ if s ≠ s′. This ensures that the receiver, who has the key K and a message
m ∈ eK(s), can uniquely determine the source s.

For any key K, denote
µ(K) =

⋃︁
s
eK(s).

The set µ(K) consists of all the messages that are valid encodings of a source under key K.
Also, for any message m, denote

κ(m) = {K : m ∈ µ(K)}.

The set κ(m) consists of all the keys for which m is a valid encoding of some source.
The encoding matrix of an authentication code is a matrix E in which the rows are indexed by the keys

inK and the columns are indexed by the sources in S. The entry E(k, s) is simply the set (of messages) eK(s).
The entries E(k, s) in the encoding matrix are singletons if and only if the code has no splitting, i.e., c = 1.

We are primarily interested in authentication codes having perfect secrecy, i.e., codes having the prop-
erty that a message reveals no information about the source to an adversary who does not know the key. We
also often want authentication codes that are secure against bothmessage-substitution and key-substitution
attacks. These attacks are defined as follows.

In a message-substitution attack (also called a substitution attack), the adversary sees a message m and
replaces it with amessagem′ ≠ m. The adversarywins ifm′ ∈ eK(s′) andm ∈ eK(s), where K is the (unknown)
secret key and s′ ≠ s. This is often just called a substitution attack; these types of attacks have been considered
for many years.

In a key-substitution attack, the adversary sees a key K and replaces it with a key K′ ≠ K. The adversary
wins if m ∈ eK(s) and m ∈ eK′ (s′), where m is the (unknown) message and s′ ≠ s. This is perhaps a less
natural type of attack to consider than a message-substitution attack. In fact, we are not aware of any previ-
ous study of unconditionally secure authentication codes that considers key-substitution attacks. However,
we should note that a similar attack has been studied in the setting of systematic algebraic manipulation
detection (AMD) codes; see [3].

There is another attack that is often studied for authentication codes, namely, an impersonation attack.
In this attack, the adversary chooses a message, without seeing a “previous” message, hoping that it is an
encoding of some source under the (unknown) key K.

The success probability of an attack (impersonation, message-substitution or key-substitution) is the
probability that the adversary wins the corresponding “game.” This probability is computed over a random
choice of key, source, and message encoding (if encoding of messages is randomized, i.e., in the case of a
code with splitting) according to the probability distributions specified on them. Throughout this paper, we
assume that the probability distributions defined on the keys and message encodings are uniform. That is,
Prob[K] = 1/b for all keys K ∈ K, where b = |K|, and in a c-splitting code, for a given key K ∈ K and source
s ∈ S, we have Prob[m] = 1/c for all m ∈ eK(s).

Source probability distributions are often (but not always) assumed to be uniform. Also, in all of the
attacks we study, we assume that a key is used to encode only one message.

The adversary’s optimal success probability for an impersonation attack is often denoted by Pd0 and their
optimal success probability for amessage-substitution attack is denotedby Pd1 . For c-splitting authentication
codes, the following bounds are known.

Theorem 2.1. [12, 17, 18] Suppose a c-splitting authentication code for k sources has v messages. Then Pd0 ≥
ck/v and Pd1 ≥ c(k − 1)/(v − 1).

For a code without splitting (i.e., c = 1), the bounds obtained from Theorem 2.1 are Pd0 ≥ k/v and Pd1 ≥
(k − 1)/(v − 1). This bound on Pd1 was first proved by Massey [13].
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The following two results will be used several times later in the paper. They do not assume equiprobable
sources.

Lemma 2.2. Suppose a c-splitting authentication code for k sources has v messages, b equiprobable keys and
equiprobable message encoding. Then Pd0 = ck/v if and only if |κ(m)| = bck/v for all messages m.

Proof. Let K be the key that was chosen by the sender/receiver. Themessagem chosen by the attacker will be
accepted as valid if and only if K ∈ κ(m). Since there are b possible keys, the choice of m will be a successful
impersonation with probability |κ(m)|/b.

Define
A = {(K,m) : K ∈ κ(m)}.

Clearly
|A| =

∑︁
m∈M

|κ(m)|.

However, we also have
|A| =

∑︁
K∈K

|µ(K)| = bck.

Therefore,
max{|κ(m)| : m ∈M} ≥ bckv ,

and equality occurs if and only if |κ(m)| = bck/v for all messages m.
The adversary’s optimal attack is to choose m so that |κ(m)| is maximized. Hence, the maximum success

probability of an impersonation attack is at least ck/v, and equality occurs if and only if |κ(m)| = bck/v for
all messages m.

Theorem 2.3. Suppose a c-splitting authentication code for k sources has v messages, b equiprobable keys
and equiprobable message encoding. Consider the following three conditions:

1. Pd0 = ck/v;
2. the code achieves perfect secrecy;
3. within each column of the encoding matrix, every message occurs the same number of times.

Then the code satisfies conditions 1. and 2. if and only if it satisfies condition 3.

Proof. For any s ∈ S and m ∈M, define

κ(m, s) = {K : m ∈ eK(s)}.

Thus κ(m, s) contains the keys for which m is a valid encoding of s. We observe that

Prob[m | s] = |{K : m ∈ eK(s)}|
b = |κ(m, s)|b . (1)

Suppose the code satisfies 2. Perfect secrecy is achieved if and only if

Prob[s | m] = Prob[s]

for all s ∈ S and all m ∈M. By Bayes’ Theorem, this is equivalent to proving

Prob[m | s] = Prob[m] (2)

for all s ∈ S and all m ∈M.
For a given message m, equations (1) and (2) imply that |κ(m, s1)| = |κ(m, s2)| for all sources s1, s2.
It is clear that

κ(m) =
⋃︁
s∈S

κ(m, s),
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where the sets κ(m, s) (s ∈ S) are disjoint. Therefore

|κ(m)| =
∑︁
s∈S

|κ(m, s)| = k × |κ(m, s)| (3)

for any fixed source s ∈ S.
Now, assume additionally that the code satisfies condition 1. From Lemma 2.2, we have |κ(m)| = bck/v.

Hence, it follows that
|κ(m, s)| = bcv (4)

for every m ∈M, s ∈ S. Therefore, condition 3. holds.

Conversely, suppose condition 3. holds. Let s ∈ S. Then |κ(m1, s)| = |κ(m2, s)| for all m1,m2 ∈ M. We
have ∑︁

m∈M

|κ(m, s)| = bc,

since there are b rows in the encodingmatrix and each cell contains cmessages. Therefore, equation (4) holds
for all s ∈ S and all m ∈M. Hence, from (1),

Prob[m | s] =
bc
v
b = cv

for all s ∈ S and all m ∈M. Then

Prob[m] =
∑︁
s∈S

(Prob[m | s] × Prob[s])

=
∑︁
s∈S

(︁ c
v × Prob[s]

)︁
= cv ,

so Prob[m | s] = Prob[m] for all s ∈ S and m ∈M. Therefore, equation (2) holds and we have perfect secrecy.
To see that Pd0 = ck/v, we use equation (3), which is satisfied because we have perfect secrecy. Since (4)

holds , we have
|κ(m)| = k × bcv = bckv

for all m ∈M. Then Pd0 = ck/v from Lemma 2.2.

2.2 Threshold Schemes

An unconditionally secure (2, 2)-threshold scheme enables a secret s to be “split” into two shares v1 and v2
in such a way that

1. v1 and v2 uniquely determine s via a reconstruction function.We express this asReconstruct(v1, v2) = s.
2. No individual share yields any information about the secret. That is,

Prob[s | v1] = Prob[s | v2] = Prob[s].

More generally, a (k, n)-threshold scheme enables a secret s to be split into n shares in such a way that
any k shares permit the secret to be reconstructed, but no set of k − 1 or fewer shares yield any information
about the secret.

In a robust (2, 2)-threshold scheme, we consider the scenario where one player may modify their share,
hoping that Reconstructwill then yield an incorrect secret. So we consider a setting where Reconstruct either
returns a secret or⊥, where the latter indicates that no secret can be reconstructed from the two given shares.
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Suppose that the first player, P1, alters their share as v1 → v′1 (P1 does not have any information about the
value of the other share, v2). Suppose Reconstruct(v1, v2) = s. Then P1 wins this deception game if

Reconstruct(v′1, v2) = s′

where s′ ≠ s. P1 loses the game if

Reconstruct(v′1, v2) = s or Reconstruct(v′1, v2) = ⊥ .

Similarly, if P2 alters their share as v2 → v′2, then they win the deception game if Reconstruct(v1, v′2) = s′

where s′ ≠ s.
A robust (2, 2)-threshold scheme is ϵ-secure if no strategy by P1 or P2will allow them towin the deception

gamewith probability exceeding ϵ. Subsequently, wemay refer to such a scheme simply as an ϵ-secure (2, 2)-
threshold scheme.

3 Equivalences
In the next subsections, we show the equivalence of certain authentication codes and robust (2, 2)-threshold
schemes.

3.1 Threshold Scheme to Authentication Code

Given an ϵ-secure robust (2, 2)-threshold scheme, we construct an authentication code. This is somewhat
similar to the the construction used by Kurosawa, Obana and Ogata in [7, Theorem 15].

For any ordered pair of shares (v1, v2) such that Reconstruct(v1, v2) = s, define v2 ∈ ev1 (s). First, we note
that ev1 (s) ≠ ∅ for all v1 and all s. This holds because the share v1 does not provide any information about the
secret. Hence, for all choices of v1 and s, theremust be at least one value v2 such that Reconstruct(v1, v2) = s.

The probability distribution on the sources in the authentication code should be the same as the proba-
bility distribution on the shares of the threshold scheme. Also, note the following correspondences:

threshold scheme authentication code
source s ←→ secret s
share v1 ←→ key K
share v2 ←→ message m.

We show that the resulting authentication scheme satisfies various properties now.

Message-substitution attack. Suppose an adversary replaces m ∈ eK(s) with m′ ≠ m in the authentication
code. This corresponds tomodifying share v2 (the second share) fromm tom′ in the robust threshold scheme.
Because the threshold scheme is robust, we know that

Prob[Reconstruct(K,m′) = s′ ≠ s] ≤ ϵ.

In other words,
Prob[m′ ∈ eK(s′) and s′ ≠ s] ≤ ϵ.

Therefore, the probability of a successful message-substitution attack is at most ϵ.

Key-substitution attack. Suppose an adversary replaces K with K′ ≠ K in the authentication code, where
m ∈ eK(s). This corresponds to modifying share v1 (the first share) from K to K′ in the robust threshold
scheme. Because the threshold scheme is robust, we know that

Prob[Reconstruct(K′,m) = s′ ≠ s] ≤ ϵ.
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In other words,
Prob[m ∈ eK′ (s′) and s′ ≠ s] ≤ ϵ.

Therefore, the probability of a successful key-substitution attack is at most ϵ.

Perfect Secrecy. The threshold scheme has the property that one share yields no information about the value
of the secret. Therefore, in particular,

Prob[s | v2] = Prob[s].

Suppose the share v2 is fixed but we have no information about the share v1. Then we have no information
about the secret s. In the corresponding authentication code, this means that the message m = v2 provides
no information about the source s when the key K = v1 is not known, so we have perfect secrecy.

It is also possible to construct authentication codes with similar properties from any robust (k, n)-
threshold scheme with k ≥ 2. For example, see [1]. The idea is to fix shares for the first k − 2 players, say,
by choosing some (k − 2)-tuple of shares that occurs with probability greater than 0. Consider the subset of
distribution rules such that the first k − 2 shares take on the specified values. Retain the shares for the next
two players, but throw away the shares that would be given to the last n − k players. This gives rise to a (2, 2)-
threshold scheme, which can then be used to construct an authentication code using the above-described
technique.

3.2 Authentication Code to Threshold Scheme

The construction in the previous subsection can easily be reversed. Now we start with an authentication
code having perfect secrecy and we assume that message-substitution and key-substitution attacks have suc-
cess probability at most ϵ. We construct a (2, 2)-threshold scheme as follows: shares for P1 are keys in the
authentication code, shares for P2 are messages in the authentication code, and secrets are sources in the
authentication code. Note that P1 and P2 have shares of the same size if and only if the number of keys is the
same as the number of messages (in the authentication code).

For every m ∈ eK(s), construct a distribution rule (K,m; s), i.e., v1 = K, v2 = m and

Reconstruct(v1, v2) = Reconstruct(K,m) = s.

We need to show that the resulting set of distribution rules defines an ϵ-secure (2, 2)-threshold scheme.

Secret reconstruction. Suppose that we have two distribution rules (K,m; s) and (K,m; s′) with s′ ≠ s. Then
m ∈ eK(s)∩ eK(s′) in the authentication code, which is not allowed. Thus, two shares determine at most one
secret.

Information revealed by one share.We want to prove that

Prob[s | v1] = Prob[s | v2] = Prob[s].

If v1 = K is given, then this yields no information about s because K and s are independent in the authenti-
cation code. If v2 = m is given, then this yields no information about s because the authentication code has
perfect secrecy.

Modifying v1. Suppose P1 replaces their share v1 = K with v′1 = K′ ≠ K. This corresponds to a key-
substitution attack in the authentication code. We know that

Prob[m ∈ eK′ (s′) and s′ ≠ s] ≤ ϵ,

so
Prob[Reconstruct(K′,m) = s′ ≠ s] ≤ ϵ.
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Modifying v2. Suppose P2 replaces their share v2 = m with v′2 = m′ ≠ m. This corresponds to a message-
substitution attack in the authentication code. We know that

Prob[m′ ∈ eK(s′) and s′ ≠ s] ≤ ϵ,

so
Prob[Reconstruct(K,m′) = s′ ≠ s] ≤ ϵ.

3.3 Main Theorem

Summarizing the results in the two previous subsections, we have ourmain equivalence theorem. For simplic-
ity,we assumeequiprobable distributions of sources (in the authentication code) and secrets (in the threshold
scheme).

Theorem 3.1. There exists an authentication code with perfect secrecy for k uniformly distributed sources that
is ϵ-secure against message-substitution and key-substitution attacks if and only if there exists an ϵ-secure
(2, 2)-threshold scheme for k uniformly distributed secrets.

4 Combinatorial Constructions
In this section, we look at various constructions for authentication codes that are based on combinatorial
designs, paying particular attention to the properties (namely, perfect secrecy and key-substitution attacks)
that are relevant for the construction of robust (2, 2)-threshold schemes using Theorem 3.1. Throughout this
section, we assume standard design-theoretic definitions that can be found, for example, in [21].

4.1 Symmetric BIBDs

First, we give a simple construction using symmetric BIBDs (i.e., SBIBDs). This is a slight generalization of
constructions given in [1, 2] since we do not require that the SBIBD is generated from a difference set.

Suppose that (X,B) is a (v, k, λ)-SBIBD (so λ(v − 1) = k(k − 1)). Suppose that X = {xi : 1 ≤ i ≤ v} is the set
of points in the design and B = {Bj : 1 ≤ j ≤ v} is the set of blocks in the design. We can order each block Bj
to obtain a k-tuple Cj = (c1,j , . . . , ck,j) in such a way that the following property is satisfied:

|{j : cℓ,j} = xi| = 1

for every i, 1 ≤ i ≤ v, and every ℓ, 1 ≤ ℓ ≤ k. That is, we can write out the ordered blocks Cj (1 ≤ j ≤ v) as the
rows of a v by k array E in such a way that every point occurs once in each column of the array E. Such an
array is known as a Youden square; see, for example, [21, §VI.65].

A Youden square can be constructed from any SBIBD by using systems of distinct representatives. How-
ever, in the case where the SBIBD is generated from a difference set in an abelian group G, the Youden square
occurs automatically if we arbitrarily order the base block and then generate the rest of the (ordered) blocks
by developing the base block through the group G.

Suppose we use E as an encoding matrix for an authentication code. Thus, a key corresponds to a block
in the design, or equivalently a row in E. The k sources are the k columns in E and the messages are the v
points in the design. We assume that the sources are equiprobable.

It is not difficult to verify that this authentication code is (k−1)/(v−1)-secure againstmessage-substitution
and key-substitution attacks (see the proof of Theorem 4.3 for additional detail). It is also clear that this au-
thentication code provides perfect secrecy; this follows immediately from Theorem 2.3 using the “Youden
square” property of the authentication matrix. This construction is in fact a special case of [2, Theorem 5.5],
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extended to include the perfect secrecy property by using an appropriate ordering of the blocks, as described
above.

Starting with this authentication code, we obtain from Theorem 3.1 an ϵ-secure (2, 2)-threshold scheme
for k equiprobable secrets, where ϵ = (k − 1)/(v − 1). Summarizing, we have the following theorem.

Theorem 4.1. If there exists a (v, k, λ)-SBIBD, then there exists

1. an authentication codewith perfect secrecy for k equiprobable sources that is (k−1)/(v−1)-secure against
message-substitution and key-substitution attacks, and

2. a (k−1)/(v−1)-secure (2, 2)-threshold scheme for k equiprobable secrets, in which the share sets for both
players have size v.

Example 4.1. A (7, 3, 1)-SBIBD is just a projective plane of order 2, often called the Fano plane. The seven
blocks in the design can be obtained from the base block {0, 1, 3} by developing it in the group Z7. After
ordering the blocks appropriately, we obtain the following Youden square.

s1 s2 s3
0 1 3
1 2 4
2 3 5
3 4 6
4 5 0
5 6 1
6 0 2

This Youden square is the encoding matrix for an authentication code with perfect secrecy having Pd0 =
3/7 and Pd1 = 2/6 = 1/3. The success probability of any key-substitution attack is also 1/3. For example, if
K1 is replaced by K2, then the attack succeeds if and only if m = 1. The probability that m = 1 (given that K1
is the key) is 1/3 because the sources are equiprobable.

The corresponding (2, 2)-threshold scheme is (1/3)-secure and has the following 21 distribution rules:

v1 v2 s
0 0 s1
1 1 s1
2 2 s1
3 3 s1
4 4 s1
5 5 s1
6 6 s1

v1 v2 s
0 1 s2
1 2 s2
2 3 s2
3 4 s2
4 5 s2
5 6 s2
6 0 s2

v1 v2 s
0 3 s3
1 4 s3
2 5 s3
3 6 s3
4 0 s3
5 1 s3
6 2 s3

Any deception carried out by P1 or P2 succeeds with probability 1/3. For example, suppose v1 → v′1 =
v1 + 1 mod 7. This deception will succeed if and only if s = s2. In this case, v2 = v1 + 1 mod 7 and then
Reconstruct(v′1, v2) = s1. The success probability of this deception is Prob[s = s2] = 1/3 because the sources
are equiprobable.

We shouldnote that the authentication codes and robust threshold schemesobtained fromTheorem4.1 are op-
timal in various senses. In the case of the authentication code, the impersonation and message-substitution
attacks have success probability that is as small as possible, according to Massey’s bounds [13]. Also, the
number of encoding rules (or keys) is as small as possible, from [15, Theorem 2.1].

For the threshold schemes, we have v possible shares, k possible secrets, and the scheme is ϵ-secure
where ϵ = (k − 1)/(v − 1). This meets the bound proven in [1, Corollary 3.3]. In fact, as a result of our discus-
sion above, we have shown the following strong characterization of these “optimal” robust (2, 2)-threshold
schemes.
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Theorem 4.2. There exists a (v, k, λ)-SBIBD if and only if there exists a (k − 1)/(v − 1)-secure (2, 2)-threshold
scheme for k equiprobable secrets.

4.2 BIBDs

More generally, we can use any BIBD (i.e, not necessarily a symmetric BIBD) to construct an authentication
code. It has also been shown that the resulting authentication codes can provide perfect secrecy if obvious
numerical conditions are satisfied; for example, see [14, Theorem 6.4]. Here is a “classical” construction of
authentication codes from BIBDs.

Theorem 4.3. Suppose there is a (v, b, r, k, λ)-BIBD where r ≡ 0 mod k. Then there is an authentication code
for k equiprobable sources, having v messages and b equiprobable keys, which satisfies the following properties:

1. Pd0 = k/v and Pd1 = (k − 1)/(v − 1),
2. the code provides perfect secrecy, and
3. if r = k, then the optimal key-substitution attack has success probability (k −1)/(v −1), and if λ = 1, then

the optimal key-substitution attack has success probability 1/k.

Proof. First, we order each block in such a way that each element occurs exactly r/k times in each position.
To do this, the technique used in the proof of [14, Theorem 6.4] can be applied (the proof of [14, Theorem 6.4]
assumed λ = 1, but the method can be generalized easily to arbitrary λ). Then, Theorem 2.3 shows that the
resulting authentication code has perfect secrecy and Pd0 = k/v.

We now prove 3, which treats the special cases of (1) SBIBDs and (2) BIBDs with λ = 1. First, we look
at authentication codes derived from an SBIBD. The encoding matrix has one occurrence of each message
in each column. Suppose we replace any key Ki with any other key Kj. There are exactly λ messages that
occur in both Ki and Kj, and each such message occurs in a different position in Ki and Kj. Thus the attack
is successful if and only if the message m is one of these λ messages. The sources are equiprobable, so the
success probability is λ/k = (k − 1)/(v − 1).

Suppose now that the code is derived from a BIBDwith λ = 1. Suppose the attacker replaces a key Ki with
another key Kj. Observe that there is at most one message that occurs in both Ki and Kj. If Ki and Kj contain
no common message, or if they contain a common message in the same column, the attack will not succeed.
Therefore the attacker should choose Kj so that Ki and Kj contain a commonmessage that occurs in different
columns. Given a message m in row Ki, there are r − r/k = r(k − 1)/k rows in which m occurs in a different
column than it does in Ki. Since λ = 1 and there are k messages in row Ki, the number of rows Kj such that
Ki and Kj contain a commonmessage that occurs in different columns is precisely kr(k − 1)/k = r(k − 1). The
optimal attack is to choose one of these r(k − 1) rows; the success probability is

r(k − 1)/k
r(k − 1) = 1

k .

Computing the success probability of a key-substitution attack is, in general, more complicated, as blocks
of a BIBD might intersect in different numbers of points. There were two types of BIBDs considered in part
3 of Theorem 4.3. Suppose we then construct a robust (2, 2)-threshold scheme from the authentication code
using the transformation given in Section 3. The success of modifying share v1 is quantified by the success
of the key-substitution attack in the authentication code setting, whereas the success of modifying share v2
is the same as the success of the message-substitution attack in the authentication code setting. In general,
the success probabilities of the two share-modification attacks will be different; however, if we start with an
SBIBD, the probabilities are the same. Theorem 4.1 is fact just the specialization of Theorem 4.3 to symmetric
BIBDs.

Applying Theorem 3.1, we have the following.
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Theorem 4.4. If there exists a (v, k, 1)-BIBD, then there exists

1. an authentication code with perfect secrecy for k equiprobable sources that is (1/k)-secure against
message-substitution and key-substitution attacks, and

2. a (1/k)-secure (2, 2)-threshold scheme for k equiprobable secrets.

Proof. We showed in Theorem 4.3 that the authentication code arising from a (v, k, 1)-BIBD is (k − 1)/(v − 1)-
secure againstmessage-substitution attacks and (1/k)-secure against key-substitution attacks. Sincewe have

k − 1
v − 1 ≤

1
k

if a (v, k, 1)-BIBD exists, the authentication code is (1/k)-secure against both attacks. Then the stated result
follows directly from Theorem 3.1.

Wenote that the (2, 2)-threshold schemearising frompart 2. of Theorem4.4has share sets (for the twoplayers)
of different sizes, unless the BIBD is a projective plane.

4.3 External difference families

A construction for splitting authentication codes using external difference families (or EDFs) was given in [2].
First, we define EDFs. Let G be an additive abelian group of order n having identity 0. An (n, k, c, λ)-external
difference family is a set of k c-subsets of G, say D1, . . . , Dk, such that the following multiset equation holds.

{x − y : x ∈ Di , y ∈ Dj , i ≠ j} = λ(G \ {0}).

That is, whenwe look at the differences of elements fromdifferent c-subsets in the EDF,we see every non-zero
value occurring exactly λ times. Therefore, a necessary condition for existence of an (n, k, c, λ)-EDF is that
the following equation holds:

λ(n − 1) = c2k(k − 1). (5)

The following theorem is a straightforward generalization of [2, Theorem 3.4], which only addressed the
case λ = 1 and did not explicitly discuss key-substitution attacks.

Theorem 4.5. Suppose there is an (n, k, c, λ)-EDF. Then there is a c-splitting authentication code E for k
equiprobable sources, having n messages and n equiprobable keys, such that

1. the code provides perfect secrecy,
2. Pd0 = ck/n and Pd1 = c(k − 1)/(n − 1), and
3. the optimal key-substitution attack has success probability c(k − 1)/(n − 1).

Proof. We first specify an arbitrary ordering of the k c-subsets in the EDF and then we develop the EDF
through the abelian group G, maintaining the same ordering (as is done in Example 4.2). This yields the
encoding matrix of a c-splitting authentication code. In each column of the encoding matrix, we see exactly
c occurrences of each element of G. From Theorem 2.3, we have perfect secrecy and Pd0 = ck/n.

In amessage-substitution attack, amessagem is substituted withm′. There are precisely λ rows of E that
containm andm′ in different c-subsets; these are the keys for which the particular substitution will succeed.
Also, there are kc rows that contain m. Since the sources are equiprobable, the probability of a successful
message substitution is

λ
kc = c(k − 1)n − 1 ,

by applying (5).
For a key-substitution attack, a key K is given to the attacker and the attacker must choose a different

key K′. Because the encoding matrix is generated from an EDF, there is a value d ∈ G, d ≠ 0, such that
eK′ (s) = eK(s) + d for all s. From this fact, it is not hard to see that

{m : m ∈ eK(s) ∩ eK′ (s′), s ≠ s′} = {m : m ∈ eK(s),m − d ∈ eK(s′), s ≠ s′}.
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E =

s1 s2 s3
{1, 7, 11} {4, 6, 9} {5, 16, 17}
{2, 8, 12} {5, 7, 10} {6, 17, 18}
{3, 9, 13} {6, 8, 11} {7, 18, 0}
{4, 10, 14} {7, 9, 12} {8, 0, 1}
{5, 11, 15} {8, 10, 13} {9, 1, 2}
{6, 12, 16} {9, 11, 14} {10, 2, 3}
{7, 13, 17} {10, 12, 15} {11, 3, 4}
{8, 14, 18} {11, 13, 16} {12, 4, 5}
{9, 15, 0} {12, 14, 17} {13, 5, 6}
{10, 16, 1} {13, 15, 18} {14, 6, 7}
{11, 17, 2} {14, 16, 0} {15, 7, 8}
{12, 18, 3} {15, 17, 1} {16, 8, 9}
{13, 0, 4} {16, 18, 12} {17, 9, 10}
{14, 1, 5} {17, 0, 3} {18, 10, 11}
{15, 2, 6} {18, 1, 4} {0, 11, 12}
{16, 3, 7} {0, 2, 5} {1, 12, 13}
{17, 4, 8} {1, 2, 6} {2, 13, 14}
{18, 5, 9} {2, 4, 7} {3, 14, 15}
{0, 6, 10} {3, 5, 8} {4, 15, 16}

Figure 1: An encoding matrix for a 3-splitting authentication code

Hence, there are exactly λmessagesm such that the attackwhere K is replaced by K′ is successful. Since there
are kc possible messages m ∈ µ(K), and these values of m are equally likely, the key-substitution attack has
success probability λ/(kc) = c(k − 1)/(n − 1).

Observe that the values of Pd0 and Pd1 in Theorem 4.5 are optimal, by Theorem 2.1. Also, we have shown that
the optimal message-substitution and key-substitution attacks in the above-constructed code have the same
success probability, namely c(k−1)/(n−1). Thus, if we apply Theorem 3.1, we obtain a c(k−1)/(n−1)-secure
(2, 2)-threshold scheme for k secrets.

Example 4.2. The three sets {1, 7, 11}, {4, 7, 9}, {5, 16, 17} forma (19, 3, 3, 3)-EDF inZ19.We can develop
these sets modulo 19 to obtain an encoding matrix, E, for a 3-splitting authentication code. See Figure 1.

The rows of E are indexed by K0, . . . , K18. The optimal success probability of a message-substitution
attack or a key-substitution attack is 1/6. The code also has perfect secrecy.

An EDF also gives rise to a robust (2, 2)-threshold scheme by applying Theorem 3.1. The two share sets in the
threshold scheme have the same size because the authentication code derived from the EDF has the same
number of messages as keys.

Theorem 4.6. If there exists an (n, k, c, λ)-EDF, then there exists a c(k − 1)/(n − 1)-secure (2, 2)-threshold
scheme for k equiprobable secrets, in which the share sets for both players have size n.

4.4 Splitting BIBDs

Splitting BIBDs were defined in [2]. A (v, u × c, 1)-splitting BIBD is a set system consisting of a set X of v points
and a setB of blocks of size uc, which satisfies the following properties:

1. each block B can be partitioned into u subsets of size c, which are denoted Bi, 1 ≤ i ≤ u, and
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2. given any two distinct points x and y, there is a unique block B such that x ∈ Bi and y ∈ Bj, where i ≠ j.

We note that (v, u × 1, 1)-splitting BIBD is the same thing as a (v, u, 1)-BIBD.
A (v, u × c, 1)-splitting BIBD has replication number r and b blocks, where

r = v − 1
(u − 1)c and b = vr

uc = v(v − 1)
u(u − 1)c2 .

Of course r and b must be integers if a (v, u × c, 1)-splitting BIBD exists.
The following definition is new. A (v, u × c, 1)-splitting BIBD is equitably ordered if the multiset equation⋃︁

B∈B

Bi =
r
u X

is satisfied for all i, 1 ≤ i ≤ u. If a splitting BIBD is equitably ordered, then it yields an authentication code
with perfect secrecy, from Theorem 2.3.

It is shown in [22] that a (v, u × c, 1)-splitting BIBD can be equitable ordered only if

v ≡ 1 mod (u(u − 1)c2). (6)

In the case c = 1, where a splitting BIBD is just a BIBD, the condition (6) is necessary and sufficient for the
design to be equitably orderable. This fact follows from Theorem 4.3. However, when c > 1, it is not known if
(6) is a sufficient condition for a splitting BIBD to be equitably orderable.

The following result is shown in [22].

Lemma 4.7. Suppose that a (v, u × c, 1)-splitting BIBD is generated by base blocks over an abelian group of
order v, and suppose every orbit of blocks has size v. Then the splitting BIBD can be equitably ordered.

Example 4.3. A (25, 3 × 2, 1)-splitting BIBD is presented in [16]. It has points in Z25 and it is generated from
the base block

{{0, 1}, {2, 4}, {12, 20}}.

If we order the base block as
({0, 1}, {2, 4}, {12, 20})

and maintain this ordering as the block is developed, we obtain the blocks

({0, 1}, {2, 4}, {12, 20})
({1, 2}, {3, 5}, {13, 21})

...
({24, 0}, {1, 3}, {11, 19}).

This is an equitable ordering of the splitting BIBD.

It is also shown in [22] that some infinite families of splitting BIBDs that are constructed recursively can be eq-
uitably ordered. Specifically, the cases u = 2 and (u, c) = (3, 2), (3, 3), (3, 4) and (4, 2) are almost completely
solved (with a small number of possible exceptions). See [22] for additional details.

Theorem 4.8. Suppose there is an equitably ordered (v, u × c, 1)-splitting BIBD. Then there is a c-splitting
authentication code E for u equiprobable sources, having v messages and b = v(v − 1)/(u(u − 1)c2) keys, such
that

1. the code provides perfect secrecy,
2. Pd0 = cu/v and Pd1 = c(u − 1)/(v − 1), and
3. the optimal key-substitution attack has success probability 1/(cu).
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Proof. Part 1 follows from Theorem 2.3 because the splitting BIBD is equitably ordered. Part 2 is shown in [2,
Theorem 5.5]. Part 3 is proven as follows. Suppose K is the given key. Fix any message m ∈ µ(K). Since the
splitting BIBD is equitably ordered, there are

r − ru = v − 1cu

keys K′ such thatm ∈ eK(s)∩ eK′ (s′) with s ≠ s′. Since λ = 1, the number of keys K′ ≠ K such that there exists
a message m ∈ eK(s) ∩ eK′ (s′) with s ≠ s′ is

cu × v − 1cu = v − 1.

The attacker should replace K by one of these v−1 keys. Since sources are equiprobable, the key-substitution
attack will succeed with probability

v−1
cu
v − 1 = 1

cu .

Applying Theorem 3.1, we have the following.

Theorem 4.9. If there exists an equitably ordered (v, u × c, 1)-splitting BIBD, then there exists

1. a c-splitting authentication code with perfect secrecy for u equiprobable sources that is (1/cu)-secure
against message-substitution and key-substitution attacks, and

2. a (1/cu)-secure (2, 2)-threshold scheme for k equiprobable secrets.

Proof. We showed in Theorem 4.8 that the authentication code arising from a (v, u × c, 1)-splitting BIBD
is c(u − 1)/(v − 1)-secure against message-substitution attacks and (1/cu)-secure against key-substitution
attacks. In the proof of Theorem 4.8 it is shown that b ≥ v, so

v − 1 ≥ u(u − 1)c2,

or
c(u − 1)
v − 1 ≤ 1

cu .

Hence the authentication code is (1/cu)-secure against both attacks and the stated result follows directly
from Theorem 3.1.

5 Dual Authentication Codes
Suppose we have an authentication code with sources S, messagesM, and keyspaceK. The encoding matrix
is denoted by E. Then we can construct another authentication code, which we call the dual code, by simply
interchanging the roles of messages and keys. Thus, the encoding matrix of the dual code is the matrix F
having entries

F(m, s) = {K ∈ K : m ∈ eK(s)},

where s ∈ S and m ∈ M. The keys in the dual code are the same as the messages in the original code.
It is not hard to see that a key-substitution attack in an authentication code is “equivalent” to a message-

substitution attack in the dual code.

Theorem 5.1. A message-substitution attack in an authentication code is successful if and only if the corre-
sponding key-substitution attack is successful in the dual authentication code.
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Note that the probability of a “key” in the dual code is the same as the probability of the corresponding
message in the original code. Thus, keys in the dual code will be equiprobable if and only if messages in the
original code are equiprobable. In all the examples we consider, we will assume that condition 3. of Theorem
2.3 holds. This will ensure that a code and its dual both have equiprobable keys and messages.

Theorem 5.1 provides an alternative method to compute success probabilities of key-substitution attacks.
We illustrate by reconsidering some of the constructions from Section 4, where we computed these success
probabilities from first principles.

If we beginwith an authentication code having an encodingmatrix that is a (v, k, λ)-SBIBD, then the rows
of the encodingmatrix of the dual code, considered as sets, forms the dual design of the SBIBD. It is a classical
result in design theory that the dual design of an SBIBD is again a (v, k, λ)-SBIBD. Thus, Theorem 5.1 provides
a quick way to see that the optimal success probabilities of the key-substitution and message-substitution
attacks are identical in this particular situation (as we showed previously in Theorem 4.1).

Example 5.1. We return to Example 4.1, where we constructed an authentication code from a (7, 3, 1)-SBIBD.
We display the encoding matrices of the code and the dual code:

E =

s1 s2 s3
0 1 3
1 2 4
2 3 5
3 4 6
4 5 0
5 6 1
6 0 2

F =

s1 s2 s3
K0 K6 K4
K1 K0 K5
K2 K1 K6
K3 K2 K0
K4 K3 K1
K5 K4 K2
K6 K5 K3

The rows of E are indexed by K0, . . . , K6 and the rows of F are indexed by 0, . . . , 6. The rows of F comprise
the blocks of the dual (7, 3, 1)-SBIBD.

Suppose we start with an authentication code E arising from an EDF and then we construct the dual au-
thentication code, F. Let D1, . . . , Dk be the c-subsets in the original EDF. It is not hard to see that the dual
authentication code F is generated from the EDF consisting of the k sets −D1, . . . , −Dk. The dual authentica-
tion code F satisfies the same properties as E because it is also obtained from an (n, k, c, λ)-EDF. Thus we see
immediately from Theorem 5.1 that the success probability of a key-substitution attack in E is c(k − 1)/(n − 1)
(as we showed previously in Theorem 4.5).

To illustrate, we present a small example.

Example 5.2. Wehave already noted in Example 4.2 that the three sets {1, 7, 11}, {4, 7, 9}, {5, 16, 17} form
a (19, 3, 3, 3)-EDF in Z19. We develop these sets modulo 19 to obtain the following encoding matrices for a
3-splitting authentication code and its dual code:

E =

s1 s2 s3
{1, 7, 11} {4, 6, 9} {5, 16, 17}
{2, 8, 12} {5, 7, 10} {6, 17, 18}
{3, 9, 13} {6, 8, 11} {7, 18, 0}

...
...

...
{0, 6, 10} {3, 5, 8} {4, 15, 16}
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F =

s1 s2 s3
{K8, K12, K18} {K10, K13, K15} {K2, K3, K14}
{K9, K13, K0} {K11, K14, K16} {K3, K4, K15}
{K10, K14, K1} {K12, K15, K17} {K4, K5, K16}

...
...

...
{K7, K11, K17} {K10, K13, K15} {K1, K2, K13}

The rows of E are indexed by K0, . . . , K18 and the rows of F are indexed by 0, . . . , 18. We can view F as being
generated from the EDF consisting of sets {8, 12, 18}, {10, 13, 15}, {2, 3, 14}.

Here is another example, which makes use of a BIBD with λ = 1 that is not a symmetric BIBD.

Example 5.3. We construct an authentication code from a (13, 3, 1)-BIBD. This design has r = 6, and 6 ≡
0 mod 3, so we can ensure that the corresponding authentication code has perfect secrecy. The 26 blocks of
the design can be generated from the two base blocks {0, 1, 4} and {0, 2, 8} by developing themmodulo 13.
The 26 by 3 encoding matrix E of the code is as follows:

s1 s2 s3
0 1 4
1 2 5
2 3 6
3 4 7
4 5 8
5 6 9
6 7 10
7 8 11
8 9 12
9 10 0

10 11 1
11 12 2
12 0 3

s1 s2 s3
0 1 8
1 2 9
2 3 10
3 4 11
4 5 12
5 6 0
6 7 1
7 8 2
8 9 3
9 10 4

10 11 5
11 12 6
12 0 7

The dual code has the following 13 by 3 encoding matrix F:

s1 s2 s3
{K0, K13} {K12, K25} {K9, K18}
{K1, K14} {K0, K13} {K10, K19}
{K2, K15} {K1, K14} {K11, K20}
{K3, K16} {K2, K15} {K12, K21}
{K4, K17} {K3, K16} {K0, K22}
{K5, K18} {K4, K17} {K1, K23}
{K6, K19} {K5, K18} {K2, K24}
{K7, K20} {K6, K19} {K3, K25}
{K8, K21} {K7, K20} {K4, K13}
{K9, K22} {K8, K21} {K5, K14}
{K10, K23} {K9, K22} {K6, K15}
{K11, K24} {K10, K23} {K7, K16}
{K12, K25} {K11, K24} {K8, K17}

As can be seen, the dual code is 2-splitting. The rows of E are indexed by K0, . . . , K25 and the rows of F are
indexed by 0, . . . , 12. Theorem 4.3 states that the optimal success probability of a key-substitution attack for
E is 1/3. This is of course the same as the optimal success probability of a message-substitution attack for F,
by Theorem 5.1.
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We now explore some additional properties relating authentication codes to their duals.

Theorem 5.2. Suppose a c-splitting authentication code for u sources has b equiprobable keys, equiprobable
message encoding, v messages, perfect secrecy, and Pd0 = cu/v. Then the dual authentication code is a (bc/v)-
splitting authentication code for u sources that has v equiprobable keys, equiprobable message encoding, b
messages, perfect secrecy, and Pd0 = cu/v.

Proof. The proof of Theorem 2.3 establishes that equation (4) holds, i.e., every message m occurs bc/v times
in each column s of the encoding matrix E. This immediately implies that the dual code is (bc/v)-splitting.
Therefore the dual code is a (bc/v)-splitting authentication code for u sources having v equiprobable keys
and equiprobable message encoding. Each “message” in the dual code occurs c times in each column s of F
(where F is the the encoding matrix of the dual code). Therefore, from Theorem 2.3, the dual code has perfect
secrecy and

Pd0 =
bc
v × u
b = cuv .

We note that the hypotheses of Theorem 5.2 are satisfied whenever we construct an authentication code from
an equitably ordered BIBD or splitting BIBD.

The authentication code presented in Example 5.3 satisfies the hypotheses of Theorem 5.2 with v = 13,
b = 26, u = 3, c = 1. Thus, the dual code is 2-splitting with perfect secrecy, each “message” Ki occurs once
in each column of F. The code and dual code both have Pd0 = 3/13.

6 Summary and Discussion
Our goal in this paper has been to develop some theory to better understand various connections between
authentication codes and threshold schemes, as well as how certain combinatorial designs can be used to
construct these cryptographic objects. To this end, we have proven a simple direct equivalence of certain au-
thentication codes and (2, 2)-threshold schemes. Further,wehave introduced thenotion of a key-substitution
attack and observed that it is identical to a message-substitution attack in a “dual authentication code.”

We have alreadymentioned that robust (k, n)-threshold schemes are usually constructed by “combining”
an algebraic object such as a difference set, EDF, or AMD codewith a Shamir threshold scheme. These objects
all live in a finite group and, consequently, the construction of the resulting threshold schemes is algebraic.
The main equivalence result we have proven (Theorem 3.1) is a purely combinatorial result. It would be of in-
terest to extend our equivalence theorem in some way to handle robust (k, n)-threshold schemes in a strictly
combinatorial setting. There is a purely combinatorial analogue of Shamir threshold schemes—namely, or-
thogonal arrays—so this is perhaps possible.
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