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Abstract: We analyze security properties of a two-party key-agreement protocol recently proposed by L. An-
shel, D. Atkins, D. Goldfeld, and P. Gunnels, called Kayawood protocol. At the core of the protocol is an ac-
tion (called E-multiplication) of a braid group on some finite set. The protocol assigns a secret element of a
braid group to each party (private key). To disguise those elements, the protocol uses a so-called cloaking
method that multiplies private keys on the left and on the right by specially designed elements (stabilizers
for E-multiplication).

We present a heuristic algorithm that allows a passive eavesdropper to recover Alice’s private key by remov-
ing cloaking elements. Our attack has 100% success rate on randomly generated instances of the protocol
for the originally proposed parameter values and for recent proposals that suggest to insert many cloaking
elements at random positions of the private key. Implementation of the attack is available on GitHub.

Keywords: Kayawood protocol, group-based cryptography, key agreement, algebraic eraser, braid group, col-
ored Burau presentation, E-multiplication, cloaking problem.
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1 Introduction

Braid group cryptography received significant attention since invention of the first braid-based key-agreement
protocols in 1999: Ko-Lee protocol [1] and Anshel-Anshel-Goldefeld protocol [2]. Both protocols use conjuga-
tion as main operation, and both were found vulnerable to linear attacks (such as [3] and [4]) and heuristic
length-based attacks (such as [5-9]).

Kayawood protocol (and other protocols from its family: Algebraic Eraser proposed in [10], WalnutDSA
proposed in [11], and Ironwood proposed in [12]) uses a different type of action, called E-multiplication, and
utilizes commuting actions of non-commuting braids. This is what in our opinion distinguishes Kayawood
from “classic” braid-based schemes such as Ko-Lee.
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1.1 Kayawood protocol

The Kayawood protocol is a two-party (Alice and Bob) key-agreement protocol recently proposed by I. Anshel,
D. Atkins, D. Goldfeld, and P. Gunnells in [13]. The design of the protocol is very similar to the design of the
digital signature algorithm WalnutDSA [11]. At the core of the protocol is an action (called E-multiplication)
of the group By of braids on n strands on some finite set which is claimed to be a suitable primitive for use
within lightweight cryptography.

By design, Alice and Bob’s private keys are braids from two commuting subgroups of By. To disguise the
private keys, the (original version of the) protocol uses a so-called cloaking method that multiplies the keys
on the left and on the right by specially designed elements (stabilizers for E-multiplication) and applies a
certain rewriting procedure to obfuscate the result. Recently, after a series of attacks on WalnutDSA ([14-17]),
the authors proposed several changes to the protocol including changes to the cloaking procedure (see [18,
D. Atkins on May 23, 2018]). Namely, they suggested to use several cloaking elements inserted into the private
keys at random positions.

1.2 Our contribution

In this paper, we show that the cloaking elements can be efficiently identified and removed from public keys,
and private keys can be reconstructed. Furthermore, following the suggestion from [18, D. Atkins on May 23,
2018], we show that private keys can be reconstructed even when many cloaking elements are inserted at
random positions. The attack applies heuristics and techniques developed in authors’ attacks on other braid-
based protocols, thus Section 6.2 uses ideas described in [19] and [20] to find a secret conjugator, and Section
7 utilizes heuristics developed in [16] to remove cloaking elements. Our attack has 100% success rate on
randomly generated instances of the protocol, and its implementation is available on GitHub [21].

1.3 Outline

In Section 2 we review the colored Burau representation, E-multiplication, and cloaking elements. Next, in
Section 3, the Kayawood protocol is introduced. In Section 4 we show that in many cases the design of the
protocol allows to recover the shared key directly from public keys. In Sections 5, 6, and 7 we describe our
attack. Section 8 defines the parameters we used to test our attack and describes the obtained results. We
conclude the paper in Section 9.

2 Action of colored Burau group on some finite set

Here we review one non-faithful representation of a braid group called the colored Burau group.

2.1 Braid group

In this section we follow the exposition of [22, Section 5.1]. A braid is obtained by laying down a number of
parallel pieces of strands and intertwining them, without loosing track of the fact that they run essentially in
the same direction. In our pictures the direction is horizontal. We number strands at each horizontal position
from the top down. See Figure 1 for example.

If we put down two braids u and v in a row, so that the end of u matches the beginning of v, we get another
braid denoted by uv, i.e., concatenation of n-strand braids is a product. We consider two braids equivalent
if there exists an isotopy between them, i.e., it is possible to move the strands of one of the braids in space
(without moving the endpoints of strands and moving strands through each other) to get the other braid. We
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Figure 1: A 4-strand braid.

distinguish a special n-strand braid which contains no crossings and call it a trivial braid. Clearly, the trivial
braid behaves as left and right identity relative to the defined multiplication. The set B, of isotopy classes of
n-strand braids has a group structure, because if we concatenate a braid with its mirror image in a vertical
plane, the result is isotopic to the trivial braid.

Each braid is uniquely defined by a sequence of strand crossings. A crossing is called positive if the front
strand has a positive slope, otherwise it is called negative. There are exactly n — 1 crossing types for n-strand
braids, we denote them by x4, ..., x,_1, where x; is a positive crossing of ith and (i + 1)st strands. As we
mentioned above, any braid is a sequence of crossings, and the set {x1, ..., x,_1} generates By. It is easy to
see that crossings x1, ..., X,_1 are subject to the relations

XiXj = XjX; fori,jsuchthat|i—j|>1
XiXiz1Xi = Xiz1XiXis1 fort<isn-2.

In fact, it can be shown that the relations above define equivalence relation on braids and, hence, B, has the
following combinatorial presentation:

BYl jasd <X13'~',XH1

XiXiv1Xi = Xj+1XiXiv1

xixj = x;x; for [i — j| > 1,>

It easily follows from the presentation above that elements in the subgroups L, = (x1,...,Xm-1) and U =
(Xm+1, - - - » Xn-1) pairwise commute, where m = | J].
A braid word is a word w = w(xq, ..., Xn_1) in the generators of B, and their inverses:
€ £
w=xi11...xikk, (1)

where 1 < i; < n -1 and ¢; = +1. The length of the braid word (1) is k, denoted by |w|. If u = (u1,...,u) isa
k-tuple of braid words, then the total length |u| of u is defined as Ef‘;l [u;].
Every braid w naturally defines a permutation o, which is a permutation of the endpoints of the involved
strands. The corresponding map w — oy is an epimorphism. If oy is trivial, then w is called a pure braid.
Recall that the commutator of braid words u and v is the braid word [u, v] = u~'v"uv. For a set of braids
Uy, ..., Uy define a set

Cluy,...,u)={ceBnllc,u;]=1forevery1=<i=kj},

called the centralizer of uy, ..., u;. It is easy to check that a centralizer is a subgroup of By.
The group By has a cyclic center generated by the element A%, where A is the element, called the half
twist, defined as follows:

A=(x1...xp-1) - (X100 xp2) oo - (x9).

2.2 Geodesic braid approximation

Let w be a word in generators of B,. The algorithmic problem to find a shortest braid word representing the
same element as w, called geodesic, is known to be computationally hard (see [23]). In this paper, following
[7, 8], we use a geodesic-braid approximation method to estimate the geodesic length of a braid. The algorithm
attempts to minimize the given braid word exploiting the property of Dehornoy’s form D(w) (introduced in
[24]) that for a “generic” braid word w one has |D(w)| < |w|.
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2.3 Colored matrices

Fix a finite field F; and denote by R, the ring of Laurent polynomials in variables {t1, . . . , tn} with coefficients
in Fq. Let GLn(Ry) be the group of invertible matrices over R,. The symmetric group S, naturally acts on
GLy(Ry) by permuting the variables {t1, ..., tn}. The result of action of ¢ € S, on M € GLx(Ry) is denoted
by M°. Recall that the semidirect product of GLn(Rn) and Sy, is a group

GLn(Rn) x Sn = {(M, 1) | M € GLn(Ry) and 7 € Sp},

equipped with the operation
(M1, 01) - (M3, 05) = (M1 M3, 0103).

Define n — 1 n x n-matrices over polynomials in variables {t1, ..., tn}:
L,lo o o o
-t; 1 0 0 1 0 O 0
Cl(tl) = 0 1 0 and C,'(ti) = 0 tl —l'i 1 0
0 0] I 0 0O 0 1 0
0o o0 oI
for2<i<n-1.
Lemma. A map ¢ on the generators x1, ..., x,-1 of Bn:
xi % (Ci(ty), my),
where 7; = (i, i + 1) € Sy, extends to a group homomorphism.
The group ((C1(t1), 1), ..., (Cn-1(tn-1), mn-1)) is called the colored Burau representation of B, and is denoted
2.4 Action of CB,, on a certain finite set
Fix n nontrivial elements 74, ..., Tn € Fy, termed t-values, and define an evaluation map

€: GLn(Rn) — GLn(]Fq)’

that for each i replaces t; with the value 1;. Observe that the map € is well defined on the matrices coming from
the colored Burau representation. For (M, d) € GLn(F4) x Sn and (C, p) € CBy, define the following element:

(M, 0) * (C, p) = (M - €(C°), op).

It is straightforward to check that the map * defines an action of CB, on GLx(F4) x Sp. By E-multiplication we
understand the induced action of B, on GLn(Fg) x Sn.

2.5 Cloaking elements

Let G be a group acting on a set X, x € X, and x¥ € X denotes the result of the action of g € G on x. The
stabilizer of x is the set
Stab(x) = {g € G | x® = x}.

It is easy to check that Stab(x) is a subgroup of G. The protocol [13] requires braids stabilizing some (M, o) €
GL,(F4) x Sy through the right action of the braid group via E-multiplication. Such braids are called cloaking
elements in [13, Definition 2.1]. Observe that these elements depend on t-values that are used to define E-
multiplication. The following way of constructing cloaking elements was proposed in [13].
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Proposition 2.1 ([13, Proposition 2.2]). Fix (M, 0) € GLn(F4) x Sn and assume that a,b,i € Nand w € By
satisfy the following conditions:
l<a<b<nandta=1,=1,

1<i<nandow() =0 Ya), ow(i+1) = o L(b).
Then wxi*w™! ¢ Stab((M, 0)).

The main purpose of a cloaking element is to “cloak” a braid A that acts on a given pair (M, ¢), multiplication
of A on the left by a cloaking element hides some structure of A without changing the way it acts. Observe that
the property of a braid to cloak (M, ¢) depends on ¢ only. Hence, we can denote the subgroup of Stab((M, o))
generated by cloaking elements from Proposition 2.1 by C,.

The following naturally follows from Proposition 2.1.

Corollary 2.2. If o, p € Sy are such that 0™ (a) = p~*(a) and 0™ 1(b) = p~1(b), then Cy = Cp.

Remark 2.3. Geometrically, conditions of Proposition 2.1 define a braid that:

— intertwists strands getting strands a and b next to each other using w,
— double twists a and b using x7,
— intertwists strands backwards using w™?.

The obtained braid has the structure as shown in Figure 2.

@)} :

s(b).

Figure 2: Cloaking element.

Another way to generate cloaking elements was suggested in [18, D. Atkins on April 4, 2018], see [16, Proposi-
tion 2.3]. We do not consider elements of this type here since they are similar to elements of Proposition 2.1,
and cryptanalysis [16] showed they are less secure.

2.6 Braid word obfuscation

An obfuscation procedure R for braids is an algorithm that rewrites a braid word w into a braid word R(w)
satisfying w =g, R(w). The main goal of an obfuscation procedure is to modify and hide information in the
public keys generated by Alice and Bob. There are several methods suggested in [13].

— Stochastic rewriting process described in [13, Section 7].
— Dehornoy form [24].

BKL normal forms [25].

Garside normal forms [26, Chapter 9].

BKL normal forms and Garside normal forms provide a unique form for a given braid (i.e., if u = v in B, then
their normal forms are the same) and, hence, are the strongest possible obfuscation algorithms for braids.
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3 Kayawood protocol

Kayawood protocol is a two-party, Alice and Bob, key-agreement protocol that uses E-multiplication defined
in Section 2.4. The following initial public information is generated by one of the parties or by another entity
(and distributed to each party):

— The braid group Bn, where n = 16 is even.

— Obfuscation procedures R.

— A finite field Fy.

— Integers a and b satisfying1 <a < b <n.

Non-zero elements 71, ..., Tn € Fgsuchthat 4 = 7, = 1.

Then Alice generates the following private data:

- B1y.--sBr € Un= (Xms1s - - - s Xp-1) such that Op,s---» 08, have high order. Recall that m = | §].
- z € Bpsuch that |o:({1,...,m})N{1,...,m}| = m/2.
— Her private key is A = zaz ', wherea € L, = (X15eeesXm=1)-

Key establishment:

1. Alice sends to Bob {R(zB1z71),..., R(zfrz" 1)} and 0.
2. Bob performs the following:

— Generates his private key B as a random product of elements R(zf1z71), ..., R(zB-z"!) and their
inverses.

— Generates random vq, v, € By cloaking 0, and 04 0p respectively.

— Sends his public key Py = R(v1Bv;) to Alice.

3. Alice performs the following:

- Computes 0p = 0p,.
— Generates random uq, u, € By cloaking og and 0g04 respectively.
— Sends her public key P, = R(u;Au,) to Bob.

4. Finally, the shared key is
(I,1)*A*B

computed by Alice as (I, 1) * A * Pg and by Bob as (I, 1) * B * P4.

We say that a protocol is secure against a passive eavesdropper if there is no probabilistic polynomial
time algorithm that can compute the shared key (I, 1) * A * B based on the public information exchanged by
the parties, namely:

n,q,a,b,ty,...,Tn, {R(zﬁlz‘l), A R(zﬂrz’l)}, Py, Pg

The corresponding computational problem can be approached on two different levels: matrices and braids.

4 Finding the shared key using public keys

Testing out our generating procedures, we discovered a very surprising property of random keys. In about
60% of the cases one of the following equalities was satisfied:

(I,1)*Py*Pp=(I,1)* A*Pp, @
(I, 1) *Pp*Py =(I,1) * B* Py, €)

i.e., the shared key could be obtained using public keys. After a thorough check of our implementation we
realized that our observation is not a result of an error, but a feature of the design of the protocol. We sus-
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pect that the authors are unaware of this problem, otherwise it would be mentioned in the description of
Kayawood.

Proposition 4.1. Let n € N be even. In the notation of Kayawood protocol:

Ifo4(a) = a and 04(b) = b, then (3) holds.

If og(a) = a and og(b) = b, then (2) holds.

Ifo71(a), 07t (b) > n/2, then o4(a) = a and o4(b) = b.
Ifo;1(a), 071 (b) < n/2, then og(a) = a and og(b) = b.
Assuming that o, € Sy has uniform distribution:

iR N =

Pr[(2) or 3)] > %

Proof. Observe that (1) and (2) are particular cases of Corollary 2.2. Indeed, if 64(a) = a and g4(b) = b, then
C1 = Cg,, S0 Py = v1Bv,B™1B, where v, Bv,B™! € C;. Similarly, (2) holds. Item (3) holds since A = zaz™!

and a € Ly, S0 04 acts trivially on % +1,...,n. Similarly, (4) holds since B1,...,Br € Uy. Finally, notice
that 2(%21) is the probability that 0;'(a), 07'(b) € {1, ..., 3} or 07'(a), 07'(b) € {} +1,..., n}. Hence (5)
holds. -

The lower bound in item (5) of Proposition 4.1 is not very precise as it takes into account only two particular
cases for (2) or (3) to be true. Yet, for n = 16, it estimates the chance of (2) or (3) as 46.7% which is relatively
close to our observations.

We note that we did not filter cases (1) and (2) of Proposition 4.1 when generating random protocol in-
stances, since they do not affect the behavior of our attack in any way.

5 Passive attack: finding Alice’s private key

In [13, Section 5] the authors show that the problem of computing the shared key based on public data is
polynomial-time equivalent to the cloaking problem formulated as follows.

Cloaking problem. Given a braid 8 = R(v18ov,), where vy, v, are cloaking elements for known permutations
and B is a braid in an unknown subgroup of By, find the element (I, id) * Bo.

The authors of [13] claim that there is no known approach to the problem and even brute-force enumera-
tion will result in a collection of possible pairs (I, id) * B¢ and there is no a priori way to decide which Sy is
correct. In this section we show that the last statement is incorrect and reduce security of Kayawood protocol
to some clearly stated problem of computational group theory.

Proposition 5.1. Consider P4, Py € By and 04, 0g € Sn as defined in Section 3. Suppose that v € Cq, and
u) € Coyo, Satisfy the system:

(Ui Psub, zB1z7'] = 1
(4)

(Wi Pauth, zBrz '] = 1
Then the shared key is equal to (I, id) * (u} Pu5) * Pg.
Proof. Straightforward check:

(I, 1) * Uy Pauly * Pg = (I, 1) * uy Paub * vitPgv3! (by definition of v+, v5)
= (I, 1) * vitPgvy! * Ui Puth (since [vi'Pgvyt, ujPaub] = 1)

=(I,1) * B* uiPu) (since vi'Pgv;! = B)
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=(I,1)*B*A (by definition of uf, u5).

Observe that [v'Pgv5t, ujPsub] = 1 since vi'Pgv;! = Bis a product of zB;z ™! and their inverses. ]
Proposition 5.1 implies that the element u} P4u} can be used instead of Alice’s private key in communication
with Bob. By definition of P4 such u} and u} exist, namely u;' and u;'. Furthermore, the next proposition
claims that we may assume u} = 1.

Proposition 5.2. Ifu; € Co, and u; € Cgyo,, then
uiAu, = ulAuzA‘1 ‘A,

where u1Auy A7 € Coy.

Proof. Clearly, (I,id) * B* A * u, = (I, id) * B * A. Hence, Au,A™! € Cq,. O

In other words, multiplying A on the right by an element cloaking o0, is the same as multiplying A on the
left by an element cloaking og. The same is true if we insert a cloaking element in the middle of A = A; o0 A5:

Aio0Ay; - AiouoA,,

where u cloaks 0504, . Insertion of u can be viewed as multiplication of A on the left by an element cloaking
0B.
Corollary 5.3. The intersection

CoyPanC(zPprzt, ... 2Bz Y) (5)
is not empty. Each of its elements plays the role of Alice’s private key.
Proof. Proposition 5.2 implies that Co, P4 Coyo, = CoyzPa, S0 the intersection (5) satisfies the system (4), and
(5) is not empty since it contains A. O
Corollary 5.3 allows us to reformulate the cloaking problem as the following algorithmic question.

Cloaking problem for Alice (CPA). Given braids b1, ..., b commuting with an unknown braid A, a permu-
tation op associated with an unknown braid B € (b1, ..., br), and a braid P4, € C4,A, find any element in
the intersection Co,P4 N C(b1, ..., br).

An instance of CPA can be viewed as a tuple
(b19---)bl’70B’PA) (6)

satisfying the conditions mentioned in the statement of the problem. A solution for that instance is any ele-
ment from the intersection
CoyPa N C(bl, ey br)

This defines the basic idea of our attack: we uncloak Alice’s public key (solving the CPA problem) and
obtain a substitute for her private key.

6 Conjugating instances of the cloaking problem:
search for the secret conjugator z

In this section we show that design of the Kayawood protocol leaves us some freedom to manipulate with
the secret conjugator z efficiently reducing its length to much smaller values (see Tables 1 and 2). We would
like to stress from the beginning that it is pointless and impossible to find the exact element z based on the
available public data (see Section 6.2), and we never approach that problem. Instead, we are looking for a
“sufficiently good” substitute for z.
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Remark 6.1. The original proposal [13] does not address the importance of the element z, it simply prescribes
to use some randomly generated z of length [150, 400]. It is not explained why it is not secure to use z of
length, say, 50 (or even 0). The only possible explanation is that the attack [9] (recently improved in [20] for
conjugators of length 1000) does not work for elements of length greater than 150. But [9] attempts to solve a
different problem, namely, conjugacy separation of braid-tuples modulo A2, where A?-recovery is the hardest
part.

6.1 Conjugating an instance of CPA

Given a CPA instance (6), and conjugating Cs, P4 N C(b4, ..., by) by some element ¢ € By, we get

¢ (CogPs N C(b1,...,b))c=c " (CosPa)cnc Cby, ..., br)c

= CngCc’lPAc NnC(cbic, ..., c thro),

which proves the following proposition.
Proposition 6.2. A ¢ By, is a solution of the instance (b1, ..., by, 05, P4) if and only if c"* Ac is a solution of
the instance (¢ 'bic, ..., c 'byc, 0g0c, C1P4C).
Notice that conjugating the instance

(zﬁlz‘l, ... ,zﬁrz_l, Op, U12az ‘us) @
by ¢ = z produces the instance

(B1,- -, Br, 050z, (7 ur2)a(z  ur2)) (8)

with (unknown) cloaking elements z *u;z and z ' u, z. In particular, knowledge of z allows to “drop” it from
consideration. Also, observe that a is a solution to the latter instance.

In our experiments we were never able to find the exact z, but we were able to find an element ¢ such
that 6 = z71c is a relatively short braid (relative to |z|) in the standard word metric on By. Conjugating (7) by
¢ = z6 produces an instance

(67116,...,67 B8, 0p0c, 6 1z uyzaz M uy26) )

instead of (8). Observe that

— the instance (7) has a solution zaz 1.
— the instance (9) has a solution 8aé~1, which is much shorter than zaz!.

Hence, the new instance (9) is more advantageous for a heuristic solver described in Section 7 than the in-
stance (7). Below we describe how we find an appropriate element ¢ such that 6 = z ¢ is short.

6.2 Heuristic search for z

A part of the public data available to the eavesdropper Eve includes the elements 1, ..., B;:
B/l = ZB1271 ’
B;’ = Zﬁ7271;
where 81, ..., Br € Ly and z are unknown. Based on this data it is impossible to recover the original element

z. Even if the elements 1, .. ., Br are given, we can only find z modulo the centralizer of 1, ..., r. But, as
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we mentioned before, it is not our goal to find the exact z. Instead, we attempt to find an element ¢ such that
|z"Lc| is relatively small. This task is approached heuristically using ideas described in [19] and its advanced
version [20].
Below we outline a procedure that for a given tuple (87, ..., 8;) searches for y that minimizes the total
length of the conjugate tuple:
y
> Iy 'Biyl - min.

i=1

The procedure constructs a set of conjugates of the tuple (87, ..., ;). Initially, the set contains (8}, ..., B7)
only. On each iteration it chooses an unchecked tuple, let us call it (vyq, ..., ), of the least total length and
conjugates the tuple by each generator and its inverse x!, ..., x%!;:

Oty o xg D),

All words are minimized using the braid minimization procedure and new tuples are saved as unchecked
conjugates of (87, ..., B7). We say that an iteration is successful if the total length of one of the new tuples is
less than the total length of any checked tuple. We terminate the procedure after 20 unsuccessful iterations.
The output is a checked tuple of the least total length. The described procedure does not fail, but, in principle,
it can produce a poor result.

To accelerate convergence to a (local) minimum, we perform the following trick (cf. [20, Section 4.4]).
On each iteration, if || > 50, then we take the initial segment c of v; of length 50 and add the tuple
(ctyic, ..., c1yrc), with braid-minimized entries, to the set of unchecked tuples. This trick dramatically
improves running time of the procedure.

7 C,-coset enumeration

One way to find a solution for the instance (6) is to enumerate elements in the coset Cy, P4 until an element
commuting with bq,..., b, is found. A straightforward approach to coset enumeration requires to find a
generating set for the subgroup C,, and enumerate its elements. Instead, we developed a different way to
solve (6) that attempts to directly identify and remove cloaking elements from P4. Our algorithm is based on
the following rather informally stated observations.

— Asmentioned in Remark 2.3, the letters x; in the word wxl-*zw‘1 from Proposition 2.1 twist two particular
strands 0~ '(a) and o7 (b).

— Replacement wxéx§w™ — wx;éxfw™!, where & = +1, produces the trivial braid.

— Replacement of a single letter x;* that twists strands 0™ '(a) and o' (b) with x;7" in a braid word
w1X;'w, corresponds to multiplication of the word on the left by cloaking element w1 x;-2w;®.

— Multiplying a braid word with cloaking elements on the left or on the right (or inserting a cloaking
element into a random position) usually increases the length of the braid.

— Even though obfuscation of a cloaked braid word changes the way the word looks, it preserves the
isotopy type of the braid and the result of obfuscation typically twists strands o~ *(a) and o~1(b) at the
crossing corresponding to the middle of wx:?w™1.

— By tracing strands in a given braid, we can algorithmically find all letters that twist strands o~ *(a) and

o~ 1(b). We call those letters critical letters for the corresponding strands.

1

Recall that we switch from the instance (7) to an instance (9), so we need to enumerate the coset
Cop0.C” 1P 4c. Instead of total coset enumeration, our algorithm attempts to decrease the length of the element
c 1P, c by flipping powers of the critical letters and applying braid-minimization to the result expecting the
length to decrease.

In more detail, the algorithm iteratively constructs a subset of Cs,0, ¢ 1P C starting from the set {c 1P, c}.
On each iteration it picks a shortest unprocessed word w and performs the following manipulations for each

critical letter x;! in w that twists strands (050c) ' (a) and (op0c) ™ (b):
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— compute a new word by replacing x;* with its inverse x;*';

— shorten the obtained braid word using geodesic-braid minimization algorithm;
— add the result to the current set.

We say that the algorithm is successful if it finds a word that commutes with 51 Bi6, ..., 51 Br6. We admit
failure if the algorithm is unable to find such a word, and there is no length decrease on the last 100 iterations.

In case of a failure, we randomly reset the instance. To do that, we choose a shortest word in the set of
checked words, cloak it by 3 cloaking elements on the left and on the right respectively, apply the normal form
and the braid minimization procedure, and start Cy,5,c 1P, c enumeration from the resulting braid word. If
coset enumeration fails 3 times, we admit failure for the whole attack.

8 Tested parameter values and the results

The paper [13] does not describe the precise procedure to generate cloaking elements from Proposition 2.1,

but such a description can be found in [27], see also [16, Section 2]. In particular, for security reasons, the

conjugator w in a cloaking element is augmented with L random pure braid generators. Since values of L for

128- and 256-bit security levels are not mentioned in [13], we choose the corresponding values from [27].
For 128-hit security level we use the following parameters:

- n=16.
- q=32.
- r=32.
- L =15.

|B| = 22 (in terms of generators R(zf1z7Y), ..., R(zBrz1)).
- |z| € [180, 250], |a| € [300, 400], |B;| € [50, 100].

For 256-bit security level the parameters are:

- n=16.
- g =256.
- r=32.
- L =30.
- |B| = 43.

- |z € [300, 400], |a| € [300, 400], |;| € [100, 200].

As mentioned in Introduction, after a series of attacks on WalnutDSA the authors proposed several
changes to the protocol including changes to the cloaking procedure (see [18, D. Atkins on May 23, 2018]).
It was suggested to use several cloaking element inserted into the private keys at random positions. We im-
plemented and tested this idea as well. For cloaking elements we use conjugators w of lengths in the range
[30, 50] and insert 30 (for 128-bit level) and 60 (for 256-bit level) such cloaking elements into random po-
sitions inside private keys. These insertions are made iteratively, so randomly chosen positions may also be
inside previously inserted cloaking elements.

Overall, we tested four versions of the Kayawood protocol, two original versions for 128- and 256-bit secu-
rity levels and two versions using multiple cloaking elements to mask private keys (with the other parameters
corresponding to 128- and 256-bit levels). We used Garside normal form followed by the braid minimization
reduction to obfuscate zB;z ™! and stochastic rewriting to obfuscate public keys. For each version of the pro-
tocol we performed 100 experiments consisting of the following steps:

Generate a random protocol instance.

Generate random Alice’s private data.

Run key establishment protocol.

Run heuristic search for z as described in Section 6.2.

Run coset enumeration to find a substitute for Alice’s private key as described in Section 7.

SANESEE S
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Our algorithm solved all randomly generated instances, i.e., our attack had 100% success rate. Moreovetr,
in most cases we found the original private key. Also, we investigated the behavior of heuristic search for z
and, for the recovered conjugator c, collected the lengths |z 1c|. For words c'zB1z ¢, ..., c zBrz 1 c we
checked whether they are actually written in the generators of Uy, and for c™*zaz ™ c we checked whether it
is written in the generators of Ly.

All experiments were performed on a machine with two 8-core 3.1 GHz Intel Xeon CPU E5-2687W and
64GB RAM. The results are provided in Tables 1 and 2.

Table 1: Results for the original versions of the protocol

128-bit  256-bit

Average running time 12s 40s
Average |z71¢| 25 34

Original private key recovered 83% 75%
Allc1zB;z"1c arein generators of Uy~ 95% 91%
¢ 'zaz 'cis in generators of Ly, 71% 81%

Table 2: Results for versions using multiple cloaking elements

128-bit  256-bit

Average running time 14 s 56 s
Average |z 1| 25 34

Original private key recovered 75% 76%
Allc'zBizlcarein generatorsof Uy~ 95% 91%
clzaz lcisin generators of Ly 71% 81%

9 Conclusion

Kayawood protocol, described in [13], does not provide the claimed level of security. It suffers from poor choice
of cloaking elements. By design, cloaking elements have very specific geometric type defined by a fixed pair of
strands that can be algorithmically recognized and removed. Thus, the definition of cloaking elements seems
to be the weak part of the protocol. We doubt that security can be improved simply by increasing parameter
values. Nevertheless, we believe that stabilizers for E-multiplication have very rich and algebraically interest-
ing structure and using better cloaking elements (not simply conjugates of squares) can make the protocol
more secure.
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