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Abstract: In this paper, we show how to construct – from any linear code – a Proof of Retrievability (PoR)
which features very low computation complexity on both the client (Verifier) and the server (Prover) sides,
as well as small client storage (typically 512 bits). We adapt the security model initiated by Juels and Kaliski

[PoRs: Proofs of retrievability for large files, in: Proceedings of the 2007 ACM Conference on Computer and
Communications Security—CCS 2007, ACM, NewYork (2007), 584–597] to fit into the framework of Paterson,

Stinson and Upadhyay [A coding theory foundation for the analysis of general unconditionally secure proof-

of-retrievability schemes for cloud storage, J. Math. Cryptol. 7 (2013), no. 3, 183–216], from which our con-

struction evolves. We thus provide a rigorous treatment of the security of our generic design; more precisely,

we sharply bound the extraction failure of our protocol according to this security model. Next we instantiate

our formal construction with codes built from tensor-products as well as with Reed–Muller codes and lifted

codes, yielding PoRs withmoderate communication complexity and (server) storage overhead, in addition to

the aforementioned features.
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1 Introduction

1.1 Motivation

Cloud computing and storage has evolved quite spectacularly over the past decade. Especially, data out-

sourcing allows users and companies to lighten their storage burden andmaintenance cost. Though, it raises

several issues: for example, how can someone check efficiently that he can retrievewithout any loss amassive

file that he had uploaded on a distant server and erased from his personal system?

Proofs of retrievability (PoRs) address this issue. They are cryptographic protocols involving two parts:
a client (or a verifier) and a server (or a prover). PoRs usually consist in the following phases. First, a key
generation process creates secret material related to the file, meant to be kept by the client only. Then the file
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is initialised, that is, it is encoded and/or encrypted according to the secret data held by the client. This pro-
cessed file is uploaded to the server. In order to check retrievability, the client can run a verification procedure,
which is the core of the PoR. Finally, if the client is convinced that the server still holds his file, the client can
proceed at any time to the extraction of the file.

Several parametersmust be taken into account. Plainly, the verification process has to feature a low com-

munication complexity, as the main goal is to avoid downloading a large part of the file to only check its
extractability. Second, the storage overhead induced by the protocol must be low, as large server overhead

would imply high fees for the customer. Third, the computation cost of the verification procedure must be

low, both for the client (which is likely to own a lightweight device) and the server (whose computation work

could also be expensive for the client).

Notice that proofs of data possession (PDP) represent protocols close to what is needed in PoRs. However,
in PDPs, one does not require the client to be able to extract the file from the server. Instances of PDPs are
given by Ateniese et al. [2]. Besides, protocols of Lillibridge et al. [8] and Naor and Rothblum [10] are very

often seen as precursors for PoRs. For instance, the work of Naor and Rothblum [10] considers a setting in

which the client directly accesses the file stored by the prover/server (while the actual PoR definition uses

“an arbitrary program as opposed to a simple memory layout and this program may answer these questions

in an arbitrary manner” [14]).

1.2 Previous work

Juels and Kaliski [6] gave the first formal definition of PoRs. They also proposed a first construction based

on so-called sentinels (namely, random parts of the file to be checked during the verification step) the client

keeps secretly on his device. Additionally, an erasure code ensures the integrity of the file to be extracted. This

seminal work also raised several interesting points. On the one hand, it revealed that (i) the client must store

secret data to be used in the verification step and (ii) coding is needed in order to retrieve the file without

erasures or errors. On the other hand, in Juels and Kaliski’s construction, the verification step can only be

performed a finite number of times since sentinels cannot be reused endlessly.

As a consequence, Shacham and Waters proposed to consider unbounded-use PoRs in [14], where they

built two kinds of PoRs. The first one is based on linear combinations of authenticators produced via pseudo-

random functions; its security was proved using cryptographic tools such as unforgeable MAC scheme,

semantically secure symmetric encryption and secure PRFs. The second one is a publicly verifiable scheme

based on the Diffie–Hellman problem in bilinear groups.

Bowers, Juels and Oprea [3] adopted a coding-theoretic approach (inner code, outer code) to compare

variants of Shacham–Waters and Juels–Kaliski schemes. They focused on the efficiency of the schemes, and

proved that, despite bounded use, new variants of Juels–Kaliski construction are highly competitive com-

pared to other existing schemes.

In [11], Paterson, Stinson andUpadhyay provide a general framework for PoRs in the unconditional secu-
ritymodel. They show that retrievability of the file can be expressed as error correction of a so-called response
code. That allows them to precisely quantify the extraction success as a function of the success probability

of a proving algorithm: indeed, in this setting, extraction can be naturally seen as nearest-neighbour decod-

ing in the response code. They notably apply their framework to prove the security of a modified version of

the Shacham–Waters scheme. Also, notice that, prior to [11], Dodis, Vahan and Wichs [4] proposed another

coding-theoretic model for PoRs that allowed them to build efficient bounded-use and unbounded-use PoR
schemes.

With practicality in mind, other features have been deployed on PoRs. For instance, Wang et al. [15] pre-

sented a PoR construction based on Merkle hash trees, which allows efficient file updates on the server. Their
scheme is provably secure under cryptographic assumptions (hardness of Diffie–Hellman in bilinear groups,

unforgeable signatures, etc.) and has been improved by Mo, Zhou and Chen [9] in order to prevent unbal-

anced trees. More recently, other features have been proposed for PoRs, such as multi-prover PoRs (see [12])
or public verifiability (for instance in [13]).
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1.3 Our approach

As we remarked before, most PoR schemes rely on two techniques: (i) the client locally stores secret data in

order to check the integrity of the file, and (ii) the client encodes the file in order to repair a small number of

erasures and errors that could have been missed during the verification step.

In this work, we propose to build PoR schemes using codes that fulfil the two previous goals, when

equipped with a suitable family of efficiently computable random permutations. More precisely, our idea is

the following. Given a file F, a code C and a family of random permutations σK, the client sends to the server
an encoded and scrambled version σK(C(F)) of his file. Then the verification step consists in checking “short”
relations among descrambled symbols of w = C(F), which come, for instance, from low-weight parity-check

equations forC. Moreover, during the extraction step, the codeC provides the redundancy necessary to repair

erasures and potential unnoticed errors.

In the present work, we develop a seminal idea that appeared in [7], where the authors proposed a con-

struction of PoRs based on lifted codes. We here provide a more generic construction and give a deeper

analysis of its security.

While our scheme does not feature updatability nor public verifiability, we emphasise the genericity of

our construction, which is based on well-studied algebraic and combinatorial structures, namely, codes and

their parity-check equations. Moreover, since the code C is public, the client must only store the secret mate-

rial associated to the randompermutations σK, which consist in a few bytes. Besides, an honest server simply

needs to read pieces of w during the verification step, and therefore has very low computational burden

compared to many other PoR schemes.

1.4 Organisation

Section 2 is devoted to the definition and security model of proofs of retrievability. Despite the great disparity

of models in PoR literature, we try to keep close to the definitions given in [6, 11] for the sake of uniformity.

Section 3 presents our construction of PoR. Precisely, in Section 3.1, we introduce objects called verifi-
cation structures for a code C that will be used in the definition of our PoR scheme (Section 3.2). A rigorous

analysis of our scheme is the purpose of the remainder of that section.

The performance of our generic construction is given in Section 4. We then provide several instances in

Section 5, proving the practicality of our PoR schemes for some classes of codes.

2 Proofs of retrievability

2.1 Definition of underlying protocols

We recall that, in proofs of retrievability, a user wants to estimate if a message m can be retrieved from

a encoded version w of the message stored on a server. In all what follows, the user will be known as the

Verifier (wants to verify the retrievability of the message) while the server is the Prover (aims at proving the

retrievability). Themessage space is denoted byM whileW, the (server) file space, is the set of encoded ver-
sions of the messages. We also denote byK the set of secret values (or keys) kept by the Verifier, and byR the

space of responses to challenges.

Throughout the paper, the symbols←
R
and← respectively denote the output of randomised and deter-

ministic algorithms.

Definition 2.1. A keyed proof of retrievability (PoR) is a tuple of algorithms (KeyGen, Init, Verify, Extract)
running as follows:

(1) The key generation algorithm KeyGen generates uniformly at random a key κ ←
R
K. The key κ is secretly

kept by the Verifier.
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Verifier Prover

κ w

Pick u ←R Q at random

ru ← P(w)(u)

Output Check(u, ru , κ)

u

ru

Figure 1: Definition of the algorithm Verify.

Verifier Prover

κ w

Table 1: Information held by each entity
after the initialisation step.

Algorithm KeyGen Init Verify Check Extract

Input 1λ m, κ r, κ u, ru, κ r, κ
Output κ w True or False True or False m󸀠 or ⊥

Table 2: Inputs and outputs of the algorithms involved in a PoR.

(2) The initialisation algorithm Init is a deterministic algorithm which takes, as input, a message m ∈M and

a key κ ∈ K, and outputs a file w ∈W. Init is run by the Verifierwhich initially holds themessagem. After
the process, the file w is sent to the Prover, and the message m is erased on Verifier’s side. Upon receipt
of w, the Prover sets a deterministic algorithm P(w) that will be run during the verification procedure.

(3) The verification algorithm Verify is a randomised algorithm initiated by the Verifier which needs a secret
key κ ∈ K and interacts with the Prover. Verify is depicted in Figure 1 and works as follows:
(i) the Verifier runs a random query generator that outputs a challenge u ←

R
Q (the set Q being the

so-called query set);
(ii) the challenge u is sent to the Prover;
(iii) the Prover outputs a response ru ← P(w)(u) ∈ R;
(iv) the Verifier checks the validity of ru according to u and κ; the algorithm Verify finally outputs the

Boolean value Check(u, ru , κ).
(4) The extraction algorithm Extract is run by the Verifier. It takes, as input, κ and r = (ru : u ∈ Q) ∈ RQ

and

outputs either amessagem󸀠 ∈Mor a failure symbol⊥.We say that extraction succeeds if Extract(r, κ) = m.
The vector r = (ru ← P(w)(u))u∈Q ∈ RQ

is called the response word associated to P(w).

Note that, in assuming that the response algorithm P(w) is deterministic and non-adaptive¹, we follow the

work of Paterson, Stinson and Upadhyay [11]. The authors justify determinism of response algorithms by the

fact that any probabilistic prover can be replaced by a deterministic prover whose success probability is at

least as good as the probabilistic one.

In Definition 2.1, we can see that a deterministic algorithm P(w) can be represented by the vector of its

outputs r = (P(w)(u))u∈Q, called the response word of P(w). Therefore, we can assume that, before the verifi-

cation step, the Prover produces a word r(w) ∈ RQ
related to the file w he holds. In other words, we model

provers as algorithms P which, given as input w, return a word r ∈ RQ
.

Following [11], we also assume in this chapter that the extraction algorithm Extract is determinis-

tic, though, in general, it can be randomised. Finally, notice that proofs of retrievability aim at proving
the extractability of a file. The extraction algorithm is therefore a tool to retrieve the whole file. Hence its

computational efficiency is not a crucial feature.

Table 1 summarises the information held by each entity after the initialisation step. Table 2 reports the

inputs and outputs of the algorithms involved in a PoR.

1 In the sense that its behaviour onlydepends on the values of challenges u andnot onprevious calls to the verificationprocedure.
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2.2 Security models

One should first notice that, despite many efforts, proofs of retrievability lack a general agreement on the

definition of their security model. Nevertheless, our definitions remain very close to the ones given in the

original work of Juels and Kaliski [6].

For a response word r ∈ RQ
given by the Prover and a key κ ∈ K kept by the Verifier, we first define the

success of r according to κ as

succ(r, κ) := Pru(Check(u, ru , κ) = True),

where the probability is taken over the internal randomness of Verify. A first security model can be defined

as follows.

Definition 2.2 (Security model, strong version). Let ε, τ ∈ [0, 1]. Aproof of retrievability (KeyGen, Init, Verify,
Extract) is strongly (ε, τ)-sound if, for every initial file m ∈M, every uploaded file w ∈W and every prover

P : W→ RQ
, we have

Pr(
Extract(r, κ) ̸= m
succ(r, κ) ≥ 1 − ε

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

κ ←
R
KeyGen(1λ)

w ← Init(m, κ)
r ← P(w)

) ≤ τ, (2.1)

the probability being taken over the internal randomness of KeyGen under the constraint that w = Init(m, κ).

A remark concerning parameters ε and τ. In proofs of retrievability, we aim at making the extraction of the

desired file m as sure as possible when the audit succeeds. Hence it is desirable to have τ small. On the

other hand, the parameter ε measures the rate of unsuccessful audits which leads the Verifier to believe the
extraction will fail. Therefore, one does not necessarily need to look for large values of ε, though, in practice,
large ε affordmore flexibility, for instance, if communication errors occur between the Prover and the Verifier
during the verification procedure.

Definition 2.2 provides a strong security model, in the sense that (i) it does not require any bound on

the response algorithms given by the Prover and (ii) the probability in (2.1) is taken over fixed messages m
(informally, it means the Prover knows m).

However, keyed proofs of retrievability are usually insecure according to the security model given in

Definition 2.2. For instance, in [11], Paterson, Stinson and Upadhyay noticed that in the Shacham–Waters

scheme [14], given the knowledge of m and w, an unbounded Provermay be able to

(i) compute (or at least randomly guess) a key κ such that Init(m, κ) = w,
(ii) build m󸀠 ̸= m such that Init(m󸀠, κ) = w󸀠,
(iii) set P(w󸀠) = r󸀠 which (a) successfully passes every audit and (b) leads to the extraction of m󸀠 ̸= m.
Hence we choose to use a weaker but still realistic security model, where, informally, the Prover only knows
what he stores (that is, w) and has no information on the initial message m. The following security model

thus remains conform with the one given by Paterson, Stinson and Upadhyay [11].

Definition 2.3 (Security model, weak version). Let ε, τ ∈ [0, 1]. A proof of retrievability (KeyGen, Init, Verify,
Extract) is weakly (ε, τ)-sound (or simply (ε, τ)-sound) if, for every polynomial-time prover P : W→ RQ

and

every uploaded file w ∈W, we have

Pr(
Extract(r, κ) ̸= m
succ(r, κ) ≥ 1 − ε

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

m ←
R
M

κ ←
R
KeyGen(1λ)

w ← Init(m, κ)
r ← P(w)

) ≤ τ. (2.2)

In equation (2.2), the randomness comes frompairs (m, κ) ∈M ×Kpickeduniformly at randomamong those

satisfying w = Init(m, κ).
Since we deal with values of τ very close to 0, we also say that a strongly (ε, τ)-sound PoR admits

λ = − log
2
(τ) bits of security against ε-adversaries.
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Informally, saying that a PoR is not weakly sound amounts to finding a polynomial-time deterministic

algorithm P which
∙ takes, as input, a file w ∈W and outputs a response word r ∈ RQ

,

∙ makes the extraction fail with non-negligible probability (over messages m and keys κ such that the

corresponding response words are successfully audited).

3 Our generic construction

Schematically, in the initialisation phase of our construction, the Verifier
(i) encodes his file according to a code C,

(ii) scrambles the resulting codeword using a tuple of permutations over the base field,

(iii) uploads the result to the Prover.
As we explained in the introduction, the verification step then consists in checking that the server is still able

to give answers that, once descrambled, satisfy low-weight parity-check equations for C.

For this purpose, we next introduce objects called verification structures for codes, which will be used in
the definition of our generic PoR scheme.

3.1 Verification structures: A tool for our PoR scheme

Wehere consider𝔽q, the finite fieldwith q elements. Fromwell-known coding theory terminology, the support
of a word w ∈ 𝔽nq is supp(w) := {i ∈ [1, n], wi ̸= 0}, and its weight is wt(w) := |supp(w)|.

In this work, we need to consider codes whose alphabets are finite-dimensional spaces R over 𝔽q, typ-
ically R = 𝔽sq. Precisely, a code C of length n over R is a subset of Rn. A code C ⊆ Rn is 𝔽q-linear if C is

a vector space over 𝔽q. When R = 𝔽q, we get the usual definition of linear codes over finite fields. Unless

stated otherwise, we only consider 𝔽q-linear codes, that we will refer to as codes.
We usually denote by k the dimension over 𝔽q of a code C. Its minimum distance d

min
(C) is the smallest

Hamming distance between two distinct codewords. If n is the length of C, then d
min
(C)/n ∈ [0, 1] is the

relative minimum distance of the code C, while k/n represents its rate. If C ⊆ 𝔽nq, its dual code C⊥ is defined as
{h ∈ 𝔽nq , ∑

n
i=1 hici = 0 for all c ∈ C}. Codewords in C⊥ are also called parity-check equations for C.

Definition 3.1 (Verification structure). Let 1 ≤ ℓ ≤ n and C ⊆ 𝔽nq be a code. Let also Q be a non-empty set of

ℓ-subsets of [1, n]. Set R = 𝔽ℓq. We define the restriction map R associated to Q as

R : Q × 𝔽nq → R,

(u, w) 󳨃→ w|u .

Given an integer s ≥ 1 and a map V : Q × R→ 𝔽sq, we say that (Q, V) is a verification structure for C if the

following holds:

(1) For all i ∈ [1, n], there exists u ∈ Q such that i ∈ u.
(2) For all u ∈ Q, the map 𝔽nq → 𝔽sq given by a 󳨃→ V(u, R(u, a)) is surjective and vanishes on the code C.

Explicitly,

V(u, R(u, c)) = 0 for all c ∈ C.

The map V is then called a verification map for C, and the set Q a query set for C. By convention, for w ∈ 𝔽nq
and r ∈ RQ

, we define

R(w) := (R(u, w) : u ∈ Q) ∈ RQ
,

V(r) := (V(u, ru) : u ∈ Q) ∈ (𝔽sq)Q.

Finally, the code R(C) := {R(c), c ∈ C} is called the response code of C.
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Example 3.2 (Fundamental example). Let C be a code, and let H be a set of parity-check equations for C of

Hamming weight ℓ, whose supports are pairwise distinct. Define the query set Q = {supp(h), h ∈ H} and, for
any u ∈ Q, h(u) to be the unique parity-check equation inH whose support is u. Finally, we define a map V
by

V : Q × R→ 𝔽q ,

(u, r) 󳨃→
ℓ

∑
i=1
h(u)ui ri .

Notice that we set s = 1 here. By construction, it is clear that (Q, V) is a verification structure for C.

Example 3.3 (Toy example). Let C ⊆ 𝔽7
2

be a binary Hadamard code of length n = 7 and dimension k = 3. In
other words, C is defined by a parity-check matrix

H =
(((((

(

1 1 1 0 0 0 0

1 0 0 1 1 0 0

1 0 0 0 0 1 1

0 1 0 0 1 1 0

0 1 0 1 0 0 1

0 0 1 1 0 1 0

0 0 1 0 1 0 1

)))))

)

.

According to Example 3.2, we define Q to be the set of supports of rows of H. In other words,

Q = {{1, 2, 3}, {1, 4, 5}, {1, 6, 7}, {2, 5, 6}, {2, 4, 7}, {3, 4, 6}, {3, 5, 7}}.

Then the verification map V : Q × 𝔽3
2

→ 𝔽
2
can be defined as follows. If u = {u

1
, u

2
, u

3
} ∈ Q and b ∈ 𝔽u

2

is

indexed according to u, then we define

V(u, b) =
3

∑
i=1
bui .

Now let m = (m
1
,m

2
,m

3
) ∈ 𝔽3

2

. The message m can be encoded into

c = (m
1
,m

2
,m

1
+ m

2
,m

3
,m

1
+ m

3
,m

1
+ m

2
+ m

3
,m

2
+ m

3
) ∈ C.

Hence the word r = R(c) ∈ (𝔽3
2

)7 is

r = ((
c
1

c
2

c
3

) ,(
c
1

c
4

c
5

) ,(
c
1

c
6

c
7

) ,(
c
2

c
5

c
6

) ,(
c
2

c
4

c
7

) ,(
c
3

c
4

c
6

) ,(
c
3

c
5

c
7

))

= ((
m

1

m
2

m
1
+ m

2

) ,(
m

1

m
3

m
1
+ m

3

) ,(
m

1

m
1
+ m

2
+ m

3

m
2
+ m

3

) ,(
m

2

m
1
+ m

3

m
1
+ m

2
+ m

3

) ,

(
m

2

m
3

m
2
+ m

3

) ,(
m

1
+ m

2

m
3

m
1
+ m

2
+ m

3

) ,(
m

1
+ m

2

m
1
+ m

3

m
2
+ m

3

)) .

For each vector-coordinate b ∈ 𝔽3
2

of r = R(c), one can now check that ∑j bj = 0. Hence we get V(R(c)) = 0,
as expected.

From now on, we denote by N = |Q| the length of the response code R(C) of a code C equipped with a verifi-

cation structure (Q, V).
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The code C and the verification structure (Q, V) for C are public parameters. We assume that C is linear and set N = |Q|. We recall
that R = 𝔽ℓq andW = 𝔽nq.
Key generation: The Verifier generates uniformly at random an n-tuple of permutations

(σ1 , . . . , σn) = σ ←R S(𝔽q)n .

Initialisation: The Verifier first encodes his file m ∈ 𝔽kq into a codeword c ∈ C with a systematic encoding algorithm for C. Then
the Verifier scrambles each coordinate ci using the permutation σi:

wi = σi(ci), 1 ≤ i ≤ n.

Finally, w ∈W is sent to the Prover, and m is erased by the Verifier. To sum up, the deterministic algorithm Init is defined by

Init(m, σ) := w = σ(C(m)) ∈W.

Based on his knowledge of w and public parameters, the Prover produces a word r ← P(w), r ∈ RQ, which corresponds to the
vector of outputs of the deterministic proving algorithm P on input w.
Verification:
(i) The Verifier picks uniformly at random u = (u1 , . . . , uℓ) ←R Q. Then the Verifier sends u to the Prover, meaning the Prover

is asked to send back R(u, w) = w|u ∈ 𝔽ℓq to the Verifier.
(ii) The Prover sends back the u-th coordinate ru ∈ R of his response word r to the Verifier.
(iii) On input ru ∈ R, the Verifier runs Vσ(u, ru) and outputs the result. Here we mean that:

Check(u, ru , σ) :=
{
{
{

True if Vσ(u, ru) = 0,
False otherwise.

Extraction: The Verifier first collects r = (P(w)u : u ∈ Q) ∈ RQ. Then he runs the extraction procedure given in Figure 3, on input
σ and r, and he outputs his result.

Figure 2: Definition of our PoR scheme.

3.2 Definition of our PoR scheme

Let (Q, V) be a verification structure for C ⊆ 𝔽nq, and let σ ∈ S(𝔽q)n, whereS(𝔽q) denotes the set of permuta-

tions over 𝔽q. Any n-tuple of permutations σ = (σ
1
, . . . , σn) ∈ S(𝔽q)n naturally acts on c ∈ 𝔽nq by

σ(c) 󳨃→ (σ
1
(c

1
), . . . , σn(cn)),

and we define σ(C) = {σ(c), c ∈ C}. Let finally

Vσ : Q × 𝔽ℓq → 𝔽sq ,
(u, y) 󳨃→ V(u, σ−1|u (y)),

where σ−1|u (y) = (σ
−1
u
1

(y
1
), . . . , σ−1uℓ (yℓ)). The map Vσ has been defined in order to satisfy

Vσ(u, R(u, σ(c))) = V(u, R(u, c))

for every (c, u) ∈ C × Q.
Based on this, our PoR construction is given in Figure 2.

3.3 Analysis

3.3.1 Preliminary results

We first give results concerning verification structures and response codes. The following two lemmata are

straightforward to prove.
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Input: σ ∈S(𝔽q)n and r ∈ RQ.
Output: m ∈ 𝔽kq or a failure symbol ⊥.
(i) Define r󸀠 = σ−1(r).
(ii) On challenges u ∈ Q such that V(u, r󸀠u) ̸= 0, assign r󸀠u ← ⊥.
(iii) Run a bounded-distance error-and-erasure decoding algorithm for R(C) with input r󸀠 ∈ (R ∪ {⊥})Q. It outputs either a word

m󸀠 ∈ 𝔽kq, or the failure symbol ⊥.
(iv) Return this output.

Figure 3: Our extraction procedure Extract(r, σ).

Lemma 3.4. Let (Q, V) be a verification structure for a code C ⊆ 𝔽nq . Then (Q, Vσ) is a verification structure
for σ(C).

Lemma 3.5. Let Q be any query-set for a code C ⊆ 𝔽nq whose elements have cardinality ℓ ≥ 1. Then its response
code R(C) is an 𝔽q-linear code over the alphabet R ≃ 𝔽ℓq.

Remark 3.6. By considering σ(C) instead of C, we loose the 𝔽q-linearity, but one can check that verification
structures still make sense and provide the result claimed in Lemma 3.4.

The next result states that the map C 󳨃→ σ(C) does not modify the distance between codewords.

Lemma 3.7. Let C ⊆ 𝔽nq be a linear code, (Q, V) a verification structure for C, and σ ∈ S(𝔽q)n. Then it holds that
∙ the distribution of distances in C and σ(C) are the same,
∙ the distribution of distances in R(C) and R(σ(C)) are the same.

Proof. Since every σi is one-to-one, for any c, c󸀠 ∈ C, we get

d(c, c󸀠) = |{i ∈ [1, n], ci ̸= c󸀠i }|
= |{i ∈ [1, n], σi(ci) ̸= σi(c󸀠i )}|
= d(σ(c), σ(c󸀠)).

The proof for response codes relies on the same argument.

Remark these results imply that, if C is linear, then the minimum distance of R(σ(C)) is the minimum weight

of R(C).

Definition 3.8. Let ε ∈ [0, 1] and (Q, V) be a verification structure for a code C ⊆ 𝔽nq . We say r ∈ RQ
is ε-close

to (Q, V) if
wt(V(r)) := |{u ∈ Q, V(u, ru) ̸= 0}| ≤ εN.

Let now c ∈ C and β ∈ [0, 1]. We say that r ∈ RQ
is a β-liar for (Q, V, c) if

|{u ∈ Q, V(u, ru) = 0 and ru ̸= R(u, c)}| ≤ βN.

Bounded-distance error-and-erasure decoder. LetA ⊆ 𝔽nq be any code of minimum distance d, and let a ∈ A
be corrupted with b errors and e erasures, resulting in a word r󸀠 ∈ (𝔽q ∪ {⊥})n. Then it is well known that, as
long as 2b + e < d, it is possible to retrieve a from r󸀠 thanks to a so-called bounded-distance error-and-erasure
decoding algorithm. This is precisely the decoding algorithm that we employ in Figure 3 on the codeA = R(C).

Our framework allows us to reformulate the extraction success in terms of a probability to decode cor-

rupted codewords. More precisely:

Proposition 3.9. Let σ ∈ S(𝔽q)n, m ∈ 𝔽kq, and denote by d the minimum distance of R(C) of length N. Let also
r ∈ RQ be the response word, output of a proving algorithm P taking w = σ(C(m)) as input. Finally, assume that
r is ε-close to (Q, Vσ) and a β-liar for (Q, Vσ , w), with (ε + 2β)N < d. Then Extract(r, σ) = m, where Extract(r, σ)
is defined in Figure 3.
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Proof. Recall that r󸀠 ∈ (R ∪ {⊥})Q represents the word we get from r after step (ii) of the algorithm given in

Figure 3. Let us now translate our assumptions on r in coding-theoretic terminology:

∙ r is ε-close to (Q, Vσ) means that there are at most εN challenges u ∈ Q for which we know that the

coordinate r󸀠u is not authentic. This justifies that we assign erasure symbols to these coordinates.

∙ r is a β-liar for (Q, V, c)means that there are at most βN other corrupted values r󸀠u, but we cannot identify
them. Therefore, we can assimilate these coordinates to errors.

To sumup,we see r󸀠 as a corruption of R(C(m))with atmost εN erasures and atmost βN errors,whereN = |Q|.
Since we assume that (ε + 2β)N < d, we know from the previous discussion that the decoding succeeds to

retrieve m.

3.3.2 Bounding the extraction failure

According to Definition 2.3, our PoR scheme is weakly (ε, τ)-sound if, for every polynomial-time algorithm P
outputting a response word r(w) from a file w, we have

Prσ,m(
decoding r(w) into m fails

wt(Vσ(r(w))) ≤ εN

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

m ←
R
𝔽kq

σ ←
R
S(𝔽q)n

w = σ(C(m))
) ≤ τ.

Using Proposition 3.9, the security analysis of our PoR scheme reduces to measuring the ability of the

Prover to produce a responseword rwhich is ε-close to (Q, Vσ) and a β-liar for (Q, Vσ , w), with (ε + 2β)N ≥ d.
For fixed r ∈ RQ

, σ ∈ S(𝔽q)n and w = σ(C(m)) the authentic file given to the prover, we define three

subsets of Q:

∙ D(r, w) := {u ∈ Q, ru ̸= R(w)u} and D(r, w) := |D(r, w)| = wt(r − R(w)). This represents challenges u on

which the response word r differs from the authentic one R(w).
∙ E(r, σ) := {u ∈ Q, Vσ(u, ru) ̸= 0} and E(r, σ) := |E(r, σ)| = wt(Vσ(r)). These are challenges u on which the

associated coordinate ru is not accepted by the verification map (it corresponds to erasures in the decod-

ing process).

∙ B(r, σ, w) := {u ∈ Q, ru ̸= R(w)u and Vσ(u, ru) = 0} and B(r, σ,m) := |B(r, σ,m)|. These are the chal-

lenges u on which the associated coordinate ru is accepted by the verification map, but differs from the

authentic response su (it corresponds to errors in the decoding process).
One can easily check that, for every σ, the sets E(r, σ) andB(r, σ, w) define a partition ofD(r, w). The proba-
bility of extraction failure can thus be written as

Pr(
2D(r, w) − E(r, σ) ≥ d

min
(R(C))

E(r, σ) ≤ εN

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

m ←
R
𝔽kq

σ ←
R
S(𝔽q)n

w = σ(C(m))
) . (3.1)

For w ∈ 𝔽nq , let us define the set of admissible permutations and messages

Φw := {(σ,m) ∈ S(𝔽q)n × 𝔽kq , w = σ(C(m))},

so that equation (3.1) rewrites

Pr(
2D(r, w) − E(r, σ) ≥ d

min
(R(C))

E(r, σ) ≤ εN

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
(σ,m) ←

R
Φw) .

Later on, we will use the notation Pr
Φw to refer to the fact that (σ,m) is uniformly drawn from Φw. Similarly

we will use notation 𝔼
Φw for the expectancy and VarΦw for the variance.

Given r ∈ RQ
, we also define

α(r, w) := max

u∈D(r,w)
Pr

Φw (Vσ(u, ru) = 0)
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and α := max(r,w) α(r, w), where (r, w) are such that D(r, w) ̸= 0. The parameter α ∈ (0, 1) is called the bias of
the verification structure (Q, V) for C. It corresponds to the maximum probability that a response is accepted

but not authentic.

Lemma 3.10. For all r ∈ RQ and w ∈ 𝔽nq , we have

𝔼
Φw (E(r, σ)) ≥ (1 − α)D(r, w).

Proof. A simple computation shows

𝔼
Φw (E(r, σ)) = 𝔼Φw( ∑

u∈D(r,w)
𝟙Vσ(u,ru) ̸=0)

= ∑
u∈D(r,w)

Pr
Φw (Vσ(u, ru) ̸= 0)

≥ ∑
u∈D(r,w)
(1 − α)

≥ (1 − α)D(r, w).

Lemma 3.10 essentially means that, if an adversary to our PoR scheme wants its response word to be (in

average) ε-close to the verification structure, then he should modify at most D(r, w) ≤ εN
1−α responses. Below,

we take advantage of this result, and we measure the probability of an extraction failure.

First, for δ, ε ∈ (0, 1), let

p(r, w; ε, δ) := Pr
Φw (2D(r, w) − E(r, σ) ≥ δN and E(r, σ) ≤ εN)

= Pr
Φw (E(r, σ) ≤ min{εN, 2D(r, w) − δN}).

The probability p(r, w; ε, δ) represents the probability that the extraction fails for a response code of

relative distance δ and an adversarial response word r associated to w, which is ε-close to the verification
structure. Let us bound p(r, w; ε, δ).

Proposition 3.11. Let δ, ε ∈ (0, 1) such that δ 1−α
1+α > ε. Let also r ∈ R

Q and w ∈ 𝔽nq . Then we have

p(r, w; ε, δ) ≤
Var

Φw (E(r, σ))

(1+α
2

(δ 1−α
1+α − ε))

2 N2

.

Proof. We distinguish three cases.

(i) 2D(r, w) − δN < 0. The event E(r, σ) ≤ min{εN, 2D(r, w) − δN} never occurs since E(r, σ) ≥ 0. Hence
p(r, w; ε, δ) = 0.

(ii) εN ≤ 2D(r, w) − δN. The inequality E(r, σ) ≤ εN implies

E(r, σ) − 𝔼
Φw (E) ≤ εN − (1 − α)D(r, w)

≤ εN − (1 − α) ε + δ
2

N

≤ −
1 + α
2

(δ1 − α
1 + α − ε)N.

Hence, using Chebychev’s inequality,

p(r, w; ε, δ) = Pr
Φw (E(r, σ) ≤ εN)

≤ Pr
Φw(|E(r, σ) − 𝔼Φw (E)| ≥

1 + α
2

(δ1 − α
1 + α − ε)N)

≤
Var

Φw (E(r, σ))

(1+α
2

(δ 1−α
1+α − ε))

2 N2

.
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(iii) 0 ≤ 2D(r, w) − δN < εN. In this case, E(r, σ) ≤ 2D(r, w) − δN implies

E(r, σ) − 𝔼
Φw (E) ≤ (1 + α)D(r, w) − δN

≤ (1 + α) ε + δ
2

N − δN

≤ −
1 + α
2

(δ1 − α
1 + α − ε)N.

Therefore, similarly to the previous case, we obtain the claimed result.

For any u ∈ D(r, w), denote by Xu the {0, 1}-random variable “𝟙Vσ(u,ru)=0” when σ is uniformly drawn from

Φw. It holds that E(r, σ) = ∑u∈D(r,w)(1 − Xu).
Recall that two real random variables Y, Z are uncorrelated if 𝔼(YZ) = 𝔼(Y)𝔼(Z). For instance, two inde-

pendent random variables are uncorrelated.

Lemma 3.12. Let r ∈ RQ and w ∈ 𝔽nq . If the random variables {Xu}u∈D(r,w) are pairwise uncorrelated, then

Var
Φw (E(r, σ)) ≤ D(r, w).

Proof. By assumption, {Xu}u∈D(r,w) are pairwise uncorrelated; hence

Var
Φw (E(r, σ)) = ∑

u∈D(r,w)
Var

Φw (1 − Xu).

The trivial bound Var
Φw (1 − Xu) ≤ 1 gives the result.

As a corollary of Proposition 3.11 and Lemma 3.12, under the same hypothesis and assuming δ 1−α
1+α > ε,

we get

p(r, w; ε, δ) ≤ 4

N((1 − α)δ − (1 + α)ε)2

since D(r, w) ≤ N. Moreover, if limN→∞ δ > 0 and limN→∞ α = 0, then p(r, w; ε, δ) = O(1/N).
Therefore, we end up with the following theorem.

Theorem 3.13. Let (Q, V) be a verification structure for C with bias α. Let N = |Q|, and let δ = d
min
(R(C))/N be

the relative distance of the associated response code. Finally, assume that, for any r ∈ RQ and any w ∈ 𝔽nq , the
variables {Xu}u∈D(r,w) are pairwise uncorrelated. Then, for any ε < δ 1−α

1+α , the PoR scheme associated to C and
(Q, V) is (ε, τ)-sound, where

τ = 4

N((1 − α)δ − (1 + α)ε)2
.

For asymptotically small α, a code C equipped with a verification structure satisfying the conditions of The-

orem 3.13 thus gives an (ε, τ)-sound PoR scheme for every ε < (1 + o(1))δ and τ = O(1/N).
According to Theorem 3.13, we thus need to look for (sequences of) codes C and associated verification

structures (Q, V) such that
(i) the response code R(C) admits a good relative distance δ = d

min
(R(C))/N,

(ii) the bias α is small,

(iii) random variables {Xu}u∈D(r,w) are pairwise uncorrelated.
Sections 3.4 and 3.5 characterise conditions under which the last two points are fulfilled. Then, in Section 5,

we discuss which response codes can achieve good relative distance.

3.4 Estimating α

In this section, we prove that, assuming Φw approximates the uniform distribution over S(𝔽q)n in a sense

that we make precise later, the bias α can be bounded according to parameters of the verification structure.
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Let us fix r ∈ RQ
, w ∈ 𝔽nq and u ∈ Q. We recall that α is defined by

α = max

r,w
max

u∈D(r,w)
Pr

Φw (Vσ(u, ru) = 0),

where randomness comes from σ ←
R
Φw = {(σ,m) ∈ S(𝔽q)n × 𝔽kq , w = σ(C(m))}.Wenotice that this is equiv-

alent to write σ ←
R
{σ ∈ S(𝔽q)n , σ−1(w) ∈ C}.

For convenience, we will view ru ∈ R = 𝔽ℓq as a vector indexed by u = (u1, . . . , uℓ), so that we can easily
denote by ru[uj] ∈ 𝔽q its j-th coordinate, 1 ≤ j ≤ ℓ. We define the code Ku := ker V(u, ⋅ ) ⊆ 𝔽ℓq, and up to re-

indexing coordinates, C|u ⊆ Ku. This allows us to write that, for every σ, we have Vσ(u, ru) = 0 if and only

if σ−1u (ru) ∈ Ku. Finally, we denote by Zu := {i ∈ u, ru[i] ̸= R(w)u[i]} the set of coordinates of ru that are not
authentic.

Let Yu(σ) represent the event “σ−1u (ru) ∈ Ku | supp(σ−1u (ru)) = Zu”. Informally, the reason why we con-

sider an event Yu(σ) conditioned by supp(σ−1u (ru)) = Zu is that the Prover is free to choose any support Zu
on which he can modify the original file. More formally, this constraint will help us to bound the probability

Pr
Φw (Vσ(u, ru) = 0) in Lemma 3.14. We say that Φw is sufficiently uniform if, for every u ∈ Q, we have

γu :=
Pr[Yu(σ) | σ ←R

Φw] − Pr[Yu(σ) | σ ←R
S(𝔽q)n]

Pr[Yu(σ) | σ ←R
S(𝔽q)n]

= o(1)

when the file size n log q →∞. In other words, Φw is sufficiently uniform if it is a good approximation of the

whole set of n-tuples of permutations, when considering the probability that Yu(σ) happens.

Lemma 3.14. Let r, w, u and Zu be defined as above. Let also Au = |{x ∈ Ku , supp(x) = Zu}|. Then

Pr
Φw (Vσ(u, ru) = 0) ≤

(1 + γu)Au
(q − 1)|Zu |

.

Proof. For every σ such that (σ,m) ∈ Φw, we know that σ−1u (R(w)u) ∈ Ku, and we recall that Vσ(u, ru) = 0
if and only if σ−1u (ru) ∈ Ku. Since Ku is linear, and up to considering σ−1u (R(w)u − ru) instead, we can

assume without loss of generality that σ−1u (ru)[i] = 0 for every i ∈ u \ Zu. In other words, we assume that

supp(σ−1u (ru)) = Zu.
Remark that

Prσ←
R
S(𝔽q)n [σ−1u (ru) ∈ Ku | supp(σ−1u (ru)) = Zu]

= Prx←
R
𝔽ℓq [x ∈ Ku | supp(x) = Zu]

= Prx←
R
𝔽ℓq [x ∈ Ku | supp(x) = Zu]

=
Au
(q − 1)|Zu |

since Au counts the number of codewords in Ku whose support is Zu.
Therefore, we get

Pr
Φw (Vσ(u, ru) = 0) ≤ PrΦw [Vσ(u, ru) = 0 | supp(σ−1u (ru)) = Zu]

= (1 + γu)PrS(𝔽q)n [Vσ(u, ru) = 0 | supp(σ−1u (ru)) = Zu]
= (1 + γu)Prx←

R
𝔽ℓq [x ∈ Ku | supp(x) = Zu]

=
(1 + γu)Au
(q − 1)|Zu |

.

Lemma 3.15. Let Su be the 𝔽q-vector space ⟨{x ∈ Ku , supp(x) = Zu}⟩, and assume that Su ̸= {0}. We have

Au ≤ q|Zu |−dmin
(Su)+1

.

Proof. We prove that, if Au > qe for some integer e ≥ 0, then d
min
(Su) ≤ |Zu| − e, which clearly induces our

result. If Au > qe, then dim Su > e since |Su| ≥ Au. The Singleton bound then provides

d
min
(Su) ≤ |Zu| − dim Su + 1 ≤ |Zu| − e.
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Finally, we get the following upper bound on α.

Proposition 3.16. Let ∆ = min{d
min
(Ku), u ∈ Q}. Then

α ≤ (1 + γ)(1 + 1

q − 1)
ℓ
q−∆+1,

where γu = max γu.

Proof. Remark that Su, defined in previous lemma, is a subcode of Ku shortened on u \ Zu. Hence

d
min
(Ku) ≤ dmin

(Su),

and we can apply previous results and obtain the desired bound

α ≤ max

u,r
(1 + γu)(

q
q − 1)

|Zu |
q−dmin

(Ku)+1 ≤ (1 + γ)(1 + 1

q − 1)
ℓ
q−∆+1,

where γ = maxu γu.

If every Φw is sufficiently uniform, then, by definition, we have γ = o(1) when the file size n log q →∞.
This assumption is significant since we desire to have a small bias α, which is deeply linked to the sound-

ness of PoRs (see Theorem 3.13). In Appendix A, we present experimental estimates of α, validating that the
assumption that Φw is sufficiently uniform.

3.5 Pairwise uncorrelation of {Xu}u∈D

This section is devoted to proving that variables {Xu}u∈D(r,w) are pairwise uncorrelated if the supports of

challenges u ∈ D(r, w) have small pairwise intersection. For this purpose, let us recall that, for fixed r ∈ RQ
,

w and u ∈ D(r, w), the random variable Xu represents 𝟙Vσ(u,ru)=0 when σ is uniformly picked in Φw.

We first state a technical lemma that will be useful to prove Proposition 3.18 below. For clarity, we denote

by d⊥(C) the minimum distance of the dual code C⊥ of a linear code C.

Lemma 3.17. Let C ⊆ 𝔽nq be a linear code and T ⊂ [1, n], |T| = t, where t < d⊥(C). For a ∈ 𝔽Tq , we define

Va = {c ∈ C, c|T = a} and Na = |Va|.

Then
(i) V

0
= {v ∈ C, v|T = 0} is a linear subcode of C;

(ii) for every non-zero a ∈ 𝔽Tq , there exists a non-zero c(a) ∈ C such that Va = V0
+ {c(a)};

(iii) for every a ∈ 𝔽Tq , Na = qk−t, where k = dimC.

Proof. (i) The fact thatV
0
= {v ∈ 𝔽Xq , v|T = 0} is actually thewell-knowndefinition of the shortening of a code.

It is easy to prove that it defines a linear code.

(ii) Let a ∈ 𝔽Tq be non-zero, and let us first prove that there exists c(a) ∈ C such that c
(a)
|T = a. If it were not

the case, then, by definition, we would have C|T ̸= 𝔽tq. But this is impossible since C⊥ contains no non-zero

codeword of weight less that t. It is then easy to check that Va = V0
+ {c(a)}.

(iii) First notice that Va ∩ Vb = ⌀ if a ̸= b. Since

C = ⋃
a∈𝔽tq

Va ,

we get the expected result.

Proposition 3.18. If max{|u ∩ v|, u ̸= v ∈ Q} < min{d⊥(C|u), u ∈ Q}, then the random variables {Xu}u∈Q are
pairwise uncorrelated.
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Proof. Recall that Ku := ker V(u, ⋅ ) and that, by definition of a verification structure, we have C|u ⊆ Ku. For
u ̸= v ∈ Q, let us prove that 𝔼(XuXv) = 𝔼(Xu)𝔼(Xv). First,

𝔼(XuXv) = Pr(Vσ(u, ru) = 0 and Vσ(v, rv) = 0)
= Pr(σ−1(ru)|u ∈ Ku and σ−1(rv)|v ∈ Kv).

Denote t = |u ∩ v|, and let (a, b) ∈ (𝔽tq)2. We denote by Z(σ, a, b) the event

σ−1(ru)|u∩v = a and σ−1(rv)|u∩v = b.

We first notice that {σ−1|u∩v , σ ∈ Φw} = S(𝔽q)t. Indeed, we can here use an argument similar to the proof of

Lemma3.17: the constraint σ−1(w) ∈ C is ineffective on σ−1|u∩v since |u ∩ v| ≤ t < d
⊥(C|z) for every z ∈ Q. There-

fore, for every (a, b) ∈ (𝔽tq)2, we have
Pr(Z(σ, a, b)) = q−2t ,

and it follows that

𝔼(XuXv) =
1

q2t
∑

a,b∈(𝔽tq)2
Pr(σ−1(ru)|u ∈ Ku and σ−1(rv)|v ∈ Kv | Z(σ, a, b)).

Recall now that t < min{d⊥(C|u), u ∈ Q} ≤ min{d⊥(Ku), u ∈ Q}. Hence, for fixed a and b, the variables

σ−1(ru)|u ∈ Ku | Z(σ, a, b) and σ−1(rv)|v ∈ Kv | Z(σ, a, b) are independent (once again, it is a consequence

of the structure results of Lemma 3.17). Therefore,

𝔼(XuXv) =
1

q2t
∑

a,b∈(𝔽tq)2
Pr(σ−1(ru)|u ∈ Ku | Z(σ, a, b))Pr(σ−1(rv)|v ∈ Kv | Z(σ, a, b)).

Then

𝔼(XuXv) =
1

q2t
∑

a,b∈(𝔽tq)2
Pr(σ−1(ru)|u ∈ Ku | σ−1(ru)|u∩v = a)Pr(σ−1(rv)|v ∈ Kv | σ−1(rv)|u∩v = b),

and we conclude since

𝔼(Xu) = q−t ∑
a∈𝔽tq

Pr(σ−1(ru)|u ∈ Ku | σ−1(ru)|u∩v = a).

4 Performance

4.1 Efficient scrambling of the encoded file

In the PoR scheme we propose, the storage cost of an n-tuple of permutations inS(𝔽q)n is excessive since it
is superlinear in the original file size. In this subsection, we propose a storage-efficient way to scramble the

codeword c ∈ C produced by the Verifier.
Precisely, wewant to define a family ofmaps (σ(κ))κ, where σ(κ) : C→ 𝔽nq, c 󳨃→ w ∈ 𝔽nq, with the following

requirements:

∙ For every κ, the map σ(κ) is efficiently computable and requires a low storage.

∙ For every κ and every c ∈ C, if w = σ(κ)(c), then, for every i ∈ [1, n], the local inverse map wi 󳨃→ ci is
efficiently computable.

∙ If κ is randomly generated but unknown, then, given the knowledge of w = σ(κ)(c) and C, it is hard to

produce a response word r ∈ RQ
such that, for many u ∈ Q, both Vσ(κ) (u, ru) = 0 and ru ̸= w|u hold. To be

more specific and in light of the security analysis of Section 3.3, we require that it is hard to distinguish

σ(κ)(c) from a random (z
1
, . . . , zn) ∈ 𝔽nq, where symbols zi are picked independently and uniformly at

random.

We here propose to derive σ(κ) from a suitable block cipher, yielding the explicit construction given below. Of

course, other proposals can be envisioned.
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The construction. Let IV denote a random initialisation vector for AES in CTR mode (IV could be a nonce

concatenated with a random value). Vector IV is kept secret by the Verifier, as well as a randomly chosen

key κ for the cipher. Let also f be a permutation polynomial over 𝔽q of degree d > 1. For instance, one could
choose f(x) = xd with gcd(d, q − 1) = 1. Notice that polynomial f can be made public.

Let s = ⌊ 256

⌈log
2
q⌉⌋ be the number of 𝔽q-symbols one can store in a 256-bit word². Up to appending a few

random bits to c, we assume that s | n, and we define t = n/s. Let us fix a partition of [1, n] into s-tuples
i = (i

1
, . . . , is); it can be, for instance, (1, . . . , s), (s + 1, . . . , 2t), . . . , ((t − 1)s + 1, . . . , n). Notice that this

partition does not need to be chosen at random. Given c = (c
1
, . . . , cn) ∈ C and i an element of the above

partition, we now define

bi = (f(ci
1

) | ⋅ ⋅ ⋅ | f(cis )) ⊕ AESκ(IV ⊕ i) ∈ {0, 1}256.

If log
2
q ∤ 256, trailing zeroes can be added to evaluations of f . Finally, the pseudo-random permutation σ

is defined by

σ(c) := (b
1
, . . . , bt).

Design rationale. AES is a natural choicewhenoneneeds a (secret-)keyedpseudo-randompermutation. Also

notice that, with this construction, one only needs to store the key κ and the vector IV since the other objects

(the polynomial f , the partition) are made public. Hence our objectives in terms of storage are met.

We now point out the necessity to use i as a part of the input of the AES cipher. Assume that we do not.

Then the local permutation σj, 1 ≤ j ≤ n, would not depend on j. As a consequence, for a certain class of

codes, the local verification map ru 󳨃→ Vσ(u, ru) would not depend on u, and a malicious Prover would then
be able to produce accepted answerswhile storing only a small piece of the filew (e.g.,w|u for only one u ∈ Q).

Another mandatory feature is the non-linearity of the permutation polynomial f . Indeed, assume, for

instance, that f = id. Then, given the knowledge of w = σ(c), it would be very easy for a malicious Prover
to produce a word w󸀠 ̸= w such that r󸀠 = R(w󸀠) is always accepted by the Verifier. Simply, the Prover defines
w󸀠 = w + c󸀠, where c󸀠 is any non-zero codeword ofC. Hence one sees that the polynomial f must be non-linear

in order to prevent such kind of attacks.

4.2 Parameters

We here consider a PoR built upon a code C ⊆ 𝔽nq with verification structure (Q, V) satisfying R = 𝔽ℓq and
V(R) = 𝔽sq. We also assume that we use an n-tuple of pseudo-random permutations as described in the pre-

vious subsection.

Communication complexity. At each verification step, the client sends an ℓ-tuple of coordinates (u
1
, . . . , uℓ),

ui ∈ [1, n]. The server then answers with corresponding symbols wui ∈ 𝔽q. Therefore, the upload communi-

cation cost is ℓ log
2
n bits,while the download communication cost is ℓ log

2
q, thus a total of ℓ(log

2
n + log

2
q)

bits.

Computation complexity. In the initialisation phase, following the encryption described in Section 4.1, the
client essentially has

∙ to compute the codeword c ∈ C associated to its message,

∙ to make n evaluations of the permutation polynomial f over 𝔽q,
∙ to compute t = n log2 q

256

AES ciphertexts to produce the word w to be sent to the server.

Given a generator matrix of C, the codeword c can be computed in O(kn) operations over 𝔽q with a matrix-

vector product. Notice that quasi-linear-time encoding algorithms exist for some classes of codes. Besides, if

amonomial or a sparse permutation polynomial is used, then the cost of each evaluation isO((log
2
q)3). If we

denote by c the bitcost of an AES encryption, we get a total bitcost of O(nk(log
2
q)2 + n(log

2
q)3 + cn log

2
q)

for the initialisation phase. Recall this is a worst-case scenario in which the encoding process is inefficient.

2 In the scheme we propose, we will always have log(q) < 256.
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Client storage 512 bits
Server total storage n log2 q bits
Communication complexity (verif.) ℓ log2(nq) bits
Client computation complexity (verif.) ℓ decryptions, ℓs operations over 𝔽q
Server computation complexity (verif.) ℓ reads, no computation

Figure 4: Summary of parameters of our PoR construction for an original file of size k log2 q bits and a code C of dimension k
over 𝔽q equipped with a verification structure (Q, V) such that |u| = ℓ and rank V(u, ⋅ ) ≤ s for all u ∈ Q.

At each verification step, an honest server only needs to read ℓ symbols from the file it stores. Hence its

computation complexity isO(ℓ). The client has to compute amatrix-vector product over 𝔽q, where the matrix

has size s × ℓ and the vector has size ℓ, thus a computation cost of O(ℓs) operations over 𝔽q.

Storage needs. The client stores 2 × 256 bits for secret material κ and IV to use in AES. The server storage

overhead exactly corresponds to the redundancy of the linear code C, that is, (n − dimC) log
2
q bits.

Other features. Our PoR scheme is unbounded-use since every challenge reveals nothing about the secret
data held by the client. It does not feature dynamic updates of files. Though, we must emphasise that the

file w the client produces can be split among several servers, and the verification step remains possible even

if the servers do not communicate with each other. Indeed, computing a response to a challenge does not

require mixing distinct symbols wi of the uploaded file. Therefore, our scheme is well suited for the storage

of large static distributed databases. Parameters of the PoR schemes we propose are reported in Figure 4.

5 Instantiations

In this section, we present several instantiations of our PoR construction. We first recall basics and notation

from coding theory.

The code Rep(ℓ) ⊆ 𝔽ℓq denotes the repetition code ⟨(1, . . . , 1)⟩. We recall that Rep(ℓ)⊥ is the parity code
Par(ℓ) := {c ∈ 𝔽ℓq , ∑

ℓ
i=1 ci = 0}. Let C, C󸀠 be two linear codes over 𝔽q of respective parameters [n, k, d] and

[n, k󸀠, d󸀠]. Their tensor product C ⊗ C󸀠 is the 𝔽q-linear code generated by words

(cic󸀠j : 1 ≤ i ≤ n, 1 ≤ j ≤ n
󸀠) ∈ 𝔽nn

󸀠

q .

It has dimension kk󸀠 and minimum distance dd󸀠. We also denote by

C⊗s := C ⊗ ⋅ ⋅ ⋅ ⊗ C⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
s times

⊆ 𝔽n
s

q

the s-fold tensor product of C with itself.

5.1 Tensor-product codes

The upcoming subsection illustrates our constructionwith a non practical but simple instance. The next ones

lead to practical PoR instances.

5.1.1 A simple but non-practical instance

Let n = Nℓ and Q = {ui = {iℓ + 1, iℓ + 2, . . . , (i + 1)ℓ}, i ∈ [0, N − 1]}. The set Q defines a partition of [1, n].
We define the code

C = {c ∈ 𝔽nq , ∑
j∈u
cj = 0 for all u ∈ Q} ⊆ 𝔽nq .
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In other words, C = Par(ℓ) ⊗ 𝔽Nq , and a parity-check matrix H for C is given by

H =(

1 ⋅ ⋅ ⋅ 1 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0

0 ⋅ ⋅ ⋅ 0 1 ⋅ ⋅ ⋅ 1

.
.
.

.

.

.

.

.

.

.

.

.

.

.

.

.
.
.

.
.
. 0

0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0 1 ⋅ ⋅ ⋅ 1

) .

The verificationmap V : Q × 𝔽ℓq → 𝔽q is defined by V(u, b) := ∑
ℓ
j=1 buj for all (u, b) ∈ Q × 𝔽ℓq. By construction

(see the fundamental Example 3.2), the pair (Q, V) defines a verification structure for C.

Lemma 5.1. Let C = Par(ℓ) ⊗ 𝔽Nq as above. Then the response code R(C) has minimum distance 1.

Proof. We see that the restriction map R sends the codeword (1, −1, 0, 0, . . . , 0) ∈ C to a word of weight 1.

Besides, R is injective, so d
min
(R(C)) > 0.

Since δ = d
min
(R(C))/N = 1/N → 0 when N goes to infinity, an attempt to build a PoR scheme from C cannot

be practical.

5.1.2 Higher order tensor-product codes

LetA ⊆ 𝔽ℓq be a non-degenerate [ℓ, kA, dA]q-linear code, and define C = A⊗s ⊆ 𝔽nq, where n = ℓs. Notice that
it will be more convenient to see coordinates of words w ∈ 𝔽nq as elements of [1, ℓ]s.

For a ∈ [1, ℓ]s and 1 ≤ i ≤ s, we define Li,a ⊂ [1, ℓ]s, the “i-th axis-parallel line with basis a”, as

Li,a := {x ∈ [1, ℓ]s such that xj = aj for all j ̸= i}.

By definition of C, a word c lies in C if and only if, for every L = Li,a, the restriction c|L ∈ A. This means that

we can define

∙ a set of queries Q = {Li,a, i ∈ [1, s], a ∈ [1, ℓ]s},
∙ a verification map

V : Q × R→ 𝔽ℓ−kAq ,

(L, r) 󳨃→ Hr,

where H is a parity-check matrix forA whose columns are ordered according to the line L.
By the previous discussion, it is clear that c ∈ C implies that V(L, c|L) = 0 for every L ∈ Q (in fact, these two

assertions are equivalent). Hence (Q, V) defines a verification structure for C, and we have N = |Q| = sℓs−1.

Lemma 5.2. Let C = A⊗s as above. Then R(C) has minimum distance s ⋅ ds−1A .

Proof. Let us first prove that the minimum distance of R(C) is larger than s ⋅ ds−1A . Let r = R(c) ∈ R(C), and
assume r ̸= 0. Then there exists L ∈ Q such that 0 ̸= rL = c|L ∈ A. Therefore, cx ̸= 0 for some x ∈ L ⊂ [1, ℓ]s.
Consider the set

Si,x = {y ∈ [1, ℓ]s , yi = xi}.

Very informally, the set Si,x corresponds to the hyperplane passing through x and “orthogonal” to the i-th
axis. By definition of C = A⊗s, we know that c|Si,x ∈ A⊗(s−1) \ {0} for every 1 ≤ i ≤ s. Let

Ui = supp(c|Si,x ) = {u(i,1), . . . , u(i,ti)}

with ti ≥ dmin
(A⊗(s−1)) = (dA)s−1. Every u(i,j) ∈ Ui defines a line Li,u(i,j) on which c|Li,u(i,j) is a non-zero code-

word ofA. Equivalently, r is non-zero on index Li,u(i,j) ∈ Q. Therefore,

wt(r) = |{L ∈ Q, rL ̸= 0}| ≥
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

s
⋃
i=1
{Li,u(i,j) , 1 ≤ j ≤ ti}

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
≥

s
∑
i=1
ti ≥ s(dA)s−1.
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Let us now build a word r ∈ R(C) of weight s(dA)s−1. Let w ∈ A \ {0} be a minimum-weight codeword

of A, and define W := supp(w) ⊆ A. Define c = w⊗s ∈ C; then supp(c) = W s
. Let finally r = R(c). We see that

rLi,x ̸= 0 if and only if x ∈ W s
. Hence we get

wt(r) = |{L ∈ Q, rL ̸= 0}| =
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

s
⋃
i=1
{Li,x, x ∈ W s}

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
= s ⋅ ds−1A

since each line Li,x is counted dA times when x runs overW s
.

Proposition 5.3. Let δ > 0, and let A be an [ℓ, ℓ(1 − δ) + 1, ℓδ]q MDS code. Define C = A⊗s and (Q, V) as
above. If every Φw is sufficiently uniform, then the PoR scheme associated to C and (Q, V) is (ε, τ)-sound for
τ = O( 1

(δℓ)ss ) and every ε < ε0, where ε0 = (1 + O(q
−δℓ+1))δs when ℓ → ∞.

Proof. First, the relative distance of R(C) is δs according to Lemma 5.2. Then the random variables {Xu}u∈D
are pairwise uncorrelated because the inequality

max

u ̸=v∈Q2

|u ∩ v| = 1 < ℓ(1 − δ) + 2 = min

u∈Q
d
min
((C|u)⊥)

allows us to apply Proposition 3.18. Besides, if every Φw is sufficiently uniform, then the bias α satisfies

α = O(q−δℓ+1) and hence

1−α
1+α = 1 + O(q

−δℓ+1). Therefore, we can use Theorem 3.13, and we get the desired

result.

Parameters. We mainly focus on the download communication complexity in the verification step and on

the server storage overhead since these are the most crucial parameters which depend on the family of codes

C we use. Besides, we consider that it is more relevant to analyse the ratio between these quantities and the

file size than their absolute values.

Here, for an initial file of size |F| = ((1 − δ)q + 1)s log
2
q bits, we get

∙ a redundancy rate

n log
2
q

|F| = (
q

(1 − δ)q + 1)
s
≤

1

(1 − δ)s ,

∙ a communication complexity rate

ℓ log
2
q

|F| =
q

((1 − δ)q + 1)s ≤
1

(1 − δ)s q
1−s

.

Example 5.4. In Table 3,wepresent various parameters ofPoR instances admitting0.10 ≤ ε
0
≤ 0.16, for files

of size approaching 10

4

, 10

6

and 10

9

bits. HereA is a [q, (1 − δ)q + 1, δq]q MDS code (e.g., a Reed–Solomon

code), and C = A⊗s.

The previous example shows that, while the communication rate is reasonable for these PoR instances over
large files, the storage needs remain large.

q δq s File size (bits) Comm. rate Redundancy rate ε0

16 10 4 9,604 6.664 × 10−3 27.3 0.153
25 13 3 10,985 1.138 × 10−2 7.112 0.141
64 24 2 10,086 3.807 × 10−2 2.437 0.141

32 21 5 1,244,160 1.286 × 10−4 134.8 0.122
47 28 4 960,000 2.938 × 10−4 30.5 0.126

101 47 3 1,164,625 6.071 × 10−4 6.193 0.101
512 180 2 998,001 4.617 × 10−3 2.364 0.124

128 85 5 1,154,413,568 7.762 × 10−7 208.3 0.129
256 150 4 1,048,636,808 1.953 × 10−6 32.77 0.118

1,024 550 3 1,071,718,750 9.555 × 10−6 10.02 0.155
12,167 3,900 2 957,037,536 1.78 × 10−4 2.166 0.103
16,384 5,500 2 1,658,765,150 1.383 × 10−4 2.266 0.113

Table 3: Parameters of PoR instances admitting 0.10 ≤ ε0 ≤ 0.16.
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5.2 Reed–Muller and related codes

Low-degree Reed–Muller codes are known to admit many distinct low-weight parity-check equations, whose

supports correspond to affine subspaces of the ambient space. Therefore, they seem naturally adapted to our

construction. Let us first consider the plane (or bivariate) Reed–Muller code case.

5.2.1 The plane Reed–Muller code RMq(2, q − 2)

Let C be the Reed–Muller code

C = RMq(2, q − 2) := {(f(x, y))(x,y)∈𝔽2q , f ∈ 𝔽q[X, Y], deg f ≤ q − 2}.

It is well known that C has length q2 and dimension (q − 1)(q − 2)/2. Besides, for every line

L = {x = (at + b, ct + d), t ∈ 𝔽q} ⊂ 𝔽2q

and every c ∈ C, we can check that∑x∈L cx = 0. Indeed, let f ∈ 𝔽q[X, Y], deg f = a ≤ q − 2. The restriction of f
on an affine line L can be interpolated as a univariate polynomial f|L of degree at most a. Our claim follows

since∑z∈𝔽q z
i = 0 for every i ≤ q − 2.

Therefore, we can define Q as the set of affine lines L of 𝔽2q and V(L, r) = ∑
ℓ
j=1 rj ∈ 𝔽q. From the previous

discussion, we see that (Q, V) is a verification structure for C. Also notice there are q(q + 1) distinct affine

lines in 𝔽2q; hence N = q(q + 1).

Lemma 5.5. LetC = RMq(2, q − 2), equippedwith its verification structure defined as above. Then the response
code R(C) has minimum distance q2 + 2.

Proof. Any non-zero codeword c ∈ C consists in the evaluation of a non-zero polynomial f(X, Y) ∈ 𝔽q[X, Y]
of degree at most q − 2. Denote by L

1
, . . . , La ⊂ 𝔽2q the affine lines on which f vanishes, i.e., f(P) = 0 for

every P ∈ Li, 1 ≤ i ≤ a. We claim that a ≤ q − 2. Indeed, since f has total degree less than q − 1, it also van-
ishes on closed lines L

1
, . . . , La, considered as affine lines in 𝔽q

2

, where 𝔽q denotes the algebraic closure
of 𝔽q. Denote by gi ∈ 𝔽q[X, Y] the monic polynomial of degree 1 which defines Li. From Hilbert’s Null-
stellensatz, there exists r > 0 such that (∏ai=1 gi) | f r. Since the gi’s have degree 1 and are distinct, we get

a ≤ deg f ≤ q − 2. Hence the affine lines different from L
1
, . . . , La correspond to non-zero coordinates of

R(c). There are q(q + 1) − a ≥ q2 + 2 such lines, so d
min
(R(C)) ≥ q2 + 2.

Now we claim there exists a word r ∈ R(C) of weight N − q + 2 = q2 + 2. Let L(0) and L(1) be two distinct
parallel affine lines, respectively defined by X = 0 and X = 1. We build the word c which is −1 on coordinates
corresponding to points in L(0), 1 on those corresponding to points in L(1) and 0 elsewhere. One can check

that c ∈ C; indeed, c corresponds to the evaluation of∏z∈𝔽q\{0,1}(z − X). Now, if wewant to computewt(R(c)),
we only need to count the number of lines which do not intersect L(0) nor L(1). Clearly, there are only q − 2
such lines. Hence wt(R(c)) = q(q + 1) − (q − 2), and this concludes the proof.

Proposition 5.6. Let C = RM(2, q − 2), and let (Q, V) be its associated verification structure. If every Φw
is sufficiently uniform, then the PoR scheme associated to C and (Q, V) is (ε, τ)-sound for ε = 1 − o(1) and
τ = O( 1

(1−ε)q2 ), when q →∞.

Proof. One can check that the random variables {Xu}u∈D are pairwise uncorrelated since

max

u ̸=v∈Q2

|u ∩ v| = 1 < ℓ(1 − δ) + 2 = min

u∈Q
d
min
((C|u)⊥).

Besides, the relative distance of R(C) is q2+2
q(q+1) → 1according to Lemma5.5. If everyΦw is sufficiently uniform,

the bias α satisfies α ∈ O(1/q) and hence 1−α
1+α = 1 + O(1/q). Therefore, we can use Theorem 3.13, and we get

the desired result.



J. Lavauzelle and F. Levy-dit-Vehel, Generic constructions of PoRs from codes and instantiations | 101

Parameters. For an initial file of size |F| = 1

2

(q − 1)(q − 2) log
2
q bits, we get

∙ a redundancy rate

q2 log
2
q

|F| =
2

(1 − 1/q)(1 − 2/q) → 2,

∙ a communication complexity rate

q log
2
q

|F| =
2

q
1

(1 − 1/q)(1 − 2/q) = O(1/q).

5.2.2 Storage improvements via lifted codes

The redundancy rate of Reed–Muller codes presented above stays stuck above 2. Affine lifted codes, intro-

duced by Guo, Kopparty and Sudan [5], allow to break this barrier while keeping the same verification

structure. Generically, they are defined as follows:

Lift(m, d) := {(f(P))P∈𝔽mq , f ∈ 𝔽q[X1, . . . , Xm] for every affine line L ⊂ 𝔽mq , (f(Q))Q∈L ∈ RSq(d + 1)}.

We refer to [5] formore details about the construction. Herewe focus on Lift(2, q − 2) since it can be compared

to RM(2, q − 2). Indeed, one sees that

RM(2, q − 2) ⊆ Lift(2, q − 2), (5.1)

and equation (5.1) turns into a proper inclusion as long as q is not a prime. Besides, by definition of lifted

codes, Lift(2, q − 2) admits the same verification structure as the one presented previously for RM(2, q − 2).

Lemma 5.7. The response code of Lift(2, q − 2) has minimum distance at least q2 − q + 2.

Proof. The rationale is similar to the proof of Lemma 5.5. Let 0 ̸= c ∈ C, c = (f(P))P∈𝔽2q , f ∈ 𝔽q[X, Y], and
denote by L

1
, . . . , La ⊂ 𝔽2q the lines on which f vanishes. The restriction of f along Li can be interpolated

as a univariate polynomial f|Li (T) of degree at most q − 2 since (f(Q))Q∈Li lies in the Reed–Solomon code

RSq(q − 1) by definition of lifted codes. Therefore, f|Li (T) = 0, and f vanishes on Li. Repeating arguments in

the proof of Lemma 5.5, we get a ≤ deg f ≤ 2q − 2 and d
min
(R(Lift(2, q − 2))) ≥ q2 + q − 2q + 2 = q2 − q + 2.

Webelieve the boundgiven in Lemma5.7 is not tight, but it is sufficient to have d
min
(R(Lift(2, q − 2)))/N → 1.

Similarly to Proposition 5.6, we can then prove that practical PoRs can be constructedwith the family of lifted

codes Lift(2, q − 2).

Proposition 5.8. Let C = Lift(2, q − 2), and let (Q, V) be its associated verification structure. If every Φw
is sufficiently uniform, then the PoR scheme associated to C and (Q, V) is (ε, τ)-sound for every ε < 1 and
τ = O( 1

(1−ε)q2 ), when q →∞

The crucial improvement is that lifted codes potentially have much higher dimension than Reed–Muller

codes. For q = 2e, the dimension of Lift(2, q − 2) can be proved to equal 4e − 3e [5].

Example 5.9. In Table 4, we present parameters of PoRs based on Reed–Muller codes and lifted codes, using
files of size approaching 10

4

, 10

6

and 10

9

bits.

Note that this family of codes has been used in the PoR proposal of [7].

5.2.3 On more generic families of codes

Wehave presented two rather small families of codes producing practical instances of PoR. Let us give a short
summary of approximate lower bounds on crucial PoR parameters that have been shown in previous sections

in Table 5.

Now we quickly mention other families of codes that could be interesting to consider.



102 | J. Lavauzelle and F. Levy-dit-Vehel, Generic constructions of PoRs from codes and instantiations

Code q File size Comm. rate Redundancy rate

Lift 32 3,905 4.097 × 10−2 1.311
RM 64 11,718 3.277 × 10−2 2.097
Lift 64 20,202 1.901 × 10−2 1.217

Lift 256 471,800 4.341 × 10−3 1.111
RM 512 1,172,745 3.929 × 10−3 2.012
Lift 512 2,182,149 2.112 × 10−3 1.081

Lift 8,192 851,689,033 1.25 × 10−4 1.024
RM 16,384 1,878,704,142 1.221 × 10−4 2.000
Lift 16,384 3,691,134,818 6.214 × 10−5 1.018

Table 4: Parameters of PoRs based on Reed–Muller codes and lifted codes.

Family of codes over 𝔽q Redundancy rate Communication complexity rate

s-fold tensor product (Section 5.1.2) (1 − δ)−s q−(s−1)(1 − δ)−s

Plane RM (Section 5.2.1) 2 2q−1

Plane lifted code (Section 5.2.2) 1 + qlog2(3)−2 q−1 + qlog2(3)−3

Table 5: Approximate lower bounds on crucial PoR parameters.

Multi-variate generalisation. Wehave only presented Reed–Muller and lifted codes embedded into the affine

plane𝔽2q. One could of course consider a broader ambient space𝔽mq ,m > 2. Lines would have smaller relative
weight compared to the ambient space, and thus we would decrease the communication complexity of our

PoR schemes. We must however care about the storage overhead which can drastically increase if m gets

large: for instance, any Reed–Muller code RMq(m, q − 2) has rate ≤ 1/m!.

Lower degree generalisation. In order to increase the soundness of our PoR schemes, one could consider

Reed–Muller codes RMq(2, d) (as well as related lifted codes) with a lower degree d < q − 2. The communi-

cation complexity remains unchanged; however, we could observe overwhelming storage overhead if d is

too small.

Combinatorial generalisation. Codes Lift(2, q − 2) can be viewed as codes from designs (see [1] for more

details), where the underlying block design is the classical affine plane. Considering designs with smaller

block size would lead to PoRs with smaller communication complexity. But once again, this could be expen-

sive in terms of storage since only a few designs produce high-dimensional codes.

6 Conclusion

We have proposed a security model for PoRs in line of previous work, together with a generic code-based

framework. We have then sharply quantified the extraction failure of our PoR construction as a function of

code parameters. Specialising this construction for particular families of codes, we provided instances with

practical parameters. We hope our work will be an incentive for further proposals of code instances, aiming

at better PoR parameters.

A Experimental estimate of the bias α
Wehere confirmour heuristic on the fact that Φw is sufficiently uniform, by providing experimental estimates

of α.
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Setup. We consider PoR schemes using Reed–Muller codes C = RMq(2, q − 2), as presented in Section 5.2.1.
We also fix the word w ∈ 𝔽nq uploaded on the server during the initialisation step. Remark that, for varying w,
all Φw are equivalently distributed. Indeed, if ψ ∈ S(𝔽q)n satisfies ψ(w) = w󸀠, then the distribution of per-

mutations picked from Φw󸀠 can be obtained by applying ψ to permutations picked from Φw. Hence, without

loss of generality, we assume w = 0. Proposition 3.16 claims that, in this context, α should be O(1/q) since
∆ = 2 and ℓ ≤ q. For convenience, we write p

Φ
:= ℙ

Φw (Vσ(u, ru) = 0), and we recall that α is an upper bound
on p

Φ
(for varying u and r).

We proceed to three kinds of tests in order to estimate α:
∙ Test 1.We sample N challenges u, and, for each sample, we fix t ≤ ℓ and ru in {x ∈ 𝔽ℓq , |Zu| = t}. Then we

estimate p
Φ
by running M trials and computing the average number of times Vσ(u, ru) = 0 occurs. We

denote by ξM(pΦ) this estimator. We then collect the maximum value of ξM(pΦ) among the N samples

of u.
∙ Test 2.Achallenge u is fixed. For several values of t,wepickN responses ru randomly in {x ∈ 𝔽ℓq , |Zu| = t}.

For every ru, we estimate p
Φ
with M samples. We collect the maximum value of ξM(pΦ) among the

N values of ru that have been picked.
∙ Test 3.A challenge u is fixed, as well as a response ru to this challenge, which satisfies |Zu| = t for several

values of t ∈ [2, ℓ]. We then run M trials and collect ξM(pΦ).

Influence ofM and the chosen test on the estimator. At the end of the document, Figures 5, 6 and 7 confirm

that, for fixed N and q and for any test i we use, i ∈ {1, 2, 3}, our estimator ξM(pΦ) converges to a value close
to 1/(q − 1).

Influence of N on the estimator. Table 6 shows experimentally that, for M large enough and fixed q, the
number N has few influence on the estimator (N being respectively the number of responses ru sampled in

test 2, and the number of challenges u sampled in test 1). The minor increase of the values can be thought as

a standard deviation due to the fact that the number of samples M = 100,000 is finite.

Figure 5: Estimators for various values of M ∈ [103 , 106], of q ∈ {8, 64} and of test i, i ∈ {1, 2, 3}. Support size t = 2 is fixed.
For tests 1 and 2, the parameter N is set to 10. Black horizontal lines represent the expected value of α.
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Figure 6: Estimators for various values of M ∈ [103 , 106], of q ∈ {8, 64}, and of test i, i ∈ {1, 2, 3}. Support size t = 3 is fixed.
For tests 1 and 2, the parameter N is set to 10. Black horizontal lines represent the expected value of α.

Figure 7: Estimators for various values of M ∈ [103 , 106], of q ∈ {8, 64} and of test i, i ∈ {1, 2, 3}. Support size t = ℓ is fixed.
For tests 1 and 2, the parameter N is set to 10. Black horizontal lines represent the expected value of α.
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Test 1 Test 2

N q = 8 q = 64 q = 8 q = 64

1 0.1418 0.0152 0.1414 0.0158
5 0.1433 0.0163 0.1431 0.0162

10 0.1443 0.0165 0.1452 0.0166
50 0.1455 0.0169 0.1450 0.0168

100 0.1452 0.0167 0.1458 0.0168
500 0.1464 0.0169 0.1470 0.0168

1/(q − 1) = 0.1429 0.01587 0.1429 0.01587

Table 6: Estimators using tests 1 and 2 with M = 100,000 and t = 2 for q ∈ {8, 64} and various values of N. The quantity
1/(q − 1) represents an estimated upper bound on α that ξM(pΦ) should approximate.

q ξM(pΦ) 1/(q − 1)

4 0.333 0.3333
7 0.166 0.1667
8 0.143 0.1429

16 0.0665 0.06667
17 0.0627 0.0625
31 0.0335 0.03333
32 0.032 0.03226
64 0.0161 0.01587

128 0.00791 0.007874
256 0.00382 0.003922
257 0.00398 0.004000

Table 7: Estimators using test 3 with M = 1,000,000 and t = 2 for various values of prime powers q. The quantity 1/(q − 1)
represents an estimated upper bound on α that ξM(pΦ) should approximate.

Influence of q on the estimator. In Table 7, we show that the estimator ξM(pΦ) converges to an expected

value 1/(q − 1) for any value of q.
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