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Abstract: In this paper, we show how to construct — from any linear code — a Proof of Retrievability (PoR)
which features very low computation complexity on both the client (Verifier) and the server (Prover) sides,
as well as small client storage (typically 512 bits). We adapt the security model initiated by Juels and Kaliski
[PoRs: Proofs of retrievability for large files, in: Proceedings of the 2007 ACM Conference on Computer and
Communications Security—CCS 2007, ACM, New York (2007), 584-597] to fit into the framework of Paterson,
Stinson and Upadhyay [A coding theory foundation for the analysis of general unconditionally secure proof-
of-retrievability schemes for cloud storage, J. Math. Cryptol. 7 (2013), no. 3, 183-216], from which our con-
struction evolves. We thus provide a rigorous treatment of the security of our generic design; more precisely,
we sharply bound the extraction failure of our protocol according to this security model. Next we instantiate
our formal construction with codes built from tensor-products as well as with Reed—Muller codes and lifted
codes, yielding PoRs with moderate communication complexity and (server) storage overhead, in addition to
the aforementioned features.
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1 Introduction

1.1 Motivation

Cloud computing and storage has evolved quite spectacularly over the past decade. Especially, data out-
sourcing allows users and companies to lighten their storage burden and maintenance cost. Though, it raises
several issues: for example, how can someone check efficiently that he can retrieve without any loss a massive
file that he had uploaded on a distant server and erased from his personal system?

Proofs of retrievability (PoRs) address this issue. They are cryptographic protocols involving two parts:
a client (or a verifier) and a server (or a prover). PoRs usually consist in the following phases. First, a key
generation process creates secret material related to the file, meant to be kept by the client only. Then the file
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is initialised, that is, it is encoded and/or encrypted according to the secret data held by the client. This pro-
cessed file is uploaded to the server. In order to check retrievability, the client can run a verification procedure,
which is the core of the PoR. Finally, if the client is convinced that the server still holds his file, the client can
proceed at any time to the extraction of the file.

Several parameters must be taken into account. Plainly, the verification process has to feature a low com-
munication complexity, as the main goal is to avoid downloading a large part of the file to only check its
extractability. Second, the storage overhead induced by the protocol must be low, as large server overhead
would imply high fees for the customer. Third, the computation cost of the verification procedure must be
low, both for the client (which is likely to own a lightweight device) and the server (whose computation work
could also be expensive for the client).

Notice that proofs of data possession (PDP) represent protocols close to what is needed in PoRs. However,
in PDPs, one does not require the client to be able to extract the file from the server. Instances of PDPs are
given by Ateniese et al. [2]. Besides, protocols of Lillibridge et al. [8] and Naor and Rothblum [10] are very
often seen as precursors for PoRs. For instance, the work of Naor and Rothblum [10] considers a setting in
which the client directly accesses the file stored by the prover/server (while the actual PoR definition uses
“an arbitrary program as opposed to a simple memory layout and this program may answer these questions
in an arbitrary manner” [14]).

1.2 Previous work

Juels and Kaliski [6] gave the first formal definition of PoRs. They also proposed a first construction based
on so-called sentinels (namely, random parts of the file to be checked during the verification step) the client
keeps secretly on his device. Additionally, an erasure code ensures the integrity of the file to be extracted. This
seminal work also raised several interesting points. On the one hand, it revealed that (i) the client must store
secret data to be used in the verification step and (ii) coding is needed in order to retrieve the file without
erasures or errors. On the other hand, in Juels and Kaliski’s construction, the verification step can only be
performed a finite number of times since sentinels cannot be reused endlessly.

As a consequence, Shacham and Waters proposed to consider unbounded-use PoRs in [14], where they
built two kinds of PoRs. The first one is based on linear combinations of authenticators produced via pseudo-
random functions; its security was proved using cryptographic tools such as unforgeable MAC scheme,
semantically secure symmetric encryption and secure PRFs. The second one is a publicly verifiable scheme
based on the Diffie—Hellman problem in bilinear groups.

Bowers, Juels and Oprea [3] adopted a coding-theoretic approach (inner code, outer code) to compare
variants of Shacham-Waters and Juels—Kaliski schemes. They focused on the efficiency of the schemes, and
proved that, despite bounded use, new variants of Juels—Kaliski construction are highly competitive com-
pared to other existing schemes.

In [11], Paterson, Stinson and Upadhyay provide a general framework for PoRs in the unconditional secu-
rity model. They show that retrievability of the file can be expressed as error correction of a so-called response
code. That allows them to precisely quantify the extraction success as a function of the success probability
of a proving algorithm: indeed, in this setting, extraction can be naturally seen as nearest-neighbour decod-
ing in the response code. They notably apply their framework to prove the security of a modified version of
the Shacham—-Waters scheme. Also, notice that, prior to [11], Dodis, Vahan and Wichs [4] proposed another
coding-theoretic model for PoRs that allowed them to build efficient bounded-use and unbounded-use PoR
schemes.

With practicality in mind, other features have been deployed on PoRs. For instance, Wang et al. [15] pre-
sented a PoR construction based on Merkle hash trees, which allows efficient file updates on the server. Their
scheme is provably secure under cryptographic assumptions (hardness of Diffie-Hellman in bilinear groups,
unforgeable signatures, etc.) and has been improved by Mo, Zhou and Chen [9] in order to prevent unbal-
anced trees. More recently, other features have been proposed for PoRs, such as multi-prover PoRs (see [12])
or public verifiability (for instance in [13]).
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1.3 Our approach

As we remarked before, most PoR schemes rely on two techniques: (i) the client locally stores secret data in
order to check the integrity of the file, and (ii) the client encodes the file in order to repair a small number of
erasures and errors that could have been missed during the verification step.

In this work, we propose to build PoR schemes using codes that fulfil the two previous goals, when
equipped with a suitable family of efficiently computable random permutations. More precisely, our idea is
the following. Given a file F, a code € and a family of random permutations o, the client sends to the server
an encoded and scrambled version o (C(F)) of his file. Then the verification step consists in checking “short”
relations among descrambled symbols of w = C(F), which come, for instance, from low-weight parity-check
equations for C. Moreover, during the extraction step, the code € provides the redundancy necessary to repair
erasures and potential unnoticed errors.

In the present work, we develop a seminal idea that appeared in [7], where the authors proposed a con-
struction of PoRs based on lifted codes. We here provide a more generic construction and give a deeper
analysis of its security.

While our scheme does not feature updatability nor public verifiability, we emphasise the genericity of
our construction, which is based on well-studied algebraic and combinatorial structures, namely, codes and
their parity-check equations. Moreover, since the code € is public, the client must only store the secret mate-
rial associated to the random permutations ok, which consist in a few bytes. Besides, an honest server simply
needs to read pieces of w during the verification step, and therefore has very low computational burden
compared to many other PoR schemes.

1.4 Organisation

Section 2 is devoted to the definition and security model of proofs of retrievability. Despite the great disparity
of models in PoR literature, we try to keep close to the definitions given in [6, 11] for the sake of uniformity.
Section 3 presents our construction of PoR. Precisely, in Section 3.1, we introduce objects called verifi-
cation structures for a code € that will be used in the definition of our PoR scheme (Section 3.2). A rigorous
analysis of our scheme is the purpose of the remainder of that section.
The performance of our generic construction is given in Section 4. We then provide several instances in
Section 5, proving the practicality of our PoR schemes for some classes of codes.

2 Proofs of retrievability

2.1 Definition of underlying protocols

We recall that, in proofs of retrievability, a user wants to estimate if a message m can be retrieved from
a encoded version w of the message stored on a server. In all what follows, the user will be known as the
Verifier (wants to verify the retrievability of the message) while the server is the Prover (aims at proving the
retrievability). The message space is denoted by M while W, the (server) file space, is the set of encoded ver-
sions of the messages. We also denote by X the set of secret values (or keys) kept by the Verifier, and by R the
space of responses to challenges.

Throughout the paper, the symbols < and « respectively denote the output of randomised and deter-
ministic algorithms.

Definition 2.1. A keyed proof of retrievability (PoR) is a tuple of algorithms (KeyGen, Init, Verify, Extract)

running as follows:

(1) The key generation algorithm KeyGen generates uniformly at random a key k «g XK. The key k is secretly
kept by the Verifier.
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[ Verifier J [ Prover j

Pick u < Q at random R —

r
Output Check(u, ry, k) PR S

Figure 1: Definition of the algorithm Verify.

Verifier ~ Prover Algorithm  KeyGen Init  Verify Check Extract

K w Input 14 m,Kk  rK U, ry, K r,K
Output K w True or False TrueorFalse m'orl

Table 1: Information held by each entity

after the initialisation step. Table 2: Inputs and outputs of the algorithms involved in a PoR.

(2) The initialisation algorithm Init is a deterministic algorithm which takes, as input, a message m € M and
akey x € X, and outputs a file w € W. Init is run by the Verifier which initially holds the message m. After
the process, the file w is sent to the Prover, and the message m is erased on Verifier’s side. Upon receipt
of w, the Prover sets a deterministic algorithm P™) that will be run during the verification procedure.

(3) The verification algorithm Verify is a randomised algorithm initiated by the Verifier which needs a secret
key k € X and interacts with the Prover. Verify is depicted in Figure 1 and works as follows:

(i) the Verifier runs a random query generator that outputs a challenge u < Q (the set Q being the
so-called query set);

(ii)  the challenge u is sent to the Prover;

(iii) the Prover outputs a response r, — P™(u) € R;

(iv) the Verifier checks the validity of r, according to u and x; the algorithm Verify finally outputs the
Boolean value Check(u, ry, k).

(4) The extraction algorithm Extract is run by the Verifier. It takes, as input, x and r = (r, : u € Q) € R? and
outputs either amessage m’ ¢ M or a failure symbol L. We say that extraction succeeds if Extract(r, k) = m.

The vector r = (ry, — P (u))yeo € R9 is called the response word associated to POV,

Note that, in assuming that the response algorithm P™) is deterministic and non-adaptive!, we follow the
work of Paterson, Stinson and Upadhyay [11]. The authors justify determinism of response algorithms by the
fact that any probabilistic prover can be replaced by a deterministic prover whose success probability is at
least as good as the probabilistic one.

In Definition 2.1, we can see that a deterministic algorithm P™) can be represented by the vector of its
outputs r = (P™)(u)),eq, called the response word of P™). Therefore, we can assume that, before the verifi-
cation step, the Prover produces a word r™) e R related to the file w he holds. In other words, we model
provers as algorithms P which, given as input w, return a word r € RO,

Following [11], we also assume in this chapter that the extraction algorithm Extract is determinis-
tic, though, in general, it can be randomised. Finally, notice that proofs of retrievability aim at proving
the extractability of a file. The extraction algorithm is therefore a tool to retrieve the whole file. Hence its
computational efficiency is not a crucial feature.

Table 1 summarises the information held by each entity after the initialisation step. Table 2 reports the
inputs and outputs of the algorithms involved in a PoR.

1 Inthe sense thatits behaviour only depends on the values of challenges u and not on previous calls to the verification procedure.
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2.2 Security models

One should first notice that, despite many efforts, proofs of retrievability lack a general agreement on the
definition of their security model. Nevertheless, our definitions remain very close to the ones given in the
original work of Juels and Kaliski [6].

For a response word r € R given by the Prover and a key x € X kept by the Verifier, we first define the
success of r according to x as

succ(r, k) := Pr,(Check(u, ry, k) = True),

where the probability is taken over the internal randomness of Verify. A first security model can be defined
as follows.

Definition 2.2 (Security model, strong version). Lete, T € [0, 1]. A proof of retrievability (KeyGen, Init, Verify,
Extract) is strongly (e, T)-sound if, for every initial file m € M, every uploaded file w € W and every prover
P: W — R, we have

x —g KeyGen(1?

Extract(r, x) # m R EEY ()
w « Init(m, x) <T, (2.1)
succ(r,k)>1-¢
r — P(w)

the probability being taken over the internal randomness of KeyGen under the constraint that w = Init(m, k).

A remark concerning parameters € and 7. In proofs of retrievability, we aim at making the extraction of the
desired file m as sure as possible when the audit succeeds. Hence it is desirable to have T small. On the
other hand, the parameter € measures the rate of unsuccessful audits which leads the Verifier to believe the
extraction will fail. Therefore, one does not necessarily need to look for large values of €, though, in practice,
large ¢ afford more flexibility, for instance, if communication errors occur between the Prover and the Verifier
during the verification procedure.

Definition 2.2 provides a strong security model, in the sense that (i) it does not require any bound on
the response algorithms given by the Prover and (ii) the probability in (2.1) is taken over fixed messages m
(informally, it means the Prover knows m).

However, keyed proofs of retrievability are usually insecure according to the security model given in
Definition 2.2. For instance, in [11], Paterson, Stinson and Upadhyay noticed that in the Shacham-Waters
scheme [14], given the knowledge of m and w, an unbounded Prover may be able to
(i) compute (or at least randomly guess) a key k such that Init(m, x) = w,

(ii) build m' # m such that Init(m’, x) = w',

(iii) set P™") = v’ which (a) successfully passes every audit and (b) leads to the extraction of m’ # m.

Hence we choose to use a weaker but still realistic security model, where, informally, the Prover only knows
what he stores (that is, w) and has no information on the initial message m. The following security model
thus remains conform with the one given by Paterson, Stinson and Upadhyay [11].

Definition 2.3 (Security model, weak version). Lete, T € [0, 1]. A proof of retrievability (KeyGen, Init, Verify,
Extract) is weakly (&, T)-sound (or simply (&, T)-sound) if, for every polynomial-time prover P: W — R and
every uploaded file w € W, we have

m«—RJ\/[

Extract(r, k) # m Kk —r KeyGen(1%) 2.2)
succ(r, k) > 1-¢€| w « Init(m, x) '

r — P(w)

In equation (2.2), the randomness comes from pairs (m, k) € M x X picked uniformly at random among those
satisfying w = Init(m, x).

Since we deal with values of T very close to 0, we also say that a strongly (e, 7)-sound PoR admits
A = —log, (1) bits of security against e-adversaries.
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Informally, saying that a PoR is not weakly sound amounts to finding a polynomial-time deterministic
algorithm P which
. takes, as input, a file w € W and outputs a response word r € R?,
- makes the extraction fail with non-negligible probability (over messages m and keys x such that the
corresponding response words are successfully audited).

3 Our generic construction

Schematically, in the initialisation phase of our construction, the Verifier
(i) encodes his file according to a code C,
(ii) scrambles the resulting codeword using a tuple of permutations over the base field,
(iii) uploads the result to the Prover.
As we explained in the introduction, the verification step then consists in checking that the server is still able
to give answers that, once descrambled, satisfy low-weight parity-check equations for C.
For this purpose, we next introduce objects called verification structures for codes, which will be used in
the definition of our generic PoR scheme.

3.1 Verification structures: A tool for our PoR scheme

We here consider IFy, the finite field with g elements. From well-known coding theory terminology, the support
of aword w € FFy is supp(w) := {i € [1, n], w; # O}, and its weight is wt(w) := [supp(w)|.

In this work, we need to consider codes whose alphabets are finite-dimensional spaces R over Fy, typ-
ically R = IF;. Precisely, a code C of length n over R is a subset of R". A code € ¢ R" is Fy-linear if C is
a vector space over IF;. When R = IF;, we get the usual definition of linear codes over finite fields. Unless
stated otherwise, we only consider IF,-linear codes, that we will refer to as codes.

We usually denote by k the dimension over F, of a code €. Its minimum distance dmin(C) is the smallest
Hamming distance between two distinct codewords. If n is the length of G, then dmin(C)/n € [0, 1] is the
relative minimum distance of the code G, while k/n represents its rate. If C € IFZ, its dual code C* is defined as
{h € F, ¥, hic; = 0 forall ¢ € C}. Codewords in €+ are also called parity-check equations for €.

Definition 3.1 (Verification structure). Let 1 < ¢ < nand € < IFj be a code. Let also Q be a non-empty set of
¢-subsets of [1, n]. Set R = IFf}. We define the restriction map R associated to Q as
R: Qx IFZ - R,
(u, w) = wp,.

Given an integer s > 1 and a map V: Q x R — IF5, we say that (Q, V) is a verification structure for C if the

following holds:

(1) Foralli € [1, n], there exists u € Q such thati € u.

(2) For all u € Q, the map F; — T given by a — V(u, R(u, a)) is surjective and vanishes on the code €.
Explicitly,

V(u,R(u,c))=0 forallc e C.

The map V is then called a verification map for C, and the set Q a query set for C. By convention, for w € Iy
and r € R2, we define

R(w) := (R(u,w) : u € Q) e R?,
V(r) := (V(u, 1) : u € Q) € (F)°.

Finally, the code R(C) := {R(c), c € C}is called the response code of C.
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Example 3.2 (Fundamental example). Let C be a code, and let H be a set of parity-check equations for € of
Hamming weight ¢, whose supports are pairwise distinct. Define the query set Q = {supp(h), h € H} and, for
any u € Q, h(u) to be the unique parity-check equation in H whose support is u. Finally, we define a map V
by

V:QAxR - Fy,

4
(W, 1) = Y h()yi.
i=1

Notice that we set s = 1 here. By construction, it is clear that (Q, V) is a verification structure for €.

Example 3.3 (Toy example). Let € ¢ IFZ be a binary Hadamard code of length n = 7 and dimension k = 3. In
other words, C is defined by a parity-check matrix

111 0 0 0 O
1 001 1 0 O
1 0 0 0 01 1
H= 01 0 0 1 1 0
01 01 0 0 1
001 1 0 10
0 01 01 01

According to Example 3.2, we define Q to be the set of supports of rows of H. In other words,
Q = {{1’ 2’ 3}’ {1’ 4’ 5}’ {1’ 6’ 7}’ {2’ 5) 6}’ {2’ 4’ 7}’ {3’ 4’ 6}’ {3’ 5’ 7}}'

Then the verification map V: Q x ng — TF, can be defined as follows. If u = {u1, up, us} € Qand b € F¥ is
indexed according to u, then we define

3
V(u, b) =) by,

i=1
Now let m = (m1, my, m3) € ]Pz The message m can be encoded into
c=(my,my, my + my, m3, My + M3, My + My + M3, My + m3) € C.

Hence the word r = R(c) € (IF3)7 is

C1 C1 C1 Co Co C3 C3
r= (6] ’ Cy ’ Ce ) Cs ) Cy ) Cy ’ Cs
C3 Cs C7 Ce C7 Ce C7
my my my mp
= m; > ms s| My +my+ms |, mp +ms >
mi + mj miy + ms mp + ms mi +mp + ms
m mi +mp mi +mp
ms s ms > | mp+m3
mp; + ms mi +mp; +ms myp + ms

For each vector-coordinate b ¢ IFg of r = R(c), one can now check that Z}- bj = 0. Hence we get V(R(c)) = 0,
as expected.

From now on, we denote by N = |Q| the length of the response code R(C) of a code € equipped with a verifi-
cation structure (Q, V).
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The code € and the verification structure (Q, V) for € are public parameters. We assume that C is linear and set N = |Q|. We recall
that R = F5 and W = .
Key generation: The Verifier generates uniformly at random an n-tuple of permutations

(01,...,00) =0 —g S(Fy)".

Initialisation: The Verifier first encodes his file m € IFS into a codeword ¢ € € with a systematic encoding algorithm for C. Then
the Verifier scrambles each coordinate ¢; using the permutation o;:

w; =ogj(ci), 1<i<n.
Finally, w € W is sent to the Prover, and m is erased by the Verifier. To sum up, the deterministic algorithm Init is defined by
Init(m, o) := w = a(C(m)) € W.

Based on his knowledge of w and public parameters, the Prover produces a word r — P(w), r € R2, which corresponds to the

vector of outputs of the deterministic proving algorithm P on input w.

Verification:

(i) The Verifier picks uniformly at random u = (u1, ..., ue) «g Q. Then the Verifier sends u to the Prover, meaning the Prover
is asked to send back R(u, w) = wy, € IFf; to the Verifier.

(i) The Prover sends back the u-th coordinate r, € R of his response word r to the Verifier.

(iii) Oninput r, € R, the Verifier runs V?(u, r,) and outputs the result. Here we mean that:

True ifVo%u,ry) =0,

Check(u, ry, 0) :=
False otherwise.

Extraction: The Verifier first collects r = (P(w), : u € Q) € RZ. Then he runs the extraction procedure given in Figure 3, on input
o and r, and he outputs his result.

Figure 2: Definition of our PoR scheme.

3.2 Definition of our PoR scheme

Let (Q, V) be a verification structure for € ¢ IF, and let 0 € &(IF,)", where &(IF,) denotes the set of permuta-
tions over F4. Any n-tuple of permutations 0 = (01, ..., 0n) € &(FFy)" naturally acts on ¢ € Fj by

a(c) = (01(c1), -« - s Onlcn))s
and we define o(C) = {o(c), ¢ € C}. Let finally
Vo: Qx ng - F,
(W, y) = V(u, 07, (),
where al‘u1 (y) = (0;11(y1), cee, a;} (ye¢)). The map V? has been defined in order to satisfy
V?(u, R(u, 0(c))) = V(u, R(u, c))

for every (c, u) € € x Q.
Based on this, our PoR construction is given in Figure 2.

3.3 Analysis
3.3.1 Preliminary results

We first give results concerning verification structures and response codes. The following two lemmata are
straightforward to prove.
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Input: 0 € G(Fq)" and r € R2.

Output: m € F¥ or a failure symbol L.

(i) Definer =0 1(r).

(i) Onchallenges u € Q such that V(u, r},) # 0, assign r}, « L.

(iii) Run a bounded-distance error-and-erasure decoding algorithm for R(C) with input r' € (R U {1})“. It outputs either a word
m' € ¥, or the failure symbol L.

(iv) Return this output.

Figure 3: Our extraction procedure Extract(r, o).

Lemma 3.4. Let (Q, V) be a verification structure for a code C < Tj. Then (Q, V) is a verification structure
for a(C).

Lemma 3.5. Let Q be any query-set for a code € ¢ Ty whose elements have cardinality ¢ > 1. Then its response
code R(C) is an Fy-linear code over the alphabet R = ]Ff}.

Remark 3.6. By considering 0(C) instead of €, we loose the FF-linearity, but one can check that verification
structures still make sense and provide the result claimed in Lemma 3.4.

The next result states that the map € — o(C) does not modify the distance between codewords.

Lemma 3.7. LetC ¢ IF; be a linear code, (Q, V) a verification structure for C, and 0 € &(IF4)". Then it holds that
e the distribution of distances in C and o(C) are the same,
e the distribution of distances in R(C) and R(cg(C)) are the same.

Proof. Since every o; is one-to-one, for any c, ¢’ € G, we get

d(c,c")={i e [1,n], ¢; # c}}]
= {i € [1, n], 0i(ci) # 0i(c)H}
= d(o(c), o(c")).

The proof for response codes relies on the same argument. O

Remark these results imply that, if € is linear, then the minimum distance of R(c(C)) is the minimum weight
of R(C).

Definition 3.8. Let € € [0, 1] and (Q, V) be a verification structure for a code € ¢ IFZ. We say r € R9 is e-close
to (Q, V) if
wt(V(r)) := |[{u € Q, V(u, ry) # 0}| < eN.

Let now ¢ € Cand § € [0, 1]. We say that r € R? is a B-liar for (Q, V, c) if
H{u € Q, V(u,r,) =0andr, # R(u, ¢)}| < BN.

Bounded-distance error-and-erasure decoder. Let A C IFS be any code of minimum distance d, and let a € A
be corrupted with b errors and e erasures, resulting in a word r’ € (F; U {L})". Then it is well known that, as
long as 2b + e < d, itis possible to retrieve a from r' thanks to a so-called bounded-distance error-and-erasure
decoding algorithm. This is precisely the decoding algorithm that we employ in Figure 3 on the code A = R(C).

Our framework allows us to reformulate the extraction success in terms of a probability to decode cor-
rupted codewords. More precisely:

Proposition 3.9. Let 0 € G(IFy)", m ¢ IFZ, and denote by d the minimum distance of R(C) of length N. Let also
r € R2 be the response word, output of a proving algorithm P taking w = (C(m)) as input. Finally, assume that
ris e-close to (Q, V9) and a S-liar for (Q, V?, w), with (¢ + 28)N < d. Then Extract(r, o) = m, where Extract(r, o)
is defined in Figure 3.
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Proof. Recall that r’ € (Ru {1})? represents the word we get from r after step (ii) of the algorithm given in

Figure 3. Let us now translate our assumptions on r in coding-theoretic terminology:

e ris e-close to (Q, V?) means that there are at most eN challenges u € Q for which we know that the
coordinate r/, is not authentic. This justifies that we assign erasure symbols to these coordinates.

o risa B-liar for (Q, V, ¢) means that there are at most SN other corrupted values r},, but we cannot identify
them. Therefore, we can assimilate these coordinates to errors.

To sum up, we see r' as a corruption of R(C(m)) with at most eN erasures and at most BN errors, where N = |Q].

Since we assume that (¢ + 28)N < d, we know from the previous discussion that the decoding succeeds to

retrieve m. O

3.3.2 Bounding the extraction failure

According to Definition 2.3, our PoR scheme is weakly (&, 7)-sound if, for every polynomial-time algorithm P
outputting a response word r™) from a file w, we have

. . . m «g IFZ
decoding r") into m fails

Pr
om wt(VO(r™)) < eN

0—rG[F)" | <.
w = o(C(m))

Using Proposition 3.9, the security analysis of our PoR scheme reduces to measuring the ability of the
Prover to produce a response word r which is e-close to (Q, V) and a -liar for (Q, V°, w), with (¢ + 28)N > d.
For fixed r e R9, 0 € S(Fy)" and w = 0(C(m)) the authentic file given to the prover, we define three

subsets of Q:

e D(r,w):={ueQ, r, # R(w)y} and D(r, w) := |D(r, w)| = wt(r — R(w)). This represents challenges u on
which the response word r differs from the authentic one R(w).

o &(r,o):={ueQ, Vo(u,ry) + 0}and E(r, 0) := |E(1, 0)] = wt(V9(r)). These are challenges u on which the
associated coordinate r, is not accepted by the verification map (it corresponds to erasures in the decod-
ing process).

e B(ro,w):={ueQ,r,+Rw),and V°(u,r,) =0} and B(r, g, m) := |B(r, 0, m)|. These are the chal-
lenges u on which the associated coordinate r,, is accepted by the verification map, but differs from the
authentic response s,, (it corresponds to errors in the decoding process).

One can easily check that, for every o, the sets £(r, 0) and B(r, o, w) define a partition of D(r, w). The proba-

bility of extraction failure can thus be written as

2D, w) — E(r,0) > dmn®(@ | ™ T
r,w)— ¥, 0) 2 Amin
o r GE)" |. (3.1)
E(r,0) <eN
w = o(C(m))

Forw ¢ ]Fg , let us define the set of admissible permutations and messages
@, :={(0, m) € S(Fy" x lF’;, w = 0(C(m))},
so that equation (3.1) rewrites

p 2D(r, w) — E(r, 0) > dpin(R(C))
I
E(r,o0) <eN

(o0, m) g GI>w>-

Later on, we will use the notation Prg, to refer to the fact that (o, m) is uniformly drawn from ®,,. Similarly
we will use notation Eg, for the expectancy and Varg, for the variance.
Given r € R2, we also define

a(r,w):= max Prg,(Vo(u,r,)=0)
ueD(r,w)
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and a := max(,w) a(r, w), where (r, w) are such that D(r, w) # 0. The parameter a € (0, 1) is called the bias of
the verification structure (Q, V) for €. It corresponds to the maximum probability that a response is accepted
but not authentic.

Lemma 3.10. Forallr e R2 and w € ]FZ, we have
Eo, (E(r, 0)) > (1 — a)D(r, w).

Proof. A simple computation shows

Eo,(EC,0) =Eo,( Y Tvrwno)

ueD(r,w)

= Y Pro, (Vo(u,ry) #0)

ueD(r,w)
> Z 1-a)
ueD(r,w)

> (1 -a)D(r,w). O

Lemma 3.10 essentially means that, if an adversary to our PoR scheme wants its response word to be (in
average) e-close to the verification structure, then he should modify at most D(r, w) < 1‘% responses. Below,
we take advantage of this result, and we measure the probability of an extraction failure.

First, for 6, € € (0, 1), let

p(r,w; e, 8) := Pre,(2D(r, w) — E(r, 0) = 6N and E(r, 0) < eN)
= Prg,, (E(r, 0) < min{eN, 2D(r, w) — 6N}).
The probability p(r, w; €, §) represents the probability that the extraction fails for a response code of

relative distance § and an adversarial response word r associated to w, which is e-close to the verification
structure. Let us bound p(r, w; €, 6).

Proposition 3.11. Let 6, € € (0, 1) such that § 5% > €. Let also r € R° and w € . Then we have

Vare, (E(1, 0))
(5 (635 -¢)' N

1+a

p(r,w;e, 6) <

Proof. We distinguish three cases.

(i) 2D(r,w) — 6N < 0. The event E(r, o) < min{eN, 2D(r, w) — 6N} never occurs since E(r, o) > 0. Hence
p(r,w;e, 6) =0.

(i) eN < 2D(r, w) — 6N. The inequality E(r, 0) < €N implies

E(r,0) -Eg,(E) <eN - (1-a)D(r, w)

e+6
2

s—1+a(61_a—£)N.
2 1+a

<eN-(1-a) N

Hence, using Chebychev’s inequality,

p(r,w; €, 6) = Pro, (E(r, 0) < &N)

< Pr¢w(|E(r, 0) - Eo, (E)| > * ; “(51 ;Z - e)N)

Varg, (E(r, 0))
NEICEERY

1+a
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(iii) 0 < 2D(r, w) — 6N < eN. In this case, E(r, 0) < 2D(r, w) — 6N implies

E(r,0) - Eo,(E) < (1 +a)D(r, w) - 6N
e+6

<(1+a) N - 6N
_1+(x 1-«a

N 2<1+a

- e)N.
Therefore, similarly to the previous case, we obtain the claimed result. O

For any u € D(r, w), denote by X,, the {0, 1}-random variable “Iyo(y,r,)=0” When o is uniformly drawn from
®@y,. It holds that E(r, 0) = ¥ ,cp(r,w) (1 = Xu)-

Recall that two real random variables Y, Z are uncorrelated if E(YZ) = IE(Y)E(Z). For instance, two inde-
pendent random variables are uncorrelated.

Lemma 3.12. Letr € R% andw € IFZ. If the random variables {X,}uenr,w) are pairwise uncorrelated, then
Vare, (E(r, 0)) < D(r, w).
Proof. By assumption, {Xy}yeD(r,w) are pairwise uncorrelated; hence

Vare, (E(1, 0)) = z Varg, (1 - Xy).
ueD(r,w)

The trivial bound Vare, (1 - X,,) < 1 gives the result. O

As a corollary of Proposition 3.11 and Lemma 3.12, under the same hypothesis and assuming & ﬁ > g,
we get
4

, W; €, 6) <
Pl wse 0) < N((1- )b - (1+a))’

since D(r, w) < N. Moreover, if limy_,o, 6 > 0 and limy_, a = O, then p(r, w; €, §) = O(1/N).
Therefore, we end up with the following theorem.

Theorem 3.13. Let (Q, V) be a verification structure for C with bias a. Let N = |Q|, and let 6 = dmin(R(C))/N be
the relative distance of the associated response code. Finally, assume that, for any r € R? and any w € IF, the
variables {Xy}uenr,w) are pairwise uncorrelated. Then, for any € < § ﬁ, the PoR scheme associated to C and
(Q, V) is (g, T)-sound, where
_ 4
N((1 - a)8 - (1 +a)e)®

For asymptotically small a, a code € equipped with a verification structure satisfying the conditions of The-
orem 3.13 thus gives an (g, 7)-sound PoR scheme for every € < (1 + 0(1))6 and T = O(1/N).

According to Theorem 3.13, we thus need to look for (sequences of) codes € and associated verification
structures (Q, V) such that
(i) the response code R(C) admits a good relative distance § = dpin(R(C))/N,
(ii) the bias a is small,
(iii) random variables {X, },eD(r,w) are pairwise uncorrelated.
Sections 3.4 and 3.5 characterise conditions under which the last two points are fulfilled. Then, in Section 5,
we discuss which response codes can achieve good relative distance.

3.4 Estimating a

In this section, we prove that, assuming ®,, approximates the uniform distribution over &(IF,;)" in a sense
that we make precise later, the bias a can be bounded according to parameters of the verification structure.
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Letusfixr e R2, we 7 and u € Q. We recall that a is defined by

a=max max Pre, (V°(u,r,)=0),
rnw ueD(r,w)

where randomness comes from ¢ g @y, = {(0, m) € S(Fy)" x IF’(;, w = g(C(m))}. We notice that this is equiv-

alent to write 0 «g {0 € &(Fy)", o71(w) € C}.

For convenience, we will view r,, € R = ng as a vector indexed by u = (uy, ..., Ur), so that we can easily
denote by r,[uj] € Iy its j-th coordinate, 1 <j < £. We define the code K, := ker V(u, -) ¢ IF¢, and up to re-
indexing coordinates, €, < K,. This allows us to write that, for every o, we have V’(u, r,) = 0 if and only
if ogl(ru) € K. Finally, we denote by Z, := {i € u, ry[i] #+ R(w)y[i]} the set of coordinates of r, that are not
authentic.

Let Y, (0) represent the event “ogl(ru) €Ky, | supp(o;l(ru)) = Z,”. Informally, the reason why we con-
sider an event Y,(0) conditioned by supp(o;(r,)) = Z, is that the Prover is free to choose any support Z,
on which he can modify the original file. More formally, this constraint will help us to bound the probability
Pro, (Vo(u, ry) = 0) in Lemma 3.14. We say that @, is sufficiently uniform if, for every u € Q, we have

_ Pr[Yy(0) | 0 < ®y] - Pr[Yy(0) | 0 g &(Fy)"]

Yu:= Pr[Y,(0) | 0 —g S(F,)"] = o)

when the file size nlog g — oo. In other words, ®,, is sufficiently uniform if it is a good approximation of the
whole set of n-tuples of permutations, when considering the probability that Y, (o) happens.

Lemma 3.14. Letr, w, u and Z, be defined as above. Let also A, = |{x € Ky, supp(x) = Z,}|. Then

(1 +yuwAy
(q-1)lal”

Proof. For every o such that (o, m) € ®,,, we know that 0;1(R(w)u) € K, and we recall that V°(u, r,) =0
if and only if oal(ru) € K. Since K, is linear, and up to considering ogl(R(w)u —ry) instead, we can
assume without loss of generality that oal(ru)[i] =0 for every i € u\ Z,. In other words, we assume that
supp(o;l(ru)) = Zu-

Remark that

Pro, (V7(u,ry) =0) <

Proc e, [0y (ru) € Ky | supp(ay, (1)) = Z,]
= Pr e [x € Ky | supp(x) = Zy]
= Pry pe[x € Ky | supp(x) = Zy]
~(g- DA
since A, counts the number of codewords in K, whose support is Z,,.
Therefore, we get
Pro, (Vo(u, 1) = 0) < Pro, [V7(u, ry) = 0 | supp(0;,' (1)) = Zu]
= (1 + yu) Pra(,n [VO(u, ry) = 0 | supp(o;,' (1)) = Zy]
= (1+ yu) Pryc_ g [x € Ky | SUPPY) = Zy]

(L +yn)Ay
CEV

Lemma 3.15. Let S be the TF4-vector space {({x € Ky, supp(x) = Z,}), and assume that S, + {0}. We have

Au < qlzulfdmin (Su)+1 .

Proof. We prove that, if A, > g° for some integer e > 0, then dnin(Sy) < |Zy| — e, which clearly induces our
result. If A,, > g%, then dim S, > e since |S,| > A,. The Singleton bound then provides

Amin(Sy) < |Zyl -dim S, +1 < |Zy| - e. O
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Finally, we get the following upper bound on a.

Proposition 3.16. Let A = min{dnin(Ky), u € Q}. Then

¢
as(1+y)<1+ ) q 1,

q-1
where y, = maxyy.
Proof. Remark that S,;, defined in previous lemma, is a subcode of K,, shortened on u \ Z,,. Hence

dmin(Ky) < dmin(Su),

and we can apply previous results and obtain the desired bound

12l ¢
a< rIlllaer(l + yu)<i) q_dmin(1<u)+1 < (1 + y)(l + ) q—A+1’

q-1 q-1

where y = max,, yy,. O

If every @, is sufficiently uniform, then, by definition, we have y = 0o(1) when the file size nlogq — oo.
This assumption is significant since we desire to have a small bias &, which is deeply linked to the sound-
ness of PoRs (see Theorem 3.13). In Appendix A, we present experimental estimates of a, validating that the
assumption that @,, is sufficiently uniform.

3.5 Pairwise uncorrelation of {X,},cp

This section is devoted to proving that variables {X,},cp(r,w) are pairwise uncorrelated if the supports of
challenges u € D(r, w) have small pairwise intersection. For this purpose, let us recall that, for fixed r € R<,
wand u € D(r, w), the random variable X, represents Lyo(y,r,)=0 When o is uniformly picked in ®,,.

We first state a technical lemma that will be useful to prove Proposition 3.18 below. For clarity, we denote
by d*(C) the minimum distance of the dual code C* of a linear code C.

Lemma 3.17. Let C ¢ IFj be a linear code and T < [1, n], |T| = t, where t < d*+(C). Fora ¢ IFZ, we define
Va={ceC, qr=a} and Ng=[Vgl.

Then

(i) Vo ={vee, vy =0}isa linear subcode of C;
(ii) for every non-zero a € L, there exists a non-zero c'® ¢ C such that Vg = Vo + {c@};

(iii) for every a € FI, N, = g*t, where k = dim €.

Proof. (i) The fact that Vo = {v € FX, v|r = 0} is actually the well-known definition of the shortening of a code.
It is easy to prove that it defines a linear code.

(ii) Let a € IPg be non-zero, and let us first prove that there exists ¢(? e € such that CI(;) = a. If it were not
the case, then, by definition, we would have Cjr # ]Ffl. But this is impossible since €+ contains no non-zero
codeword of weight less that t. It is then easy to check that V, = Vo + {c(@)y,

(iii) First notice that V, NV, = @ if a # b. Since

C= U Va,

aclF
we get the expected result. O

Proposition 3.18. If max{lunv|, u # v € Q} < min{d*(Cy,), u € Q}, then the random variables {X,}uco are
pairwise uncorrelated.
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Proof. Recall that K, := ker V(u, -) and that, by definition of a verification structure, we have €}, ¢ K. For
u + v € Q, let us prove that E(X, X,) = E(X,)E(X,). First,

E(X,Xy) = Pr(V°(u, ry) = 0and V°(v, r,) = 0)
=Pr(o Y (ry)u € Kyand 071 (r,)y € Ky).

Denote t = [u nv|, and let (a, b) € (IFf])Z. We denote by Z(o, a, b) the event
0_1(ru)|unv =a and 0_1(rv)|uﬂv =b.

We first notice that {Uﬂ}mv’ 0 € @} = S(F,)". Indeed, we can here use an argument similar to the proof of
Lemma 3.17: the constraint 0~1(w) € €is ineffective on al’ulrw since [u Nv| < t < d*(C,) for every z € Q. There-
fore, for every (a, b) € (]Ffl)z, we have

Pr(Z(0,a,b)) = g%,
and it follows that

1
EX, X)) =—: Y Pr(o7'(r)u € Kyand o~ (r)y € Ky | Z(0,a,b)).
a,be(IF))2

Recall now that t < min{d*(Cp,), u € Q} < min{d*(Ky), u € Q}. Hence, for fixed a and b, the variables
0‘1(ru)|u €K, | Z(o,a,b) and U‘l(rv)h, € K, | Z(o, a,b) are independent (once again, it is a consequence
of the structure results of Lemma 3.17). Therefore,

E(X,X,) = iﬂ Y Pr(o7 (r € Ku | Z(0,a,b)) Pr(07"(r)y € Ky | Z(0,a, b)).

a,be(IF))2

Then

1
E(X,Xy) = i Z Pr(ail(ru)lu €Ky | Uﬁl(ru)lunv - a) Pr(ofl(rv)lv €Ky | Uil(rv)lunv = b),

a,be(IF))?
and we conclude since
E(Xy) = q_t Pr(a_l(ru)lu €Ky | U_I(ru)lunv = a)- O

t
ael;

4 Performance

4.1 Efficient scrambling of the encoded file

In the PoR scheme we propose, the storage cost of an n-tuple of permutations in G(IF,)" is excessive since it
is superlinear in the original file size. In this subsection, we propose a storage-efficient way to scramble the
codeword c € € produced by the Verifier.

Precisely, we want to define a family of maps (0™),, where 6® : @ — IFZ, CH WE ]FZ, with the following
requirements:

+  For every k, the map o is efficiently computable and requires a low storage.

«  For every x and every c € G, if w = 6®(c), then, for every i € [1, n], the local inverse map w; — ¢; is
efficiently computable.

o If x is randomly generated but unknown, then, given the knowledge of w = 0™ (c) and @, it is hard to
produce a response word r € R? such that, for many u € Q, both V"W(u, ry) = 0and r, # wy, hold. To be
more specific and in light of the security analysis of Section 3.3, we require that it is hard to distinguish
0" (c) from a random (21, . .., z,) € F?, where symbols z; are picked independently and uniformly at
random.

We here propose to derive ¢ from a suitable block cipher, yielding the explicit construction given below. Of

course, other proposals can be envisioned.
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The construction. Let IV denote a random initialisation vector for AES in CTR mode (IV could be a nonce
concatenated with a random value). Vector IV is kept secret by the Verifier, as well as a randomly chosen
key « for the cipher. Let also f be a permutation polynomial over I, of degree d > 1. For instance, one could
choose f(x) = x4 with gcd(d, g — 1) = 1. Notice that polynomial f can be made public.

Let s = | 2% | be the number of IF4-symbols one can store in a 256-bit word?. Up to appending a few

[log; q1
random bits to ¢, we assume that s | n, and we define t = n/s. Let us fix a partition of [1, n] into s-tuples
i=(i,...,ls); it can be, for instance, (1,...,s),(s+1,...,2t),...,((t-1)s+1,...,n). Notice that this
partition does not need to be chosen at random. Given ¢ = (cy, ..., cy) € € and i an element of the above

partition, we now define
bi = (f(ci,) | -++ | f(ci,)) ® AES.(IV @ i) € {0, 1}*°°.

If log, g 1 256, trailing zeroes can be added to evaluations of f. Finally, the pseudo-random permutation o
is defined by
a(c) := (b1, ..., by).

Design rationale. AESisanatural choice when one needs a (secret-)keyed pseudo-random permutation. Also
notice that, with this construction, one only needs to store the key x and the vector IV since the other objects
(the polynomial f, the partition) are made public. Hence our objectives in terms of storage are met.

We now point out the necessity to use i as a part of the input of the AES cipher. Assume that we do not.
Then the local permutation o}, 1 < j < n, would not depend on j. As a consequence, for a certain class of
codes, the local verification map r,, — V°(u, r,) would not depend on u, and a malicious Prover would then
be able to produce accepted answers while storing only a small piece of the file w (e.g., w}, for only one u € Q).

Another mandatory feature is the non-linearity of the permutation polynomial f. Indeed, assume, for
instance, that f = id. Then, given the knowledge of w = a(c), it would be very easy for a malicious Prover
to produce a word w' # w such that r' = R(w') is always accepted by the Verifier. Simply, the Prover defines
w' = w + ¢', where ¢’ is any non-zero codeword of C. Hence one sees that the polynomial f must be non-linear
in order to prevent such kind of attacks.

4.2 Parameters

We here consider a PoR built upon a code € ¢ Fg with verification structure (Q, V) satisfying R = ng and
V(R) = ;. We also assume that we use an n-tuple of pseudo-random permutations as described in the pre-
vious subsection.

Communication complexity. Ateach verification step, the client sends an ¢-tuple of coordinates (u1, . .., ug),
u; € [1, n]. The server then answers with corresponding symbols wy,; € IF;. Therefore, the upload communi-
cation cost is £ log, n bits, while the download communication cost is £log, g, thus a total of £(log, n + log, q)
bits.

Computation complexity. In the initialisation phase, following the encryption described in Section 4.1, the
client essentially has

« to compute the codeword c € @ associated to its message,

« tomake n evaluations of the permutation polynomial f over g,

o tocomputet = % AES ciphertexts to produce the word w to be sent to the server.

Given a generator matrix of €, the codeword c can be computed in O(kn) operations over F; with a matrix-
vector product. Notice that quasi-linear-time encoding algorithms exist for some classes of codes. Besides, if
amonomial or a sparse permutation polynomial is used, then the cost of each evaluation is O((log, g)3). If we
denote by c the bitcost of an AES encryption, we get a total bitcost of O(nk(log, q)? + n(log, q)3 + cnlog, q)

for the initialisation phase. Recall this is a worst-case scenario in which the encoding process is inefficient.

2 In the scheme we propose, we will always have log(q) < 256.
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Client storage 512 bits
Server total storage n log, g bits
Communication complexity (verif.) ¢log,(nq) bits

Client computation complexity (verif.) € decryptions, £s operations over Fgq
Server computation complexity (verif.) £ reads, no computation

Figure 4: Summary of parameters of our PoR construction for an original file of size k log, g bits and a code € of dimension k
over IF; equipped with a verification structure (Q, V) such that |u| = £ and rank V(u,-) < sforallu € Q.

At each verification step, an honest server only needs to read ¢ symbols from the file it stores. Hence its
computation complexity is O(#). The client has to compute a matrix-vector product over IF;, where the matrix
has size s x £ and the vector has size ¢, thus a computation cost of O(¢s) operations over ;.

Storage needs. The client stores 2 x 256 bits for secret material xk and IV to use in AES. The server storage
overhead exactly corresponds to the redundancy of the linear code C, that is, (n — dim €) log, ¢ bits.

Other features. Our PoR scheme is unbounded-use since every challenge reveals nothing about the secret
data held by the client. It does not feature dynamic updates of files. Though, we must emphasise that the
file w the client produces can be split among several servers, and the verification step remains possible even
if the servers do not communicate with each other. Indeed, computing a response to a challenge does not
require mixing distinct symbols w; of the uploaded file. Therefore, our scheme is well suited for the storage
of large static distributed databases. Parameters of the PoR schemes we propose are reported in Figure 4.

5 Instantiations

In this section, we present several instantiations of our PoR construction. We first recall basics and notation
from coding theory.

The code Rep(¢) ]Ps denotes the repetition code ((1, ..., 1)). We recall that Rep(¢)* is the parity code
Par(¢) := {c € F¢, le ci = 0}. Let C, €' be two linear codes over F, of respective parameters [n, k, d] and
[n, k', d']. Their tensor product € ® €’ is the FF,-linear code generated by words

(cici:1<i<n, 1sjsn’)eng"'.
It has dimension kk’ and minimum distance dd’'. We also denote by

C*:=Ce- - ®CCEFY
zZ o
s times

the s-fold tensor product of € with itself.

5.1 Tensor-product codes

The upcoming subsection illustrates our construction with a non practical but simple instance. The next ones
lead to practical PoR instances.

5.1.1 Asimple but non-practical instance

Letn=Nf¢and Q={u; ={i€+1,i€+2,...,(+1)¢}, i € [0,N-1]}. The set Q defines a partition of [1, n].
We define the code
e= {ce]FZ, Zc,-:OforallueQ} < FFy.

jeu
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In other words, € = Par(¢) ® FY, and a parity-check matrix H for C is given by

T F o YU ¢
0 0o 1 1

H=
: . . 0
O oo e e eee e 01 e 1

The verification map V': Q x ]Ff; — [Fy is defined by V(u, b) := Zf=1 by, forall (u, b) € Q x lFf;. By construction
(see the fundamental Example 3.2), the pair (Q, V) defines a verification structure for C.

Lemma 5.1. Let C = Par(¢) ® ]F{,V as above. Then the response code R(C) has minimum distance 1.

Proof. We see that the restriction map R sends the codeword (1,-1,0,0,...,0) € C to a word of weight 1.
Besides, R is injective, so dmin(R(C)) > 0. O

Since 6 = dmin(R(C))/N = 1/N — 0 when N goes to infinity, an attempt to build a PoR scheme from € cannot
be practical.

5.1.2 Higher order tensor-product codes

Let A C ]Fg be a non-degenerate [£, k4, da]4-linear code, and define € = A% ¢ IFS, where n = ¢5. Notice that
it will be more convenient to see coordinates of words w ¢ IFZ as elements of [1, £]5.
Forae[1,¢]°and 1 <i<s,wedefine L;, c [1, £]°, the “i-th axis-parallel line with basis a”, as

Lia :={x € [1, €]° such that x; = a; for all j # i}.

By definition of C, a word c lies in C if and only if, for every L = L; a, the restriction c|; € A. This means that
we can define
o asetofqueriesQ ={L;a,i€[1,s],ac]l,¢£]%},
o averification map
V:OxR— Fy kA,
(L, r) — Hr,

where H is a parity-check matrix for A whose columns are ordered according to the line L.
By the previous discussion, it is clear that ¢ € € implies that V(L, ¢|) = O for every L € Q (in fact, these two
assertions are equivalent). Hence (Q, V) defines a verification structure for ¢, and we have N = |Q| = s¢5~1.

Lemma 5.2. Let C = A% as above. Then R(C) has minimum distance s - di[l.

Proof. Let us first prove that the minimum distance of R(C) is larger than s - dj[ 1 Let r = R(c) € R(C), and
assume r # 0. Then there exists L € Q such that O # r; = ¢ € A. Therefore, cx #+ 0 for some x € L c [1, £]°.
Consider the set

Six = {Y €1, ¢)°, Vi= Xi}.

Very informally, the set S; x corresponds to the hyperplane passing through x and “orthogonal” to the i-th
axis. By definition of € = A®S, we know that ¢, Six € A8\ {0} forevery 1 <i < s. Let

Ui = supp(cis,,) = {u®?, ..., u®}

with t; > dinin(A®¢™) = (d4)5*. Every u") € U; defines a line L; i) on which ¢, is a non-zero code-
word of A. Equivalently, r is non-zero on index L; yi» € Q. Therefore,

s s
wt(r) = |{L € Q, rp # 0}| > U{Li,u(i-f): 1<j<t}| = Z ti > S(dA)Sfl.
i=1 i=1
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Let us now build a word r € R(C) of weight s(d4)%"!. Let w € A \ {0} be a minimum-weight codeword
of A, and define W := supp(w) c A. Define ¢ = w® € C; then supp(c) = W5. Let finally r = R(c). We see that
ry;, # Oifand only if x € W*. Hence we get

S
iLix, x € W9

i=1

wt(r)={L € Q, r; # 0}| = =s-ds;t

since each line L; x is counted d 4 times when X runs over W*. O

Proposition 5.3. Let 6 > 0, and let A be an [¢,¢(1 - §) + 1, £6]4 MDS code. Define C = A®* and (Q, V) as
above. If every @, is sufficiently uniform, then the PoR scheme associated to C and (Q, V) is (e, T)-sound for
T= O(ﬁ) and every € < g9, where gy = (1 + O(q~%¢+1))6° when ¢ — co.

Proof. First, the relative distance of R(C) is 6% according to Lemma 5.2. Then the random variables {X, },e»
are pairwise uncorrelated because the inequality

max [unv|=1<£(1-26)+2=mindmin((Cy)")
u#veQ? ueQ

allows us to apply Proposition 3.18. Besides, if every ®@,, is sufficiently uniform, then the bias «a satisfies
a=0(q %) and hence 2 =1 + O(g~5¢*1). Therefore, we can use Theorem 3.13, and we get the desired

result. O

Parameters. We mainly focus on the download communication complexity in the verification step and on
the server storage overhead since these are the most crucial parameters which depend on the family of codes
C we use. Besides, we consider that it is more relevant to analyse the ratio between these quantities and the
file size than their absolute values.

Here, for an initial file of size |F| = ((1 — §)q + 1)° log, q bits, we get
« aredundancy rate

nlog,q _ ( q )S .1
[Fl \1-68g+1/) ~ (1-6)%’
o acommunication complexity rate

tlogy q _ q <L gt
|F| (1-6)g+1) ~ (1-6)
Example 5.4. InTable 3, we present various parameters of PoR instances admitting 0.10 < &y < 0.16, for files
of size approaching 10%, 10° and 10° bits. Here Aisa[g, (1 - 8)g + 1, 6q]4 MDS code (e.g., a Reed-Solomon

code), and C = A®S,

The previous example shows that, while the communication rate is reasonable for these PoR instances over
large files, the storage needs remain large.

q 6q s File size (bits) Comm.rate Redundancy rate £o

16 10 4 9,604 6.664x 1073 27.3 0.153

25 13 3 10,985 1.138 x 1072 7.112  0.141

64 24 2 10,086 3.807 x 1072 2.437 0.141

32 21 5 1,244,160 1.286 x 107* 134.8 0.122

47 28 4 960,000 2.938x107% 30.5 0.126
101 47 3 1,164,625 6.071x 1074 6.193 0.101
512 180 2 998,001 4.617 x 1073 2.364 0.124
128 85 5 1,154,413,568 7.762x1077 208.3 0.129
256 150 4 1,048,636,808 1.953x 107 32.77 0.118
1,024 550 3 1,071,718,750 9.555x107° 10.02 0.155
12,167 3,900 2 957,037,536 1.78x 1074 2.166 0.103
16,384 5,500 2 1,658,765,150 1.383 x 1074 2.266 0.113

Table 3: Parameters of PoR instances admitting 0.10 < gy < 0.16.



100 —— ). lavauzelle and F. Levy-dit-Vehel, Generic constructions of PoRs from codes and instantiations DE GRUYTER

5.2 Reed—Muller and related codes

Low-degree Reed—Muller codes are known to admit many distinct low-weight parity-check equations, whose
supports correspond to affine subspaces of the ambient space. Therefore, they seem naturally adapted to our
construction. Let us first consider the plane (or bivariate) Reed—Muller code case.

5.2.1 The plane Reed-Muller code RM4(2, g - 2)

Let € be the Reed—Muller code
C= RMq(zr q- 2) = {(f(xy y))(x,y)e]F‘ZI’ f € IFq[X’ Y]’ degf < q- 2}'
It is well known that € has length g2 and dimension (g — 1)(q — 2)/2. Besides, for every line
L={x=(at+b,ct+d), t € Fg} c]PfI

and every ¢ € C, we can checkthat } ,.; cx = 0.Indeed, let f € Fy[X, Y], degf = a < g — 2. Therestriction of f
on an affine line L can be interpolated as a univariate polynomial fj; of degree at most a. Our claim follows
since .y, 2' = O forevery i< q-2.

Therefore, we can define Q as the set of affine lines L of ]Ffl and V(L,r) = Zf=1 rj € IF4. From the previous
discussion, we see that (Q, V) is a verification structure for C. Also notice there are g(q + 1) distinct affine
lines in IFZ; hence N = q(q + 1).

Lemma 5.5. Let C = RMy(2, g - 2), equipped with its verification structure defined as above. Then the response
code R(@) has minimum distance g? + 2.

Proof. Any non-zero codeword ¢ ¢ C consists in the evaluation of a non-zero polynomial f(X, Y) € F4[X, Y]
of degree at most g — 2. Denote by Ly,...,Ls C lFé the affine lines on which f vanishes, i.e., f(P) = 0 for
every P € L;, 1 <i < a. We claim that a < g — 2. Indeed, since f has total degree less than g — 1, it also van-
ishes on closed lines L, . .., Lg, considered as affine lines in IF_qz, where IF_q denotes the algebraic closure
of IF4. Denote by g; € IF4[X, Y] the monic polynomial of degree 1 which defines L;. From Hilbert’s Null-
stellensatz, there exists r > 0 such that (1_[?:1 gi) | fT. Since the g;’s have degree 1 and are distinct, we get
a <degf < q - 2. Hence the affine lines different from L1, ..., L, correspond to non-zero coordinates of
R(c). There are g(q + 1) — a > g% + 2 such lines, so dmin (R(C)) > g% + 2.

Now we claim there exists a word r € R(C) of weight N — g + 2 = g2 + 2. Let L© and L be two distinct
parallel affine lines, respectively defined by X = 0 and X = 1. We build the word ¢ which is —1 on coordinates
corresponding to points in L(?, 1 on those corresponding to points in L™ and 0 elsewhere. One can check
that ¢ € C; indeed, c corresponds to the evaluation of ]_[ZG]Fq\ 10,13z = X). Now, if we want to compute wt(R(c)),
we only need to count the number of lines which do not intersect L®) nor L™V, Clearly, there are only g — 2
such lines. Hence wt(R(c)) = q(q + 1) — (q — 2), and this concludes the proof. O

Proposition 5.6. Let C = RM(2, g - 2), and let (Q, V) be its associated verification structure. If every @,
is sufficiently uniform, then the PoR scheme associated to C and (Q, V) is (g, T)-sound for € =1 - o(1) and
1

T= O(W)’ when q — oo.

Proof. One can check that the random variables {X,},cp are pairwise uncorrelated since

max [unvl=1<e1-6+2= m'g Amin((Cpu) D).

u#veQ? ue
Besides, the relative distance of R(C) is q‘f;ﬁ) — 1according to Lemma 5.5. If every @,, is sufficiently uniform,
1-a

the bias « satisfies a € O(1/g) and hence 17, = 1 + O(1/q). Therefore, we can use Theorem 3.13, and we get
the desired result. O
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Parameters. For an initial file of size |F| = %(q - 1)(q - 2)log, q hits, we get
o aredundancy rate
2
q-log,q 2
= — 2,
|F| (1-1/g9)(1-2/q)

e acommunication complexity rate

qlog, g 2 1
= — =0(1/qg).
Fl - qa-Tga-2g D

5.2.2 Storage improvements via lifted codes

The redundancy rate of Reed—Muller codes presented above stays stuck above 2. Affine lifted codes, intro-
duced by Guo, Kopparty and Sudan [5], allow to break this barrier while keeping the same verification
structure. Generically, they are defined as follows:

Lift(m, d) := {(f(P))pE]le, f € FglX1, ..., Xn] for every affineline L c F}}', (f(Q))qer € RSq(d + 1)}.

We refer to [5] for more details about the construction. Here we focus on Lift(2, g — 2) since it can be compared
to RM(2, g — 2). Indeed, one sees that

RM(2, g - 2) < Lift(2, g - 2), (5.1)

and equation (5.1) turns into a proper inclusion as long as g is not a prime. Besides, by definition of lifted
codes, Lift(2, g — 2) admits the same verification structure as the one presented previously for RM(2, g — 2).

Lemma 5.7. The response code of Lift(2, q — 2) has minimum distance at least q*> — q + 2.

Proof. The rationale is similar to the proof of Lemma 5.5. Let 0 £+ c € C, ¢ = (f(P))deg, f eFy[X, Y], and
denote by L1,...,Lq C IFLZZ the lines on which f vanishes. The restriction of f along L; can be interpolated
as a univariate polynomial fiz,(T) of degree at most g — 2 since (f(Q))qer, lies in the Reed-Solomon code
RS;(g - 1) by definition of lifted codes. Therefore, fi;,(T) = 0, and f vanishes on L;. Repeating arguments in
the proof of Lemma 5.5, we get a < deg f < 2q — 2 and duyin(R(Lift(2, g -2))) > q* +q-2q+2 =q* - q + 2.

O

We believe the bound given in Lemma 5.7 is not tight, but it is sufficient to have dp,n (R(Lift(2, g — 2)))/N — 1.
Similarly to Proposition 5.6, we can then prove that practical PoRs can be constructed with the family of lifted
codes Lift(2, g - 2).

Proposition 5.8. Let C = Lift(2, g - 2), and let (Q, V) be its associated verification structure. If every ®,,
is sufficiently uniform, then the PoR scheme associated to C and (Q, V) is (g, T)-sound for every € < 1 and
T= O(m), when q¢ — oo

The crucial improvement is that lifted codes potentially have much higher dimension than Reed—Muller
codes. For g = 2¢, the dimension of Lift(2, g — 2) can be proved to equal 4¢ — 3¢ [5].

Example 5.9. In Table 4, we present parameters of PoRs based on Reed—Muller codes and lifted codes, using
files of size approaching 10*, 10° and 10° bits.

Note that this family of codes has been used in the PoR proposal of [7].

5.2.3 On more generic families of codes

We have presented two rather small families of codes producing practical instances of PoR. Let us give a short
summary of approximate lower bounds on crucial PoR parameters that have been shown in previous sections
in Table 5.

Now we quickly mention other families of codes that could be interesting to consider.
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Code q File size Comm. rate  Redundancy rate
Lift 32 3,905 4.097 x 1072 1.311
RM 64 11,718  3.277 x 1072 2.097
Lift 64 20,202  1.901x 1072 1.217
Lift 256 471,800 4.341x1073 1.111
RM 512 1,172,745 3.929x 1073 2.012
Lift 512 2,182,149 2.112x 1073 1.081
Lift 8,192 851,689,033 1.25x 1074 1.024
RM 16,384 1,878,704,142 1.221x107* 2.000
Lift 16,384 3,691,134,818 6.214x 1075 1.018

Table 4: Parameters of PoRs based on Reed—Muller codes and lifted codes.

Family of codes over IFq Redundancy rate Communication complexity rate
s-fold tensor product (Section 5.1.2) (1 -9)"° g V1-0)

Plane RM (Section 5.2.1) 2 2g71

Plane lifted code (Section 5.2.2) 1+ g'98203)-2 g1+ g'0s203)-3

Table 5: Approximate lower bounds on crucial PoR parameters.

Multi-variate generalisation. We have only presented Reed—Muller and lifted codes embedded into the affine
plane ]Fé. One could of course consider a broader ambient space IF', m > 2. Lines would have smaller relative
weight compared to the ambient space, and thus we would decrease the communication complexity of our
PoR schemes. We must however care about the storage overhead which can drastically increase if m gets
large: for instance, any Reed-Muller code RMy(m, g — 2) hasrate < 1/m!.

Lower degree generalisation. In order to increase the soundness of our PoR schemes, one could consider
Reed-Muller codes RM,(2, d) (as well as related lifted codes) with a lower degree d < g — 2. The communi-
cation complexity remains unchanged; however, we could observe overwhelming storage overhead if d is
too small.

Combinatorial generalisation. Codes Lift(2, g — 2) can be viewed as codes from designs (see [1] for more
details), where the underlying block design is the classical affine plane. Considering designs with smaller
block size would lead to PoRs with smaller communication complexity. But once again, this could be expen-
sive in terms of storage since only a few designs produce high-dimensional codes.

6 Conclusion

We have proposed a security model for PoRs in line of previous work, together with a generic code-based
framework. We have then sharply quantified the extraction failure of our PoR construction as a function of
code parameters. Specialising this construction for particular families of codes, we provided instances with
practical parameters. We hope our work will be an incentive for further proposals of code instances, aiming
at better PoR parameters.

A Experimental estimate of the bias o

We here confirm our heuristic on the fact that @,, is sufficiently uniform, by providing experimental estimates
of a.
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Setup. We consider PoR schemes using Reed—Muller codes € = RM4(2, g - 2), as presented in Section 5.2.1.

We also fix the word w € IFj uploaded on the server during the initialisation step. Remark that, for varying w,

all ®,, are equivalently distributed. Indeed, if i € G(IFF;)" satisfies p(w) = w', then the distribution of per-

mutations picked from @,/ can be obtained by applying ) to permutations picked from ®,,. Hence, without
loss of generality, we assume w = 0. Proposition 3.16 claims that, in this context, a should be O(1/q) since

A =2 and ¢ < g. For convenience, we write pg := Pg, (V°(u, r,) = 0), and we recall that a is an upper bound

on pg (for varying u and r).

We proceed to three kinds of tests in order to estimate a:

o Test 1. We sample N challenges u, and, for each sample, wefix t < £and r, in {x € ng, |Zy| = t}. Then we
estimate pg by running M trials and computing the average number of times V’(u, r,) = 0 occurs. We
denote by &y (po) this estimator. We then collect the maximum value of &y(pg) among the N samples
of u.

« Test2.Achallenge uis fixed. For several values of t, we pick N responses r, randomlyin {x € IF¢, |Z,| = t}.
For every r,, we estimate pp with M samples. We collect the maximum value of &y(pp) among the
N values of r,, that have been picked.

o Test 3. A challenge u is fixed, as well as a response ry, to this challenge, which satisfies | Z;| = t for several
values of t € [2, £]. We then run M trials and collect &y (pa).

Influence of M and the chosen test on the estimator. At the end of the document, Figures 5, 6 and 7 confirm
that, for fixed N and g and for any test i we use, i € {1, 2, 3}, our estimator &3;(po) converges to a value close

to1/(q - 1).

Influence of N on the estimator. Table 6 shows experimentally that, for M large enough and fixed g, the
number N has few influence on the estimator (N being respectively the number of responses r,, sampled in
test 2, and the number of challenges u sampled in test 1). The minor increase of the values can be thought as
a standard deviation due to the fact that the number of samples M = 100,000 is finite.

fM(p<1>)

Fa8---8--5--=

107 |

t=2
- expected 1/(g-1), q=8
--expected 1/(g-1), g=64
=8, Test 1
wm(q=8, Test 3
wq=8, Test 2
»%(q=64, Test 1
(=64, Test 3
(=64, Test 2

2 L
1o ‘ ‘ ‘ .M
103 104 10° 10°

Figure 5: Estimators for various values of M € [103, 10°], of g € {8, 64} and of test i, i € {1, 2, 3}. Support size t = 2 is fixed.
For tests 1 and 2, the parameter N is set to 10. Black horizontal lines represent the expected value of a.



104 —— . lavauzelle and F. Levy-dit-Vehel, Generic constructions of PoRs from codes and instantiations

En(pa)
L
H .
——.——;—"—l—l‘—"‘l—'-——l——'l----
107 |
t=3
—-expected 1/(g-1), q=8
--expected 1/(g-1), =64
(=8, Test 1
w(=8, Test 3
w(q=8, Test 2
»xq=64, Test 1
+ (=64, Test 3
+(Q=64, Test 2
X
X o+
+
¥ X
X
..................................... *j;***
* * * %
2 L
10 Il Il Il L M
10° 10* 10° 108

DE GRUYTER

Figure 6: Estimators for various values of M € [103, 10], of g € {8, 64}, and of test i, i € {1, 2, 3}. Support size t = 3 is fixed.

For tests 1 and 2, the parameter N is set to 10. Black horizontal lines represent the expected value of a.
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Figure 7: Estimators for various values of M € [103, 10¢], of g € {8, 64} and of test i, i € {1, 2, 3}. Support size t = ¢ is fixed.

For tests 1 and 2, the parameter N is set to 10. Black horizontal lines represent the expected value of a.
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Test 1 Test 2

N g=8 q =64 q=8 q =64

1 0.1418 0.0152 0.1414 0.0158
0.1433 0.0163 0.1431 0.0162

10 0.1443 0.0165 0.1452 0.0166
50 0.1455 0.0169 0.1450 0.0168
100 0.1452 0.0167 0.1458 0.0168
500 0.1464 0.0169 0.1470 0.0168

1/(g-1)= 0.1429 0.01587 0.1429 0.01587

Table 6: Estimators using tests 1 and 2 with M = 100,000 and t = 2 for g € {8, 64} and various values of N. The quantity
1/(q — 1) represents an estimated upper bound on a that £y (po) should approximate.

Empo) 1/(g-1)

0.333 0.3333
0.166 0.1667
0.143 0.1429
16 0.0665 0.06667
17 0.0627 0.0625
31 0.0335 0.03333
32 0.032 0.03226
64 0.0161 0.01587
128 0.00791 0.007874
256 0.00382 0.003922
257 0.00398 0.004000

0 N |9

Table 7: Estimators using test 3 with M = 1,000,000 and t = 2 for various values of prime powers g. The quantity 1/(g — 1)
represents an estimated upper bound on a that £y (po) should approximate.

Influence of g on the estimator. In Table 7, we show that the estimator &y(pg) converges to an expected
value 1/(q — 1) for any value of gq.
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