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Abstract: There has been considerable recent interest in “cloud storage” wherein a user asks a server to store
a large file. One issue is whether the user can verify that the server is actually storing the file, and typically
a challenge-response protocol is employed to convince the user that the file is indeed being stored correctly.
The security of these schemes is phrased in terms of an extractor which will recover the file given any “prov-
ing algorithm” that has a sufficiently high success probability. This forms the basis of proof-of-retrievability
(PoR) systems. In this paper, we study multiple server PoR systems. We formalize security definitions for two
possible scenarios: (i) A threshold of servers succeeds with high enough probability (worst case), and (ii) the
average of the success probability of all the servers is above a threshold (average case). We also motivate the
study of confidentiality of the outsourced message. We give MPoR schemes which are secure under both these
security definitions and provide reasonable confidentiality guarantees even when there is no restriction on
the computational power of the servers. We also show how classical statistical techniques previously used
by us can be extended to evaluate whether the responses of the provers are accurate enough to permit suc-
cessful extraction. We also look at one specific instantiation of our construction when instantiated with the
unconditionally secure version of the Shacham-Waters scheme. This scheme gives reasonable security and
privacy guarantee. We show that, in the multi-server setting with computationally unbounded provers, one
can overcome the limitation that the verifier needs to store as much secret information as the provers.
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1 Introduction

In the recent past, there has been a lot of activity on remote storage and the associated cryptographic problem
of integrity of the stored data. This question becomes even more important when there are reasons to believe
that the remote servers might act maliciously, i.e., one or more servers can delete (whether accidentally
or on purpose) a part of the data since there is a good chance that the data will never be accessed, and
hence, the client would never find out! In order to assuage such concerns, one would prefer to have a simple
auditing system that convinces the client if and only if the server has the data. Such audit protocols, called
proof-of-retrievability (PoR) systems, were introduced by Juels and Kaliski [11], and closely related proof-of-
data-possession (PDP) systems were introduced by Ateniese et al. [2].

Maura B. Paterson, Department of Economics, Mathematics and Statistics, Birkbeck, University of London, Malet Street,
London WC1E 7HX, United Kingdom, e-mail: m.paterson@bbk.ac.uk

*Corresponding author: Douglas R. Stinson, David R. Cheriton School of Computer Science, University of Waterloo, Waterloo,
ON, N2L 3G1, Canada, e-mail: dstinson@uwaterloo.ca

Jalaj Upadhyay, Department of Computer Science, Johns Hopkins University, Baltimore, MD 21201, USA, e-mail: jalaj@jhu.edu



204 —— M.B. Paterson, D.R. Stinson and J. Upadhyay, Multi-prover proof of retrievability DE GRUYTER

In a PoR protocol, a client stores a message m on a remote server and keeps only a short private fingerprint
locally. At some later time, when the client wishes to verify the integrity of its message, it can run an audit
protocol in which it acts as a verifier while the server proves that it has the client’s data. The formal security of
a PoR protocol is expressed in terms of an extractor — there exists an extractor with (black-box or non-black-
box) access to the proving algorithm used by the server to respond to the client’s challenge, such that the
extractor retrieves the original message given any adversarial server which passes the audits with a threshold
probability. Apart from this security requirement, two practical requirements of any PoR system would be to
have a reasonable bound on the communication cost of every audit and small storage overhead on both the
client and server.

PoR systems were originally defined for the single-server setting. However, in the real world, it is highly
likely that a client would store its data on more than one server. This might be due to a variety of reasons. For
example, a client might wish to have a certain degree of redundancy if one or more servers fails. In this case,
the client is more likely to store multiple copies of the same data. Another possible scenario could be that the
client does not trust a single server with all of its data. In this case, the client might distribute the data across
multiple servers. Both of these settings have been studied previously in the literature.

The first such study was initiated by Curtmola et al. [9], who considered the first of the above two cases.
They addressed the problem of storing copies of a single file on multiple servers. This is an attractive solution
considering the fact that replication is a fundamental principle in ensuring the availability and durability of
data. Their system allows the client to audit a subset of servers even if some of them collude.

On the other hand, Bowers, Juels and Oprea [8] considered the second of the above two cases. They stud-
ied a system where the client’s data is distributed and stored on different servers. This ensures that none of
the servers has the whole data.

Both of these systems covered one specific instance of the wide spectrum of possibilities when more than
one server is involved. For example, none of the works mentioned above addresses the question of the privacy
of data. Both of them argue that, for privacy, the client can encrypt its file before storing it on the servers.
These systems are secure only in the computational setting and the privacy guarantee is dependent on the
underlying encryption scheme. On the other hand, there are known primitives in the setting of distributed
systems, like secret sharing schemes, that are known to be unconditionally secure. Moreover, we can also
utilize cross-server redundancy to get more practical systems.

1.1 Our contributions

In Section 2, we give the formal description of multi-server PoR (MPoR) systems. We state the definitions for
worst-case and the average-case secure MPoR systems. We also motivate the privacy requirement and state
the privacy definition for MPoR systems. In Section 3, we define various primitives to the level required to
understand this paper.

In Section 4, we give a construction of an MPoR scheme that achieves worst-case security when the
malicious servers are computationally unbounded. Our construction is based on ramp schemes and a single-
server PoR scheme. Our construction achieves confidentiality of the message. To exemplify our scheme, we
instantiate this scheme with a specific form of ramp scheme.

In Section 5, we give a construction of an MPoR scheme that achieves average-case security against com-
putationally unbounded adversaries. For an MPoR system that affords average-case security, we also show
that an extension of classical statistical techniques previously used by us [15] can be used to provide a basis
for estimating whether the responses of the servers are accurate enough to allow successful extraction.

One of the benefits of an MPoR system is that it provides cross-server redundancy. In the past, this feature
has been used by Bowers, Juels and Oprea [8] to propose a multi-server system called HAIL. We first note that
the constructions in Section 4 and Section 5 do not provide any improvement on the storage overhead of the
server or the client. In Section 6, we give a construction based on the Shacham-Waters protocol [16] that
allows significant reduction of the storage overhead of the client in the multi-server setting.
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1.2 Related works

The concept of proof of retrievability is due to Juels and Kaliski [11]. A PoR scheme incorporates a challenge-
response protocol in which a verifier can check that a message is being stored correctly, along with an extractor
that will actually reconstruct the message, given the algorithm of a “prover” who is able to correctly respond
to a sufficiently high percentage of challenges.

There are also papers that describe the closely related (but slightly weaker) idea of a proof-of-data-
possession scheme (PDP scheme), e.g., [2]. A PDP scheme permits the possibility that not all of the message
blocks can be reconstructed. Ateniese et al. [2] also introduced the idea of using homomorphic authenticators
to reduce the communication complexity of the system. This scheme was improved in a follow-up work by
Ateniese et al. [4]. Shacham and Waters [16] later showed that the scheme of Ateniese et al. [1] can be trans-
formed into a PoR scheme by constructing an extractor that extracts the file from the responses of the prover
on the audits.

Bowers, Juels and Oprea [8] extended the idea of Juels and Kaliski [11] and used error-correcting codes.
The main difference in their construction is that they use the idea of an “outer” and an “inner” code (in the
same vein as concatenated codes), to get a good balance between the extra storage overhead and compu-
tational overhead in responding to the audits. Dodis, Vadhan and Wichs [10] provided the first example of
an unconditionally secure PoR scheme, also constructed from an error-correcting code, with extraction per-
formed through list decoding in conjunction with the use of an almost-universal hash function. They also give
different constructions depending on the computational capabilities of the server. Previously [15], we studied
PoR schemes in the setting of unconditional security and showed some close connections to error-correcting
codes.

Recently, Ateniese, Kamara and Katz [5] defined the framework of proof-of-storage systems to understand
PDP and PoR system in a unified manner. They argue that existing PoR [16] and PDP [2] schemes can be seen
as an instantiation of their framework. They used homomorphic identification schemes to give efficient proof-
of-storage systems in the random-oracle model. They further exhibited that existing constructions of PoR and
PDP schemes are specific instantiation of their construction. Wang et al. [19] gave the first privacy preserv-
ing public auditable proof-of-storage systems. We refer the readers to the survey by Kamara and Lauter [12]
regarding the architecture of proof-of-storage systems.

Distributed cloud computing. All the constructions mentioned above considered single server system; how-
ever, such systems are prone to failure leading to catastrophic problems [20]. However, proof-of-storage sys-
tems have been also studied in the setting where there is more than one server or more than one client. The
first such setting was studied by Curtmola et al. [9]. They studied a multiple-replica PDP system, which is the
natural generalization of a single-server PDP system to t servers.

Bowers, Juels and Oprea [8] introduced a distributed system that they called HAIL. Their system allows
a set of provers to prove the integrity of a file stored by a client. The idea in HAIL is to exploit the cross-prover
redundancy. They considered an active and mobile adversary that can corrupt the whole set of provers.

Recently, Ateniese et al. [3] considered the problem from the client side, where n clients store their respec-
tive files on a single prover in a manner such that the verification of the integrity of a single client’s file
simultaneously gives the integrity guarantee of the files of all the participating clients. They called such
a system an entangled cloud storage.

1.3 Comparison with Bowers, Juels and Oprea

The focus of this paper is PoR systems in the distributed setting; therefore, we only compare our work with
existing works in the distributed setting. The scheme of Curtmola et al. [9] only considers multiple replica
of the same underlying PDP systems, while the construction of Ateniese et al. [3] is for the multiple clients
setting. In other words, the scheme of Bowers, Juels and Oprea [8] is closest to ours. However, there are a few
key differences.
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@) The construction of Bowers, Juels and Oprea [8] is secure only in the computational setting, while we
provide security in the setting of unconditional security.

(ii)  Bowers, Juels and Oprea [8] use various tools and algorithms to construct their systems, including
error-correcting codes, pseudo-random functions, message authentication codes and universal hash
function families. On the other hand, we only use ramp schemes in our constructions, making our
schemes easier to state and analyze, and arguably simpler to implement.

(iii)  We consider two types of security guarantees, namely, the worst-case scenario and the average-case
scenario. On the other hand, Bowers, Juels and Oprea [8] only consider the worst-case scenario.

(iv)  The construction of Bowers, Juels and Oprea [8] only aims to protect the integrity of the message, while
we consider both the privacy and integrity of the message. Privacy of data has emerged as an important
requirement in cloud storage due to recent attacks [21].

) We work under a stronger requirement than [8] — we require extraction to succeed with probabil-
ity equal to 1, whereas in [8], extraction succeeds with probability close to 1, depending in part on
properties of a certain class of hash functions used in the protocol.

We use the term Prover to identify any server that stores the file of a client. We use the term Verifier for any

entity that verifies whether the file of a client is stored properly or not by the server. We also assume that a file

is composed of message blocks of an appropriate fixed length. If the file consists of single block, we simply
call it the file.

2 Security model of multi-server PoR systems

The essential components of multi-server PoR (MPoR) systems are natural generalizations of single-server
PoR systems. The first difference is that there are p provers and the Verifier might store different messages
on each of them. Also, during an audit phase, the Verifier can pick a subset of provers on which it runs the
audits. The last crucial difference is that the Extractor has (black-box or non-black-box) access to a subset of
proving algorithms corresponding to the provers that the Verifier picked to audit. We detail them below for
the sake of completeness.

Let Provery, ..., Prover, be a set of p provers. The Verifier has a message m € M from the message space
M which he redundantly encodes to M, ..., Mp.
@) In the keyed setting, the Verifier picks p different keys (K1, . .., K), one for each of the corresponding
provers.

(ii) The Verifier gives M; to Prover;. In the case of a keyed scheme, Prover; may be also given an additional
tag S;, generated using the key K;, and M;.

(iii)  The Verifier stores some sort of information (say a fingerprint of the encoded message) which allows
him to verify the responses made by the provers.

(iv)  On receiving the encoded message M;, Prover; generates a proving algorithm P;, which it uses to
generate its responses during the auditing phase.

) Atany time, the Verifier picks anindex i, where 1 < i < ¢, and engages in a challenge-response protocol
with Prover;. In one execution of the challenge-response protocol, the Verifier picks a challenge ¢ and
gives it to Prover;, and the prover responds. The Verifier then verifies the correctness of the response
(based on its fingerprint).

(vi)  The success probability succ(P;) is the probability, computed over all the challenges, with which the
Verifier accepts the response sent by Prover;.

(vii) The Extractor is given a subset S of the proving algorithms P4, ..., P, (and in the case of a keyed
scheme, the corresponding subset of the keys, {K; : i € S}) and outputs a message m. The Extractor
succeeds if m = m.

The above framework does not restrict any provers from interacting with other provers when they receive

the encoded message. However, we assume that they do not interact after they have generated a proving

algorithm. If we do not include this restriction, then it is not hard to see that one cannot have any meaningful
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protocol. For example, if provers can interact after they receive the encoded message, then it is possible that
one prover stores the entire message and the other provers just relay the challenges to this specific prover and
relay back its response to the verifier.

In contrast to a single-prover PoR scheme, there are two possible ways in which one can define the
security of a multiple-prover PoR system. We define them next.

The first security definition corresponds to the “worst case” scenario and is the natural generalization of
a single-server PoR system.

Definition 2.1. A p-prover MPoR scheme is (1, v, T, p)-threshold secure if there is an Extractor which, when
given any 1 proving algorithms, say Py, , ..., P;,, succeeds with probability at least v whenever

succ(Pj) >n foralljel,

where I = {i1, ..., i}

We note that when p = T = 1, we get a standard single-server PoR system. Moreover, the definition captures
the worst-case scenario in the sense that it only guarantees extraction if there exists a set of 7 proving algo-
rithms, all of which succeed with high enough probability.

The above definition requires that all the 7 servers succeed with high enough probability. On the other
hand, it might not be the case that all the proving algorithms of the servers picked by the Verifier succeed
with the required probability. In fact, even verifying whether or not all the 7 proving algorithms have high
enough success probability to allow successful extraction might be difficult (see, for example [15] for more
details about this). However, it is possible that some of the proving algorithms succeed with high enough
probability to compensate for the failure of the rest of the proving algorithms. For instance, since the provers
are allowed to interact before they specify their proving algorithms, it might be the case that the colluding
provers decide to store most of the message on a single prover. In this case, even a weaker guarantee that the
average success probability is high enough might be sufficient to guarantee a successful extraction. In other
words, it is possible to state (and as we show in this paper, achieve) a security guarantee with respect to the
average case success probability over all the proving algorithms.

Definition 2.2. A p-prover MPoR scheme is (1, v, p)-average secure if the Extractor succeeds with probability
at least v whenever

12

— Z succ(P;) = 1.

P
Note that the average-case secure system reduces to the standard PoR scheme (with 7 = p) when p = 1. The
following example illustrates that average-case security is possible even when an MPoR system is not possible
as per Definition 2.1.

Example 2.3. Suppose n = 0.7, v =0 and p = 3. Further, suppose that succ(P;) = 0.9, succ(P,) = 0.6 and
succ(P3) = 0.6. Then the hypotheses of Definition 2.1 are not satisfied for 7 = 2. So even if the MPoR scheme
is (n, v, 7, p)-threshold secure, we cannot conclude that the Extractor will succeed. On the other hand, for the
assumed success probabilities, the hypotheses of Definition 2.2 are satisfied. Therefore, if the MPoR scheme
is (0.7, v, T)-average secure, the Extractor will succeed.

Privacy guarantee. We mentioned at the start of this section that PoR systems were introduced and studied
to give assurance of the integrity of the data stored on remote storage. However, the confidentiality aspects of
data have not been studied formally in the area of cloud-based PoR systems. There have been couple of ad hoc
solutions that have been proposed in which the messages are encrypted and then stored on the cloud [9].
We believe that, in addition to the standard integrity requirement, privacy of the stored data when multiple
provers are involved is also an important requirement. We model the privacy requirement as follows:

Definition 2.4. An MPoR system is called ¢-private if no set A of adversarial provers of size at most t learns
anything about the message stored by the Verifier.
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Note that t = O corresponds to the case when the MPoR system does not provide any confidentiality to the
message. The above definition captures the idea that, even if t provers collude, they do not learn anything
about the message. We remark that we can achieve confidentiality without encrypting the message by using
secret sharing techniques.

Notation. We fix the letter m for the original message, M to denote the space from which the message m is
picked and M to denote the encoded message. We fix v to denote the failure probability of the extractor and
n to denote the success probability of a proving algorithm. In this paper, we are mainly interested in the case
when v = 0 for both the worst-case and the average-case security. We use n to denote the number of message
blocks, assuming the underlying PoR system breaks the message into blocks.

3 Primitives used in this paper

3.1 Ramp schemes

In our construction, we use a primitive related to secret sharing schemes known as ramp schemes. A secret
sharing scheme allows a trusted dealer to share a secret between n players so that certain subsets of players
can reconstruct the secret from the shares they hold [6, 17].

It is well known that the size of each player’s share in a secret sharing scheme must be at least the size of
the secret. If the secret that is to be shared is large, then this constraint can be very restrictive. Schemes for
which we can get a certain form of trade-off between share size and security are known as ramp schemes [7].

Definition 3.1 (Ramp scheme). Let 71, 7, and n be positive integers such that 7, < 7, < n. A (11, 72, n)-ramp

scheme is a pair of algorithms, say ShareGen and Reconstruct, such that, on input a secret S, ShareGen(S)

generates n shares, one for each of the n players, such that the following two properties hold:

(i) Reconstruction: Any subset of 7, or more players can pool together their shares and use Reconstruct to
compute the secret S from the shares that they collectively hold.

(ii) Secrecy: No subset of 71 or fewer players can determine any information about the secret S.

Example 3.2. Suppose the dealer wishes to set up a (2, 4, n)-ramp scheme with the secret (ag, a1). The
dealer picks a finite field IF; with g > n such that ao, a; € F,. The dealer picks random elements a,, a3
independently from the field IF; and constructs the following polynomial of degree 3 over the finite field IF:
f(x) = ag + a1x + a,x* + asx>. The share for any player P; is generated by computing s; = f(i). It is easy to see
that if two or fewer players come together, they do not learn any information about the secret, and if at least
four players come together, they can use Lagrange’s interpolation formula to compute the function f as well
as the secret. However, if three players pool together their shares, then they can learn some partial informa-
tion about one of the other player’s share. For concreteness, let ¢ = 17. Then 5a; = 7s3 + 9S¢ + S15 mod 17;
therefore, players P3, P¢ and P15 can compute the value of a;.

For completeness, we review some of the basic theory concerning the construction of ramp schemes. Lin-
ear codes have been used to construct ramp schemes for over thirty years since the work of McEliece and
Sarwate [13]. We will consider a construction from an arbitrary code in this paper. The following relation
between an arbitrary code (linear or non-linear) and a ramp scheme was shown by Paterson and Stinson [14].

Theorem 3.3. Let C be a code of length N, distance d and dual distance d*. Let 1 < s < d*+ — 2. Then there is
a (11, T2, N - s)-ramp scheme, where 11 =d* —-s-1and 1, = N -d + 1.

Here s is the rate of the ramp scheme. If G is a generator matrix of a code C with dimension k, then
IC| = g* > g% 1. In other words, k > d* — 1.

Construction 3.4. The construction of a ramp scheme from a code is as follows. Let s and p be positive inte-
gers, and let (my, . .., ms) € IF° be the message. Let C be a code of length n = p + s defined over a finite field FF.
We also require that the first s entries of a codeword is the message to be encoded, i.e., the corresponding gen-
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() Oninput P, compute the vector R’ = (r} : ¢ € T), where rl. = P(c) forall ¢ € T (i.e., for every c, r. is the response computed
by P when it is given the challenge c).

(i) Find M € M*, so that dist(R’, r’v’) is minimized.

(i) Output m = e 1(M).

Figure 1: Extractor for Theorem 3.6.

erator matrix is in standard form. Select a random codeword (¢; = m1, ..., Cs = Ms, Cs41, - . ., Cp4s) € C, and
define the shares as (€s;1, . . ., Cpys)-

Example 3.5. One can use a Reed-Solomon code to construct a ramp scheme [13]. Let g be a prime and
1 < s <t <n < q.Itis well known that, for a prime g, thereis an [N, k, N — 7 + 1]; Reed-Solomon code with
d* = 7+ 1. This implies a (7 - s, T, N)-ramp scheme over F.

3.2 Single-prover PoR system

We start by fixing some notation for PoR schemes that we use throughout the paper. Let I be the challenge
space, and let A be the response space. We denote by y = |I'| the size of a challenge space. Let M* be the space
of all encoded messages. The response function p: M* x I' — A computes the response r = p(M, c) given the
encoded message M and the challenge c.

For an encoded message M € M*, we define the response vector r™ that contains all the responses to all
possible challenges for the encoded message M. Finally, define the response code of the scheme to be

R=1{M:MeM}.

The codewords in R are just the response vectors that we defined above. Previously [15], we proved the
following result for a single-prover PoR scheme.

Theorem 3.6. Suppose that P is a proving algorithm for a PoR scheme with response code R. If the success prob-
ability of the corresponding proving algorithm satisfies succ(P) > 1 — d/2y, where d is the Hamming distance of
the code R, and y is the size of the challenge space, then the extractor described in Figure 1 always outputs the
message m.

If we cast this in the security model defined in Section 1 (Definition 2.1 and Definition 2.2), then we have the
following theorem.

Theorem 3.7. Suppose that P is a proving algorithm for a single server PoR scheme with response code R. Then
there exists a (1 —d/ 2y, 0, 1, 1)-MPoR system, where d is the Hamming distance of the code R, and y is the size
of the challenge spaceT.

Previously [15], we gave a modified version of the Shacham—-Waters scheme which they showed is secure in
the unconditional security setting. They argued that, in the setting of unconditionally security, any keyed PoR
scheme should be considered to be secure when the success probability of the proving algorithm P, denoted
by succ(P), is defined as the average success probability of the prover over all possible keys (Theorem 3.8).
The same reasoning extends to MPoR systems. Therefore, in what follows and in Section 6, when we say
a scheme is an (17, v, T, p)-threshold-secure scheme, the term 7 is the average success probability where the
average is computed over all possible keys. We denote the average success probability of a prover P over all
possible keys by succayg(P). Previously [15], we showed the following:

Theorem 3.8. Let IF; be the underlying field, and let € > 1 be the Hamming weight of the challenges made by
the Verifier. Let d be the Hamming distance of the space of the encoded message M*. Suppose that
d*(g-1)

1-
SUCCavg(?P) 2 g
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where y = q" is the size of the challenge space and d* is given by

. _(n , (n-d . d\/n-d\(g-1)*
e (e s o

w>1

Then there exists an Extractor that always outputs m = m.

4 Worst-case MPoR based on ramp scheme

In this section, we give our first construction that achieves a worst-case security guarantee. The idea is to use
a(ty, T2, p)-ramp scheme in conjunction with a single-server PoR system. The intuition behind the construc-
tion is that the underlying PoR system along with the ramp scheme provides the retrievability guarantee and
the ramp scheme provides the confidentiality guarantee.

We first present a schematic diagram of the working of an MPoR in Figure 2 and illustrate the scheme
with the help of following example. We provide the details of the construction in Figure 3.

Example 4.1. Letp = 6. Suppose the Verifier and the provers use a PoR system II. Let the message to be stored
be (15, 3). The Verifier picks g = 17 and chooses two random elements 1, 2 € IF17 to construct a polynomial
f(x) = 15 + 3x + x? + 2x3. The Verifier picks an encoding function e(-) and stores e(4) on Provery, e(7) on
Prover,, e(2) on Provers, e(1) on Prover,, e(16) on Provers, and e(8) on Provers.

Let us suppose that the PoR scheme is such that, for a random challenge vector of dimension p, say
(5,2,9,13,5, 6), where the i-th entry would be a challenge to Prover;, the corresponding responses of the
provers form a vector (3, 14, 1, 13, 12, 14), where Resp; is the correct response of Prover;. In other words, on
challenge 5 to Provery, the correct response is 3, and so on.

During the audit phase, the Verifier picks any four provers and sends the challenges to the provers. Once
all the provers that he chose reply, he verifies their response. For example, suppose the Verifier picks Prover,
Provers, Prover, and Proverg. The Verifier then sends the challenge 5 to Provery, 9 to Provers, 13 to Prover,
and 6 to Proverg. If it gets the responses 3, 1, 13 and 14 back, it accepts; otherwise, it rejects.

[ Message in the form of s bits ]

n n n
Block stored . Block stored . Block stored
on Provery on Prover; on Prover,

Figure 2: Schematic view of Ramp-MPoR system.

Input. The Verifier gets the message m as input. Let Provery, ..., Prover, be the set of p provers.
Initialization Stage. The Verifier performs the following steps for storing the message:
(i) The Verifier chooses a single-server PoR system M and a (11, 72, p)-ramp scheme Ramp = (ShareGen, Reconstruct).
(i) The Verifier computes p shares of the message using the ramp scheme (my, ..., my) < ShareGen(m).
(iif) The Verifier runs p independent copies of I and generates the encoded share M; = e(m;) € M corresponding to
eachl1<i<p.
(iv) The Verifier stores M; on Prover;.
Challenge Phase. During the audit phase, the Verifier picks Prover; and runs the challenge-response protocol of 1 with Prover;.

Figure 3: Worst-case secure MPoR using a ramp scheme (Ramp-MPoR).
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We note one of the possible practical deployments of the Ramp-MPoR stated in Figure 3. Let m be a message
that consists of sk elements from IF,. The Verifier breaks the message into k blocks of length s each. It then
invokes a (11, T2, n)-ramp scheme on each of these blocks to generate n shares of each of the k blocks. The
Verifier then runs a PoR scheme II to compute the encoded message to be stored on each of the servers by
encoding its k shares, one corresponding to each of the k blocks.

We prove the following security result for the MPoR scheme presented in Figure 3.

Theorem 4.2. Let II be an (1, 0, 1, 1)-threshold-secure MPoR with a response code of Hamming distance d
and the size of challenge space y. Let Ramp = (ShareGen, Reconstruct) be a (71, 72, p)-ramp scheme. Then
Ramp-MPoR, defined in Figure 3, is an MPoR system with the following properties:

(i) Privacy: Ramp-MPoR is T1-private.

(ii) Security: Ramp-MPoR is (1, 0, T2, p)-threshold secure, where n = 1 — d/ 2y.

Proof. The privacy guarantee of Ramp-MPoR is straightforward from the privacy property of the underlying
ramp scheme.
For the security guarantee, we need to demonstrate an Extractor that outputs a message m = m if at least
t servers succeed with probability at least 7 = 1 — d/2y. The description of our Extractor is as follows:
(i) The Extractor chooses 7, provers and runs the extraction algorithm of the underlying single-server PoR
system on each of these provers. In the end, it outputs /Mi,- for the corresponding provers Prover;,. It defines
8 — {Mi,,..., M}
(ii) The Extractor invokes the Reconstruct algorithm of the underlying ramp scheme with the elements of 8.
It outputs whatever Reconstruct outputs.
Now note that the Verifier interacts with every Prover; independently. We know from the security of the under-
lying single-server PoR scheme (Theorem 3.6) that there is an extractor that always outputs the encoded
message whenever succ(P;) > n. Therefore, if all the 7, chosen proving algorithms succeed with probability
at least n, then the set 8 will have 7, correct shares. From the correctness of the Reconstruct algorithm, we
know that the message output in the end by the Extractor will be the message m. O

As a special case of the above, we get a simple MPoR system which uses a replication code. A replication code
has an encoding function

Enc: A —» A suchthat Enc(x)=(x,x,...,x) foranyx e A.
p times

This is the setting considered by Curtmola et al. [9].

We call a Ramp-MPoR scheme based on a replication code a Rep-MPoR. The schematic description of
the scheme is presented in Figure 4, and the scheme is presented in Figure 5. Since a p-replication code is
a (0, 1, p)-ramp scheme, a simple corollary to Theorem 4.2 is the following:

Corollary 4.3. Let Il be an (17, 0, 1, 1)-MPoR system with a response code of Hamming distance d and the size
of challenge space y. Then Rep-MPoR, formed by instantiating Ramp-MPoR with the replication code based
Ramp scheme, is an MPoR system with the following properties:

(i) Privacy: It is O-private.

(ii) Security: Itis (n, 0, 1, p)-threshold secure, where n = 1 — d/2y.

The issue with Rep-MPoR scheme is that there is no confidentiality of the file. We will come back to this issue
later in Section 6.1.

5 Average-case secure MPoR system

In general, it is not possible to verify with certainty whether the success probability of a proving algorithm is
above a certain threshold; therefore, in that case, it is unclear how the Extractor would know which proving
algorithms to use for extraction as described in Section 4. In this section, we analyze the average-case security
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{ Message m J
e e e
(. m=em ) - ( mM=em ) - ([ M=em )
M stored . M stored M stored
on Prover; on Prover; on Prover,
Figure 4: Schematic view of Rep-MPoR.
Input. The Verifier gets the message m as input. Let Provery, ..., Prover, be the set of p provers.

Initialization stage. The Verifier performs the following steps for storing the message:
(i) The Verifier chooses a single-server PoR system I.
(i) Using the encoding scheme of I, the Verifier generates the encoded message M = e(m) € Mfor1 <i<n.
(iii) The Verifier stores the message M on all Prover; for1 <i < n.
Challenge phase. During the audit phase, the Verifier runs the challenge-response protocol of 1 independently on each server.

Figure 5: Average-case secure MPoR (Rep-MPoR).

properties of the replication code based scheme, Rep-MPoR, described in the last section. This allows us an
alternative guarantee that allows successful extraction where the extractor need not worry whether a certain
proving algorithm succeeds with high enough probability or not.

Recall the scenario introduced in Example 2.3. Here we assumed succ(P1) = 0.9, succ(P,) = 0.6 and
succ(P3) = 0.6 for three provers. Suppose that successful extraction for a particular prover P; requires
succ(P,) > 0.7. Then extraction would work on only one of these three provers. On the other hand, suppose
we have an average-case secure MPoR in which extraction is successful if the average success probability
of the three provers is at least 0.7. Then the success probabilities assumed above would be sufficient to
guarantee successful extraction.

Theorem 5.1. Let II be a single-server PoR system with a response code of Hamming distance d and the size of
challenge space y. Then Rep-MPoR, defined in Figure 5, is an MPoR system with the following properties:

(i) Privacy: Rep-MPoR is O-private.

(ii) Security: Rep-MPoR is (1 — a/2y, 0, p)-average secure.

Proof. Since the message is stored in its entirety on each of the servers, there is no confidentiality.

For the security guarantee, we need to demonstrate an Extractor that outputs a message m = m if the
average success probability of all the provers is at least = 1 — d/2y. The description of our Extractor is as
follows:

(i) Forall 1 <i<n,useP; tocompute the vector R; = (r) : ¢ € T), where r) = P;(c) for all c € T (i.e., for

every ¢, r'¥) is the response computed by P; when it is given the challenge c).

(i) Compute R as a concatenation of Ry, ..., R, and find M:=M,q,..., Mp) so that dist(R, r’VI) is mini-
mized.

(iii) Compute m = e 1(M).

Now note that the Verifier interacts with each Prover; independently and the Extractor uses the challenge-

response step with independent challenges. Let 711, ..., 1, be the success probabilities of the p prov-
ing algorithms. Let 7; be the average success probability over all the servers and challenges. Therefore,
P

n=p" Xioq Mi-

First note that, in the case of Figure 5, the response code is of the form

{(ryr,...,n:reR}.

p times
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It is easy to see that the distance of the response code is pd and the length of a challenge is py. From the
definition of the extractor and Theorem 3.6, it follows that the extraction succeeds if

rl1+...+rlp__ _i
—p =n=1 2y O

5.1 Hypothesis testing for Rep-MPoR

For the purposes of auditing whether a file is being stored appropriately, it is necessary to have a mechanism
for determining whether the success probability of a prover is sufficiently high. In the case of replication code
based on MPoR with worst-case security, we are interested in the success probabilities of individual provers,
and the analysis can be carried out as detailed in [15]. In the case of Rep-MPoR, however, we wish to determine
whether the average success probability of the set of provers {P1, P>, ..., P,} is at least 1. This amounts to
distinguishing the null hypothesis

Hp: avg-succ(P;) < n

from the alternative hypothesis
H;: avg-succ(P;) = n.

Suppose we send ¢ challenges to each server. If a given server P; has success probability succ(P;), then
the number of correct responses received follows the binomial distribution B(c, succ(P;)). If the success prob-
abilities succ(P;) were the same for each server, then the sum of the number of successes over all the servers
would also follow a binomial distribution. However, we are also interested in the case in which these success
probabilities differ, in which case the total number of successes follows a Poisson binomial distribution, which
is more complicated to work with. In order to establish a test that is conceptually and computationally easier
to apply, we will instead rely on the observation that, in cases where the average success probability is high
enough to permit extraction, the failure rates of the servers are relatively low.

For a given server P;, let f; = 1 — succ(P;) denote the probability of failure. For r challenges, the number
of failures follows the binomial distribution B(c, f;). Provided that r is sufficiently large and f; is sufficiently
low, then B(c, f;) can be approximated by the Poisson distribution Pois(cf;). The Poisson distribution Pois(A)
is used to model the scenario where discrete events are occurring independently within a given time period
with an expected rate of A events during that period. The probability of observing k events within that period
is given by

Mean and variance of Pois(A) are equal to A. For our purposes, the advantage of using this approximation is
that the sum of p independent variables following the Poisson distributions Pois(A1), Pois(A2), . . ., Pois(A,)
isitself distributed according to the Poisson distribution Pois(A; + A2 +--- + A,), even when the A; all differ. In
the case where the average failure probability is low, the distribution Pois(c(f1 + f> + - - - + f5)) should provide
a reasonable approximation to the actual distribution of the total number of failed challenges.

Example 5.2. Todemonstrate the appropriateness of the Poisson approximation for this application, suppose
we have five servers, whose failure probabilities are expressed as f = (f1, f>, ..., f5). Let t be the number of
trials per server and b the total number of observed failures out of the 5¢ trials. Table 1 gives both the exact
cumulative probability Pr[B < b] of observing up to b failures, and the Poisson approximation Prpyis[B < b]
of this cumulative probability, for a range of values for f.

As an example of using the given formula to calculate a confidence interval, suppose we do 200 trials on each
of five servers (so there are 1000 trials in total), and we observe 50 failures in total. Then the resulting confi-
dence interval is [0, 63.29). Suppose we wish to know whether the success probability is at least = 0.9. We
have (1 — 0.9) x 1000 = 100. This is outside of that interval, and hence we conclude there is enough evidence
to reject Hy at the 95 % significance level. However, to test whether the success probability was greater than
0.95 we see that (1 — 0.95) x 1000 = 50. Since 50 lies within the interval, we conclude there is insufficient
evidence to reject Hy at the 95 % significance level.
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Pr[B < b]

Prpois[B < b]

Pr[B < b]

Prpois[B < b]

f=(0.1,0.1,0.1,0.1,0.1)

2.556545692 x 10738
1.450898832 x 10732
5.995167631 x 1072
0.5265990813

1.322070819 x 10723
6.272915577 x 1077
1.135691814 x 10712
1.662665039 x 1072
4.557480806 x 1077
1.747871252 x 10746
2.556545692 x 10738
1.450898832 x 10732
6.757345217 x 10728
5.962487876 x 10724
1.240463044 x 10784
3.140367419 x 1077
2.935666094 x 10774
1.193158517 x 10769
2.369596756 x 10765

3.261456422 x 10736
1.137687971 x 10730
2.401592276 x 1078
0.5265622074

1.928749864 x 10722
5.567756307 x 10716
6.450152972 x 10712
6.357982164 x 107
0.000001235187232
3.720076039 x 10744
3.261456422 x 10736
1.137687971 x 10730
3.340076418 x 10726
1.905558774 x 10722
1.084188102 x 10779
1.697380630 x 10774
9.912214279 x 10770
2.542280876 x 1076°
3.218593843 x 10761

f=(0.01,0.01,0.01,0.01,0.01)

0.06613951161
0.5830408032
0.9985035184
=1

0.06708596299
0.5830397512
0.9984117410
=1

f=(0.2,0.01,0.02,0.03,0.04)

9.651421837 x 10722
5.539867010 x 10~17
0.09020056729
0.9999999198

6.180223643 x 10720
1.744235672 x 1071°
0.1076778797
0.9999991415

f=(0.01,0.01,0.03,0.04, 0.05)

t b
200 5
200 10
200 50
200 100
100 0
100 5
100 10
100 15
100 20
200

200 5
200 10
200 15
200 20
500 20
500 25
500 30
500 35
500 40
200 5
200 10
200 20
200 50
200 5
200 10
200 20
200 50
200 5
200 10
200 20
200 50

8.312224722x 1078
0.00006809921297
0.06901537242
0.9999582547

1.196952269 x 1077
0.00008550688580
0.07274102693
0.9999397284

f=(0.1,0.1,0.1,0.1,0.1)

0.00002656139888
0.05757688648
0.5831555123
0.9601094730
0.9991924263
7.055079108 x 1010
0.00003871193246
0.008071249954
0.1430754340
0.5591747822
4.557480806 x 1077
0.00003540113222
0.001002549708
0.01231948910
0.07508928967

0.00004539992984
0.06708596299
0.5830397512
0.9512595983
0.9984117410
2.061153629 x 107
0.00007190884076
0.01081171886
0.1565131351
0.5590925860
0.000001235187232
0.00007160717427
0.001594027332
0.01621388016
0.08607000083

f=(0.01,0.01,0.01,0.01,0.01)

0.3660323413
0.9994654657
0.9999999939
1.000000000

1.000000000

0.1339796748
0.9839770930
0.9999931182
0.9999999996
0.9999999999
0.9999999367
0.9999999999
0.9999999999
0.9999999999
0.9999999999

0.3678794412
0.9994058153
0.9999999900
1.000000000
1.000000000
0.1353352833
0.9834363920
0.9999916922
1.000000000
1.000000000
0.9999999198
1.000000001
1.000000001
1.000000001
1.000000001

f=(0.02,0.0075,0.0075,0.0075, 0.0075)

t b
20 0
20 5
20 10
20 15
20 20
40
40 5
40 10
40 15
40 20

100 20

100 25

100 30

100 35

100 40
20 0
20 5
20 10
20 15
20 20
40
40 5
40 10
40 15
40 20
100 20
100 25
100 30
100 35
100 40
20 0
20 5
20 10
20 15
20 20
40
40 5
40 10
40 15
40 20
100 20
100 25
100 30
100 35
100 40

0.08936904038
0.9712600336
0.9999843669
0.9999999995
1.000000000
0.007986825382
0.6699740391
0.9927425867
0.9999835852
0.9999999935
0.9999999935
0.9999999998
0.9999999998
0.9999999998
0.9999999998

0.09536916225
0.9672561739
0.9999642885
0.9999999958
1.000000000
0.009095277109
0.6684384858
0.9909776597
0.9999661876
0.9999999715
0.9999999715
1.000000001
1.000000001
1.000000001
1.000000001

Table 1: Comparison between exact cumulative probability and approximation by Poisson distribution.
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Let b denote the number of incorrect responses we have received from the cp challenges given to the
provers. Suppose that Hy is true, so that the expected number of failures is at least npc. Based on our approx-
imation, the probability that the number of failures is at most b is at most

i e P (npc)’
i=0 i
If this probability is less than 0.05, we reject Hy and accept the alternative hypothesis. However, if the prob-
ability is greater than 0.05, then there is not enough evidence to reject Hp at the 5 % significance level, and
so we continue to suspect that the file is not being stored appropriately.

We can express this test neatly using a confidence interval. We define a 95 % upper confidence bound by

b ,-A3i
. e A
/\U:mf{AlZ(;T<O'O5}'
i=

This represents the smallest parameter choice for the Poisson distribution for which the probability of obtain-
ing b or fewer incorrect responses is less than 0.05. Then [0, Ay) is a 95 % confidence interval for the mean
number of failures, so we reject Hy whenever nnr lies outside this interval. The value of Ay can be determined
easily by exploiting a connection with the chi-squared distribution [18]. We have

b -Aji
e’ )
z 7 = Pr(x3,., > 20,
i=0
and so the appropriate value of Ay can readily be obtained from a table for the chi-squared distribution.
We give a comparison between exact cumulative probability and approximation by Poisson distribution
in Table 1.

6 Optimization using the keyed Shacham-Waters scheme

In the last three sections, we gave constructions of MPoR scheme using ramp schemes, linear secret-sharing
schemes, replication codes and a single-prover PoR system. In this section, we show a specific instantiation
of our scheme using the keyed scheme of Shacham and Waters [15, 16] for a single-server PoR system.

6.1 Extension of the keyed Shacham-Waters scheme to MPoR

If we instantiate the Rep-MPoR scheme (described in Section 4) with the modified Shacham-Waters scheme
of [15], then we need one key that consists of n + 1 values in IF,. However, in this case, we do not have any
privacy. In particular, we have the following extension of Corollary 4.3.

Corollary 6.1. Let II be an (n,0,0, 1)-PoR system of Shacham and Waters [16] with a response code of

Hamming distance d and the size of challenge space y, where d is given by equation (3.1). Then Rep-MPoR

instantiated with the Shacham—Waters scheme is an MPoR system with the following properties:

(i) Privacy: It is O-private.

(i) Security: Itis (1, 0, 1, p)-threshold secure, wherenp = 1 — d(z"y"ql).

(iii) Storage Overhead: The Verifier needs to store n + 1 field elements, and every Prover; needs to store 2n field
elements.

Proof. The results follow by combining Theorem 3.8 with Corollary 4.3. O

The issue with the Rep-MPoR scheme is that there is no confidentiality of the file. In what follows, we improve
the privacy guarantee of the MPoR scheme described above. Our starting point would be an instantiation of
the Ramp-MPoR scheme, defined in Figure 3, with the Shacham-Waters scheme. We then reduce the storage
on the Verifier through two steps.
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6.2 Optimized version of the multi-server Shacham-Waters scheme

We follow two steps to get an MPoR scheme based on the Shacham-Waters scheme with a reduced storage

requirement for the Verifier, while improving the confidentiality guarantee.

(i) In the first step, stated in Theorem 6.2, we improve the privacy guarantee of the MPoR scheme to get
a 71 -private MPoR scheme (where 71 < p is an integer). The Verifier in this scheme has to store p(n + 1)
field elements. When the underlying field is IF4, the verifier has to store p(n + 1) log g bits.

(ii) Inthe second step, stated in Theorem 6.3, we reduce the storage requirement of the Verifier from p(n + 1)
to 71(n + 1) field elements for some integer 7; < p without affecting the privacy guarantee. When the
underlying field is IFy, the verifier has to store 71(n + 1) log g bits.

Step 1. To improve the privacy guarantee of Corollary 6.1 to say, 7;-private (as per Definition 2.4), we use
a Ramp-MPoR scheme and p different keys, where each key consists of n + 1 values in IF;. The Verifier gen-
erates p shares of every message block using a ramp scheme, then encodes the shares, and finally computes
the tag for each of these encoded shares.

We follow with more details. Let m = (m[1], ..., m[k]) be the message. The Verifier computes the shares
of every message block (m[1], . .., m[k]) usinga (71, T2, p)-ramp scheme. It then encodes all the shares using
the encoding scheme of the PoR scheme. Let the resulting encoded shares be M;[1], ..., M;[n]for1 <i<p.
In other words, the result of the above two steps are p encoded shares, each of which is an n-tuple in (IF4)".
The Verifier now picks random values a®, b{), ..., b{) € F, for 1 < i < p and computes the tags as follows:

Silil = b +a®Milj] fori<i<p, 1<j<n.

The verifier gives Prover; the tuple of encoded messages (M;[1], ..., M;[n]) and the corresponding tags
(Si[1], ..., Si[n]). We call this scheme the Basic-MPoR scheme. The following is straightforward from Theo-
rem 4.2.

Theorem 6.2. Let IT be an (n, 0,0, 1)-PoR scheme of Shacham and Waters [16] with a response code of
Hamming distance d and the size of challenge space y = q", where d is given by equation (3.1). Let Ramp be
a (11, T2, p)-ramp scheme. Then Basic-MPoR defined above is an MPoR scheme with the following properties:
(i) Privacy: Basic-MPoR is T1-private. B

(ii) Security: Basic-MPoR is (17, 0, T2, p)-threshold secure, wheren = 1 — d(zqy"ql).

(iii) Storage Overhead: The Verifier needs to store p(n + 1) field elements and every Prover; needs to store 2n

field elements.

In the construction mentioned above, the Verifier needs to store p(n + 1) elements of IF;, which is almost
the same as the total storage requirements of all the provers. In [15], we encountered the same issue, where
the Verifier has to store as much secret information as the size of the message. This seems to be the general
drawback in the unconditionally secure setting. However, in the case of MPoR, we can improve the storage
requirement of the Verifier as shown in the next step.

Step 2. In this step, we improve the above-described MPoR scheme to achieve considerable reduction on the
storage requirement of the Verifier. The resulting scheme also provides unbounded audit capability against
computationally unbounded adversarial provers, and it also ensures 11 -privacy.

The main observation that results in the reduction in the storage requirements of the Verifier is the fact
that we can partially derandomize the keys generated by the Verifier. We use one of the most common tech-
niques in derandomization. The keys in this scheme are generated by 7;-wise independent functions.* Our
construction works as follows: We pick n + 1 random polynomials, f1(x), ..., fa(x), g(x) € [F4[x], each of
degree at most 71 — 1. Then the Verifier computes the secret key by evaluating the polynomials fj(x) and
g(x) on p different values, say

bl(-i) =fj(i) and a; = g(i)

1 A function is a 71 -wise independent function if every subset of 7; outputs is independent and equally likely. It should be noted
that this does not imply that all the outputs of the function are mutually independent.
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Input. The Verifier gets a message m = (m[1], ..., m[n]) as input. Let Provery, ..., Prover, be the set of p provers.
Let g be a prime number greater than p.
Initialization Stage. The Verifier performs the following steps:
() The Verifier chooses n + 1 random polynomials of degree at most 71 — 1, f1(X), . . ., fa(X), g(x) € Fq[x] and
a (11, 12, p)-ramp scheme Ramp = (ShareGen, Reconstruct).
(ii) For every server i, the Verifier does the following:
(@) Compute p shares of every message block using the share generation algorithm of Ramp as follows:
(m1ljl, ..., mplj]) < ShareGen(m[j]) for1 <j<n.
(b) The Verifier encodes the message as e(m;[j]) = M;[jlfor1<j<n,1<i<p.
() Compute b) = f1(i), ..., b = fa(i), a? = g(i).
(d) Compute the tag S;[j] = b/(.i) +aDM;[jlfor1 <j<n.
(i) The Verifier gives {(M;[j1, Si[j])}1<j<n to Prover;.
Challenge Phase. During the audit phase, the Verifier picks a prover, Prover;, and runs the challenge-response algorithm
of a single-server Shacham-Waters scheme. It computes the corresponding keys by computing the random polynomials
chosen during the set up phase.

Figure 6: MPoR using optimized Shacham-Waters scheme (SW-MPoR).

for1 <j<nand1 <i<p.The Verifier then computes the encoded shares and their corresponding tags as in
Basic-MPoR, i.e.,
Silil = b + a"M;lj] fori<i<p,1<j<n.

Figure 6 is the formal description of this scheme. For the scheme described in Figure 6, we prove the
following result.

Theorem 6.3. Let Ramp = (ShareGen, Reconstruct) be a (11, T2, p)-ramp scheme. Let II be a single-prover
Shacham-Waters scheme [16] with a response code of Hamming distance d and the size of challenge space y.
Then SW-MPoR, defined in Figure 6, is an MPoR system with the following properties:

(i) Privacy: SW-MPoR is T1-private. -
(ii) Security: SW-MPoR is (1, O, T2, p)-threshold secure, wherep = 1 — @.

(iii) Storage Overhead: The Verifier needs to store T1(n + 1) field elements, and every Prover; (for 1 <i < p)

needs to store 2n field elements.

Proof. The privacy guarantee of SW-MPoR is straightforward from the secrecy property of the underlying
ramp scheme.

For the security guarantee, we have to show an explicit construction of the Extractor that, on input prov-
ing algorithms P, ..., P,, outputs m if succ(P;) > n for at least 7, proving algorithms. However, there is
a subtle issue that we have to deal with before using the proof of Theorem 4.2, because of the relation between
every message and tag pair. It was previously noted by us [15] that if the adversarial prover learns the secret
key, then it can break the PoR scheme. We first argue that a set of 71 colluding provers cannot have an undue
advantage from exploiting the linear structure of the message-tag pairs.

We now prove that any set of 71 provers do not learn anything about the keys generated using n + 1
polynomials of degree at most 71 — 1. The idea is very similar to the single-prover case. Previously [15], we
noted that in the single prover case, for an n-tuple encoded message, the key is a tuple of n + 1 uniformly
random elements (a, b1, .. ., by) in IF,. Further, from the point of view of a prover, there are g possible keys —
the value of a determines the n-tuple (b1, ..., by) uniquely, but a is completely undetermined. In the MPoR
case, we have p keys. Each prover in a given set of 71 provers has g possible keys, as discussed above. However,
it is conceivable that they can use their collective knowledge to learn something about the keys. In what
follows, we show that they cannot determine any additional information about their keys by combining the
information they hold collectively.

LetI = {i1, ..., ir,} be the indices of any arbitrary set of 71 provers. Let S; denote the set of possible keys
for Prover;, for i € I. Consider any list of 71 keys (Ki,, Ki,, .. ., Kj, ). Recall that K; (for i € I) has the form
(a9, b0, ..., bY), where a® and b](.i) (for 1 < j < n) are generated by random polynomials of degree 7;. We
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first consider a® (for i € I). Note that the vector (b{", ..., b)) is defined uniquely by a®” and the set of all
encoded message-tag pairs. We have already shown that any set of 71 provers cannot learn anything about
the random polynomial g(x) used to generate the a” for all i € I. We use the following well-known fact to
show that any set of 7, provers does not learn any additional information about the keys.

Fact 6.4. Lett > O be aninteger, let g be a prime number, and let IF; be a finite field. Let ho, h1, ..., he-1 € Fy
be random elements picked uniformly at random. Define h(x) = Zf;é hix' forall a € IF4. Then,

t
Pr[h(x1) = y1 A+ Ah(xe) = y] = [ | Prih(xq,) = yil. (6.1)
i=1
Since h(x) is uniformly distributed in IF4, the probability computed in equation (6.1) is actually equal
to gt.

By construction, g(x) is a random polynomial of degree at most 71 — 1. Fact 6.4 then implies that any com-
bination of {a®};c; is equally likely. A similar argument, with the a®’s replaced by the b](i)’s (foralli e I and
1 < j < n) and the polynomial g(x) replaced by fj(x) (for 1 < j < n), gives that all sets of 7, keys are equally
likely. In other words, the set of provers in the set I cannot determine any additional information about their
keys by combining the information they hold collectively.

We now complete the security proof by describing an Extractor that outputs the file if 7, provers succeed
with high enough probability. The description of the Extractor and its analysis is the same as that of Theo-
rem 4.2. We give it for the sake of completeness.

(i) The Extractor chooses 7, provers and runs the extraction algorithm of the underlying single-server PoR
system on each of these provers. In the end, it outputs Mi]. for the corresponding provers Prover;,. It defines

8 « {mi,, ..., mj,}. Note that the Extractor of the underlying PoR scheme has already computed et

on the set {M;,, ..., M;,, 1
(ii) The Extractor invokes the Reconstruct algorithm of the underlying ramp scheme with the elements of §

to compute m'.

Now note that the Verifier interacts with every Prover; independently. We know from the security of the
underlying PoR scheme of Shacham-Waters that there is an extractor that always outputs the encoded mes-
sage whenever sucCaye (P;) > 17. Therefore, if all the 7, chosen proving algorithms succeed with probability at
least 17 over all possible keys, then the set S will have 7, correct shares. From the correctness of the Reconstruct
algorithm and e~1(-), we know that the message output in the end by the Extractor will be the message m.

For the storage requirement, the Verifier has to store the coefficients of all the random polynomials
f100, ..., fa(x), g(x), which amounts to a total of 71(n + 1) = T1n + n field elements. O

7 Conclusion and future works

In this paper, we studied PoR systems when multiple provers are involved (MPoR). We motivated and defined
the security of MPoR in the worst-case (Definition 2.1) and the average-case (Definition 2.2) settings, and
extended the hypothesis testing techniques used in the single-server setting [15] to the multi-server setting.
We also motivated the study of confidentiality of the outsourced message. We gave MPoR schemes which are
secure under both these security definitions and provide reasonable confidentiality guarantees even when
there is no restriction on the computational power of the servers. At the end of this paper, we looked at an opti-
mized version of MPoR system when instantiated with the unconditionally secure version of the Shacham-
Waters scheme [16]. We exhibited that, in the multi-server setting with computationally unbounded provers,
one can overcome the limitation that the verifier needs to store as much secret information as the provers.
Our paper leaves several open problems. We list two of them below:
(i) Our approach works in the privately verifiable setting, i.e., the entity that wishes to verify the validity of
stored data is the same entity that stored the data. It would be interesting to see if our schemes can be
extended to publicly verifiable setting.
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(ii) We assume that the provers do not interact with each other after they receive the encoded files. There is
a vast literature on mitigating collusion. It is an interesting direction to see if our schemes can be com-
bined with the recent advances in secure scheme against colluding players in the distributed setting to
remove our assumption.

Notation used in this paper

c challenge

ct dual of a code C

d* distance of the response code

d distance of a codeword

d* dual distance of a code

dist Hamming distance between two vectors
G generator matrix of a code

k length of a message

K key (in a keyed scheme)

¢ number of message-blocks

m message

mli] i-th message block

m message outputted by the Extractor
M message space

M encoded message

Mli] i-th encoded message

M;l[i] i-th encoded message on Prover;
M* encoded message space

n number of provers

N codeword length

Pi proving algorithm of i-th Prover

q order of underlying finite field

r response

M response vector for encoded message M
S tag (in a keyed scheme)

succ(P) success probability of proving algorithm
R response code

r challenge space

y number of possible challenges

A response space

p number of users

T privacy threshold
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