
J. Math. Cryptol. 2018; 12(4): 203–220

Research Article

Maura B. Paterson, Douglas R. Stinson* and Jalaj Upadhyay

Multi-prover proof of retrievability
https://doi.org/10.1515/jmc-2018-0012
Received March 17, 2018; revised July 3, 2018; accepted August 10, 2018

Abstract: There has been considerable recent interest in “cloud storage” wherein a user asks a server to store
a large file. One issue is whether the user can verify that the server is actually storing the file, and typically

a challenge-response protocol is employed to convince the user that the file is indeed being stored correctly.

The security of these schemes is phrased in terms of an extractor which will recover the file given any “prov-

ing algorithm” that has a sufficiently high success probability. This forms the basis of proof-of-retrievability
(PoR) systems. In this paper, we study multiple server PoR systems. We formalize security definitions for two

possible scenarios: (i) A threshold of servers succeeds with high enough probability (worst case), and (ii) the

average of the success probability of all the servers is above a threshold (average case). We also motivate the

study of confidentiality of the outsourcedmessage.We giveMPoR schemeswhich are secure under both these

security definitions and provide reasonable confidentiality guarantees even when there is no restriction on

the computational power of the servers. We also show how classical statistical techniques previously used

by us can be extended to evaluate whether the responses of the provers are accurate enough to permit suc-

cessful extraction. We also look at one specific instantiation of our construction when instantiated with the

unconditionally secure version of the Shacham–Waters scheme. This scheme gives reasonable security and

privacy guarantee. We show that, in the multi-server setting with computationally unbounded provers, one

can overcome the limitation that the verifier needs to store as much secret information as the provers.

Keywords: Proof of retrievability, multiple users, secret sharing

MSC 2010: 94A60
||
Communicated by: Spyros Magliveras

1 Introduction
In the recent past, there has been a lot of activity on remote storage and the associated cryptographic problem

of integrity of the stored data. This question becomes even more important when there are reasons to believe

that the remote servers might act maliciously, i.e., one or more servers can delete (whether accidentally

or on purpose) a part of the data since there is a good chance that the data will never be accessed, and

hence, the client would never find out! In order to assuage such concerns, one would prefer to have a simple

auditing system that convinces the client if and only if the server has the data. Such audit protocols, called

proof-of-retrievability (PoR) systems, were introduced by Juels and Kaliski [11], and closely related proof-of-
data-possession (PDP) systems were introduced by Ateniese et al. [2].

Maura B. Paterson, Department of Economics, Mathematics and Statistics, Birkbeck, University of London, Malet Street,
London WC1E 7HX, United Kingdom, e-mail: m.paterson@bbk.ac.uk
*Corresponding author: Douglas R. Stinson, David R. Cheriton School of Computer Science, University of Waterloo, Waterloo,
ON, N2L 3G1, Canada, e-mail: dstinson@uwaterloo.ca
Jalaj Upadhyay, Department of Computer Science, Johns Hopkins University, Baltimore, MD 21201, USA, e-mail: jalaj@jhu.edu

204 | M.B. Paterson, D. R. Stinson and J. Upadhyay, Multi-prover proof of retrievability

In a PoR protocol, a client stores amessagem on a remote server and keeps only a short private fingerprint
locally. At some later time, when the client wishes to verify the integrity of its message, it can run an audit

protocol inwhich it acts as a verifier while the server proves that it has the client’s data. The formal security of

a PoR protocol is expressed in terms of an extractor – there exists an extractor with (black-box or non-black-
box) access to the proving algorithm used by the server to respond to the client’s challenge, such that the

extractor retrieves the original message given any adversarial server which passes the audits with a threshold

probability. Apart from this security requirement, two practical requirements of any PoR system would be to

have a reasonable bound on the communication cost of every audit and small storage overhead on both the

client and server.

PoR systems were originally defined for the single-server setting. However, in the real world, it is highly

likely that a client would store its data onmore than one server. This might be due to a variety of reasons. For

example, a client might wish to have a certain degree of redundancy if one or more servers fails. In this case,

the client is more likely to store multiple copies of the same data. Another possible scenario could be that the

client does not trust a single server with all of its data. In this case, the client might distribute the data across

multiple servers. Both of these settings have been studied previously in the literature.

The first such study was initiated by Curtmola et al. [9], who considered the first of the above two cases.

They addressed the problem of storing copies of a single file onmultiple servers. This is an attractive solution

considering the fact that replication is a fundamental principle in ensuring the availability and durability of

data. Their system allows the client to audit a subset of servers even if some of them collude.

On the other hand, Bowers, Juels and Oprea [8] considered the second of the above two cases. They stud-

ied a system where the client’s data is distributed and stored on different servers. This ensures that none of

the servers has the whole data.

Both of these systems covered one specific instance of the wide spectrum of possibilities whenmore than

one server is involved. For example, none of theworksmentioned above addresses the question of the privacy

of data. Both of them argue that, for privacy, the client can encrypt its file before storing it on the servers.

These systems are secure only in the computational setting and the privacy guarantee is dependent on the

underlying encryption scheme. On the other hand, there are known primitives in the setting of distributed

systems, like secret sharing schemes, that are known to be unconditionally secure. Moreover, we can also

utilize cross-server redundancy to get more practical systems.

1.1 Our contributions

In Section 2, we give the formal description of multi-server PoR (MPoR) systems. We state the definitions for

worst-case and the average-case secure MPoR systems. We also motivate the privacy requirement and state

the privacy definition for MPoR systems. In Section 3, we define various primitives to the level required to

understand this paper.

In Section 4, we give a construction of an MPoR scheme that achieves worst-case security when the

malicious servers are computationally unbounded. Our construction is based on ramp schemes and a single-

server PoR scheme. Our construction achieves confidentiality of the message. To exemplify our scheme, we

instantiate this scheme with a specific form of ramp scheme.

In Section 5, we give a construction of anMPoR scheme that achieves average-case security against com-

putationally unbounded adversaries. For an MPoR system that affords average-case security, we also show

that an extension of classical statistical techniques previously used by us [15] can be used to provide a basis

for estimating whether the responses of the servers are accurate enough to allow successful extraction.

One of the benefits of anMPoR system is that it provides cross-server redundancy. In the past, this feature

has been used by Bowers, Juels and Oprea [8] to propose amulti-server system called HAIL. We first note that

the constructions in Section 4 and Section 5 do not provide any improvement on the storage overhead of the

server or the client. In Section 6, we give a construction based on the Shacham–Waters protocol [16] that

allows significant reduction of the storage overhead of the client in the multi-server setting.

M.B. Paterson, D. R. Stinson and J. Upadhyay, Multi-prover proof of retrievability | 205

1.2 Related works

The concept of proof of retrievability is due to Juels and Kaliski [11]. A PoR scheme incorporates a challenge-

responseprotocol inwhichaverifier can check that amessage is being stored correctly, alongwith an extractor
that will actually reconstruct the message, given the algorithm of a “prover” who is able to correctly respond

to a sufficiently high percentage of challenges.

There are also papers that describe the closely related (but slightly weaker) idea of a proof-of-data-
possession scheme (PDP scheme), e.g., [2]. A PDP scheme permits the possibility that not all of the message

blocks can be reconstructed. Ateniese et al. [2] also introduced the idea of using homomorphic authenticators
to reduce the communication complexity of the system. This scheme was improved in a follow-up work by

Ateniese et al. [4]. Shacham and Waters [16] later showed that the scheme of Ateniese et al. [1] can be trans-

formed into a PoR scheme by constructing an extractor that extracts the file from the responses of the prover

on the audits.

Bowers, Juels and Oprea [8] extended the idea of Juels and Kaliski [11] and used error-correcting codes.

The main difference in their construction is that they use the idea of an “outer” and an “inner” code (in the

same vein as concatenated codes), to get a good balance between the extra storage overhead and compu-

tational overhead in responding to the audits. Dodis, Vadhan and Wichs [10] provided the first example of

an unconditionally secure PoR scheme, also constructed from an error-correcting code, with extraction per-

formed through list decoding in conjunction with the use of an almost-universal hash function. They also give
different constructions depending on the computational capabilities of the server. Previously [15], we studied

PoR schemes in the setting of unconditional security and showed some close connections to error-correcting

codes.

Recently, Ateniese, Kamara and Katz [5] defined the framework of proof-of-storage systems to understand
PDP and PoR system in a unifiedmanner. They argue that existing PoR [16] and PDP [2] schemes can be seen

as an instantiation of their framework. They used homomorphic identification schemes to give efficient proof-

of-storage systems in the random-oracle model. They further exhibited that existing constructions of PoR and
PDP schemes are specific instantiation of their construction. Wang et al. [19] gave the first privacy preserv-

ing public auditable proof-of-storage systems. We refer the readers to the survey by Kamara and Lauter [12]

regarding the architecture of proof-of-storage systems.

Distributed cloud computing. All the constructions mentioned above considered single server system; how-

ever, such systems are prone to failure leading to catastrophic problems [20]. However, proof-of-storage sys-

tems have been also studied in the setting where there is more than one server or more than one client. The

first such setting was studied by Curtmola et al. [9]. They studied a multiple-replica PDP system, which is the

natural generalization of a single-server PDP system to t servers.
Bowers, Juels and Oprea [8] introduced a distributed system that they called HAIL. Their system allows

a set of provers to prove the integrity of a file stored by a client. The idea in HAIL is to exploit the cross-prover

redundancy. They considered an active and mobile adversary that can corrupt the whole set of provers.

Recently, Ateniese et al. [3] considered the problem from the client side,where n clients store their respec-
tive files on a single prover in a manner such that the verification of the integrity of a single client’s file

simultaneously gives the integrity guarantee of the files of all the participating clients. They called such

a system an entangled cloud storage.

1.3 Comparison with Bowers, Juels and Oprea

The focus of this paper is PoR systems in the distributed setting; therefore, we only compare our work with

existing works in the distributed setting. The scheme of Curtmola et al. [9] only considers multiple replica

of the same underlying PDP systems, while the construction of Ateniese et al. [3] is for the multiple clients

setting. In other words, the scheme of Bowers, Juels and Oprea [8] is closest to ours. However, there are a few

key differences.

206 | M.B. Paterson, D. R. Stinson and J. Upadhyay, Multi-prover proof of retrievability

(i) The construction of Bowers, Juels and Oprea [8] is secure only in the computational setting, while we

provide security in the setting of unconditional security.

(ii) Bowers, Juels and Oprea [8] use various tools and algorithms to construct their systems, including

error-correcting codes, pseudo-random functions, message authentication codes and universal hash

function families. On the other hand, we only use ramp schemes in our constructions, making our

schemes easier to state and analyze, and arguably simpler to implement.

(iii) We consider two types of security guarantees, namely, the worst-case scenario and the average-case

scenario. On the other hand, Bowers, Juels and Oprea [8] only consider the worst-case scenario.

(iv) The construction of Bowers, Juels andOprea [8] only aims to protect the integrity of themessage, while

we consider both the privacy and integrity of themessage. Privacy of data has emerged as an important

requirement in cloud storage due to recent attacks [21].

(v) We work under a stronger requirement than [8] – we require extraction to succeed with probabil-

ity equal to 1, whereas in [8], extraction succeeds with probability close to 1, depending in part on

properties of a certain class of hash functions used in the protocol.

We use the term Prover to identify any server that stores the file of a client. We use the term Verifier for any
entity that verifies whether the file of a client is stored properly or not by the server. We also assume that a file

is composed of message blocks of an appropriate fixed length. If the file consists of single block, we simply

call it the file.

2 Security model of multi-server PoR systems
The essential components of multi-server PoR (MPoR) systems are natural generalizations of single-server

PoR systems. The first difference is that there are ρ provers and the Verifier might store different messages

on each of them. Also, during an audit phase, the Verifier can pick a subset of provers on which it runs the

audits. The last crucial difference is that the Extractor has (black-box or non-black-box) access to a subset of
proving algorithms corresponding to the provers that the Verifier picked to audit. We detail them below for

the sake of completeness.

Let Prover
1
, . . . , Proverρ be a set of ρ provers. The Verifier has a message m ∈M from the message space

M which he redundantly encodes to M
1
, . . . ,Mρ.

(i) In the keyed setting, the Verifier picks ρ different keys (K
1
, . . . , Kρ), one for each of the corresponding

provers.

(ii) The Verifier givesMi to Proveri. In the case of a keyed scheme, Proveri may be also given an additional

tag Si, generated using the key Ki, and Mi.

(iii) The Verifier stores some sort of information (say a fingerprint of the encoded message) which allows

him to verify the responses made by the provers.

(iv) On receiving the encoded message Mi, Proveri generates a proving algorithm Pi, which it uses to

generate its responses during the auditing phase.

(v) At any time, theVerifierpicks an index i, where 1 ≤ i ≤ ℓ, and engages in a challenge-response protocol
with Proveri. In one execution of the challenge-response protocol, the Verifier picks a challenge c and
gives it to Proveri, and the prover responds. The Verifier then verifies the correctness of the response

(based on its fingerprint).

(vi) The success probability succ(Pi) is the probability, computed over all the challenges, with which the

Verifier accepts the response sent by Proveri.
(vii) The Extractor is given a subset S of the proving algorithms P

1
, . . . ,Pρ (and in the case of a keyed

scheme, the corresponding subset of the keys, {Ki : i ∈ S}) and outputs a message m̂. The Extractor
succeeds if m̂ = m.

The above framework does not restrict any provers from interacting with other provers when they receive

the encoded message. However, we assume that they do not interact after they have generated a proving

algorithm. If we do not include this restriction, then it is not hard to see that one cannot have anymeaningful

M.B. Paterson, D. R. Stinson and J. Upadhyay, Multi-prover proof of retrievability | 207

protocol. For example, if provers can interact after they receive the encoded message, then it is possible that

one prover stores the entiremessage and the other provers just relay the challenges to this specific prover and

relay back its response to the verifier.

In contrast to a single-prover PoR scheme, there are two possible ways in which one can define the

security of a multiple-prover PoR system. We define them next.

The first security definition corresponds to the “worst case” scenario and is the natural generalization of

a single-server PoR system.

Definition 2.1. A ρ-prover MPoR scheme is (η, ν, τ, ρ)-threshold secure if there is an Extractor which, when
given any τ proving algorithms, say Pi

1

, . . . ,Piτ , succeeds with probability at least ν whenever

succ(Pj) ≥ η for all j ∈ I,

where I = {i
1
, . . . , iτ}.

We note that when ρ = τ = 1, we get a standard single-server PoR system. Moreover, the definition captures

the worst-case scenario in the sense that it only guarantees extraction if there exists a set of τ proving algo-
rithms, all of which succeed with high enough probability.

The above definition requires that all the τ servers succeed with high enough probability. On the other

hand, it might not be the case that all the proving algorithms of the servers picked by the Verifier succeed
with the required probability. In fact, even verifying whether or not all the τ proving algorithms have high

enough success probability to allow successful extraction might be difficult (see, for example [15] for more

details about this). However, it is possible that some of the proving algorithms succeed with high enough

probability to compensate for the failure of the rest of the proving algorithms. For instance, since the provers

are allowed to interact before they specify their proving algorithms, it might be the case that the colluding

provers decide to store most of the message on a single prover. In this case, even a weaker guarantee that the

average success probability is high enough might be sufficient to guarantee a successful extraction. In other

words, it is possible to state (and as we show in this paper, achieve) a security guarantee with respect to the

average case success probability over all the proving algorithms.

Definition 2.2. A ρ-prover MPoR scheme is (η, ν, ρ)-average secure if the Extractor succeeds with probability
at least ν whenever

1

ρ

ρ
∑
i=1

succ(Pi) ≥ η.

Note that the average-case secure system reduces to the standard PoR scheme (with τ = ρ) when ρ = 1. The
following example illustrates that average-case security is possible evenwhenanMPoR system is not possible

as per Definition 2.1.

Example 2.3. Suppose η = 0.7, ν = 0 and ρ = 3. Further, suppose that succ(P
1
) = 0.9, succ(P

2
) = 0.6 and

succ(P
3
) = 0.6. Then the hypotheses of Definition 2.1 are not satisfied for τ = 2. So even if the MPoR scheme

is (η, ν, τ, ρ)-threshold secure, we cannot conclude that the Extractorwill succeed. On the other hand, for the
assumed success probabilities, the hypotheses of Definition 2.2 are satisfied. Therefore, if the MPoR scheme

is (0.7, ν, τ)-average secure, the Extractor will succeed.

Privacy guarantee. We mentioned at the start of this section that PoR systems were introduced and studied

to give assurance of the integrity of the data stored on remote storage. However, the confidentiality aspects of

data have not been studied formally in the area of cloud-based PoR systems. There have been couple of ad hoc

solutions that have been proposed in which the messages are encrypted and then stored on the cloud [9].

We believe that, in addition to the standard integrity requirement, privacy of the stored data when multiple

provers are involved is also an important requirement. We model the privacy requirement as follows:

Definition 2.4. An MPoR system is called t-private if no set A of adversarial provers of size at most t learns
anything about the message stored by the Verifier.

208 | M.B. Paterson, D. R. Stinson and J. Upadhyay, Multi-prover proof of retrievability

Note that t = 0 corresponds to the case when the MPoR system does not provide any confidentiality to the

message. The above definition captures the idea that, even if t provers collude, they do not learn anything

about the message. We remark that we can achieve confidentiality without encrypting the message by using

secret sharing techniques.

Notation. We fix the letter m for the original message,M to denote the space from which the message m is

picked and M to denote the encoded message. We fix ν to denote the failure probability of the extractor and
η to denote the success probability of a proving algorithm. In this paper, we are mainly interested in the case

when ν = 0 for both the worst-case and the average-case security. We use n to denote the number of message

blocks, assuming the underlying PoR system breaks the message into blocks.

3 Primitives used in this paper

3.1 Ramp schemes

In our construction, we use a primitive related to secret sharing schemes known as ramp schemes. A secret
sharing scheme allows a trusted dealer to share a secret between n players so that certain subsets of players
can reconstruct the secret from the shares they hold [6, 17].

It is well known that the size of each player’s share in a secret sharing schememust be at least the size of

the secret. If the secret that is to be shared is large, then this constraint can be very restrictive. Schemes for

which we can get a certain form of trade-off between share size and security are known as ramp schemes [7].

Definition 3.1 (Ramp scheme). Let τ
1
, τ

2
and n be positive integers such that τ

1
< τ

2
≤ n. A (τ

1
, τ

2
, n)-ramp

scheme is a pair of algorithms, say ShareGen and Reconstruct, such that, on input a secret S, ShareGen(S)
generates n shares, one for each of the n players, such that the following two properties hold:
(i) Reconstruction: Any subset of τ

2
or more players can pool together their shares and use Reconstruct to

compute the secret S from the shares that they collectively hold.

(ii) Secrecy: No subset of τ
1
or fewer players can determine any information about the secret S.

Example 3.2. Suppose the dealer wishes to set up a (2, 4, n)-ramp scheme with the secret (a
0
, a

1
). The

dealer picks a finite field 𝔽q with q > n such that a
0
, a

1
∈ 𝔽q. The dealer picks random elements a

2
, a

3

independently from the field 𝔽q and constructs the following polynomial of degree 3 over the finite field 𝔽q:
f(x) = a

0
+ a

1
x + a

2
x2 + a

3
x3. The share for any playerPi is generated by computing si = f(i). It is easy to see

that if two or fewer players come together, they do not learn any information about the secret, and if at least

four players come together, they can use Lagrange’s interpolation formula to compute the function f as well
as the secret. However, if three players pool together their shares, then they can learn some partial informa-

tion about one of the other player’s share. For concreteness, let q = 17. Then 5a
1
≡ 7s

3
+ 9s

6
+ s

15
mod 17;

therefore, players P
3
, P

6
and P

15
can compute the value of a

1
.

For completeness, we review some of the basic theory concerning the construction of ramp schemes. Lin-

ear codes have been used to construct ramp schemes for over thirty years since the work of McEliece and

Sarwate [13]. We will consider a construction from an arbitrary code in this paper. The following relation

between an arbitrary code (linear or non-linear) and a ramp schemewas shown by Paterson and Stinson [14].

Theorem 3.3. Let C be a code of length N, distance d and dual distance d⊥. Let 1 ≤ s < d⊥ − 2. Then there is
a (τ

1
, τ

2
, N − s)-ramp scheme, where τ

1
= d⊥ − s − 1 and τ

2
= N − d + 1.

Here s is the rate of the ramp scheme. If G is a generator matrix of a code C with dimension k, then
|C| = qk ≥ qd⊥−1. In other words, k ≥ d⊥ − 1.
Construction 3.4. The construction of a ramp scheme from a code is as follows. Let s and ρ be positive inte-
gers, and let (m

1
, . . . ,ms) ∈ 𝔽s be themessage. Let C be a code of length n = ρ + s defined over a finite field𝔽.

We also require that the first s entries of a codeword is themessage to be encoded, i.e., the corresponding gen-

M.B. Paterson, D. R. Stinson and J. Upadhyay, Multi-prover proof of retrievability | 209

(i) On input P, compute the vector R󸀠 = (r󸀠c : c ∈ Γ), where r󸀠c = P(c) for all c ∈ Γ (i.e., for every c, r󸀠c is the response computed
by P when it is given the challenge c).

(ii) Find M̂ ∈M∗, so that dist(R󸀠 , rM̂) is minimized.
(iii) Output m̂ = e−1(M̂).

Figure 1: Extractor for Theorem 3.6.

erator matrix is in standard form. Select a random codeword (c
1
= m

1
, . . . , cs = ms, cs+1, . . . , cρ+s) ∈ C, and

define the shares as (cs+1, . . . , cρ+s).

Example 3.5. One can use a Reed–Solomon code to construct a ramp scheme [13]. Let q be a prime and

1 ≤ s < t ≤ n < q. It is well known that, for a prime q, there is an [N, k, N − τ + 1]q Reed–Solomon code with

d⊥ = τ + 1. This implies a (τ − s, τ, N)-ramp scheme over 𝔽q.

3.2 Single-prover PoR system

We start by fixing some notation for PoR schemes that we use throughout the paper. Let Γ be the challenge
space, and let ∆ be the response space. We denote by γ = |Γ| the size of a challenge space. LetM∗ be the space
of all encoded messages. The response function ρ : M∗ × Γ → ∆ computes the response r = ρ(M, c) given the
encoded message M and the challenge c.

For an encoded message M ∈M∗, we define the response vector rM that contains all the responses to all

possible challenges for the encoded message M. Finally, define the response code of the scheme to be

R = {rM : M ∈M∗}.

The codewords in R are just the response vectors that we defined above. Previously [15], we proved the

following result for a single-prover PoR scheme.

Theorem 3.6. Suppose thatP is a proving algorithm for a PoR schemewith response codeR. If the success prob-
ability of the corresponding proving algorithm satisfies succ(P) ≥ 1 − d̃/2γ, where d̃ is the Hamming distance of
the code R, and γ is the size of the challenge space, then the extractor described in Figure 1 always outputs the
message m.

If we cast this in the security model defined in Section 1 (Definition 2.1 and Definition 2.2), then we have the

following theorem.

Theorem 3.7. Suppose thatP is a proving algorithm for a single server PoR scheme with response codeR. Then
there exists a (1 − d̃/2γ, 0, 1, 1)-MPoR system, where d̃ is the Hamming distance of the codeR, and γ is the size
of the challenge space Γ.

Previously [15], we gave a modified version of the Shacham–Waters scheme which they showed is secure in

the unconditional security setting. They argued that, in the setting of unconditionally security, any keyed PoR

scheme should be considered to be secure when the success probability of the proving algorithm P, denoted

by succ(P), is defined as the average success probability of the prover over all possible keys (Theorem 3.8).

The same reasoning extends to MPoR systems. Therefore, in what follows and in Section 6, when we say

a scheme is an (η, ν, τ, ρ)-threshold-secure scheme, the term η is the average success probability where the
average is computed over all possible keys. We denote the average success probability of a prover P over all

possible keys by succ
avg
(P). Previously [15], we showed the following:

Theorem 3.8. Let 𝔽q be the underlying field, and let ℓ ≥ 1 be the Hamming weight of the challenges made by
the Verifier. Let d be the Hamming distance of the space of the encoded messageM∗. Suppose that

succ
avg
(P) ≳ 1 −

d∗(q − 1)
2γq ,

210 | M.B. Paterson, D. R. Stinson and J. Upadhyay, Multi-prover proof of retrievability

where γ = qn is the size of the challenge space and d∗ is given by

d∗ ≈ (n
ℓ
)(q − 1)ℓ − (n − d

ℓ
)(q − 1)ℓ − ∑

w≥1
(
d
w)(

n − d
ℓ − w)
(q − 1)ℓ

q . (3.1)

Then there exists an Extractor that always outputs m̂ = m.

4 Worst-case MPoR based on ramp scheme
In this section, we give our first construction that achieves a worst-case security guarantee. The idea is to use

a (τ
1
, τ

2
, ρ)-ramp scheme in conjunction with a single-server PoR system. The intuition behind the construc-

tion is that the underlying PoR system along with the ramp scheme provides the retrievability guarantee and

the ramp scheme provides the confidentiality guarantee.

We first present a schematic diagram of the working of an MPoR in Figure 2 and illustrate the scheme

with the help of following example. We provide the details of the construction in Figure 3.

Example 4.1. Let ρ = 6. Suppose theVerifier and the provers use a PoR system Π. Let themessage to be stored

be (15, 3). The Verifier picks q = 17 and chooses two random elements 1, 2 ∈ 𝔽
17

to construct a polynomial

f(x) = 15 + 3x + x2 + 2x3. The Verifier picks an encoding function e(⋅) and stores e(4) on Prover
1
, e(7) on

Prover
2
, e(2) on Prover

3
, e(1) on Prover

4
, e(16) on Prover

5
, and e(8) on Prover

6
.

Let us suppose that the PoR scheme is such that, for a random challenge vector of dimension ρ, say
(5, 2, 9, 13, 5, 6), where the i-th entry would be a challenge to Proveri, the corresponding responses of the
provers form a vector (3, 14, 1, 13, 12, 14), where Respi is the correct response of Proveri. In other words, on
challenge 5 to Prover

1
, the correct response is 3, and so on.

During the audit phase, the Verifier picks any four provers and sends the challenges to the provers. Once
all the provers that he chose reply, he verifies their response. For example, suppose the Verifier picks Prover

1
,

Prover
3
, Prover

4
and Prover

6
. The Verifier then sends the challenge 5 to Prover

1
, 9 to Prover

3
, 13 to Prover

4

and 6 to Prover
6
. If it gets the responses 3, 1, 13 and 14 back, it accepts; otherwise, it rejects.

Message in the form of s bits

Share 1 of
ramp scheme

Share i of
ramp scheme

Share ρ of
ramp scheme

Block stored
on Prover1

Block stored
on Proveri

Block stored
on Proverρ

Π Π Π

.

.

Figure 2: Schematic view of Ramp-MPoR system.

Input. The Verifier gets the message m as input. Let Prover1 , . . . , Proverρ be the set of ρ provers.
Initialization Stage. The Verifier performs the following steps for storing the message:

(i) The Verifier chooses a single-server PoR system Π and a (τ1 , τ2 , ρ)-ramp scheme Ramp = (ShareGen, Reconstruct).
(ii) The Verifier computes ρ shares of the message using the ramp scheme (m1 , . . . ,mρ) ← ShareGen(m).
(iii) The Verifier runs ρ independent copies of Π and generates the encoded share Mi = e(mi) ∈M corresponding to

each 1 ≤ i ≤ ρ.
(iv) The Verifier stores Mi on Proveri.

Challenge Phase. During the audit phase, the Verifier picks Proveri and runs the challenge-response protocol of Π with Proveri.

Figure 3:Worst-case secure MPoR using a ramp scheme (Ramp-MPoR).

M.B. Paterson, D. R. Stinson and J. Upadhyay, Multi-prover proof of retrievability | 211

We note one of the possible practical deployments of the Ramp-MPoR stated in Figure 3. Let m be a message

that consists of sk elements from 𝔽q. The Verifier breaks the message into k blocks of length s each. It then
invokes a (τ

1
, τ

2
, n)-ramp scheme on each of these blocks to generate n shares of each of the k blocks. The

Verifier then runs a PoR scheme Π to compute the encoded message to be stored on each of the servers by

encoding its k shares, one corresponding to each of the k blocks.
We prove the following security result for the MPoR scheme presented in Figure 3.

Theorem 4.2. Let Π be an (η, 0, 1, 1)-threshold-secure MPoR with a response code of Hamming distance d̃
and the size of challenge space γ. Let Ramp = (ShareGen, Reconstruct) be a (τ

1
, τ

2
, ρ)-ramp scheme. Then

Ramp-MPoR, defined in Figure 3, is an MPoR system with the following properties:
(i) Privacy: Ramp-MPoR is τ

1
-private.

(ii) Security: Ramp-MPoR is (η, 0, τ
2
, ρ)-threshold secure, where η = 1 − d̃/2γ.

Proof. The privacy guarantee of Ramp-MPoR is straightforward from the privacy property of the underlying

ramp scheme.

For the security guarantee, we need to demonstrate an Extractor that outputs a message m̂ = m if at least

t servers succeed with probability at least η = 1 − d̃/2γ. The description of our Extractor is as follows:
(i) The Extractor chooses τ

2
provers and runs the extraction algorithm of the underlying single-server PoR

systemoneachof theseprovers. In the end, it outputs M̂ij for the correspondingproversProverij . It defines
S← {M̂i

1

, . . . , M̂iτ
2

}.
(ii) The Extractor invokes the Reconstruct algorithm of the underlying ramp scheme with the elements of S.

It outputs whatever Reconstruct outputs.
Nownote that theVerifier interactswith every Proveri independently.We know from the security of the under-

lying single-server PoR scheme (Theorem 3.6) that there is an extractor that always outputs the encoded

message whenever succ(Pi) ≥ η. Therefore, if all the τ2 chosen proving algorithms succeed with probability

at least η, then the set S will have τ
2
correct shares. From the correctness of the Reconstruct algorithm, we

know that the message output in the end by the Extractor will be the message m.

As a special case of the above, we get a simple MPoR systemwhich uses a replication code. A replication code

has an encoding function

Enc: Λ → Λ

ρ
such that Enc(x) = (x, x, . . . , x⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

ρ times

) for any x ∈ Λ.

This is the setting considered by Curtmola et al. [9].

We call a Ramp-MPoR scheme based on a replication code a Rep-MPoR. The schematic description of

the scheme is presented in Figure 4, and the scheme is presented in Figure 5. Since a ρ-replication code is

a (0, 1, ρ)-ramp scheme, a simple corollary to Theorem 4.2 is the following:

Corollary 4.3. Let Π be an (η, 0, 1, 1)-MPoR system with a response code of Hamming distance d̃ and the size
of challenge space γ. Then Rep-MPoR, formed by instantiating Ramp-MPoR with the replication code based
Ramp scheme, is an MPoR system with the following properties:
(i) Privacy: It is 0-private.
(ii) Security: It is (η, 0, 1, ρ)-threshold secure, where η = 1 − d̃/2γ.

The issue with Rep-MPoR scheme is that there is no confidentiality of the file. We will come back to this issue

later in Section 6.1.

5 Average-case secure MPoR system
In general, it is not possible to verify with certainty whether the success probability of a proving algorithm is

above a certain threshold; therefore, in that case, it is unclear how the Extractor would know which proving

algorithms to use for extraction as described in Section 4. In this section,we analyze the average-case security

212 | M.B. Paterson, D. R. Stinson and J. Upadhyay, Multi-prover proof of retrievability

Message m

M = e(m)

e

M = e(m)

e

M = e(m)

e

M stored
on Prover1

M stored
on Proveri

M stored
on Proverρ

.

.

Figure 4: Schematic view of Rep-MPoR.

Input. The Verifier gets the message m as input. Let Prover1 , . . . , Proverρ be the set of ρ provers.
Initialization stage. The Verifier performs the following steps for storing the message:

(i) The Verifier chooses a single-server PoR system Π.
(ii) Using the encoding scheme of Π, the Verifier generates the encoded message M = e(m) ∈M for 1 ≤ i ≤ n.
(iii) The Verifier stores the message M on all Proveri for 1 ≤ i ≤ n.

Challenge phase. During the audit phase, the Verifier runs the challenge-response protocol of Π independently on each server.

Figure 5: Average-case secure MPoR (Rep-MPoR).

properties of the replication code based scheme, Rep-MPoR, described in the last section. This allows us an

alternative guarantee that allows successful extraction where the extractor need not worry whether a certain

proving algorithm succeeds with high enough probability or not.

Recall the scenario introduced in Example 2.3. Here we assumed succ(P
1
) = 0.9, succ(P

2
) = 0.6 and

succ(P
3
) = 0.6 for three provers. Suppose that successful extraction for a particular prover Pi requires

succ(P
2
) ≥ 0.7. Then extraction would work on only one of these three provers. On the other hand, suppose

we have an average-case secure MPoR in which extraction is successful if the average success probability

of the three provers is at least 0.7. Then the success probabilities assumed above would be sufficient to

guarantee successful extraction.

Theorem 5.1. Let Π be a single-server PoR system with a response code of Hamming distance d̃ and the size of
challenge space γ. Then Rep-MPoR, defined in Figure 5, is an MPoR system with the following properties:
(i) Privacy: Rep-MPoR is 0-private.
(ii) Security: Rep-MPoR is (1 − d̃/2γ, 0, ρ)-average secure.

Proof. Since the message is stored in its entirety on each of the servers, there is no confidentiality.

For the security guarantee, we need to demonstrate an Extractor that outputs a message m̂ = m if the

average success probability of all the provers is at least η = 1 − d̃/2γ. The description of our Extractor is as
follows:

(i) For all 1 ≤ i ≤ n, use Pi to compute the vector Ri = (r(i)c : c ∈ Γ), where r(i)c = Pi(c) for all c ∈ Γ (i.e., for

every c, r(i)c is the response computed by Pi when it is given the challenge c).
(ii) Compute R as a concatenation of R

1
, . . . , Rρ and find M̂ := (M̂

1
, . . . , M̂ρ) so that dist(R, rM̂) is mini-

mized.

(iii) Compute m = e−1(M̂).
Now note that the Verifier interacts with each Proveri independently and the Extractor uses the challenge-
response step with independent challenges. Let η

1
, . . . , ηρ be the success probabilities of the ρ prov-

ing algorithms. Let η̄ be the average success probability over all the servers and challenges. Therefore,

η̄ = ρ−1∑ρi=1 ηi.
First note that, in the case of Figure 5, the response code is of the form

{(r, r, . . . , r⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
ρ times

) : r ∈ R}.

M.B. Paterson, D. R. Stinson and J. Upadhyay, Multi-prover proof of retrievability | 213

It is easy to see that the distance of the response code is ρd̃ and the length of a challenge is ργ. From the

definition of the extractor and Theorem 3.6, it follows that the extraction succeeds if

η
1
+ ⋅ ⋅ ⋅ + ηρ
ρ = η̄ ≥ 1 − d̃

2γ .

5.1 Hypothesis testing for Rep-MPoR

For the purposes of auditing whether a file is being stored appropriately, it is necessary to have a mechanism

for determiningwhether the success probability of a prover is sufficiently high. In the case of replication code

based on MPoR with worst-case security, we are interested in the success probabilities of individual provers,

and the analysis canbe carriedout asdetailed in [15]. In the case ofRep-MPoR,however,wewish todetermine

whether the average success probability of the set of provers {P
1
,P

2
, . . . ,Pρ} is at least η. This amounts to

distinguishing the null hypothesis

H
0
: avg-succ(Pi) < η

from the alternative hypothesis

H
1
: avg-succ(Pi) ≥ η.

Suppose we send c challenges to each server. If a given server Pi has success probability succ(Pi), then
the number of correct responses received follows the binomial distribution B(c, succ(Pi)). If the success prob-
abilities succ(Pi)were the same for each server, then the sum of the number of successes over all the servers

would also follow a binomial distribution. However, we are also interested in the case in which these success

probabilities differ, inwhich case the total number of successes follows aPoisson binomial distribution, which
is more complicated to work with. In order to establish a test that is conceptually and computationally easier

to apply, we will instead rely on the observation that, in cases where the average success probability is high

enough to permit extraction, the failure rates of the servers are relatively low.

For a given server Pi, let fi = 1 − succ(Pi) denote the probability of failure. For r challenges, the number

of failures follows the binomial distribution B(c, fi). Provided that r is sufficiently large and fi is sufficiently

low, then B(c, fi) can be approximated by the Poisson distribution Pois(cfi). The Poisson distribution Pois(λ)
is used to model the scenario where discrete events are occurring independently within a given time period

with an expected rate of λ events during that period. The probability of observing k events within that period
is given by

P(k) = e
−λλk

k! .

Mean and variance of Pois(λ) are equal to λ. For our purposes, the advantage of using this approximation is

that the sum of ρ independent variables following the Poisson distributions Pois(λ
1
), Pois(λ

2
), . . . , Pois(λρ)

is itself distributed according to the Poisson distribution Pois(λ
1
+ λ

2
+ ⋅ ⋅ ⋅ + λρ), evenwhen the λi all differ. In

the case where the average failure probability is low, the distribution Pois(c(f
1
+ f

2
+ ⋅ ⋅ ⋅ + fρ)) should provide

a reasonable approximation to the actual distribution of the total number of failed challenges.

Example 5.2. Todemonstrate the appropriateness of thePoissonapproximation for this application, suppose

we have five servers, whose failure probabilities are expressed as f = (f
1
, f

2
, . . . , f

5
). Let t be the number of

trials per server and b the total number of observed failures out of the 5t trials. Table 1 gives both the exact
cumulative probability Pr[B ≤ b] of observing up to b failures, and the Poisson approximation Pr

Pois
[B ≤ b]

of this cumulative probability, for a range of values for f.

As an example of using the given formula to calculate a confidence interval, supposewe do 200 trials on each

of five servers (so there are 1000 trials in total), and we observe 50 failures in total. Then the resulting confi-

dence interval is [0, 63.29). Suppose we wish to knowwhether the success probability is at least η = 0.9. We

have (1 − 0.9) × 1000 = 100. This is outside of that interval, and hencewe conclude there is enough evidence
to reject H

0
at the 95% significance level. However, to test whether the success probability was greater than

0.95 we see that (1 − 0.95) × 1000 = 50. Since 50 lies within the interval, we conclude there is insufficient

evidence to reject H
0
at the 95% significance level.

214 | M.B. Paterson, D. R. Stinson and J. Upadhyay, Multi-prover proof of retrievability

t b Pr[B ≤ b] PrPois[B ≤ b]
f = (0.1, 0.1, 0.1, 0.1, 0.1)
200 5 2.556545692 × 10−38 3.261456422 × 10−36

200 10 1.450898832 × 10−32 1.137687971 × 10−30

200 50 5.995167631 × 10−9 2.401592276 × 10−8

200 100 0.5265990813 0.5265622074
100 0 1.322070819 × 10−23 1.928749864 × 10−22

100 5 6.272915577 × 10−17 5.567756307 × 10−16

100 10 1.135691814 × 10−12 6.450152972 × 10−12

100 15 1.662665039 × 10−9 6.357982164 × 10−9

100 20 4.557480806 × 10−7 0.000001235187232
200 0 1.747871252 × 10−46 3.720076039 × 10−44

200 5 2.556545692 × 10−38 3.261456422 × 10−36

200 10 1.450898832 × 10−32 1.137687971 × 10−30

200 15 6.757345217 × 10−28 3.340076418 × 10−26

200 20 5.962487876 × 10−24 1.905558774 × 10−22

500 20 1.240463044 × 10−84 1.084188102 × 10−79

500 25 3.140367419 × 10−79 1.697380630 × 10−74

500 30 2.935666094 × 10−74 9.912214279 × 10−70

500 35 1.193158517 × 10−69 2.542280876 × 10−65

500 40 2.369596756 × 10−65 3.218593843 × 10−61

f = (0.01, 0.01, 0.01, 0.01, 0.01)
200 5 0.06613951161 0.06708596299
200 10 0.5830408032 0.5830397512
200 20 0.9985035184 0.9984117410
200 50 ≈ 1 ≈ 1

f = (0.2, 0.01, 0.02, 0.03, 0.04)
200 5 9.651421837 × 10−22 6.180223643 × 10−20

200 10 5.539867010 × 10−17 1.744235672 × 10−15

200 20 0.09020056729 0.1076778797
200 50 0.9999999198 0.9999991415

f = (0.01, 0.01, 0.03, 0.04, 0.05)
200 5 8.312224722 × 10−8 1.196952269 × 10−7

200 10 0.00006809921297 0.00008550688580
200 20 0.06901537242 0.07274102693
200 50 0.9999582547 0.9999397284

t b Pr[B ≤ b] PrPois[B ≤ b]
f = (0.1, 0.1, 0.1, 0.1, 0.1)
20 0 0.00002656139888 0.00004539992984
20 5 0.05757688648 0.06708596299
20 10 0.5831555123 0.5830397512
20 15 0.9601094730 0.9512595983
20 20 0.9991924263 0.9984117410
40 0 7.055079108 × 10−10 2.061153629 × 10−9

40 5 0.00003871193246 0.00007190884076
40 10 0.008071249954 0.01081171886
40 15 0.1430754340 0.1565131351
40 20 0.5591747822 0.5590925860

100 20 4.557480806 × 10−7 0.000001235187232
100 25 0.00003540113222 0.00007160717427
100 30 0.001002549708 0.001594027332
100 35 0.01231948910 0.01621388016
100 40 0.07508928967 0.08607000083

f = (0.01, 0.01, 0.01, 0.01, 0.01)
20 0 0.3660323413 0.3678794412
20 5 0.9994654657 0.9994058153
20 10 0.9999999939 0.9999999900
20 15 1.000000000 1.000000000
20 20 1.000000000 1.000000000
40 0 0.1339796748 0.1353352833
40 5 0.9839770930 0.9834363920
40 10 0.9999931182 0.9999916922
40 15 0.9999999996 1.000000000
40 20 0.9999999999 1.000000000

100 20 0.9999999367 0.9999999198
100 25 0.9999999999 1.000000001
100 30 0.9999999999 1.000000001
100 35 0.9999999999 1.000000001
100 40 0.9999999999 1.000000001

f = (0.02, 0.0075, 0.0075, 0.0075, 0.0075)
20 0 0.08936904038 0.09536916225
20 5 0.9712600336 0.9672561739
20 10 0.9999843669 0.9999642885
20 15 0.9999999995 0.9999999958
20 20 1.000000000 1.000000000
40 0 0.007986825382 0.009095277109
40 5 0.6699740391 0.6684384858
40 10 0.9927425867 0.9909776597
40 15 0.9999835852 0.9999661876
40 20 0.9999999935 0.9999999715

100 20 0.9999999935 0.9999999715
100 25 0.9999999998 1.000000001
100 30 0.9999999998 1.000000001
100 35 0.9999999998 1.000000001
100 40 0.9999999998 1.000000001

Table 1: Comparison between exact cumulative probability and approximation by Poisson distribution.

M.B. Paterson, D. R. Stinson and J. Upadhyay, Multi-prover proof of retrievability | 215

Let b denote the number of incorrect responses we have received from the cρ challenges given to the

provers. Suppose that H
0
is true, so that the expected number of failures is at least ηρc. Based on our approx-

imation, the probability that the number of failures is at most b is at most

b
∑
i=0

e−ηρc(ηρc)i

i! .

If this probability is less than 0.05, we reject H
0
and accept the alternative hypothesis. However, if the prob-

ability is greater than 0.05, then there is not enough evidence to reject H
0
at the 5% significance level, and

so we continue to suspect that the file is not being stored appropriately.

We can express this test neatly using a confidence interval. We define a 95% upper confidence bound by

λ
U
= inf{λ

󵄨󵄨󵄨󵄨󵄨󵄨󵄨

b
∑
i=0

e−λλi

i! < 0.05}.

This represents the smallest parameter choice for the Poisson distribution for which the probability of obtain-

ing b or fewer incorrect responses is less than 0.05. Then [0, λ
U
) is a 95% confidence interval for the mean

number of failures, so we reject H
0
whenever ηnr lies outside this interval. The value of λ

U
can be determined

easily by exploiting a connection with the chi-squared distribution [18]. We have

b
∑
i=0

e−λλi

i! = Pr(χ
2

2b+2 > 2λ),

and so the appropriate value of λ
U
can readily be obtained from a table for the chi-squared distribution.

We give a comparison between exact cumulative probability and approximation by Poisson distribution

in Table 1.

6 Optimization using the keyed Shacham–Waters scheme
In the last three sections, we gave constructions of MPoR scheme using ramp schemes, linear secret-sharing

schemes, replication codes and a single-prover PoR system. In this section, we show a specific instantiation

of our scheme using the keyed scheme of Shacham and Waters [15, 16] for a single-server PoR system.

6.1 Extension of the keyed Shacham–Waters scheme to MPoR

If we instantiate the Rep-MPoR scheme (described in Section 4) with the modified Shacham–Waters scheme

of [15], then we need one key that consists of n + 1 values in 𝔽q. However, in this case, we do not have any

privacy. In particular, we have the following extension of Corollary 4.3.

Corollary 6.1. Let Π be an (η, 0, 0, 1)-PoR system of Shacham and Waters [16] with a response code of
Hamming distance d̃ and the size of challenge space γ, where d̃ is given by equation (3.1). Then Rep-MPoR
instantiated with the Shacham–Waters scheme is an MPoR system with the following properties:
(i) Privacy: It is 0-private.
(ii) Security: It is (η, 0, 1, ρ)-threshold secure, where η = 1 − d̃(q−1)

2γq .
(iii) Storage Overhead: The Verifier needs to store n + 1 field elements, and every Proveri needs to store 2n field

elements.

Proof. The results follow by combining Theorem 3.8 with Corollary 4.3.

The issuewith the Rep-MPoR scheme is that there is no confidentiality of the file. Inwhat follows, we improve

the privacy guarantee of the MPoR scheme described above. Our starting point would be an instantiation of

the Ramp-MPoR scheme, defined in Figure 3, with the Shacham–Waters scheme. We then reduce the storage

on the Verifier through two steps.

216 | M.B. Paterson, D. R. Stinson and J. Upadhyay, Multi-prover proof of retrievability

6.2 Optimized version of the multi-server Shacham–Waters scheme

We follow two steps to get an MPoR scheme based on the Shacham–Waters scheme with a reduced storage

requirement for the Verifier, while improving the confidentiality guarantee.

(i) In the first step, stated in Theorem 6.2, we improve the privacy guarantee of the MPoR scheme to get

a τ
1
-private MPoR scheme (where τ

1
< ρ is an integer). The Verifier in this scheme has to store ρ(n + 1)

field elements. When the underlying field is 𝔽q, the verifier has to store ρ(n + 1) log q bits.
(ii) In the second step, stated in Theorem 6.3, we reduce the storage requirement of the Verifier from ρ(n + 1)

to τ
1
(n + 1) field elements for some integer τ

1
< ρ without affecting the privacy guarantee. When the

underlying field is 𝔽q, the verifier has to store τ1(n + 1) log q bits.

Step 1. To improve the privacy guarantee of Corollary 6.1 to say, τ
1
-private (as per Definition 2.4), we use

a Ramp-MPoR scheme and ρ different keys, where each key consists of n + 1 values in 𝔽q. The Verifier gen-
erates ρ shares of every message block using a ramp scheme, then encodes the shares, and finally computes

the tag for each of these encoded shares.

We follow with more details. Letm = (m[1], . . . ,m[k]) be the message. The Verifier computes the shares

of everymessage block (m[1], . . . ,m[k])using a (τ
1
, τ

2
, ρ)-ramp scheme. It then encodes all the shares using

the encoding scheme of the PoR scheme. Let the resulting encoded shares be Mi[1], . . . ,Mi[n] for 1 ≤ i ≤ ρ.
In other words, the result of the above two steps are ρ encoded shares, each of which is an n-tuple in (𝔽q)n.
The Verifier now picks random values a(i), b(i)

1

, . . . , b(i)n ∈ 𝔽q for 1 ≤ i ≤ ρ and computes the tags as follows:

Si[j] = b(i)j + a
(i)Mi[j] for 1 ≤ i ≤ ρ, 1 ≤ j ≤ n.

The verifier gives Proveri the tuple of encoded messages (Mi[1], . . . ,Mi[n]) and the corresponding tags
(Si[1], . . . , Si[n]). We call this scheme the Basic-MPoR scheme. The following is straightforward from Theo-

rem 4.2.

Theorem 6.2. Let Π be an (η, 0, 0, 1)-PoR scheme of Shacham and Waters [16] with a response code of
Hamming distance d̃ and the size of challenge space γ = qn, where d̃ is given by equation (3.1). Let Ramp be
a (τ

1
, τ

2
, ρ)-ramp scheme. Then Basic-MPoR defined above is an MPoR scheme with the following properties:

(i) Privacy: Basic-MPoR is τ
1
-private.

(ii) Security: Basic-MPoR is (η, 0, τ
2
, ρ)-threshold secure, where η = 1 − d̃(q−1)

2γq .
(iii) Storage Overhead: The Verifier needs to store ρ(n + 1) field elements and every Proveri needs to store 2n

field elements.

In the construction mentioned above, the Verifier needs to store ρ(n + 1) elements of 𝔽q, which is almost

the same as the total storage requirements of all the provers. In [15], we encountered the same issue, where

the Verifier has to store as much secret information as the size of the message. This seems to be the general

drawback in the unconditionally secure setting. However, in the case of MPoR, we can improve the storage

requirement of the Verifier as shown in the next step.

Step 2. In this step, we improve the above-describedMPoR scheme to achieve considerable reduction on the

storage requirement of the Verifier. The resulting scheme also provides unbounded audit capability against

computationally unbounded adversarial provers, and it also ensures τ
1
-privacy.

The main observation that results in the reduction in the storage requirements of the Verifier is the fact
that we can partially derandomize the keys generated by the Verifier. We use one of the most common tech-

niques in derandomization. The keys in this scheme are generated by τ
1
-wise independent functions.¹ Our

construction works as follows: We pick n + 1 random polynomials, f
1
(x), . . . , fn(x), g(x) ∈ 𝔽q[x], each of

degree at most τ
1
− 1. Then the Verifier computes the secret key by evaluating the polynomials fj(x) and

g(x) on ρ different values, say
b(i)j = fj(i) and ai = g(i)

1 A function is a τ
1
-wise independent function if every subset of τ

1
outputs is independent and equally likely. It should be noted

that this does not imply that all the outputs of the function are mutually independent.

M.B. Paterson, D. R. Stinson and J. Upadhyay, Multi-prover proof of retrievability | 217

Input. The Verifier gets a message m = (m[1], . . . ,m[n]) as input. Let Prover1 , . . . , Proverρ be the set of ρ provers.
Let q be a prime number greater than ρ.

Initialization Stage. The Verifier performs the following steps:
(i) The Verifier chooses n + 1 random polynomials of degree at most τ1 − 1, f1(x), . . . , fn(x), g(x) ∈ 𝔽q[x] and

a (τ1 , τ2 , ρ)-ramp scheme Ramp = (ShareGen, Reconstruct).
(ii) For every server i, the Verifier does the following:

(a) Compute ρ shares of every message block using the share generation algorithm of Ramp as follows:
(m1[j], . . . ,mρ[j]) ← ShareGen(m[j]) for 1 ≤ j ≤ n.

(b) The Verifier encodes the message as e(mi[j]) = Mi[j] for 1 ≤ j ≤ n, 1 ≤ i ≤ ρ.
(c) Compute b(i)1 = f1(i), . . . , b

(i)
n = fn(i), a(i) = g(i).

(d) Compute the tag Si[j] = b(i)j + a
(i)Mi[j] for 1 ≤ j ≤ n.

(iii) The Verifier gives {(Mi[j], Si[j])}1≤j≤n to Proveri.
Challenge Phase. During the audit phase, the Verifier picks a prover, Proveri, and runs the challenge-response algorithm

of a single-server Shacham–Waters scheme. It computes the corresponding keys by computing the random polynomials
chosen during the set up phase.

Figure 6:MPoR using optimized Shacham–Waters scheme (SW-MPoR).

for 1 ≤ j ≤ n and 1 ≤ i ≤ ρ. The Verifier then computes the encoded shares and their corresponding tags as in

Basic-MPoR, i.e.,

Si[j] = b(i)j + a
(i)Mi[j] for 1 ≤ i ≤ ρ, 1 ≤ j ≤ n.

Figure 6 is the formal description of this scheme. For the scheme described in Figure 6, we prove the

following result.

Theorem 6.3. Let Ramp = (ShareGen, Reconstruct) be a (τ
1
, τ

2
, ρ)-ramp scheme. Let Π be a single-prover

Shacham–Waters scheme [16] with a response code of Hamming distance d̃ and the size of challenge space γ.
Then SW-MPoR, defined in Figure 6, is an MPoR system with the following properties:
(i) Privacy: SW-MPoR is τ

1
-private.

(ii) Security: SW-MPoR is (η, 0, τ
2
, ρ)-threshold secure, where η = 1 − d̃(q−1)

2γq .
(iii) Storage Overhead: The Verifier needs to store τ

1
(n + 1) field elements, and every Proveri (for 1 ≤ i ≤ ρ)

needs to store 2n field elements.

Proof. The privacy guarantee of SW-MPoR is straightforward from the secrecy property of the underlying

ramp scheme.

For the security guarantee, we have to show an explicit construction of the Extractor that, on input prov-
ing algorithms P

1
, . . . ,Pρ, outputs m if succ(Pi) > η for at least τ

2
proving algorithms. However, there is

a subtle issue thatwehave to dealwith before using the proof of Theorem4.2, because of the relation between

every message and tag pair. It was previously noted by us [15] that if the adversarial prover learns the secret

key, then it can break the PoR scheme. We first argue that a set of τ
1
colluding provers cannot have an undue

advantage from exploiting the linear structure of the message-tag pairs.

We now prove that any set of τ
1
provers do not learn anything about the keys generated using n + 1

polynomials of degree at most τ
1
− 1. The idea is very similar to the single-prover case. Previously [15], we

noted that in the single prover case, for an n-tuple encoded message, the key is a tuple of n + 1 uniformly

random elements (a, b
1
, . . . , bn) in𝔽q. Further, from the point of view of a prover, there are q possible keys –

the value of a determines the n-tuple (b
1
, . . . , bn) uniquely, but a is completely undetermined. In the MPoR

case,wehave ρ keys. Eachprover in agiven set of τ
1
provers has q possible keys, as discussedabove.However,

it is conceivable that they can use their collective knowledge to learn something about the keys. In what

follows, we show that they cannot determine any additional information about their keys by combining the

information they hold collectively.

Let I = {i
1
, . . . , iτ

1

} be the indices of any arbitrary set of τ
1
provers. Let Si denote the set of possible keys

for Proveri, for i ∈ I. Consider any list of τ1 keys (Ki
1

, Ki
2

, . . . , Kiτ
1

). Recall that Ki (for i ∈ I) has the form
(a(i), b(i)

1

, . . . , b(i)n), where a(i) and b(i)j (for 1 ≤ j ≤ n) are generated by random polynomials of degree τ
1
. We

218 | M.B. Paterson, D. R. Stinson and J. Upadhyay, Multi-prover proof of retrievability

first consider a(i) (for i ∈ I). Note that the vector (b(i)
1

, . . . , b(i)n) is defined uniquely by a(i) and the set of all

encoded message-tag pairs. We have already shown that any set of τ
1
provers cannot learn anything about

the random polynomial g(x) used to generate the a(i) for all i ∈ I. We use the following well-known fact to

show that any set of τ
1
provers does not learn any additional information about the keys.

Fact 6.4. Let t > 0 be an integer, let q be a prime number, and let𝔽q be a finite field. Let h0, h1, . . . , ht−1 ∈ 𝔽q
be random elements picked uniformly at random. Define h(x) = ∑t−1i=0 hixi for all α ∈ 𝔽q. Then,

Pr[h(x
1
) = y

1
∧ ⋅ ⋅ ⋅ ∧ h(xτ) = yt] =

t
∏
i=1

Pr[h(xαi) = yi]. (6.1)

Since h(x) is uniformly distributed in 𝔽q, the probability computed in equation (6.1) is actually equal

to q−t.

By construction, g(x) is a random polynomial of degree at most τ
1
− 1. Fact 6.4 then implies that any com-

bination of {a(i)}i∈I is equally likely. A similar argument, with the a(i)’s replaced by the b(i)j ’s (for all i ∈ I and
1 ≤ j ≤ n) and the polynomial g(x) replaced by fj(x) (for 1 ≤ j ≤ n), gives that all sets of τ1 keys are equally
likely. In other words, the set of provers in the set I cannot determine any additional information about their

keys by combining the information they hold collectively.

We now complete the security proof by describing an Extractor that outputs the file if τ
2
provers succeed

with high enough probability. The description of the Extractor and its analysis is the same as that of Theo-

rem 4.2. We give it for the sake of completeness.

(i) The Extractor chooses τ
2
provers and runs the extraction algorithm of the underlying single-server PoR

systemoneachof theseprovers. In the end, it outputs M̂ij for the correspondingproversProverij . It defines
S← {m̂i

1

, . . . , m̂iτ
2

}. Note that the Extractor of the underlying PoR scheme has already computed e−1

on the set {M̂i
1

, . . . , M̂iτ
2

}.
(ii) The Extractor invokes the Reconstruct algorithm of the underlying ramp scheme with the elements of S̃

to compute m󸀠.
Now note that the Verifier interacts with every Proveri independently. We know from the security of the

underlying PoR scheme of Shacham–Waters that there is an extractor that always outputs the encoded mes-

sage whenever succ
avg
(Pi) ≥ η. Therefore, if all the τ2 chosen proving algorithms succeed with probability at

least η over all possible keys, then the setSwill have τ
2
correct shares. From the correctness of theReconstruct

algorithm and e−1(⋅), we know that the message output in the end by the Extractor will be the message m.
For the storage requirement, the Verifier has to store the coefficients of all the random polynomials

f
1
(x), . . . , fn(x), g(x), which amounts to a total of τ

1
(n + 1) = τ

1
n + n field elements.

7 Conclusion and future works
In this paper, we studied PoR systems whenmultiple provers are involved (MPoR). Wemotivated and defined

the security of MPoR in the worst-case (Definition 2.1) and the average-case (Definition 2.2) settings, and

extended the hypothesis testing techniques used in the single-server setting [15] to the multi-server setting.

We also motivated the study of confidentiality of the outsourced message. We gave MPoR schemes which are

secure under both these security definitions and provide reasonable confidentiality guarantees even when

there is no restriction on the computational power of the servers. At the end of this paper,we looked at an opti-

mized version of MPoR system when instantiated with the unconditionally secure version of the Shacham–

Waters scheme [16]. We exhibited that, in the multi-server setting with computationally unbounded provers,

one can overcome the limitation that the verifier needs to store as much secret information as the provers.

Our paper leaves several open problems. We list two of them below:

(i) Our approach works in the privately verifiable setting, i.e., the entity that wishes to verify the validity of

stored data is the same entity that stored the data. It would be interesting to see if our schemes can be

extended to publicly verifiable setting.

M.B. Paterson, D. R. Stinson and J. Upadhyay, Multi-prover proof of retrievability | 219

(ii) We assume that the provers do not interact with each other after they receive the encoded files. There is

a vast literature on mitigating collusion. It is an interesting direction to see if our schemes can be com-

bined with the recent advances in secure scheme against colluding players in the distributed setting to

remove our assumption.

Notation used in this paper
c challenge

C⊥ dual of a code C
d∗ distance of the response code

d distance of a codeword

d⊥ dual distance of a code

dist Hamming distance between two vectors

G generator matrix of a code

k length of a message

K key (in a keyed scheme)

ℓ number of message-blocks

m message

m[i] i-th message block

m̂ message outputted by the Extractor
M message space

M encoded message

M[i] i-th encoded message

Mj[i] i-th encoded message on Proverj
M∗ encoded message space

n number of provers

N codeword length

Pi proving algorithm of i-th Prover
q order of underlying finite field

r response

rM response vector for encoded message M
S tag (in a keyed scheme)

succ(P) success probability of proving algorithm

R∗ response code

Γ challenge space

γ number of possible challenges

∆ response space

ρ number of users

τ privacy threshold

Acknowledgment: Thanks to Andris Abakuks and Simon Skene for some helpful discussions of statistics.

References
[1] G. Ateniese, R. C. Burns, R. Curtmola, J. Herring, O. Khan, L. Kissner, Z. N. J. Peterson and D. Song, Remote data checking

using provable data possession, ACM Trans. Inform. Sys. Security 14 (2011), Paper No. 12.
[2] G. Ateniese, R. C. Burns, R. Curtmola, J. Herring, L. Kissner, Z. N. J. Peterson and D. X. Song, Provable data possession at

untrusted stores, in: Proceedings of the 14th ACM Conference on Computer and Communications Security, ACM, New York
(2007), 598–609.

220 | M.B. Paterson, D. R. Stinson and J. Upadhyay, Multi-prover proof of retrievability

[3] G. Ateniese, Ö. Dagdelen, I. Damgård and D. Venturi, Entangled cloud storage, IACR Cryptology ePrint Archive (2012),
https://eprint.iacr.org/2012/511.pdf.

[4] G. Ateniese, R. Di Pietro, L. V. Mancini and G. Tsudik, Scalable and efficient provable data possession, in: Proceedings of
the 4th International Conference on Security and Privacy in Communication Networks, ACM, New York (2008), 1–9.

[5] G. Ateniese, S. Kamara and J. Katz, Proofs of storage from homomorphic identification protocols, in: Advances in
Cryptology—ASIACRYPT 2009, Springer, Berlin (2009), 319–333.

[6] G. R. Blakley, Safeguarding cryptographic keys, in: Proceedings of the National Computer Conference, AFIPS, New York
(1979), 313–317.

[7] G. R. Blakley and C. Meadows, Security of ramp schemes, in: Advances in Cryptology—CRYPTO 1985, Springer, Berlin
(1985), 242–268.

[8] K. D. Bowers, A. Juels and A. Oprea, Proofs of retrievability: Theory and implementation, in: Proceedings of the 2009 ACM
Workshop on Cloud Computing Security, ACM, New York (2009), 43–54.

[9] R. Curtmola, O. Khan, R. C. Burns and G. Ateniese, MR-PDP: Multiple-replica provable data possession, in: The 28th
International Conference on Distributed Computing Systems, IEEE Press, Piscataway (2008), 411–420.

[10] Y. Dodis, S. P. Vadhan and D. Wichs, Proofs of retrievability via hardness amplification, in: Theory of Cryptography,
Springer, Berlin (2009), 109–127.

[11] A. Juels and B. S. Kaliski, Jr., PORs: Proofs of retrievability for large files, in: Proceedings of the 14th ACM Conference on
Computer and Communications Security, ACM, New York (2007), 584–597.

[12] S. Kamara and K. Lauter, Cryptographic cloud storage, in: Financial Cryptography and Data Security, Springer, Berlin
(2010), 136–149.

[13] R. J. McEliece and D. V. Sarwate, On sharing secrets and Reed–Solomon codes, Comm. ACM 24 (1981), 583–584.
[14] M. B. Paterson and D. R. Stinson, A simple combinatorial treatment of constructions and threshold gaps of ramp schemes,

Cryptogr. Commun. 5 (2013), 229–240.
[15] M. B. Paterson, D. R. Stinson and J. Upadhyay, A coding theory foundation for the analysis of general unconditionally

secure proof-of-retrievability schemes for cloud storage, J. Math. Cryptol. 7 (2013), 183–216.
[16] H. Shacham and B. Waters, Compact Proofs of Retrievability, in: Advances in Cryptology—ASIACRYPT 2008, Springer,

Berlin (2009), 90–107.
[17] A. Shamir, How to share a secret, Comm. ACM 22 (1979), 612–613.
[18] K. Ulm, Simple method to calculate the confidence interval of a standardized mortality ratio (SMR), Amer. J. Epidemiology

131 (1990), 373–375.
[19] C. Wang, Q. Wang, K. Ren and W. Lou, Privacy-preserving public auditing for data storage security in cloud computing, in:

IEEE Proceedings INFOCOM 2010, IEEE Press, Piscataway (2010), 1–9.
[20] Summary of the Amazon S3 Service Disruption in the Northern Virginia (US-EAST-1) Region,

https://aws.amazon.com/message/41926/.
[21] Why is decentralized and distributed file storage critical for a better web?,

https://coincenter.org/entry/why-is-decentralized-and-distributed-file-storage-critical-for-a-better-web.

https://eprint.iacr.org/2012/511.pdf
https://aws.amazon.com/message/41926/
https://coincenter.org/entry/why-is-decentralized-and-distributed-file-storage-critical-for-a-better-web

	Multi-prover proof of retrievability
	1 Introduction
	1.1 Our contributions
	1.2 Related works
	1.3 Comparison with Bowers, Juels and Oprea

	2 Security model of multi-server PoR systems
	3 Primitives used in this paper
	3.1 Ramp schemes
	3.2 Single-prover PoR system

	4 Worst-case MPoR based on ramp scheme
	5 Average-case secure MPoR system
	5.1 Hypothesis testing for Rep-MPoR

	6 Optimization using the keyed Shacham–Waters scheme
	6.1 Extension of the keyed Shacham–Waters scheme to MPoR
	6.2 Optimized version of the multi-server Shacham–Waters scheme

	7 Conclusion and future works

