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1 Introduction

Finding solutions to algebraic equations is a fundamental task. A common approach is a Grébner basis
computation via an algorithm such as Faugére’s F4 and F5 (see [4, 5]). In recent applications, Grébner basis
techniques have become relevant to the solution of the Elliptic Curve Discrete Logarithm Problem (ECDLP).
Here one seeks solutions to polynomial equations arising from a Weil descent along Semaev’s summation
polynomials [13] which represents a crucial step in an index calculus method for the ECDLP; see, e.g.,
[12, 14]. The efficiency of Grobner basis algorithms is governed by a so-called degree of regularity, that is,
the highest degree occurring along the subsequent computation of algebraic relations. It is widely believed
that this often intractable complexity parameter is closely approximated by the degree of the first non-trivial
algebraic relation, the first fall degree. In particular, the algorithms for the ECDLP of Petit and Quisquater [12]
are sub-exponential under the assumption that this approximation is in o(1).

In the present paper, we will improve Petit’s and Quisquater’s [12] first fall degree bound m? + 1 for the
system arising from the Weil descent along Semaev’s (m + 1)-th summation polynomial. That is, we prove
that a degree fall occurs at degree m? — m + 1 by exhibiting the highest degree homogeneous part of that
polynomial system. In fact, this degree is m?> — m, so that we expect the bound to be sharp except for the
somewhat pathological case m = 2 that has been discussed by Kosters and Yeo [10]. This allows us to sharpen
the asymptotic run time of the index calculus algorithm for the ECDLP as exhibited in the complexity analysis
of Petit and Quisquater [12].
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2 The first fall degree

The notion of the first fall has been described by Faugére and Joux [6, Section 5.1], Granboulan, Joux and
Stern [7, Section 3], Dubois and Gama [3, Section 2.2] and Ding and Hodges [2, Section 3]. Although the
concept of the first fall degree has been called minimal degree [6] and degree of regularity [2, 3, 7], we actually
adopt the terminology and definition of Hodges, Petit and Schlather [8]. For readability reasons we include
a brief and tailored account of the first fall degree and refer the reader to [8, Section 2] for details and greater
generality.

Our considerations take place over a degree n extension IF,» of the binary field IF,. Consider the decom-
position of the graded ring

S=Fn[Xoy..., Xn-11/(X3s oo, X3 )

into its homogeneous components
S:SQGBSl@'-'@SN.

Each S;j is the TF,«-vector space generated by the monomials of degree j. Let I be an ideal in S generated by
homogeneous polynomials hq, ..., h, € Sg all of the same degree d. Then we have a surjective map

¢:8" —>1, (81,...,8) = g1hi+-- +gh.
Without loss of generality we furthermore assume
r
0 < r = dimg,, Z Fonhj.
j=1

Let e; denote the canonical i-th basis element of the free S-module S". The S-module U generated by the
elements
hje; + hje; and hyer, wherei,j, k=1,...,r1,

is a subset of ker(¢). If we restrict ¢ to the IF,»-subvector space S]T_ 4 € ', we obtain a surjective map
Pj-a: S;—d —InS;
whose kernel contains the IF,»-subvector space Uj_q = U N S]T_ 4 and hence factors through
(i’j—d : S;_d/Uj—d —InS;.

Definition 2.1 (cf. [8, Definition 2.1]). The first fall degree of a homogeneous system hq, ..., h, € S4 and its
linear span 2}21 IFon hj, respectively, is the smallest j such that the induced IF,»-linear map (i’i—d isnotinjective,
that is, the smallest j such that dimg,, (I N Sj) < dimg,, (S}T_ 4/ Uj-a)- It is denoted by fo(Z]T:1 Fnhj).

Following [8], we now consider the ring of functions
Ap,, = Fon[Xo, « .., Xn-11/(X5 — KXoy -+ o, Xpy_y — XN-1)

as a finite-dimensional filtered algebra whose filtration components [Ar,, |4, d € N, are given by the polyno-
mials up to degree d. The associated graded ring of Ay, is

Gr(Ag,) = Fanl[Xo, + - o, XN-11/(XGs - -+ s Xy _1)s

whose graded components
(Gr(Ag,n)]a = [Ap,nla/[Apnla-1 ford e N

are given by the homogeneous polynomials of degree d. Any linear subspace V c [Ap,, ]q induces a homoge-
neous linear subspace V ¢ [Gr(Ag,,)]q via the canonical projection 774 : [AF,.la — [GI(AE,»)]d-

Definition 2.2 (cf. [8, Definition 2.2]). Consider a polynomial system p1, ..., pr € [AE,.]q and its linear span
V= 2}:1 FFonp;j C [AR,qla, respectively. We assume without loss of generality that dimp,, V = r > 0. The first
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fall degree of V is
d, dimg,, V < dimg,, V,
fo(V) _ ) 1My, < dimp,
Dg(V) else,

where D (V = Z}Zl Fon1q(pj)) is given in Definition 2.1.

3 Weil descent along summation polynomials

We prove that the first fall degree of the polynomial system that arises from a Weil descent along Semaev’s
summation polynomial Sy, 1 is bounded from above by m?> — m + 1. This is an improvement over m? + 1 that
results from [8, Theorem 5.2] and [12, Section 4]. Let us briefly introduce the summation polynomials and
describe the Weil descent.

Semaev [13] introduced the m-th summation polynomial Sy,(x1, ..., Xn) € K[x1, ..., Xy] on an ellip-
tic curve E : y2 = X> + asx + ag over a finite field K with char(K) # 2, 3 by the following defining property:
for elements xi, ..., X;; in the algebraic closure K one has S;(x1, ..., xn) = 0 if and only if there exist
Y1, ..., ¥Ym € Ksuch that (x1, 1), ..., Xm, ¥m) € EK) and (x1,y1) + -+ + (Xm, Ym) = O on E. Semaev gave

a recursive formula based on resultants to compute those polynomials and described some properties
[13, Theorem 1]. The summation polynomials can also be given in characteristic 2. We consider K = FF,», an
ordinary, i.e. non-singular, elliptic curve E : y> + xy = x> + a,x? + ag, and the projection to the x-coordinate
x(P;) = x(xi, yi) = x; of P; € E. Then still
Sa(x1, x2) = X1 — X2,
and from Diem’s general description [1, Lemma 3.4, Lemma 3.5] one can deduce
S3(x1, X2, X3) = (X3 + X3)x3 + X1X2X3 + X3X3 + as
Sme1(X1 .« ooy Xm, Xma1) = Resy(Sm(X1, « v oy Xm=1, X), S3(Xm, X1, X))

and the degree of Sj,,1 in each variable x; is 21, Note that these formulas have also been outlined by Petit
and Quisquater [12, Section 5] who also refer to Diem [1].

To describe the Weil descent along those summation polynomials (see, e.g., [12, Section 4]) we fix a basis
1,z,...,2" 1 of Fon over IF, and let W be a subvector space in IF,» of dimension n’ and basis v1, ..., vy
over IF,. We introduce mn’ variables yij that model the linear constraints

nl

Xi =) Vivis

=1
set x,4+1 to an arbitrary element ¢ € IFon, and obtain the equation system

n' n'
Smi1(X1, ..., Xm, €) = Sm+1< Y VUV, s Y YmiVis C> = foyij) + 2fr(yij) + -+ + 2" fuoa (i)
=1 =1

The first fall degree of interest is that of the reduced polynomial system
sk = fk mod (%, - y11, ... ,yfnn, ~VYmn'), Wherek=0,...,n-1. (3.1)

Note that so, ..., Sp-1 € F2[y11, - .. ,)’mn’]/(y%l —Yi1s - .- y,Vf,mr = Ymn')-
By the definition of the first fall degree, we are interested in the highest degree homogeneous part of
S0, - - - » Sp_1 Whose degree can be determined as follows.

Lemma 3.1. Let m > 3. The highest degree homogeneous part of the polynomial system
S0s+++sSn-1 € Falyits vy Ymw )/ (V3 = V110 -+ o Vi — Yn!)
from equation (3.1) is induced by the monomial
Ot xm)?" 7 Xna

in the summation polynomial Sy+1(X1, - . . , Xm, Xm+1), and hence its degree is less than or equal to m? — m.
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Proof. First, we show the existence of the monomial (x; - -- Xm)2" L Xne1 I St (X1« « + s Xy Xma1). We
have
S3(X1, X2, X3) = (X2 +X3)x3 + X1X2X3 + X3X3 + a6
Sme1(X1 .o oy Xm,y Xma1) = Resy(Sm(X1, . ooy Xm-1, X), S3(Xm), Xm+1, X))
and the degree of S,,,1 in each variable x; is 2™L. The resultant of f, g € FF,»[X] of degree k and [ is the

determinant of the Sylvester matrix

fr fo
fr fo

fr fo
81 8o
81 8o

Resx(f, g) = det(Syl(f, g)) = det

81 e 8o
That is, with

2 2 2 2.2
S300m, Xma1, X) = Xy + X)X + XmXma1 X + Xy X1 + A6

2m72
Sm(X1, .oy Xm-1,X) = Com2 X + -+ Com>

where each ¢j ;€ Fon[X1, ..., Xp-1], we have
Sms1(X1 ..oy Xm, Xme1) = det(Syl(Sm, S3)).
To be concrete, Syl(Sy,, S3) is the matrix

CZm—Z’m sz—z_l,m C()’m 0
0 Com-2 m C1,m Co,m

2 2 2,2
X+ X1 XmXmil  XpXppeq +

2 2 2,2
X+ X1 XmXme1l  XpXpq 1

with a total of 22 + 2 rows and columns. In order to prove our claim we have to identify specific summands
in the Leibniz formula of the determinant. That is, we consider

2m=242
det(Syl(Sm, S3)) = Y sgn(m) [] SylSm,S3)im (3.2)
n i=1
and argue that for the relevant summands no cancellation over IF,» occurs. Note that the sign of a permutation
isle IFon.

Step 1: Prove by induction (start with x%x% in S3) that Sp,41 contains the monomial (x1 ---xm)zm_1 in its
term co,m+1. For that we consider the permutation

0=(01,...,0m2,0) =™ 2+1,2™24+2,1,2,...,2™2) (3.3)

and obtain
2m242
Sma1(X1+ s X Xms1) = 5g0(0) [ SYUSm, S3)ig; + -+
i=1
2m—2
= Co,mCo,m H (sz + X$n+1) +-
i=1

= (0 xme)? )

m

-1
=(X1"'Xm—1Xm)2m doeen
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Note that specifying 01 = 2™ 2 + 1and 0, = 2™ 2 + 2 determines o since the remaining entries in Syl(Sy,, S3)
form an upper triangular matrix with x2, + xfn 41 on the diagonal.

Step 2: Prove by induction (start with x1x,x3 in S3) that S,,;;1 contains the monomial (x - - - xm)zm_l‘1 - Xm+1,
ie. (xq--- xm)szl‘1 in its term c1,m+1. For that we consider the permutation

T=(T1,e.., Tom2yy)=(2M2,2M242,1,...,2Mm2-1,2M211) (3.4)

and obtain

2m=242
Sma1(X1+ s Xm,y Xmy1) = S80(T) [ | SYU(Sms S3)ive +++-
i=1
2m2-q

2 2
= C1,mCo,m * XmXm+1 H (X5 + Xm+1) +oe
i=1

m-2_ m-2 m-2_
=1 Xm0 xme1)? XX )Y T

2mtq
= (X1 Xm-1Xm) Xmi o

Note that specifying 71 = 2™2 and 7, = 2™ 2 + 2 determines T since the remaining entries in Syl(Sy, S3)
form an upper triangular matrix with X2, + X2, . . ., X2, + X2, |, XmXm+1 0D the diagonal.

Second, in order to exclude potential cancellations we have to show that the permutations oin (3.3) and 7
in (3.4) are the only possible choices to produce the monomials (x; - - xm)?" ' and (g xm)?" T Xt
in Sp.1, respectively. For that, we prove by induction (start with x;x, in S3) that the only multiples of
(x1-+-xm)?"~Lin the coefficients of Sy, 1 are (x1 -+ Xpm)2" in Co,ms1 and (x1 -+ Xp)2" ~Lin €1 ;1. Indeed,
the factor (x; ---xm_l)szl‘1 in the variables x1, ..., Xx;;—1 can only be produced by products ¢ m - ¢j,m of
entries taken from the first two rows of the Sylvester matrix Syl(S,,, S3). Since the degree of S;, in each
variable x1, . .., Xp—1 is 2™2, each of the entries co m, . . . , Con-2 p is @ sum of monomials in the variables
X1, ..., Xm-1 Where each monomial is either
(i) no multiple of (X1 -+ xm_1)2" "L or
(i) amultiple (x7 - xm_1)>" 1 -xfl ---xi"‘_‘ll, with §; € {0, 1}.

Therefore, the monomials in the products c;,m - ¢j,m that contribute to the determinant (3.2) occur in the
following forms:

(1 X )22 0O O 3.5)
(Xl v Xm_1)2m72_1 . Xfl v an'"_’ll U, (3_6)
wou', 3.7)

where u and p’ denote elements that are no multiples of (x; - -- xm_l)zm_z‘l. Consequently, a monomial in
the product c; , - ¢j,m that is now a multiple of (x; - --xm_l)szl‘1 can only arise in case (3.5) if for each
k=1,...,m- 1 the following condition holds:

2-Q2Q"? -1+ 6+ 6, 22" -1 = S+, >1.

Due to the degree restriction of Sy, a product c; m - ¢j,» where the monomials in ¢; » and cj n, are all of
the form (3.6) or (3.7) cannot produce a multiple of (X1 -+ - Xp_1)2" ~1. Therefore, we are left with products
of the terms co,,; and c1,, by the induction hypothesis. Since ¢;,, - ¢1,m only produces (x; - Xme1)?" 2,
the permutations 71 = (711, 715, . . ., Mym-2,5) in the Leibniz formula (3.2) that produce multiples of the mono-
mial (x1 -+~ Xm_1)?" ! must have either (11, 713) = (01, 02) or (111, 3) = (T1, T2) as given in (3.3) and (3.4),
respectively. This determines our permutations o and 7 completely.

To finish the proof, our degree claim in Lemma 3.1 is argued as follows. The variables y;; of the s; are
over IF,, where taking squares is a linear operation. Therefore, the degrees of the homogeneous parts of the
system Sg, . .., Sp—1 depend only on the Hamming weight w’t(xiYl - xpm) = ¥ wt(a;) of a monomial in Sp1.
Since the degree of Sy,41 in each variable x; is 2™-1, the monomial (x1 - - Xm)?" 1 - Xm+1, When X1 is set to
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an element c¢ € F,n, produces the highest Hamming weight Y, wt(2"™"! - 1) = m(m - 1). To be precise, we
consider

. ' 7 n ,

2 2

Xi = ( Z )’ilW) = Z Yilvy
I=1 I=1

and obtain
- m m-2 n' ;
O xm) hee=c] yivi (3.8)
i=1 j=0 I=1
which is of degree less than or equal to m(m — 1) in the variables y;;. O

We are ready to prove the main result.
Theorem 3.2. Letn' > m > 3 and c € Fy» \ {0}, and consider the polynomial system
S0s++ 5 Sn-1 € Faly11, e oy Ymw )/ (V31 = V115« s Yoy = Yinn)

from equation (3.1), that results from the Weil descent along the summation polynomial Sp1(X1, . .., Xm, C).
The first fall degree of so, . . . , Su_1 is less than or equal to m* — m + 1.

Proof. Consider the finite-dimensional filtered algebra
Ag, = Faly11, ... ’Ymn’]/(y%1 —Yi1, .- ’yfnn’ = Vmn')-
The linear span
n-1
Z IFys;
j=0
is inside the degree d = m? — m subspace of the filtered algebra A, due to Lemma 3.1. By [8, Corollary 2.4],

an extension of the base field, i.e.

AFy = Fon[yit, oo Y 1/ (V1 = V1ts -« o s Vi — Ymn)s

does not affect the first fall degree. That is,

n-1 n-1
fo( Z ]FZS]') = fo( Z ]F2n8j>.
j=0 j=0
By [8, Definition 2.2], the first fall degree of the subspace Z}’;Ol IFonsj of Ag,, is
n-l d=m?-m, dimg, V<dimg, V
fo( Z ]FZnSj) = B F, F,
=0 Dy (V) else,
where V denotes the induced homogeneous subspace of Z;?:‘Ol IF,nsj in the associated graded ring
GI(AE,) = Farly1t, -« s Ymn YVits oo o Vig)-

If dimg,, V< dimg,, V, our claim follows. Otherwise we consider the polynomial

!

4 j
2
Z Yitvy

which is an element of the homogeneous subspace V by Lemma 3.1, and in particular equation (3.8). Now,
for any

n/
Xk =) ViV
=1
we have a non-trivial relation
n' -2 n' ) m m-2n )
2.2 2i 2i
xPo=c Y ypvi-[] Dwvavi - ] yav? =0 € Gr(Ag,»)
=1 j=1 =1 i=1,i#k j=0 I=1
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of degree d + 1 = m?> — m + 1 unless Py = 0 € Gr(Ag,,). Therefore, it remains to show that Py # 0. For that
purpose, we recall that ¢ € F,« \ {0}, v1, ..., vy are linearly independent, and n’ > m. Consider the linear
change of variables

, n’ J .

2 2

Yij=xi = ( ZYilVl) =Y yavi -
I=1 1=1

This is induced by the m x n' matrix

Vi Vn!
2 2
Vi Vi
2m72 2m—2

1 oo vn,

that can be completed to an invertible linear transform by [11, Lemma 3.51] since we have assumed
Vi,...,Vy to be linearly independent and n’' > m. By using such an invertible linear transform on any
block of variables

Yits oo o5 Vin's
we get new variables
Yiosooos Ymnr-1.

Under this change of variables, P, is mapped to the non-zero element

3
N

Yij € Fan[Y10, .., Yimw-1l/(Yig, ..., Y3

m,n’—l)‘

c O

m
-1

]

Il
(=}

Remark 3.3. Our Theorem 3.2 remains true also in the case m = 2 with first fall degree less than or equal
to 2-1+ 1 = 3. This bound is not sharp though, in fact the first fall degree in the case m = 2 equals 2
[10, Corollary 4.11 and Remark 4.12].

4 Experiments and conclusion

In the light of the first fall degree bound given in Theorem 3.2, we computed a Grébner basis for the ideal
resulting from the Weil descent along the summation polynomial S;,1(X1, ..., Xm, Xm+1) form=2,3, 4 on
an AMD Opteron CPU with Magma’s GroebnerBasis() function. Again, we set the verbose level to 1 and
extracted the empirical first fall degree Dy as the step degree of the first step where new lower degree (i.e. less
than step degree) polynomials are added. The empirical degree of regularity Dy is the highest step degree
that appears during the Grobner basis computation. In each experiment we chose a random non-singular
elliptic curve over IFo», a random subvector space of dimension n’ = [n/m] as the factor basis, and set X1
to the x-coordinate of a random point on the curve. The experimental results that extend the ones present in
the literature by Petit and Quisquater [12] and Kosters and Yeo [10] are displayed in Table 1.

Like Kosters and Yeo [10, Section 5], we observed a raise in the regularity degree for m = 2 in our experi-
ments and were able to verify their observation that with the low degree polynomials W = span{1, z, ..., z”'}
chosen as the factor basis (cf. [14, Section 4.5]) the raise in the regularity degree was produced for slightly
greater n = 45. It would be very interesting to observe a raise in the degree of regularity for higher Semaev
polynomials, but time and memory amounts become a serious issue for m > 3. However, such observations
might neither falsify [12, Assumption 2] that Dreg = Dfr + 0(1) nor lead to further evidence that the gap
between the degree of regularity and the first fall degree depends on n as discussed in [9, Section 5.2].

However, we believe our first fall degree bound m? — m + 1 for Semaev polynomials to be sharp for m > 3,
and rephrase [12, Assumption 2] as the following question:

Dreg =m* —m+1+0(1)? 4.1)

Note that our upper bound on the first fall degree of summation polynomials is a first step towards answering
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m n n" mm-1)+1 D Dreg s GB
2 34 17 3 2 4 188 1.2
35 18 3 2 4 1237 16.1
36 18 3 2 4 1342 16.4
37 19 3 2 5 2542 29.2
38 19 3 2 5 2815 25.2
39 20 3 2 5 4785 45.6
40 20 3 2 5 4858 46.3
41 21 3 2 5 7930 65.3
42 21 3 2 5 8901 66.7
43 22 3 2 5 16816 95.5
44 22 3 2 5 15690 96.8
45 23 3 2 5 38352 140.0
46 23 3 2 5 31735 140.7
47 24 3 2 5 103200 207.7
48 24 3 2 5 86636 208.2
3 13 5 7 7 7 14 0.6
14 5 7 7 7 14 0.7
15 5 7 7 7 14 0.7
16 6 7 7 7 597 13.5
17 6 7 7 7 656 13.3
18 6 7 7 7 729 34.1
19 7 7 7 7 16571 92.2
20 7 7 7 7 17684 101.2
21 7 7 7 7 17 681 90.2
4 13 4 13 13 13 467 25.0
14 4 13 13 13 487 25.8
15 4 13 13 13 592 26.3
16 4 13 13 13 755 27.6

Table 1: Empirical data for the Weil descent along the summation polynomial S;,1 over IFn with n’-dimensional factor basis.
Displayed are the observed first fall degree Dy, degree of regularity Dyeg, the time in seconds s and space requirement in
gigabyte GB. All values are averaged over 10 repetitions. For the case m = 2 see also Remark 3.3.

this question. The first fall degree generically bounds the degree of regularity from below. Hence, any further
lower bound on the degree of regularity associated to the specific case of a Weil descent along summation
polynomials can potentially answer (4.1).

Assuming an affirmative answer to (4.1), we can furthermore sharpen the asymptotic complexity of the
index calculus algorithm for the ECDLP as presented by Petit and Quisquater [12, Section 5]. In the paragraph
A new complexity analysis of [12, Section 5] it is argued that the complexity of the index calculus approach
via summation polynomials is dominated by the Grobner basis computation. Under the assumption that the
degree of regularity is approximated closely by the first fall degree [12, Assumption 2], Petit and Quisquater
derive [12, Proposition 4], i.e. that the discrete logarithm can asymptotically be solved in sub-exponential
time

O(chog(n)(nz/3+1))’ (4.2)

where ¢ = ZT"’, w is the linear algebra constant (w = log(7)/1log(2) is used in the following estimates), and
n?3 +1 is an upper bound for the first fall degree of the m-th summation polynomial when m = n'/3
[12, Proposition 1]. They state that, by following this analysis, the index calculus approach beats generic
algorithms with run time ©(2"/2) for any n > N where N is an integer approximately equal to 2 000. Now,
based on Theorem 3.2, we assume Dyeg = m? — m + 1 = n?/3> - n}/3 + 1 and sharpen (4.2) to

O(zclog(n)(nz/3 —n1/3+1))

Hence, the turning point to solve the ECDLP faster than a generic algorithm is an integer approximately equal
to 1 250. Note that this is still far from cryptographically relevant sizes of n up to 521.
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