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1 Introduction
Finding solutions to algebraic equations is a fundamental task. A common approach is a Gröbner basis
computation via an algorithm such as Faugère’s F4 and F5 (see [4, 5]). In recent applications, Gröbner basis
techniques have become relevant to the solution of the Elliptic Curve Discrete Logarithm Problem (ECDLP).
Here one seeks solutions to polynomial equations arising from a Weil descent along Semaev’s summation
polynomials [13] which represents a crucial step in an index calculus method for the ECDLP; see, e.g.,
[12, 14]. The efficiency of Gröbner basis algorithms is governed by a so-called degree of regularity, that is,
the highest degree occurring along the subsequent computation of algebraic relations. It is widely believed
that this often intractable complexity parameter is closely approximated by the degree of the first non-trivial
algebraic relation, the first fall degree. In particular, the algorithms for the ECDLP of Petit and Quisquater [12]
are sub-exponential under the assumption that this approximation is in o(1).

In the present paper, we will improve Petit’s and Quisquater’s [12] first fall degree bound m2 + 1 for the
system arising from the Weil descent along Semaev’s (m + 1)-th summation polynomial. That is, we prove
that a degree fall occurs at degree m2 − m + 1 by exhibiting the highest degree homogeneous part of that
polynomial system. In fact, this degree is m2 − m, so that we expect the bound to be sharp except for the
somewhat pathological casem = 2 that has been discussed byKosters andYeo [10]. This allows us to sharpen
the asymptotic run time of the index calculus algorithm for the ECDLP as exhibited in the complexity analysis
of Petit and Quisquater [12].
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2 The first fall degree
The notion of the first fall has been described by Faugère and Joux [6, Section 5.1], Granboulan, Joux and
Stern [7, Section 3], Dubois and Gama [3, Section 2.2] and Ding and Hodges [2, Section 3]. Although the
concept of the first fall degree has been calledminimal degree [6] and degree of regularity [2, 3, 7], we actually
adopt the terminology and definition of Hodges, Petit and Schlather [8]. For readability reasons we include
a brief and tailored account of the first fall degree and refer the reader to [8, Section 2] for details and greater
generality.

Our considerations take place over a degree n extension 𝔽2n of the binary field 𝔽2. Consider the decom-
position of the graded ring

S = 𝔽2n [X0, . . . , XN−1]/(X20, . . . , X
2
N−1)

into its homogeneous components
S = S0 ⊕ S1 ⊕ ⋅ ⋅ ⋅ ⊕ SN .

Each Sj is the 𝔽2n -vector space generated by the monomials of degree j. Let I be an ideal in S generated by
homogeneous polynomials h1, . . . , hr ∈ Sd all of the same degree d. Then we have a surjective map

ϕ : Sr → I, (g1, . . . , gr) 󳨃→ g1h1 + ⋅ ⋅ ⋅ + grhr .

Without loss of generality we furthermore assume

0 < r = dim𝔽2n
r
∑
j=1
𝔽2nhj .

Let ei denote the canonical i-th basis element of the free S-module Sr. The S-module U generated by the
elements

hjei + hiej and hkek , where i, j, k = 1, . . . , r,

is a subset of ker(ϕ). If we restrict ϕ to the 𝔽2n -subvector space Srj−d ⊂ S
r, we obtain a surjective map

ϕj−d : Srj−d → I ∩ Sj

whose kernel contains the 𝔽2n -subvector space Uj−d = U ∩ Srj−d and hence factors through

ϕ̄j−d : Srj−d/Uj−d → I ∩ Sj .

Definition 2.1 (cf. [8, Definition 2.1]). The first fall degree of a homogeneous system h1, . . . , hr ∈ Sd and its
linear span∑rj=1 𝔽2nhj, respectively, is the smallest j such that the induced𝔽2n -linearmap ϕ̄j−d is not injective,
that is, the smallest j such that dim𝔽2n (I ∩ Sj) < dim𝔽2n (Srj−d/Uj−d). It is denoted by Dff (∑rj=1 𝔽2nhj).

Following [8], we now consider the ring of functions

A𝔽2n = 𝔽2n [X0, . . . , XN−1]/(X20 − X0, . . . , X
2
N−1 − XN−1)

as a finite-dimensional filtered algebra whose filtration components [A𝔽2n ]d, d ∈ ℕ, are given by the polyno-
mials up to degree d. The associated graded ring of A𝔽2n is

Gr(A𝔽2n ) = 𝔽2n [X0, . . . , XN−1]/(X20, . . . , X
2
N−1),

whose graded components
[Gr(A𝔽2n )]d = [A𝔽2n ]d/[A𝔽2n ]d−1 for d ∈ ℕ

are given by the homogeneous polynomials of degree d. Any linear subspace V ⊂ [A𝔽2n ]d induces a homoge-
neous linear subspace V̄ ⊂ [Gr(A𝔽2n )]d via the canonical projection πd : [A𝔽2n ]d → [Gr(A𝔽2n )]d.

Definition 2.2 (cf. [8, Definition 2.2]). Consider a polynomial system p1, . . . , pr ∈ [A𝔽2n ]d and its linear span
V = ∑rj=1 𝔽2npj ⊂ [A𝔽2n ]d, respectively. We assume without loss of generality that dim𝔽2n V = r > 0. The first
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fall degree of V is

Dff (V) =
{
{
{

d, dim𝔽2n V̄ < dim𝔽2n V,
Dff (V̄) else,

where Dff (V̄ = ∑rj=1 𝔽2nπd(pj)) is given in Definition 2.1.

3 Weil descent along summation polynomials
We prove that the first fall degree of the polynomial system that arises from a Weil descent along Semaev’s
summation polynomial Sm+1 is bounded from above bym2 − m + 1. This is an improvement overm2 + 1 that
results from [8, Theorem 5.2] and [12, Section 4]. Let us briefly introduce the summation polynomials and
describe the Weil descent.

Semaev [13] introduced the m-th summation polynomial Sm(x1, . . . , xm) ∈ 𝕂[x1, . . . , xm] on an ellip-
tic curve E : y2 = x3 + a4x + a6 over a finite field 𝕂 with char(𝕂) ̸= 2, 3 by the following defining property:
for elements x1, . . . , xm in the algebraic closure 𝕂̄ one has Sm(x1, . . . , xm) = 0 if and only if there exist
y1, . . . , ym ∈ 𝕂̄ such that (x1, y1), . . . , (xm , ym) ∈ E(K̄) and (x1, y1) + ⋅ ⋅ ⋅ + (xm , ym) = 0 on E. Semaev gave
a recursive formula based on resultants to compute those polynomials and described some properties
[13, Theorem 1]. The summation polynomials can also be given in characteristic 2. We consider𝕂 = 𝔽2n , an
ordinary, i.e. non-singular, elliptic curve E : y2 + xy = x3 + a2x2 + a6, and the projection to the x-coordinate
x(Pi) = x(xi , yi) = xi of Pi ∈ E. Then still

S2(x1, x2) = x1 − x2,

and from Diem’s general description [1, Lemma 3.4, Lemma 3.5] one can deduce

S3(x1, x2, x3) = (x21 + x
2
2)x

2
3 + x1x2x3 + x

2
1x

2
2 + a6

Sm+1(x1 . . . , xm , xm+1) = ResX(Sm(x1, . . . , xm−1, X), S3(xm , xm+1, X))

and the degree of Sm+1 in each variable xi is 2m−1. Note that these formulas have also been outlined by Petit
and Quisquater [12, Section 5] who also refer to Diem [1].

To describe theWeil descent along those summation polynomials (see, e.g., [12, Section 4]) we fix a basis
1, z, . . . , zn−1 of 𝔽2n over 𝔽2 and let W be a subvector space in 𝔽2n of dimension n󸀠 and basis ν1, . . . , νn󸀠
over 𝔽2. We introduce mn󸀠 variables yij that model the linear constraints

xi =
n󸀠
∑
l=1

yilνl ,

set xm+1 to an arbitrary element c ∈ 𝔽2n , and obtain the equation system

Sm+1(x1, . . . , xm , c) = Sm+1(
n󸀠
∑
l=1

y1lνl , . . . ,
n󸀠
∑
l=1

ymlνl , c) = f0(yij) + zf1(yij) + ⋅ ⋅ ⋅ + zn−1fn−1(yij).

The first fall degree of interest is that of the reduced polynomial system

sk ≡ fk mod (y211 − y11, . . . , y
2
mn󸀠 − ymn󸀠 ), where k = 0, . . . , n − 1. (3.1)

Note that s0, . . . , sn−1 ∈ 𝔽2[y11, . . . , ymn󸀠 ]/(y211 − y11, . . . , y2mn󸀠 − ymn󸀠 ).
By the definition of the first fall degree, we are interested in the highest degree homogeneous part of

s0, . . . , sn−1 whose degree can be determined as follows.

Lemma 3.1. Let m ≥ 3. The highest degree homogeneous part of the polynomial system

s0, . . . , sn−1 ∈ 𝔽2[y11, . . . , ymn󸀠 ]/(y211 − y11, . . . , y2mn󸀠 − ymn󸀠 )
from equation (3.1) is induced by the monomial

(x1 ⋅ ⋅ ⋅ xm)2
m−1−1 ⋅ xm+1

in the summation polynomial Sm+1(x1, . . . , xm , xm+1), and hence its degree is less than or equal to m2 − m.
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Proof. First, we show the existence of the monomial (x1 ⋅ ⋅ ⋅ xm)2
m−1−1 ⋅ xm+1 in Sm+1(x1, . . . , xm , xm+1). We

have

S3(x1, x2, x3) = (x21 + x
2
2)x

2
3 + x1x2x3 + x

2
1x

2
2 + a6

Sm+1(x1 . . . , xm , xm+1) = ResX(Sm(x1, . . . , xm−1, X), S3(xm , xm+1, X))

and the degree of Sm+1 in each variable xi is 2m−1. The resultant of f, g ∈ 𝔽2n [X] of degree k and l is the
determinant of the Sylvester matrix

ResX(f, g) = det(Syl(f, g)) = det

((((((((((

(

fk ⋅ ⋅ ⋅ f0
fk ⋅ ⋅ ⋅ f0

. . . . . .
fk ⋅ ⋅ ⋅ f0

gl ⋅ ⋅ ⋅ g0
gl ⋅ ⋅ ⋅ g0

. . . . . .
gl ⋅ ⋅ ⋅ g0

))))))))))

)

.

That is, with

S3(xm , xm+1, X) = (x2m + x2m+1)X
2 + xmxm+1X + x2mx2m+1 + a6

Sm(x1, . . . , xm−1, X) = c2m−2 ,mX2m−2
+ ⋅ ⋅ ⋅ + c0,m ,

where each ci,m ∈ 𝔽2n [x1, . . . , xm−1], we have

Sm+1(x1 . . . , xm , xm+1) = det(Syl(Sm , S3)).

To be concrete, Syl(Sm , S3) is the matrix

((

(

c2m−2 ,m c2m−2−1,m ⋅ ⋅ ⋅ c0,m 0
0 c2m−2 ,m ⋅ ⋅ ⋅ c1,m c0,m

x2m + x2m+1 xmxm+1 x2mx2m+1 + t
. . . . . .

x2m + x2m+1 xmxm+1 x2mx2m+1 + t

))

)
with a total of 2m−2 + 2 rows and columns. In order to prove our claimwe have to identify specific summands
in the Leibniz formula of the determinant. That is, we consider

det(Syl(Sm , S3)) = ∑
π
sgn(π)

2m−2+2
∏
i=1

Syl(Sm , S3)i,πi (3.2)

and argue that for the relevant summands no cancellation over𝔽2n occurs. Note that the sign of a permutation
is 1 ∈ 𝔽2n .

Step 1: Prove by induction (start with x21x
2
2 in S3) that Sm+1 contains the monomial (x1 ⋅ ⋅ ⋅ xm)2

m−1 in its
term c0,m+1. For that we consider the permutation

σ = (σ1, . . . , σ2m−2+2) = (2m−2 + 1, 2m−2 + 2, 1, 2, . . . , 2m−2) (3.3)

and obtain

Sm+1(x1 . . . , xm , xm+1) = sgn(σ)
2m−2+2
∏
i=1

Syl(Sm , S3)i,σi + ⋅ ⋅ ⋅

= c0,mc0,m
2m−2
∏
i=1
(x2m + x2m+1) + ⋅ ⋅ ⋅

= ((x1 ⋅ ⋅ ⋅ xm−1)2
m−2
)2 ⋅ x2m−1

m + ⋅ ⋅ ⋅

= (x1 ⋅ ⋅ ⋅ xm−1xm)2
m−1
+ ⋅ ⋅ ⋅ .
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Note that specifying σ1 = 2m−2 + 1 and σ2 = 2m−2 + 2 determines σ since the remaining entries in Syl(Sm , S3)
form an upper triangular matrix with x2m + x2m+1 on the diagonal.

Step 2: Prove by induction (start with x1x2x3 in S3) that Sm+1 contains themonomial (x1 ⋅ ⋅ ⋅ xm)2
m−1−1 ⋅ xm+1,

i.e. (x1 ⋅ ⋅ ⋅ xm)2
m−1−1 in its term c1,m+1. For that we consider the permutation

τ = (τ1, . . . , τ2m−2+2) = (2m−2, 2m−2 + 2, 1, . . . , 2m−2 − 1, 2m−2 + 1) (3.4)

and obtain

Sm+1(x1 . . . , xm , xm+1) = sgn(τ)
2m−2+2
∏
i=1

Syl(Sm , S3)i,τi + ⋅ ⋅ ⋅

= c1,mc0,m ⋅ xmxm+1
2m−2−1
∏
i=1
(x2m + x2m+1) + ⋅ ⋅ ⋅

= (x1 ⋅ ⋅ ⋅ xm−1)2
m−2−1 ⋅ (x1 ⋅ ⋅ ⋅ xm−1)2m−2

⋅ xmxm+1(x2m)2
m−2−1 + ⋅ ⋅ ⋅

= (x1 ⋅ ⋅ ⋅ xm−1xm)2
m−1−1 ⋅ xm+1 + ⋅ ⋅ ⋅ .

Note that specifying τ1 = 2m−2 and τ2 = 2m−2 + 2 determines τ since the remaining entries in Syl(Sm , S3)
form an upper triangular matrix with x2m + x2m+1, . . . , x2m + x

2
m+1, xmxm+1 on the diagonal.

Second, in order to exclude potential cancellationswehave to show that the permutations σ in (3.3) and τ
in (3.4) are the only possible choices to produce the monomials (x1 ⋅ ⋅ ⋅ xm)2

m−1 and (x1 ⋅ ⋅ ⋅ xm)2m−1−1 ⋅ xm+1
in Sm+1, respectively. For that, we prove by induction (start with x1x2 in S3) that the only multiples of
(x1 ⋅ ⋅ ⋅ xm)2

m−1−1 in the coefficients of Sm+1 are (x1 ⋅ ⋅ ⋅ xm)2
m−1 in c0,m+1 and (x1 ⋅ ⋅ ⋅ xm)2m−1−1 in c1,m+1. Indeed,

the factor (x1 ⋅ ⋅ ⋅ xm−1)2
m−1−1 in the variables x1, . . . , xm−1 can only be produced by products ci,m ⋅ cj,m of

entries taken from the first two rows of the Sylvester matrix Syl(Sm , S3). Since the degree of Sm in each
variable x1, . . . , xm−1 is 2m−2, each of the entries c0,m , . . . , c2m−2 ,m is a sum of monomials in the variables
x1, . . . , xm−1 where each monomial is either
(i) no multiple of (x1 ⋅ ⋅ ⋅ xm−1)2

m−2−1 or
(ii) a multiple (x1 ⋅ ⋅ ⋅ xm−1)2

m−2−1 ⋅ xδ11 ⋅ ⋅ ⋅ xδm−1
m−1 , with δi ∈ {0, 1}.

Therefore, the monomials in the products ci,m ⋅ cj,m that contribute to the determinant (3.2) occur in the
following forms:

((x1 ⋅ ⋅ ⋅ xm−1)2
m−2−1)2 ⋅ xδ1+δ󸀠11 ⋅ ⋅ ⋅ xδm−1+δ󸀠m−1

m−1 , (3.5)

(x1 ⋅ ⋅ ⋅ xm−1)2
m−2−1 ⋅ xδ11 ⋅ ⋅ ⋅ xδm−1

m−1 ⋅ μ, (3.6)
μ ⋅ μ󸀠, (3.7)

where μ and μ󸀠 denote elements that are no multiples of (x1 ⋅ ⋅ ⋅ xm−1)2
m−2−1. Consequently, a monomial in

the product ci,m ⋅ cj,m that is now a multiple of (x1 ⋅ ⋅ ⋅ xm−1)2
m−1−1 can only arise in case (3.5) if for each

k = 1, . . . ,m − 1 the following condition holds:

2 ⋅ (2m−2 − 1) + δk + δ󸀠k ≥ 2
m−1 − 1 ⇐⇒ δk + δ󸀠k ≥ 1.

Due to the degree restriction of Sm, a product ci,m ⋅ cj,m where the monomials in ci,m and cj,m are all of
the form (3.6) or (3.7) cannot produce a multiple of (x1 ⋅ ⋅ ⋅ xm−1)2

m−1−1. Therefore, we are left with products
of the terms c0,m and c1,m by the induction hypothesis. Since c1,m ⋅ c1,m only produces (x1 ⋅ ⋅ ⋅ xm−1)2

m−1−2,
the permutations π = (π1, π2, . . . , π2m−2+2) in the Leibniz formula (3.2) that produce multiples of the mono-
mial (x1 ⋅ ⋅ ⋅ xm−1)2

m−1−1 must have either (π1, π2) = (σ1, σ2) or (π1, π2) = (τ1, τ2) as given in (3.3) and (3.4),
respectively. This determines our permutations σ and τ completely.

To finish the proof, our degree claim in Lemma 3.1 is argued as follows. The variables yij of the sk are
over 𝔽2, where taking squares is a linear operation. Therefore, the degrees of the homogeneous parts of the
system s0, . . . , sn−1 depend only on the Hamming weight wt(xα11 ⋅ ⋅ ⋅ x

αm
m ) = ∑wt(αi) of a monomial in Sm+1.

Since the degree of Sm+1 in each variable xi is 2m−1, themonomial (x1 ⋅ ⋅ ⋅ xm)2
m−1−1 ⋅ xm+1, when xm+1 is set to
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an element c ∈ 𝔽2n , produces the highest Hamming weight ∑mi=1wt(2m−1 − 1) = m(m − 1). To be precise, we
consider

x2ji = (
n󸀠
∑
l=1

yilνl)
2j

=
n󸀠
∑
l=1

yilν2
j

l

and obtain

(x1 ⋅ ⋅ ⋅ xm)2
m−1−1 ⋅ c = c m

∏
i=1

m−2
∏
j=0

n󸀠
∑
l=1

yilν2
j

l , (3.8)

which is of degree less than or equal to m(m − 1) in the variables yij.

We are ready to prove the main result.

Theorem 3.2. Let n󸀠 ≥ m ≥ 3 and c ∈ 𝔽2n \ {0}, and consider the polynomial system

s0, . . . , sn−1 ∈ 𝔽2[y11, . . . , ymn󸀠 ]/(y211 − y11, . . . , y2mn󸀠 − ymn󸀠 )
from equation (3.1), that results from the Weil descent along the summation polynomial Sm+1(x1, . . . , xm , c).
The first fall degree of s0, . . . , sn−1 is less than or equal to m2 − m + 1.

Proof. Consider the finite-dimensional filtered algebra

A𝔽2 = 𝔽2[y11, . . . , ymn󸀠 ]/(y211 − y11, . . . , y2mn󸀠 − ymn󸀠 ).
The linear span

n−1
∑
j=0
𝔽2sj

is inside the degree d = m2 − m subspace of the filtered algebra A𝔽2 due to Lemma 3.1. By [8, Corollary 2.4],
an extension of the base field, i.e.

A𝔽2n = 𝔽2n [y11, . . . , ymn󸀠 ]/(y211 − y11, . . . , y2mn󸀠 − ymn󸀠 ),
does not affect the first fall degree. That is,

Dff(
n−1
∑
j=0
𝔽2sj) = Dff(

n−1
∑
j=0
𝔽2n sj).

By [8, Definition 2.2], the first fall degree of the subspace∑n−1j=0 𝔽2n sj of A𝔽2n is

Dff(
n−1
∑
j=0
𝔽2n sj) =

{
{
{

d = m2 − m, dim𝔽2n V̄ < dim𝔽2n V
Dff (V̄) else,

where V̄ denotes the induced homogeneous subspace of∑n−1j=0 𝔽2n sj in the associated graded ring

Gr(A𝔽2n ) = 𝔽2n [y11, . . . , ymn󸀠 ]/(y211, . . . , y2mn󸀠 ).
If dim𝔽2n V̄ < dim𝔽2n V, our claim follows. Otherwise we consider the polynomial

P0 = c
m
∏
i=1

m−2
∏
j=0

n󸀠
∑
l=1

yilν2
j

l ,

which is an element of the homogeneous subspace V̄ by Lemma 3.1, and in particular equation (3.8). Now,
for any

xk =
n󸀠
∑
l=1

yklνl

we have a non-trivial relation

xkP0 = c
n󸀠
∑
l=1

y2klν
2
l ⋅

m−2
∏
j=1

n󸀠
∑
l=1

yklν2
j

l ⋅
m
∏

i=1,i ̸=k

m−2
∏
j=0

n󸀠
∑
l=1

yilν2
j

l = 0 ∈ Gr(A𝔽2n )
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of degree d + 1 = m2 − m + 1 unless P0 = 0 ∈ Gr(A𝔽2n ). Therefore, it remains to show that P0 ̸= 0. For that
purpose, we recall that c ∈ 𝔽2n \ {0}, v1, . . . , vn󸀠 are linearly independent, and n󸀠 ≥ m. Consider the linear
change of variables

Yij = x2
j

i = (
n󸀠
∑
l=1

yilνl)
2j

=
n󸀠
∑
l=1

yilν2
j

l .

This is induced by the m × n󸀠 matrix

(

(

ν1 ⋅ ⋅ ⋅ νn󸀠
ν21 ⋅ ⋅ ⋅ ν2n󸀠
...

. . .
...

ν2m−2
1 ⋅ ⋅ ⋅ ν2m−2

n󸀠
)

)
that can be completed to an invertible linear transform by [11, Lemma 3.51] since we have assumed
v1, . . . , vn󸀠 to be linearly independent and n󸀠 ≥ m. By using such an invertible linear transform on any
block of variables

yi1, . . . , yin󸀠 ,
we get new variables

Y10, . . . , Ym,n󸀠−1.
Under this change of variables, P0 is mapped to the non-zero element

c
m
∏
i=1

m−2
∏
j=0

Yij ∈ 𝔽2n [Y10, . . . , Ym,n󸀠−1]/(Y2
10, . . . , Y

2
m,n󸀠−1).

Remark 3.3. Our Theorem 3.2 remains true also in the case m = 2 with first fall degree less than or equal
to 2 ⋅ 1 + 1 = 3. This bound is not sharp though, in fact the first fall degree in the case m = 2 equals 2
[10, Corollary 4.11 and Remark 4.12].

4 Experiments and conclusion
In the light of the first fall degree bound given in Theorem 3.2, we computed a Gröbner basis for the ideal
resulting from the Weil descent along the summation polynomial Sm+1(x1, . . . , xm , xm+1) for m = 2, 3, 4 on
an AMD Opteron CPU with Magma’s GroebnerBasis() function. Again, we set the verbose level to 1 and
extracted the empirical first fall degree Dff as the step degree of the first stepwhere new lower degree (i.e. less
than step degree) polynomials are added. The empirical degree of regularity Dreg is the highest step degree
that appears during the Gröbner basis computation. In each experiment we chose a random non-singular
elliptic curve over 𝔽2n , a random subvector space of dimension n󸀠 = ⌈n/m⌉ as the factor basis, and set xm+1
to the x-coordinate of a random point on the curve. The experimental results that extend the ones present in
the literature by Petit and Quisquater [12] and Kosters and Yeo [10] are displayed in Table 1.

Like Kosters and Yeo [10, Section 5], we observed a raise in the regularity degree form = 2 in our experi-
ments andwere able to verify their observation that with the low degree polynomialsW = span{1, z, . . . , zn󸀠 }
chosen as the factor basis (cf. [14, Section 4.5]) the raise in the regularity degree was produced for slightly
greater n = 45. It would be very interesting to observe a raise in the degree of regularity for higher Semaev
polynomials, but time and memory amounts become a serious issue for m ≥ 3. However, such observations
might neither falsify [12, Assumption 2] that Dreg = Dff + o(1) nor lead to further evidence that the gap
between the degree of regularity and the first fall degree depends on n as discussed in [9, Section 5.2].

However, we believe our first fall degree boundm2 − m + 1 for Semaev polynomials to be sharp form ≥ 3,
and rephrase [12, Assumption 2] as the following question:

Dreg = m2 − m + 1 + o(1) ? (4.1)

Note that our upper bound on the first fall degree of summation polynomials is a first step towards answering
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m n n󸀠 m(m − 1) + 1 Dff Dreg s GB

2 34 17 3 2 4 188 1.2
35 18 3 2 4 1237 16.1
36 18 3 2 4 1342 16.4
37 19 3 2 5 2542 29.2
38 19 3 2 5 2815 25.2
39 20 3 2 5 4785 45.6
40 20 3 2 5 4858 46.3
41 21 3 2 5 7930 65.3
42 21 3 2 5 8901 66.7
43 22 3 2 5 16816 95.5
44 22 3 2 5 15690 96.8
45 23 3 2 5 38352 140.0
46 23 3 2 5 31735 140.7
47 24 3 2 5 103200 207.7
48 24 3 2 5 86636 208.2

3 13 5 7 7 7 14 0.6
14 5 7 7 7 14 0.7
15 5 7 7 7 14 0.7
16 6 7 7 7 597 13.5
17 6 7 7 7 656 13.3
18 6 7 7 7 729 34.1
19 7 7 7 7 16571 92.2
20 7 7 7 7 17684 101.2
21 7 7 7 7 17681 90.2

4 13 4 13 13 13 467 25.0
14 4 13 13 13 487 25.8
15 4 13 13 13 592 26.3
16 4 13 13 13 755 27.6

Table 1: Empirical data for the Weil descent along the summation polynomial Sm+1 over 𝔽2n with n󸀠-dimensional factor basis.
Displayed are the observed first fall degree Dff , degree of regularity Dreg, the time in seconds s and space requirement in
gigabyte GB. All values are averaged over 10 repetitions. For the case m = 2 see also Remark 3.3.

this question. The first fall degree generically bounds the degree of regularity from below. Hence, any further
lower bound on the degree of regularity associated to the specific case of a Weil descent along summation
polynomials can potentially answer (4.1).

Assuming an affirmative answer to (4.1), we can furthermore sharpen the asymptotic complexity of the
index calculus algorithm for the ECDLP as presented by Petit andQuisquater [12, Section 5]. In the paragraph
A new complexity analysis of [12, Section 5] it is argued that the complexity of the index calculus approach
via summation polynomials is dominated by the Gröbner basis computation. Under the assumption that the
degree of regularity is approximated closely by the first fall degree [12, Assumption 2], Petit and Quisquater
derive [12, Proposition 4], i.e. that the discrete logarithm can asymptotically be solved in sub-exponential
time

O(2c log(n)(n2/3+1)), (4.2)

where c = 2ω
3 , ω is the linear algebra constant (ω = log(7)/ log(2) is used in the following estimates), and

n2/3 + 1 is an upper bound for the first fall degree of the m-th summation polynomial when m = n1/3

[12, Proposition 1]. They state that, by following this analysis, the index calculus approach beats generic
algorithms with run time O(2n/2) for any n ≥ N where N is an integer approximately equal to 2 000. Now,
based on Theorem 3.2, we assume Dreg ≈ m2 − m + 1 = n2/3 − n1/3 + 1 and sharpen (4.2) to

O(2c log(n)(n2/3−n1/3+1)).
Hence, the turning point to solve the ECDLP faster than a generic algorithm is an integer approximately equal
to 1 250. Note that this is still far from cryptographically relevant sizes of n up to 521.
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