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Abstract: The Diffie–Hellman key exchange scheme is one of the earliest and most widely used public-key
primitives. Its underlying algebraic structure is a cyclic group and its security is based on the discrete loga-
rithm problem (DLP). The DLP can be solved in polynomial time for any cyclic group in the quantum compu-
tationmodel. Therefore, new key exchange schemes have been sought to prepare for the time when quantum
computing becomes a reality. Algebraically, these schemes need to provide some sort of commutativity to
enable Alice and Bob to derive a common key on a public channel while keeping it computationally difficult
for the adversary to deduce the derived key. We suggest an algebraically generalized Diffie–Hellman scheme
(AGDH) that, in general, enables the application of any algebra as the platform for key exchange. We for-
mulate the underlying computational problems in the framework of average-case complexity and show that
the scheme is secure if the problem of computing images under an unknown homomorphism is infeasible.
We also show that a symmetric encryption scheme possessing homomorphic properties over some algebraic
operation can be turned into a public-key primitive with the AGDH, provided that the operation is complex
enough. In addition, we present a brief survey on the algebraic properties of existing key exchange schemes
and identify the source of commutativity and the family of underlying algebraic structures for each scheme.
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1 Introduction
Cryptographic key exchange is an essential part ofmodern communication. Such schemes enable two parties
to derive a common secret key using a public channel. The Diffie–Hellman key exchange scheme [24], con-
ceptualized byMerkle [55], is one of themost utilized public-key protocols and an integral part of many com-
munication standards. Its underlying mathematical structure is a cyclic group G = ⟨g⟩, where g is a known
generator. Alice and Bob choose secret elements a, b ∈ {1, 2, . . . , |G|}, exchange ga , gb and establish a com-
mon group element gab = (ga)b = (gb)a. The scheme works because exponentiation commutes and it is hard
to compute the common element gab from ga and gb.

The original Diffie–Hellman scheme applies the multiplicative group of integers modulo p, where p is a
prime. However, the discrete logarithm problem (DLP) on this group can be solved in sub-exponential time in
the standard model [18]. Therefore, alternative versions of the original scheme were sought by replacing the
cyclic group with another. In particular, the group E(𝔽q) of rational points on an elliptic curve E defined over
a finite field𝔽q turned out to yield instantiationswith an order ofmagnitude of greater security [47, 56]. How-
ever, all discrete logarithm based schemes can be broken in polynomial time in the quantum computation
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model using Shor’s algorithm [71]. This means that in order to achieve quantum secure key exchange, it is
necessary to consider other algebraic structures. A step towards this direction was taken, for example, in the
supersingular isogeny Diffie–Hellman key exchange (SIDH) scheme [41], where exponentiation is combined
with the application isogenies of the curve.

Our paper is an exploration of the idea that the less richness we need for the underlying algebraic struc-
ture, theharder the computational problemsbecome. For example, elliptic curve isogenies canbe constructed
in sub-exponential time in the quantum computation model for ordinary elliptic curves. However, the non-
commutativity of the endomorphism ring for the supersingular case foils these algorithms and the isogeny
reconstruction problem remains exponential time. Therefore, it makes sense to study the algebraic proper-
ties of the Diffie–Hellman and other key exchange protocols suggested in the literature, and to find the most
general, applicable structures in order to minimize the number of tools available for the breaking of the un-
derlying problems.

In this paper, we formulate an algebraically generalized Diffie–Hellman scheme (AGDH) that permits any
type of algebra as its platform structure.We also formulate the computational problems associated to its secu-
rity in the framework of average-case complexity. We start by presenting a brief survey on the algebraic prop-
erties of existing cryptographic key exchange schemes. Our emphasis is on the commutativity that results in
the common key (for the Diffie–Hellman scheme it is the commutativity of exponentiation (ga)b = (gb)a), as
well as on the most general algebraic platform structures possible for the scheme. We also give a characteri-
zation of the Diffie–Hellman scheme in the framework of universal algebra. Typically, the scheme is viewed
as symmetric for Alice and Bob. Both compute an exponentiation map g 󳨃→ gx for some x ∈ {1, 2, . . . , |G|}.
However, such an exponentiation map is both an endomorphism of G and a term function of the algebra. By
introducing an asymmetry into the scheme by considering Alice to compute endomorphisms and Bob to com-
pute term functions, we are able to freely choose the underlying algebraic structure, provided that a sufficient
amount of endomorphisms and term functions are found.

The AGDH is based on computing homomorphic images. To study its security, we define a homomorphic
image problem (HIP) that asks to compute the image of a given element under an unknown homomorphism
as an analogue to the Diffie–Hellman problem (DHP). Similarly to the DHP, we formulate both computational
and decision versions of this problem and the common established element is indistinguishable from a ran-
dom element of the algebra if the decision version is infeasible. Finally, we consider the homomorphic image
problem induced by decryption functions of a homomorphic symmetric encryption scheme. We do not con-
sider fully homomorphic schemes but schemes that have homomorphic properties over some operations. We
devise a condition which ensures that the induced decision HIP is infeasible, essentially turning the encryp-
tion scheme into a public-key primitive using the AGDH.

The paper is organized as follows. In Section 2, we lay out the preliminaries for the rest of the paper. Sec-
tion 3 presents a brief survey on the algebraic properties of existing key exchange schemes. In Section 4, we
present our main contribution by formulating the algebraically generalized Diffie–Hellman scheme and the
computational and decision versions of the homomorphic image problem. In Section 5, we study the prob-
lem of enabling key exchange with a homomorphic symmetric encryption scheme using the AGDH. Finally,
Section 6 provides the conclusions.

2 Preliminaries

2.1 Computation

We follow the standardmodel of probabilistic polynomial time computation. A search problem is a binary re-
lation R = {0, 1}∗ × ({0, 1}∗ ∪ {⊥}). For every (x, y) ∈ R, we call x an instance of the problem and y the solution
to the instance x. If y =⊥, thenwe say that x has no solution. The set of solutions of an instance x is denoted by
R(x). A probability ensemble X = {Xk}k∈ℕ consists of random variables Xk indexed by the natural numbers.
Our problems will be distributional, meaning that a computational problem P = (R, X) always comes with a
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probability ensemble X = {Xk}k∈ℕ from which its instances are drawn. Here, the index k ∈ ℕ determines the
binary length of the instance. The notation y ← A(x; r)means that a probabilistic algorithm A on input x and
randomness r outputs y.

Given a distributional search problem P = (R, X) and a probabilistic polynomial time (PPT) algorithm A,
we are interested in the probability of A solving a typical instance, called the advantage,

AdvPA(k) = Pr[A(Xn) ∈ R(Xn)].

A function ϵ is negligible if for every n ∈ ℕ, there exists k󸀠 ∈ ℕ such that ϵ(k) ≤ 1/nk for every k ≥ k󸀠. A prob-
lem P is infeasible ifAdvPA(k) is negligible for everyPPTalgorithmA. Theproblemofdistinguishingprobability
ensembles X = {Xk}k∈ℕ and Y = {Yk}k∈ℕ is denoted by D(X, Y), and we have

AdvD(X,Y)D (k) = 󵄨󵄨󵄨󵄨Pr[1← D(Xk)] − Pr[1← D(Yk)]󵄨󵄨󵄨󵄨
for every PPT algorithm D.

2.2 Diffie–Hellman key exchange

The Diffie–Hellman scheme [24] is defined as follows. Let us assume that S is an algorithm that on input
the security parameter 1s, where s ∈ ℕ, samples a cyclic group G of a suitably large order and a generator
g of G. Depending on the representation of the group, the order of the group should be chosen so that the
Diffie–Hellman problem (see Definitions 2.2 and 2.3) is infeasible.

Definition 2.1 (Diffie–Hellman key exchange (DH)). Let the participants be Alice and Bob. Then the Diffie–
Hellman key exchange scheme is

Alice Bob

Sample (G, g) ← S(1s)
Sample a ← U(ℤ|G|)

(G,g,ga)
󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀→ Sample b ← U(ℤ|G|)

k ← (gb)a = gab
gb

←󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀 k ← (ga)b = gab .
The security of the scheme depends on the infeasibility of the Diffie–Hellman problem.

Definition 2.2 (Computational Diffie–Hellman problem (CDHP)). Let (G, g) ← S(1s), where G is a cyclic group
and g is a generator of G. Let a, b ← U(ℤ|G|). Given (g, ga , gb) ∈ G3, find y ∈ G such that y = gab.

The infeasibility of the computational version is often insufficient. We want the adversary to be unable to
determine any information about gab. This is formalized by the decision version of the problem.

Definition 2.3 (Decision Diffie–Hellman problem (DDHP)). Let G be a cyclic group and let g be a generator of
G sampled by (G, g) ← S(1k). Let B ← U({0, 1}) and a, b, c ← U(ℤ|G|). Given

(g, ga , gb , gab) ∈ G4 when B = 0,
(g, ga , gb , gc) ∈ G4 when B = 1,

determine B.

The DDHP is the problem of distinguishing the probability ensembles determined by (g, ga , gb , gab) and
(g, ga , gb , gc).

2.3 Universal algebra

Universal algebra encompasses general concepts underlying different algebraic structures such as groups,
semigroups, modules and quasigroups. Let A be a non-empty set and let n ∈ ℕ. A (finitary) operation on A of
arity n is a function f : An → A. We define A0 = {0}. A type of algebras is a function τ : Ω → ℤ≥0, where the
elements of Ω are the basic operators of the type. The type τ assigns an arity for each basic operator f ∈ Ω.
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An algebra (or an algebraic structure) of type τ is an ordered pair A = (A, F), where A is a non-empty set
and F is a set of operations on A such that for every n-ary basic operator f of the type, there exists an n-ary
operation fA on A. By the notation x ∈ A, we mean x ∈ A, where A = (A, F). We often write f for fA when
it is clear that we mean an operation and not an operator. If Ω = {f1, f2, . . . , fn} for the type, then we write
A = (A, f1, f2, . . . , fn) or A = (A, fA1 , fA2 , . . . , fAn ) for A = (A, {fA1 , fA2 , . . . , fAn }) and often τ(f1) ≥ τ(f2) ≥ ⋅ ⋅ ⋅ ≥
τ(fn). The set A of an algebraA = (A, F) is called the underlying set (or the universe) ofA. An algebraA = (A, F)
is finite if A is a finite set.

Let A = (A, FA) and B = (B, FB) be algebras of the same type. If B ⊆ A and for every basic operator f of
the type, fA|B = fB, then B is a subalgebra of A. In such a case, we write B ≤ A. The set of subalgebras of an
algebra A is closed under intersections. Therefore, every X ⊆ A determines the smallest subalgebra ⟨X⟩ ≤ A
that contains X, the subalgebra generated by X.

LetA = (A, FA) and B = (B, FB) be algebras of the same type τ. Amapping α : A → B is a homomorphism
from A to B if

α(fA(a1, a2, . . . , an)) = fB(α(a1), α(a2), . . . , α(an))

for every n-ary basic operator f of the type and every ordered n-tuple (a1, a2, . . . , an) ∈ An. The set of homo-
morphisms fromA toB is denoted by Hom(A, B). IfA = B, then α is an endomorphism. The set of all endomor-
phisms of A constitutes a semigroup and it is denoted by End(A). If α : A→ B is a surjective homomorphism,
then B is a homomorphic image of A.

Let τ be a type of algebras and let Ω be the set of basic operators of the type. Let X be a set of distinct
objects called variables. The set of terms of type τ with variables X is the smallest set T(X) such that X ⊆ T(X),
and for every p1, p2, . . . , pn ∈ T(X) and every n-ary basic operator f ∈ Ω, the string f(p1, p2, . . . , pn) belongs
to T(X).

We often consider n-ary polynomials over a field𝔽 as polynomial functions𝔽n → 𝔽. Such a consideration
canbe also applied to terms. Let p(x1, x2, . . . , xn)be a termof type τ over a set of variables X. Given analgebra
A = (A, F) of type τ, the term function on A corresponding to p is pA : An → A, defined as follows:
(i) If p is a variable xi, then pA(a1, a2, . . . , an) = ai for a1, a2, . . . , an ∈ A.
(ii) If p is of the form f(p1(x1, . . . , xn), . . . , pk(x1, . . . , xn)), where f is an k-ary basic operator, then

pA(a1, a2, . . . , an) = fA(pA1 (a1, . . . , an), . . . , pAk (a1, . . . , an)).

For our considerations, the term functions are useful since they behave like the finitary operations with re-
spect to congruences and homomorphisms [14]. In particular, for every homomorphism α : A→ B and every
n-ary term p, we have

α(pA(a1, a2, . . . , an)) = pB(α(a1), α(a2), . . . , α(an))

for every a1, a2, . . . , an ∈ A.

3 On the algebraic properties of key exchange schemes
In the algebraic viewpoint, we can easily identify a fundamental requirement for successful key exchange:
something must commute. For the DH, we have (ga)b = (gb)a for every a, b ∈ ℕ. In this section, we present
a brief survey on the algebraic properties of two party key exchange schemes suggested in the literature. In
particular, for each scheme, we identify the source of commutativity and the most general suitable algebraic
platform structure.

3.1 Cyclic group based schemes

Different versions of the DH have been obtained by replacingℤ∗p with another cyclic group [49, 70]. There are
suggestions based on finite extension fields [12] and groups based on elliptic curves over finite fields [47, 56].
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A common element is obtained by the commutativity of exponentiation or multiplication. In particular, the
elliptic curve groups E(𝔽p), for p prime, have yielded very successful variants of the DH. Other groups over
Abelian varieties have been also suggested in [48]. Another variant is the XTR [50] and its predecessors [12,
49, 51, 58, 59, 75]. Rubin and Silverberg [69] suggested the group structure on an algebraic torus. A common
element is established by the commutativity of exponentiation in 𝔽mq and by mapping the result to the torus
using a birational map. Buchmann and Williams suggested a generalization of the Diffie–Hellman scheme
based on an “almost” cyclic group structure on a set of reduced principal ideals of a real quadratic field [13].
A common reduced ideal is derived based on the commutativity of real number multiplication and addition.
These methods are based on the idea of replacing the original group family. Therefore, algebraically such
schemes can be considered in the framework of the original DH.

3.2 Diffie–Hellman based on pairings and multilinear maps

Pairings on elliptic curves have been used both in cryptanalytic investigations, as well as in many useful
cryptographic constructions. Joux was the first to point out the cryptographic potential of such pairings and
suggested a three-party generalization of theDiffie–Hellman schemebased on theWeil andTate pairings [43].
The common key is established between three parties based on the homomorphic property of the pairing e.
The security follows from the hardness of computing e(P, P)abc from (P, aP, bP, cP), where P is a point on
the curve and a, b, c are random integers. Based on Joux’s scheme, Verheul [80] suggested a variant with re-
duced exponentiations and half the number of exchanged bits, as well as a variant of the ElGamal encryption
scheme. Bilinearity was also used by Boneh and Franklin [7] to construct a fully functional identity-based
encryption scheme.

Boneh and Silverberg [8] extended Joux’s scheme to n ≥ 4 parties using multilinear maps. First practical
schemes for n-party key exchange for any nwere suggestedbyGarg,Gentry andHalevi [33] using ideal lattices
(the GGH scheme) and by Coron, Lepoint and Tibouchi [20] using the integers (the CLT scheme). However,
these schemes have been shown to be insecure [15, 39]. The improved version of GGH [34] have been also
shown to be insecure [19]. Obfuscation-based multilinear maps have been suggested in [1, 9, 83].

3.3 Schemes based on commuting functions

Several methods have been suggested to generalize the DH by replacing group exponentiations with other
commuting functions. In principle, for such schemes, we are not interested in the underlying algebraic
structure. However, the functions are often generated using algebraic methods. For example, Shpilrain and
Zapata [73] characterized discrete logarithm based primitives on groups of prime order as a group action
Aut(G) × G → G. They suggested a generalization based on commuting semigroup actions on a set. To the
best of our knowledge, semigroup actions were first suggested by Monico [57]. Similar suggestions can be
found in [53] and [78]. There are also suggestions based on commuting chaotic maps [82].

3.4 Non-commutative structure based schemes

The field on non-commutative cryptography is often considered to have started with the work of I. Anshel,
M. Anshel and Goldfeld [4] and Ko et al. [46]. Ko et al. suggested a Diffie–Hellman like scheme using the braid
group and commuting inner automorphisms. According to [21], the same scheme has been independently
suggested by Sidel’nikov [74] using a non-commutative semigroup. A polynomial time algorithm breaking
the Ko et al. scheme on the braid group can be found in [16]. Baumslag et al. [5] suggested a scheme based
on a finitely presented group G with two commuting subgroups A, B ≤ G. A common key is derived using
the identity abgb󸀠a󸀠 = baga󸀠b󸀠 for every g ∈ G, a, a󸀠 ∈ A and b, b󸀠 ∈ B. A semidirect product A ⋊ B of two
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groups, where B is Abelian, was suggested by Habeeb, Kahrobaei and Shpilrain [37]. A common key was
established based on two commuting embeddings φ, ϕ : A → Aut(B).

In the supersingular isogeny key exchange (SIDH), Alice and Bob create distinct, non-commuting isoge-
nies ϕA, ϕB of a known curve E. They generate point pairs (PA , QA) and (PB , QB), and share their images
(ϕA(PB), ϕA(QB)) and (ϕB(PA), ϕB(QA)) under the secret isogenies. In the supersingular case, the endomor-
phism ring is non-commutative. However, based on the homomorphic properties of the two isogenies ϕA
and ϕB, Alice and Bob are able to derive a shared curve EAB that is isogenous to E. The established key is
defined as the j-invariant of this curve [41].

For the Anshel–Anshel–Goldfeld (AAG) scheme [4], the common key follows from the homomorphic
property β(x, y1 ⋅ y2) = β(x, y1) ⋅ β(x, y2) together with γ1(x, β(y, x)) = γ2(y, β(x, y)). For the conjugation
based AAG [3, 4] on a non-commutative group, the key is derived as the commutator [a, b] of elements a
and b contributed by Alice and Bob, respectively. Shpilrain and Ushakov [72] generalized the construction
to use the centralizer instead of the commutator. For both of these schemes, the common key follows from
the homomorphic property. Braid groups have been suggested as the platform. However, both schemes can
be broken in polynomial time on the braid group [79].

Stickel [77] suggested the application of a non-commutative semigroupG for key exchange. Let g1, g2 ∈ G
be non-commuting elements. Alice and Bob exchange ga11 ga22 and gb11 gb22 . A common key ga1+b11 ga2+b22 is de-
rived by the commutativity ga+b = gb+a. The application of tropical algebras for the implementation of this
scheme was suggested in [35]. Rabi and Sherman [67] suggested the use of associative one-way binary oper-
ations. In such a case, a common key is derived based on associativity.

3.5 Schemes based on lattices

Due to strong security guarantees, lattice based schemes have become a strong alternative for post-quantum
cryptography. Since the seminal work of Regev [68] on the learning with errors problem (LWE), a lot of re-
search has been attracted on schemes implementing, for example, cryptographic hash functions, public-key
cryptography, digital signature schemes, as well as fully homomorphic encryption [65].

In [42], Ding, Xie and Lie introduced an extension of the Diffie–Hellman problem with errors based
on the LWE (and the corresponding problem in a cyclotomic ring, R-LWE). The common key is derived
based on the associativity of matrix multiplication by computing a bilinear form in two different ways:
(xTA)y = xT(Ay), where T denotes the transpose. Peikert [66] applied the R-LWE in the construction of a key
encapsulation mechanism and an authenticated key exchange scheme. In the scheme, a “randomized func-
tion” dbl, a reconciliation function rec and two modular rounding functions ⌊ ⋅ ⌉2, ⟨ ⋅ ⟩2 are used to establish
a common key μ in two different ways: μ = ⌊dbl(v)⌉2 and μ = rec(w, ⟨dbl(v)⟩2), where w = g(e0a + e1)s1 and
v = ge0(as1 + s0) + e2 are noisy ring elements. A key encapsulation mechanism can be also implemented
based on the NTRU cryptosystem [22, 38], as well as on error correcting codes [23].

Based on Peikert’s scheme, Bos et al. [11] investigated the parameters for a practical implementation,
and the resulting schemewas later optimized by Alkim et al. [2] into a scheme called NewHope. Based on the
work of Ding, Xie and Lin [42], Bos et al. [10] applied the generic LWE in a scheme called Frodo. A provably
secure authenticated key exchange protocol applying the R-LWE was presented by Zhang et al. [84], and a
password authenticated key exchange scheme was presented by Ding et al. [25].

3.6 Non-associative structure based schemes

There are many suggested applications of non-associative algebras in cryptography. It has been applied, for
example, to construct block ciphers, stream ciphers, hash functions and authentication schemes.

Some suggestions for key exchange exist. The implementation of commuting semigroup actions based
on both exponentiation and conjugation in a Moufang loop was suggested by Maze [52]. A generalization
of the conjugation based AAG for LCC loops was given by Partala and Seppänen [64]. The construction
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works for any LCC left quasigroup [63] and, similarly to the original AAG, the common key is derived as the
commutator but this time on the left multiplication group; the permutation group generated by the bijec-
tions La(x) = a ∗ x, where ∗ is the binary operation of the left quasigroup. A generalized Diffie–Hellman
scheme was first described in [61] and it is refined in this paper. The common key is derived based on the
homomorphic property. Wang et al. [81] suggested a scheme similar to the DH by considering conjugacy
search in a monoid. The scheme works in a non-associative left distributive (LD) structure Q, satisfying
a ∗ (b ∗ c) = (a ∗ b) ∗ (a ∗ c) for every a, b, c ∈ Q, induced by conjugation, and a common key is derived
based on the property an+m ∗ b = an ∗ (am ∗ b), where ∗ is the binary operation of the LD structure and the
exponentiation is conducted in the original monoid. In this case, the common key is a result of both the
homomorphic property of conjugation and the commutativity of exponentiation.

We have gathered the essentially different key exchange schemes and their algebraic properties into
Table 1.

4 Algebraic generalization of the Diffie–Hellman scheme
Many key exchange schemes in our brief survey can be seen as generalizations or different versions of the
DH. A straightforward generalization is to use other commuting functions. However, it is not straightforward
to construct commuting functions with the needed infeasibility requirements. Here, our emphasis is on the
algebraic properties of the exponentiation map. Many generalizations have observed that exponentiations
in a cyclic group commute. However, exponentiation in a cyclic group is also an endomorphism of the group.
Typically, generalizations concentrate on the commutativity property instead of the homomorphic property.
Notable exceptions include, for example, pairing-based schemes, such as the tripartite Diffie–Hellman
scheme of Joux [43], where a common key is derived based on bilinearity of the pairing. In this paper,
we also concentrate on the homomorphic property. Based on it, we formulate a generalization for the DHP.
Our main motivation for such a generalization is the possibility of lifting the DH from cyclic groups to more
general algebraic structures. In particular, the escape from cyclic groups is necessary to ensure security in
the quantum computation model. The removal of algebraic laws enables us to do that and facilitates the
development of new, quantum resistant, key exchange schemes. Existing suggestions require the platform
structure to satisfy special laws, such as the group axioms. Our formulation permits the application of any
algebraic structure without special algebraic laws except the existence of homomorphisms. In addition, as a
direct generalization of the DH, it aims to preserve the utility of the DH.

Anothermotivation follows fromcryptographicallyuseful properties of homomorphisms. Inparticular, in
most cases a homomorphism f is resamplable, see [28]. That is, there is a PPT algorithm A that on input (x, b)
produces a distribution (X,B) such that the event “b = f(x) if and only if b󸀠 = f(x󸀠)” holds with probability
one for every (x󸀠, b󸀠) ← (X,B). Resamplability is a special form of random self-reducibility [29] that allows
us to infer average-case hardness of certain problems based on their worst-case infeasibility. Resamplability
also enables us to derive tighter bounds on advantage when invoking the hybrid argument [28]. Therefore,
due to resamplability and worst-case to average-case reductions, we expect homomorphism based schemes
to obtain stronger guarantees for their security, similar to learning with errors based schemes [66, 68], where
several worst-case to average-case reductions are known.

First, we give a universal algebraic view on the Diffie–Hellman scheme. We observe that the security of
DH can be seen to be based on the infeasibility of computing a homomorphic image. Based on this observa-
tion, we formulate a homomorphic image problem (HIP) that asks to compute the image of a given element
under an unknown homomorphism. We show that the required commutativity is induced by the homomor-
phic property and it is sufficient for key exchange. This consideration allows us to lift the DHP from a cyclic
group to any pair of algebras A and B with a suitably large set of efficiently samplable and computable ho-
momorphisms from A to B. We define a notion that is analogous to a group family 𝔾 = ({Gi : i ∈ I}, S) that
consists of a collection of cyclic groups {Gi : i ∈ I} and an algorithm S to sample from that collection [6]. We
define a similar family of algebras and use it to formulate a decision version of the HIP.
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Scheme Underlying structure Key derivation Suggested platform

Cyclic group

DH [24] cyclic group gab = gba ℤ∗p
ECDH [47, 56] cyclic group gab = gba E(𝔽p)
[13] cyclic group gab = gba real quadratic field
XTR [50] cyclic group gab = gba 𝔽∗p6
[69] cyclic group gab = gba algebraic torus

Pairings and multilinear maps

[43] cyclic group e(mP, nQ) = e(P, Q)mn E(𝔽p) → 𝔽pk
[80] cyclic group e(mP, nD(P)) = e(P, D(P))mn

[8] group multi-linearity
GGH [33] group multi-linearity ideal lattice
CLT [20] group multi-linearity ℤ

Commuting functions

[57] comm. semigroup xgh = xhg matrix semigroups
[73] comm. semigroup xgh = xhg Artin groups
[78] comm. semigroup xgh = xhg E(𝔽p)
[52] comm. semigroup xgh = xhg Moufang loops
[67] group a(bc) = (ab)c

Non-commutative structure

AAG (general) [4] monoid γ1(x, β(y, x)) = γ2(y, β(x, y)) braid group
AAG (group) [3] non-comm. group commutator [a, b] braid group
[74] non-comm. semigroup a−1b−1gba = b−1a−1gab
[46] non-comm. group a−1b−1gba = b−1a−1gab braid group
[5] non-comm. group abgb󸀠a󸀠 = baga󸀠b󸀠 matrix groups
[37] A ⋊ B, A, B groups, B comm. φ, ϕ : A → Aut(B), φϕ = ϕφ 𝔽np
[77] non-comm. semigroup ga1+b11 ga2+b22 = gb1+a11 gb2+a22 matrix groups
SIDH [41] non-comm. ring α(xy) = α(x)α(y) E(𝔽p2 )
[72] non-comm. group α(xy) = α(x)α(y) braid group
[36] G ⋊ H, H ≤ Aut(G), G group α(xy) = α(x)α(y) matrix semigroup

Lattice

[42] generic lattice (xT A)y = xT (Ay)
Frodo [10] generic lattice (xT A)y = xT (Ay) Zq, q integer
[66] ideal lattice ⌊dbl(v)⌉2 = rec(w, ⟨dbl(v)⟩2) ℤq/(x2

n + 1)
NewHope [2] ideal lattice ⌊dbl(v)⌉2 = rec(w, ⟨dbl(v)⟩2) ℤq/(x2

n + 1)

Non-associative structure

[64] LCC loop [α, β] LCC loop onℤp2
[63] LCC left quasigroup [α, β] left quasigroup a(bc) = (ab)(ac)
[81] LD str., monoid conjugation an+m ∗ b = an ∗ (am ∗ b) matrix monoid
[61] universal algebra α(xy) = α(x)α(y) (𝔽n , +)

Table 1: Algebraic properties of key exchange schemes.

4.1 Universal algebraic view of the Diffie–Hellman scheme

Our construction is based on the following observation. Let us consider a cyclic group Gi as an algebra Gi.
Then every exponentiation function αa : x 󳨃→ xa is both an endomorphism and a term function Gi → Gi. Let
us now consider the original Diffie–Hellman key agreement scheme in the following form that introduces an
apparent asymmetry in the computational procedures of Alice and Bob.
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Definition 4.1 (Diffie–Hellman key agreement). Let 𝔾 = ({Gi : i ∈ I}, S) be a group family and let the partici-
pants be Alice and Bob. Then the Diffie–Hellman key agreement is

Alice Bob

Generate a random term p of the type of Gi
Sample (i, g) ← S(1s) Compute gb = pGi (g)

Sample αa : x 󳨃→ xa ∈ End(Gi)
(i,g,αa(g))
󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀→ Compute αa(g)b = pGi (ga)

k ← αa(gb) = gab
gb

←󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀 k ← αa(g)b = gab .

Alice first samples a private endomorphism αa : x 󳨃→ xa, where a ← U(ℤ|Gi |). Bob generates a random term p
of the type of Gi such that the term function pGi is polynomial time computable. He computes

gb = pGi (g) = gg ⋅ ⋅ ⋅ g⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
b times

.

The same term function is applied on αa(g) = ga to obtain a secret element:

αa(g)b = pGi (ga) = αa(g)αa(g) ⋅ ⋅ ⋅ αa(g)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
b times

= gaga ⋅ ⋅ ⋅ ga⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
b times

= gab .

The binary operation is not actually applied b − 1 times. Rather, Bob chooses a term function such that the
fast exponentiation algorithm can be applied to reach gb and gab in a polynomial number of operations. Alice
can compute αa(gb) = gab and the equality of the established key follows from the homomorphic property
of αa.

We can immediately see that it is possible to exchange the group family 𝔾 with a family of non-group
algebras. That is, we can consider two algebras A, B of the same type and let αa ∈ Hom(A, B). There are three
different algorithms implicit in the scheme:
(i) The sampling algorithm S that can be considered to sample both (i, g) and αa.
(ii) A probabilistic polynomial time random composition algorithm R that, on input i ∈ I and an element

x ∈ Gi, samples a term p and computes the term function on x.
(iii) A deterministic polynomial time homomorphism computation algorithm H that, given i ∈ I, a ∈ ℤ and an

element x ∈ Gi, evaluates αa(x).
For the generalization of the group family to a family of algebras, these algorithms need to be made explicit.
For example, for the group family case, both R and H compute xa using the fast exponentiation algorithm.

4.2 The homomorphic image problem

In this section, we carefully construct a rigorous definition for the family of algebras, as well as for the ho-
momorphic image problem. In order to be able to increase the security of the different constructions using a
security parameter, the family has to consist of pairs (Ai , Bi) indexed by a countably infinite index set I. We
need a sampling algorithm S that samples such pairs, outputs the corresponding i ∈ I and a set of genera-
tors a1, a2, . . . , an for Ai. We also need the family to have a meaningful composition algorithm R, for term
function generation, that can be randomized. For an algebra with n generators, potentially several such al-
gorithms can be devised. In contrast, the only meaningful composition algorithm for a group family is the
fast exponentiation algorithmwith a randomized exponent. To see why this is the case, we observe that each
element of a cyclic group Gi is of the form gx for x ∈ ℕ, where g is a generator of the group. Therefore, for
every term p, there exists z ∈ ℕ such that pGi (g) = gz, and the fastest way to compute it is using the fast ex-
ponentiation algorithm. Finally, we require participants to be able to efficiently compute homomorphisms
φ ∈ Hom(Ai , Bi) for every i ∈ I. Therefore, the family has to come with an explicitly stated set of efficiently
computable homomorphisms and a deterministic homomorphism computation algorithm H.

We consider a family of algebras as a countably infinite set of triples (Ai , Bi ,Hi), where Ai and Bi are
algebras of the same type andHi ⊆ Hom(Ai , Bi), together with the three algorithms explained above. Let us
formulate these notions in a rigorous manner.
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Definition 4.2. AnalgebraA = (XA, FA) is efficiently computable if for every fA ∈ FA, there exists a determinis-
tic polynomial time algorithm A such that fA(x1, x2, . . . , xn)←A(x1, x2, . . . , xn) for every x1, x2, . . . , xn ∈A,
where n is the arity of fA.

Definition 4.3. Let A and B be algebras of the same type and let H be a countable index set. A set of ho-
momorphismsH = {φh : h ∈ H} ⊆ Hom(A, B) is efficiently computable if there is a deterministic polynomial
time algorithm H such that φh(x) ← H(h, x) for every h ∈ H and x ∈ A.

Definition 4.4. Let I be a countably infinite index set. A collection of efficiently computable algebras is a count-
ably infinite set of triples

C = {(Ai , Bi ,Hi) : i ∈ I}

such thatAi andBi are efficiently computable algebras andHi ⊆ Hom(Ai , Bi) is a set of efficiently computable
homomorphisms for every i ∈ I.

Definition 4.5. A family of algebras is a four-tuple

𝔸 = (C, S, R, H),

where C = {(Ai , Bi ,Hi) : i ∈ I} is a collection of efficiently computable algebras, Hi = {φh : h ∈ Hi} and the
algorithms involved are as follows:
(i) S(1s) is a PPT sampling algorithm such that given a security parameter 1s outputs (i, h, a1, a2, . . . , an)←

S(1s), where i ∈ I, h ∈ Hi and aj ∈ Ai for every j ∈ {1, 2, . . . , n}.
(ii) R(i, d, x1, x2, . . . , xn) is a PPT random composition algorithm that given an index i ∈ I, a bit d determin-

ing whether we are composing elements of Ai (d = 0) or Bi (d = 1) and elements x1, x2, . . . , xn of the
corresponding algebra outputs a random element x ← R(i, d, x1, x2, . . . , xn) such that

x ∈ ⟨x1, x2, . . . , xn⟩

and
φh(R(i, 0, z1, z2, . . . , zn; r)) = R(i, 1, φh(z1), φh(z2), . . . , φh(zn); r) (4.1)

for every i ∈ I, h ∈ Hi , z1, z2, . . . , zn ∈ Ai and every randomness r.
(iii) H(i, h, x) is a deterministic PT homomorphism computation algorithm that given i ∈ I, h ∈ Hi and x ∈ Ai,

outputs φh(x) ← H(i, h, x).

The requirement (4.1) imposed on R restricts it to respect the homomorphisms of the algebra. In general, this
means that R generates a random n-ary term p of the type such that R can compute both term functions pA
and pB in polynomial time. Then, depending on d, R computes either pA or pB.

Example 4.6. A group family is a family of algebras 𝔾 = (C, S, R, H), where C = (Gi ,Gi , End(Gi)) is a collec-
tion of cyclic groups and the algorithms involved are as follows:
(i) (i, a, g) ← S(1s), where i ∈ I, g is a generator of Gi and a ← U(ℤ|Gi |).
(ii) xb ← R(i, d, x), where d ∈ {0, 1}, b ← U(ℤ|Gi |) and xb is computed using the fast exponentiation algo-

rithm.
(iii) xa ← H(i, a, x), where xa is computed using the fast exponentiation algorithm.

Let us consider the DH in the form of Definition 4.1. Alice obtains gab as the image under the endomor-
phism α. For an eavesdropper, the problem of computing gab from (g, ga , gb) = (g, αa(g), gb) can be seen as
the problem of computing the image of gb under an unknown endomorphism αa. Therefore, we formulate
an analogue for the computational DHP in the following manner: we give a set of elements and their homo-
morphic images under an unknown homomorphism. Then we sample a random element x from the algebra
and ask for its homomorphic image under the same homomorphism. We call this analogue of the DHP the
homomorphic image problem (HIP).
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Definition 4.7 (Computational HIP (CHIP)). Let 𝔸 = (C, S, R, H) be a family of algebras and assume that
C = {(Ai , Bi ,Hi) : i ∈ I}. Suppose that (i, h, a1, a2, . . . , an) ← S(1s) and x ← R(i, 0, a1, a2, . . . , an). Given

i, (a1, φh(a1)), (a2, φh(a2)), . . . , (an , φh(an)), x,

compute φh(x).

We can easily deduce a necessary condition for the infeasibility of the CHIP. Suppose that it is feasible to
find a term p of the type such that the term function on a1, a2, . . . , an evaluates to x. Suppose also that the
term function can be computed as a polynomial number of applications of the operations of Ai. If such a
factorization as a term is given, we can exchange each occurrence of aj by φh(aj) and each occurrence of an
operation of Ai by the corresponding operation of Bi. Since φh is a homomorphism, the image φh(x) is then
obtained by evaluating the obtained expression, which can be done in polynomial time since Bi is efficiently
computable. Therefore, finding such a factorization as a term needs to be infeasible.

Definition 4.8 (Algebraic factorization problem (AFP)). Let 𝔸 = (C, S, R, H) be a family of algebras of type τ.
Let (i, h, a1, a2, . . . , an) ← S(1s) and y ← R(i, 0, a1, a2, . . . , an). Find a term p of type τ such that the length
of (the binary representation of) p is polynomial in i and

y = pA(a1, a2, . . . , an).

The requirement for the polynomial length in i ensures that pA can be evaluated in polynomial time. For the
group family case, finding a factorization of ga using the generator g is equivalent to the DLP.

Let us now formulate the decision version of the HIP.

Definition 4.9 (Decision HIP (DHIP)). Let𝔸 = (C, S, R, H) be a family of algebras and let

(i, h, a1, a2, . . . , an) ← S(1s), x ← R(i, 0, a1, a2, . . . , an) and B ← U({0, 1}).

Let the following be given:

i, (a1, φh(a1)), (a2, φh(a2)), . . . , (an , φh(an)), (x, z),

where either
z = φh(x) if B = 0,

or
z ← R(i, 1, φh(a1), φh(a2), . . . , φh(an)) if B = 1.

Output B.

Note that when B = 1, R is run with fresh randomness. That is, we are either given the correct homomorphic
image (B = 0) or a random element from ⟨φh(a1), φh(a2), . . . , φh(an)⟩ (B = 1) each with probability 1/2. Let
S = {Ss}s∈ℕ denote the probability ensemble corresponding to the choice of the string

(i, (a1, φh(a1)), (a2, φh(a2)), . . . , (an , φh(an)))

according to (i, h, a1, a2, . . . , an) ← S(1s), and let X = {Xs}s∈ℕ and Z = {Zs}s∈ℕ denote the probability en-
sembles corresponding to the choice of x and z according to

x ← R(i, 0, a1, a2, . . . , an) and z ← R(i, 1, φh(a1), φh(a2), . . . , φh(an)).

If D is a probabilistic polynomial time algorithm, we define its DHIP-advantage on𝔸 as

AdvDHIPD,𝔸 (s) =
󵄨󵄨󵄨󵄨Pr[1← D(1s , Ss , (Xs , φh(Xs)))] − Pr[1← D(1s , Ss , (Xs , Zs))]󵄨󵄨󵄨󵄨.

Definition 4.10 (DHI assumption). A family of algebras 𝔸 satisfies the DHI assumption if there exists a neg-
ligible function ϵ such that

AdvDHIP𝔸 (s) := max
D
{AdvDHIPD,𝔸 (s) : D PPT} ≤ ϵ(s)

for every s ∈ ℕ.
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For a group family𝔾, the DHI assumption is equivalent to the decision Diffie–Hellman assumption with the
choice of S, R and H as in Example 4.6.

In the more general setting, the DH can be now written in the following form.

Definition 4.11 (Algebraically generalized Diffie–Hellman scheme (AGDH)). Let the participants be Alice and
Boband let𝔸 = (C, S, R, H)bea family of algebras. Then the algebraically generalizedDiffie–Hellman scheme
is

Alice Bob

Generate randomness r for R
Sample Compute

(i, h, a1, a2, . . . , an) ← S(1s)
(i,(a1 ,φh(a1)),(a2 ,φh(a2)),...,(an ,φh(an)))
󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀→ x ← R(i, 0, a1, a2, . . . , an; r)

Compute Compute
k ← H(i, h, x) x

←󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀 k ← R(i, 1, φh(a1), φh(a2), . . . , φh(an); r).

The secret randomness used byAlice is the index h of the homomorphismφh. For Bob, the secret randomness
is the internal randomness r used by R.

Proposition 4.12. AGDH is correct and the common element is indistinguishable from a randomly generated
one under the DHI assumption.

Proof. The correctness of the scheme follows from the homomorphic property of φh and the property (4.1)
of R. If an eavesdropper observes the exchange of messages, she sees the index i and

(a1, φh(a1)), (a2, φh(a2)), . . . , (an , φh(an)) and x,

which is an instance of the CHIP on𝔸. If𝔸 satisfies the DHI assumption, then an eavesdropper distinguishes
φh(x) from a random

y ← R(j, φh(a1), φh(a2), . . . , φh(an))

with only negligible probability.

Comparing AGDH to DH, we note that several properties of the platform algebra affect the performance of the
scheme. For example, a large number of generators n results in a large number of transmitted elements from
Alice to Bob. The optimal case is obtained with mono-generated algebras. In this regard, DH is optimal. On
the other hand, contrary to DH, AGDH is not symmetric with respect to Alice and Bob. Asymmetry enables us
to minimize the computational effort of Bob in a scenario where we want the key exchange to be light-weight
for one of the parties. Contrary to DH,whereH and R essentially apply the same algorithm, in AGDH these can
be different. It is possible that, for some algebras, R can be made very efficient at the expense of S and H. For
example, if the number of generators is large, then Alice needs to compute and communicate a large number
of homomorphic images. However, since the number of generators is large, Bob can reach a large number of
different elements of the algebra with only a few applications of the finitary operations.

4.3 Potential instantiations

In this section, we offer some concrete examples of potential algebras for AGDH. To instantiate AGDH, the
family of algebras has to support a large set of homomorphisms.We have identified four different approaches
and described them below.

4.3.1 Homomorphic symmetric encryption schemes

For the AGDH,we need the computation of homomorphisms to be provably infeasible. If a symmetric encryp-
tion scheme is homomorphic in respect of some algebraic operation, its decryption algorithm induces a large
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set of functions that are homomorphisms from the ciphertext space to the plaintext space. Furthermore, if the
scheme is provably secure, it is infeasible to compute these homomorphisms without a key. We will consider
this approach more closely in Section 5.

4.3.2 Vector spaces

Vector spaces are a natural source for a large number of homomorphisms. If V is a finite dimensional vector
space over a field 𝔽, then End(V) consists of all linear transformations V → V, see [40]. Linear transforma-
tions can be learned in polynomial time given uniformly random samples [30]. However, adding noise to the
samples makes the problem infeasible. Noisy versions of problems based on linear transformations, such as
learning parity with noise (LPN) andmore generally learning with errors (LWE), have been utilized in several
cryptographic constructions. Applying these problems in the instantiation of AGDH would lead to a scheme
that bears similarities to lattice based key agreement schemes.

4.3.3 Left distributive groupoids

Let us consider the random composition algorithm R. Let i ∈ I, h ∈ Hi and let the generators a1, a2, . . . , an ∈
Ai be fixed. For every randomness r used by R, let us define the functions

Rr : Ai → Ai , Rr(x) ← R(i, 0, a1, a2, . . . , an−1, x; r)

and
R󸀠r : Bi → Bi , R󸀠r(x) ← R(i, 1, φh(a1), φh(a2), . . . , φh(an−1), x; r).

Then, by (4.1),
anRrφh = anφhR󸀠r

for every h ∈ Hi and every randomness r. We saw that the hardness of solving the CHIP is based on the hard-
ness of algebraically factoring anRr into a term p such that pAi and pBi are polynomial time computable
without knowing r, and the hardness of computing φh without h. Therefore, it seems useful to consider the
case that both Rr and φh come from the same class of functions. This leads us naturally to the class of left
distributive (LD) groupoids Q that satisfy

a ∗ (b ∗ c) = (a ∗ b) ∗ (a ∗ c)

for every a, b, c ∈ Q.
Suppose that Qi is a LD groupoid and set Ai = Bi = Qi. Let La(x) = a ∗ x for every a, x ∈ Qi. The left dis-

tributivity property ensures that La ∈ End(Qi) for every a ∈ Qi. Then, we can set both R and H to compute a
series of such functions. The best known example of an LD structure arises from the conjugation operation
a ∗ b = a−1ba in a non-Abelian group G, see [76]. If we take for instanceHi ⊆ ⟨L∗a : a ∈ Gi⟩, then the hard-
ness of the CHIP is closely related to the conjugacy problem on G. However, group conjugation is not the only
possible source of left distributive groupoids. For example, such structures arise naturally in knot theory as
a classifying invariant of a knot [44].

4.3.4 Medial groupoids

A groupoid Q ismedial (also called entropic) if

(a ⋅ b) ⋅ (c ⋅ d) = (a ⋅ c) ⋅ (b ⋅ d)

for every a, b, c, d ∈ Q. For amedial groupoid, the “squaring” function e2(x) = x ⋅ x is an endomorphismofQ.
There is also awayof constructingnewendomorphisms. For every α, β ∈ End(Q), let us definea function α + β
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Figure 1:Medial quasigroup law on a cubic curve y2 = x3 − 3x + 3, see [62].

by (α + β)(x) = α(x) ⋅ β(x). It follows frommediality that α + β ∈ End(Q) [31]. Therefore, there exists a large set
of efficiently computable endomorphisms ofQwhenever the binary operation ofQ is efficiently computable.

Medial operations can be induced by algebraic varieties and, in particular, algebraic plane curves that are
good sources of a wide range of algebraic laws [54]. For example, the chord-tangent construction on a cubic
plane curve defines a quasigroup operation that is medial [27]. The situation is depicted in Figure 1. From
this quasigroup operation the elliptic curve group law is also derived. However, mediality is not restricted to
binary operations. It can be generalized to n-ary operations. Such algebras can be constructed, for example,
by algebraic equations on fields [17].

5 Symmetric homomorphic encryption and key exchange
In this section,we consider the question of turning a symmetric encryption scheme possessing homomorphic
properties into a public-key primitive using the AGDH. If the encryption scheme is secure, then it is hard to
compute images under the decryption functionswithout the key. Furthermore, if the decryption functions are
homomorphisms with respect to some operation, then we have a natural candidate for the implementation
of the AGDH. However, the hardness of decrypting is not sufficient for the induced key exchange to be secure.
In addition, the underlying algebraic operation has to be sufficiently complex. In this section, we derive a
condition so that there is an explicit construction for secure key exchange using the encryption scheme if
the condition is satisfied. We call encryption schemes satisfying this condition homomorphic key agreement
capable.

Let SE = (Gen, Enc, Dec) be an encryption scheme such that the decryption functions are homomorphic
with respect to some operations on the ciphertext space Cs and the plaintext spaceMs, where 1s is the secu-
rity parameter. In particular, suppose that SE is homomorphic from a finite algebra Cs = (Cs , FCs ) to a finite
algebraMs = (Ms , FMs ), where 1s is the security parameter. Let the key space of SE be Ks. We stress that we do
not require the scheme to be fully homomorphic. Instead, we only assume that there are non-trivial algebras of
the same type on the ciphertext space Cs and on the plaintext space Ms such that the functions arising from
decryption are homomorphisms Cs → Ms. In addition, we do not require the scheme to be strongly homo-
morphic. An encryption scheme is called strongly homomorphic if it is possible to re-randomize ciphertexts
without the secret key. Obviously, such schemes can be used for key transport.
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An encryption scheme is malleable if, given a ciphertext, it is possible to generate a different cipher-
text so that the two plaintexts are related [26]. A scheme that is homomorphic with respect to some op-
erations is always malleable, since the homomorphic property enables us to derive related plaintexts. Due
to malleability, it is impossible to achieve adaptive CCA-security (IND-CCA2), which is the standard notion
of secure encryption if we want to retain the homomorphic property [45]. It would be possible to achieve
non-adaptive CCA-security (IND-CCA1), but, for our construction, CPA-security will be sufficient. It should
be noted that standard transforms to convert CPA-secure schemes into CCA2-secure schemes, such as the
Naor–Yung double-encryption [60] or the Fujisaki–Okamoto transformation [32], can be applied when the
scheme is used for encryption. However, our key exchange construction depends onhomomorphic properties
that will be destroyed by any such transform.

LetAdvIND-CPAA,SE (s, n) denote the advantage of an adversary A in a CPA-experiment, where Amakes at most
n queries to the encryption oracle. Since Dec is deterministic, each key k ← Gen(1s) determines a decryption
homomorphism Deck from Cs toMs. Let Ds = {Deck : k ∈ Ks} be the set of such functions arising from Dec,
indexed by the keys k ∈ Ks. Let us consider a family of algebras ℂ = (C, S, R, H) such that

C = {(Cs ,Ms ,Ds) : s ∈ ℕ}.

Depending on the operations FCs and FMs , there could bemany possible algorithms for randomly composing
elements. Therefore, our results will be stated in terms of the choice of R. Let us fix the other two required
algorithms:
(i) Sampling algorithmS(1s): Sample ks←Gen(1s). Sample ns distinct generatorsm1,m2, . . . ,mns fromMs.

Compute at ← Enc(ks ,mt) for every t ∈ {1, 2, . . . , ns}. Output (s, ks , a1, a2, . . . , ans ).
(ii) Homomorphism computation algorithm H(s, ks , x): Output z ← Dec(ks , x).

In the following, wewill be using probability ensembles on the key space and the plaintext space, as well
as two ensembles on the ciphertext space. These are defined as follows.

Definition 5.1. Let (s, ks , a1, a2, . . . , ans ) ← S(1s) and let mi ← Dec(ks , ai) for every i ∈ {1, 2, . . . , ns}.
(i) The key ensemble K = {Ks}s∈ℕ is the probability ensemble such that Ks = Gen(1s).
(ii) The random plaintext composition ensemble Z = {Zs}s∈ℕ is the probability ensemble such that

Zs = R(s, 1,m1,m2, . . . ,mns ).

(iii) The random ciphertext composition ensemble R = {Rs}s∈ℕ is the probability ensemble such that

Rs = R(s, 0, a1, a2, . . . , ans ).

(iv) The encryption ensemble E = {Es}s∈ℕ is the probability ensemble such that Es = Enc(Ks , Zs).

If SE has indistinguishable encryptions there exists a probability ensemble X = {Xs}s∈ℕ such that the proba-
bility ensemble Enc(Ks , Ys) is computationally indistinguishable from X for every efficiently samplable prob-
ability ensemble Y = {Ys}s∈ℕ onMs. Typically, X is the uniform probability ensemble U. However, we do not
place such a restriction on X. We will be considering the random ciphertext composition ensemble R and
show that the DHI assumption holds whenever R is computationally indistinguishable from X. Let us first
consider a modified version of the DHIP, which we denote by DHIPY , where R is replaced by Y. That is, for an
instance of the DHIPY ,

s, (a1, Dec(ks , a1)), (a2, Dec(ks , a2)), . . . , (an , Dec(ks , an)), (x, z),

we have x ← Ys instead of Rs.
Ultimately, our goal is to relate the hardness of theDHIP to the security of SE.Wefirst bound the difference

|AdvDHIPA,ℂ (s) − Adv
DHIPY
A,ℂ (s)| based on the problem of distinguishing R and Y. This will help us later to achieve

negligibility of AdvDHIPA,ℂ (s) with a proper choice of R and Y.

Proposition 5.2. For every PPT algorithm A and every probability ensemble Y on the ciphertext space there is
a PPT algorithm B such that

AdvD(R,Y)B (s) ≥ 12
󵄨󵄨󵄨󵄨Adv

DHIP
A,ℂ (s) − Adv

DHIPY
A,ℂ (s)

󵄨󵄨󵄨󵄨 for every s ∈ ℕ.
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Proof. Let A be a PPT algorithm considered as a distinguisher for DHIP or DHIPY . We construct an algorithm
B that applies A to distinguish between Y and R:
1: procedure B(1s , x)
2: (s, ks , a1, a2, . . . , ans ) ← S(1s)
3: mt ← H(s, ks , at) for every t ∈ {1, 2, . . . , ns}
4: b ← U({0, 1})
5: if b = 0 then
6: z ← H(s, ks , x)
7: b󸀠 ← A(1s , s, (a1,m1), (a2,m2), . . . , (ans ,mns ), (x, z))
8: output b󸀠

9: else
10: z ← R(s, 1,m1,m2, . . . ,mns )
11: b󸀠 ← A(1s , s, (a1,m1), (a2,m2), . . . , (ans ,mns ), (x, z))
12: output b󸀠
13: end if
14: end procedure
Let S = {Ss}s∈ℕ denote the probability ensemble corresponding to the choice of the string k, (a1,m1),
(a2,m2), . . . , (ans ,mns ). By the description of B, the input to A is a valid instance of either DHIP (x ← Rs)
or DHIPY (x ← Ys). In addition, if b = 0, the homomorphic image of x is z, otherwise a random element Zs.
Both of these cases happen with probability 1/2. Therefore,

Pr[1← B(1s , Rs)] =
1
2 (Pr[1← B(1s , Rs) | b = 0] + Pr[1← B(1s , Rs) | b = 1])

=
1
2 (Pr[1← A(1s , Ss , (Rs , z))] + Pr[0← A(1s , Ss , (Rs , Zs))])

=
1
2 (1 + Pr[1← A(1s , Ss , (Rs , z))] − Pr[1← A(1s , Ss , (Rs , Zs))])

=
1
2 (1 + (−1)

eAdvDHIPA,ℂ (s))

and

Pr[1← B(1s , Ys)] =
1
2 (Pr[1← A(1s , Ss , (Ys , z))] + Pr[0← A(1s , Ss , (Ys , Zs))])

=
1
2 (1 + Pr[1← A(1s , Ss , (Ys , z))] − Pr[1← A(1s , Ss , (Ys , Zs))])

=
1
2 (1 + (−1)

e󸀠AdvDHIP
Y

A,ℂ (s))

for some e, e󸀠 ∈ {−1, 1}. Without loss of generality, we may assume that e = 1 (if not, then reverse the output
of A). This means that

AdvD(R,Y)B (s) = 󵄨󵄨󵄨󵄨Pr[1← B(1s , Rs)] − Pr[1← B(1s , Ys)]󵄨󵄨󵄨󵄨

=
1
2
󵄨󵄨󵄨󵄨Adv

DHIP
A,ℂ (s) − (−1)e

󸀠
AdvDHIP

Y

A,ℂ (s)
󵄨󵄨󵄨󵄨

≥
1
2
󵄨󵄨󵄨󵄨Adv

DHIP
A,ℂ (s) − Adv

DHIPY
A,ℂ (s)

󵄨󵄨󵄨󵄨.

In the following proposition, we bound the advantage on DHIPE, using the CPA-advantage on SE. In partic-
ular, we construct a CPA-adversary for SE based on an assumed distinguisher for the DHIPE. This leads to a
negligible advantage on DHIPE and enables us to also bound the advantage on DHIP using Proposition 5.2.

Proposition 5.3. For every PPT algorithm A, there is a PPT algorithm B such that

AdvIND-CPAB,SE (s, ns) ≥ Adv
DHIPE
A,ℂ (s).

Proof. Let A be a PPT algorithm considered as an DHIPE distinguisher for ℂ. Let us define the following
IND-CPA adversary B = (BEncks1 , B2).
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1: procedure BEncks1 (1s)
2: Sample ns distinct generators m1,m2, . . . ,mns ofMs according to S(1s)
3: Query Encks for at ← Enc(ks ,mt) for every t ∈ {1, 2, . . . , ns}
4: x0 ← R(s, 1,m1,m2, . . . ,mn)
5: x1 ← R(s, 1,m1,m2, . . . ,mn)
6: output (x0, x1, s) ⊳ s is the state information that includes all of the used values
7: end procedure
1: procedure B2(1s , cb , s) ⊳ cb is the challenge ciphertext
2: b󸀠 ← A(s, (a1,m1), (a2,m2), . . . , (an ,mn), (cb , x0))
3: output b󸀠

4: end procedure
Note that both x0 and x1 are sampled according to Zs. Since the challenge ciphertext is cb ← Enc(ks , Zs), it
is sampled according to E. If b = 0, then x0 is the homomorphic image of cb. If b = 1, x0 is a random element
sampled according to Z. Therefore, the input to A is a valid instance of DHIPE, and A succeeds with advantage
AdvDHIP

E

A,ℂ (s). Since B outputs the same bit as A, we have

AdvIND-CPAB,SE (s, ns) = Adv
DHIPE
A,ℂ (s).

We are now ready to derive a bound on the DHIP. We achieve this by considering the indistinguishability of E
and R. Intuitively, DHIPE and DHIP are both hard if E and R are indistinguishable. This is formalized in the
following proposition.

Proposition 5.4. For every PPT algorithm A,

AdvDHIPA,ℂ (s) ≤ 2 ⋅ Adv
D(R,E)(s) + AdvIND-CPASE (s, ns).

Proof. Let A be a PPT algorithm. Suppose that

AdvDHIP
E

A,ℂ (s) ≥ Adv
DHIP
A,ℂ (s).

Then, by Proposition 5.3, there is a PPT algorithm B such that

AdvDHIPA,ℂ (s) ≤ Adv
DHIPE
A,ℂ (s) ≤ Adv

IND-CPA
B,SE (s, ns) ≤ Adv

IND-CPA
SE (s, ns).

Therefore, we may assume that
AdvDHIPA,ℂ (s) ≥ Adv

DHIPE
A,ℂ (s).

By Proposition 5.2, there is a PPT algorithm B such that

󵄨󵄨󵄨󵄨Adv
DHIP
A,ℂ (s) − Adv

DHIPE
A,ℂ (s)

󵄨󵄨󵄨󵄨 = Adv
DHIP
A,ℂ (s) − Adv

DHIPE
A,ℂ (s) ≤ 2 ⋅ Adv

D(R,E)
B (s).

But now, by Proposition 5.3, there is a PPT algorithm C such that

AdvDHIPA,ℂ (s) ≤ 2 ⋅ Adv
D(R,E)
B (s) + AdvDHIP

E

A,ℂ (s)

≤ 2 ⋅ AdvD(R,E)B (s) + AdvIND-CPASE,C (k, ns)
≤ 2 ⋅ AdvD(R,E)(s) + AdvIND-CPASE (k, ns).

As a corollary, we obtain the following result on the infeasibility of the DHIP.

Proposition 5.5. If SE is IND-CPA secure and the random ciphertext composition ensemble R is computation-
ally indistinguishable from the encryption ensemble E, then ℂ satisfies the DHI assumption.

Proposition 5.5 asserts that AGDH can be instantiated using a symmetric encryption scheme if the underlying
algebra admits a suitably complex random composition algorithm R. This motivates the following definition
for a symmetric encryption scheme SE.
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Definition 5.6 (Homomorphic key agreement capable). Let SE = (Gen, Enc, Dec) be an IND-CPA secure sym-
metric encryption scheme. If there exists a family of algebrasℂ = (C, S, R, H) such thatH(s, ks , x) = Dec(ks , x)
for every key ks and every plaintext message x, and the probability ensemble R induced by

R(s, 0, a1, a2, . . . , ans ),

with (s, ks , a1, a2, . . . , ans ) ← S(1s), is computationally indistinguishable from the probability ensemble E
induced by Enc(ks , x) for

x ← R(s, 1, Dec(ks , a1), Dec(ks , a2), . . . , Dec(ks , ans )),

then SE is called homomorphic key agreement capable.

In general, a key agreement capable symmetric encryption scheme can be always transformed into a public-
key primitive using AGDH for key exchange. The resulting protocol is secure by Proposition 5.5.

6 Conclusions
We proposed a universal algebraic generalization of the Diffie–Hellman scheme called AGDH. Its security is
based on the hardness of a homomorphic image problem, which requires the adversary to compute the im-
age of a given element under an unknown homomorphism from an algebra A to an algebra B. We rigorously
formulated computational anddecision versions of this problem.AGDHprovides amethod of considering dif-
ferent algebraic structures for key exchange without placing structural restrictions on them. The study offers
potential for the development of new algebraic key exchange schemes. We also identified four interesting
approaches to instantiate the AGDH, and pursued one of these options by considering the instantiation of
AGDH using symmetric encryption schemes that are homomorphic over algebraic operations. We formulated
a condition called homomorphic key agreement capability and showed that an IND-CPA secure scheme that
satisfies this condition can be securely used for key exchange, essentially turning the symmetric scheme into
a public-key primitive.
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