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Abstract: We present a technique to enhance the security of the Goldreich, Goldwasser and Halevi (GGH)

scheme. The security of GGH has practically been broken by lattice reduction techniques. Those attacks are

successful due to the structure of the basis used in the secret key. In this work, we aim to present a new tech-

nique to alleviate this problem by modifying the public key which hides the structure of the corresponding

private key. We intersect the initial lattice with a random one while keeping the initial lattice as our secret

key and use the corresponding result of the intersection as the public key. We show sufficient evidence that

this technique will make GGH implementations secure against the aforementioned attacks.
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1 Introduction
The popularity of post-quantum cryptography has increased significantly after the formal announcement by

the National Institute of Standards and Technology (NIST) to move away from classical cryptography [76].

This is due to the potential threat that will be brought by the upcoming large scale quantum computers,

which theoretically break the underlying traditional hard problem by using Shor’s algorithm [70]. There are

currently three main families in post-quantum cryptology, namely, code-based cryptography, multivariate

cryptography, and lattice-based cryptography. This work primarily concerns with lattice-based cryptography.

First introduced by Minkowski in a pioneering work [53] to solve various number problems, lattices have the

advantage to often base their security on worst-case assumptions [1] rather than the average case, and to

be highly parallelizable and algorithmically simple enough to compete with traditional schemes in terms of

computing speed. Inspired by this, Goldreich, Goldwasser and Halevi (GGH) [27] proposed an efficient way

to use lattices to build a public-key encryption scheme. Their practical scheme has been broken using lattice

reduction techniques [55]; however, the central idea is still viable and gave birth to a wide array of applica-

tions and improvements using tensor products [19], Hermite normal forms [50], polynomial representations

[59], rotations [72], etc. The idea of intersecting lattices for cryptography first appeared in a broadcast attack

on lattices [64], and since then, it has been used in various cryptanalytic efforts. Nevertheless, there is no

attempt thatmakes use of this technique in a positive way, i.e., for building a secure cryptosystem. This paper

aims to fill this gap by exploring this possibility.
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Our work does not follow the previous works on the LWE or SIS type problems, which are currently very

popular. Those lattices have a particular form and are called q-ary lattices, which only represent a small frac-

tion of all lattices. They do benefit from Ajtai’s worst-case to average-case security reduction [1], but so do

most randomly taken lattices as shown recently by Gama et al. [23]. We will moreover focus on lattices with

a Hermite normal form that only admits a single dense column which belongs to the most dense set of all

lattices [57]. Therefore, our work can be seen as a continuation of the work on non-q-ary following the line of
the initial proposal of GGH [27] andMicciancio’s improvement of GGHwithHermite normal forms [50], where

the latter has yet to be broken asymptotically. Furthermore, a lot of schemes based on LWE require Gaussian

sampling for encryption and key generation [42, 46], which is very costly and impractical [61, 75] either in

memory or in speed compared to the efficiency of more classical lattice-based schemes or other specialized

versions as NTRU [31], whose security is also based on q-ary lattice problems. This problem is big enough to

motivate many research directions to either tackle the issue [12, 16, 17] or avoid it using LWR (learning with

rounding) [9] or LWE with uniform distribution [45]. In this paper, we attempt to use a more radical option

by moving away from LWE-based cryptosystems and q-ary lattices and hope for a gain in encryption speed

and key-size efficiency. On the other hand, we do not have provable security on our particular structure, but

neither does NTRU; although NTRU has been researched intensively for quite some time now. Another moti-

vation to follow an alternative path of study from LWE-based cryptosystems (and q-ary lattices) is the recent
progress of attacks on such cryptosystems [3, 5, 13, 38, 39, 41] and the recent talk given by Lyubashevsky

at PKC’16 in which he also qualifies LWE-based problems as particular instances of “basic” lattice problems

and advised “to understand the underlying knapsack problems” to build practical schemes [47].

Our contribution and paper organization

The initial practical schemes of GGH have been broken mostly because of the very specific structure of the

keys used. The main idea developed in this paper is to intersect the public key with a random lattice of the

same rank to hide the previously exploited specific structure. However, we also show that improving security

using intersections is not as simple as just intersecting anykey to any random lattice, and thereforewepresent

specific choice of keys based on intersection properties.

The rest of the paper is organized as follows. We first review the basics of lattice theory and discuss the

initial GGH scheme in Section 2. Then, in Section 3, we present our idea to enhance its security and show that

this extra layer of security does not affect our capacity to encrypt or decryptmessages.We also explain howwe

compute keys in practice as a lot of properties arise from intersecting lattices, which can further be exploited

to either enforce or weaken the security of the resulting system, and more importantly, we demonstrate how

it hides the initial “weak” structure. We give a short comparison of efficiency and key sizes compared to

other schemes. In Section 4, we discuss potential security concerns given by the stated properties. Finally, in

Section 5, we discuss further applications of intersecting lattices.

2 Background
In this section, we briefly recall the basics of lattice theory.

2.1 Lattice theory

Definition 1. We call lattice a discrete subgroup of ℝn, where n is a positive integer. We say a lattice is an

integer lattice when it is a subgroup ofℤn. A basis of the lattice is a basis as aℤ-module. IfM is a matrix, we

define L(M) as the lattice generated by the rows of M.



A. Sipasseuth, T. Plantard and W. Susilo, Enhancing GGH’s scheme with intersecting lattices | 171

In this work, we only consider full-rank integer lattices, i.e., such that their basis can be represented by

an n × n non-singular integer matrix.

Theorem 1 (Determinant). For any latticeL, there exists a real valuewe calldeterminant, denoteddet(L), such
that det(L) = √det(BBT) for any basis B.

The literature sometimes call det(L) the volume of L (see [53]).

Definition 2 (Hermite normal form (HNF)). Let L be an integer lattice of dimension d and H ∈ ℤd,n a basis

of L. Then H is said to be of Hermite normal form if and only if

Hi,j

{{{
{{{
{

= 0 if i > j,
≥ 0 if i ≤ j,
< Hj,j if i < j

for all 1 ≤ i, j ≤ d.

The HNF can be computed from any basis in polynomial time [36], is unique [15], and has a very compressed

form, and thus is an ideal form for public keys [50]. We denote HNF(M) the HNF of a matrix M. One of the

easiest forms to work with when the HNF is computed is when we obtain a “perfect” HNF.

Definition 3. LetM be the basis of an integer latticeL of dimension n in HNF form. As the HNF form is unique

per lattice, we can write HNF(M) = HNF(L). We say HNF(L) has pseudo-perfect form when only one column

differs from Idn and perfect form when only the first column differs.

Example 1. A has perfect form, B pseudo-perfect, and C neither of them.

A =
[[[[

[

34 0 0 0

27 1 0 0

32 0 1 0

13 0 0 1

]]]]

]

, B =
[[[[

[

1 0 0 0

0 34 0 0

0 25 1 0

0 18 0 1

]]]]

]

, C =
[[[[

[

17 0 0 0

10 2 0 0

15 1 1 0

13 0 0 1

]]]]

]

.

For consistency with the rest of the paper, we assume Idn is a perfect form HNF.

Definition 4. Let L be a full-rank integer lattice of dimension n. We say L is co-cyclic whenℤ/L is cyclic.

According to Nguyen and Shparlinski [57], the set of co-cyclic lattices represents 85% of full-rank integer

lattices. Note that if HNF(L) has perfect or pseudo-perfect form, then L is co-cyclic.

Definition 5. We say a lattice L
1
is an overlattice of L

2
, and L

2
is a sublattice of L

1
, when L

2
⊆ L

1
.

Thus, if L
3
= L

1
∩ L

2
, then L

3
is a sublattice to both L

1
and L

2
.

Definition 6. We say a lattice is a diagonally dominant (DD) type lattice if it admits a basis of the form D + R
where D = d × Id, d ∈ ℤ, and R is a “noise” matrix whose entries lie in [−μ, μ], where d ≫ μ, and μ is called
the bound of the noise.

We note that the definition is a bit different to the one which can be found in fundamental mathematics

books [11]. The other definition requires the sum of norms of non-diagonal entries in a row to be lower or

equal to the norm of its diagonal entry in that same row (or line, depending how you consider the vectors).

Here the definition of “low” is arbitrary, but the overall idea is the same. In our following experimentations,

we will restrict ourselves to d = ⌈√n⌉, where n is the dimension, and μ = 1.

Definition 7 (Minima). We denote by λi(L) the i-th minimum of a lattice L. It is the radius of the smallest

zero-centered ball containing at least i linearly independent elements of L.

Definition 8 (Lattice gap). We denote by δi(L) the ratio λi+1(L)
λi(L) and call that a lattice gap. When mentioned

without index and called “the” gap, the index is implied to be i = 1.

We also define the “root lattice gap”, i.e., elevated to the power

1

n , where n is the dimension of the lattice.
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2.2 Lattice problems

The most famous problems on lattices are the shortest vector problem (SVP) and the closest vector problem

(CVP). We tend to approximately solve CVP by solving heuristically SVP in an expanded lattice [27].

Definition 9 (CVP: closest vector problem). Given abasis B of a latticeLof dimension n and t ∈ ℝn, find v ∈ L
such that ‖t − v‖ ≤ ‖t − w‖ for all w ∈ L.

Definition 10 (SVP: shortest vector problem). Given a basis B of a lattice L of dimension n, find v ∈ L such

that v ̸= w, ‖v‖ ≤ ‖w − v‖, i.e., ‖v‖ = λ
1
(B) for all w ∈ L.

In cryptography, we rely on the “easier” versions of those problems.

Definition 11 (uSVPδ: δ-unique shortest vector problem). Given abasis of a latticeLwith its lattice gap δ > 1,
solve SVP.

Since λ
1
(L) is also hard to determine (it is indeed another lattice problem we do not state here), measuring

the efficiency of an algorithm is another challenge by itself. Therefore, to measure algorithm efficiency, we

must be able to define a problem with easily computable parameters, which is where the Hermite factor is

originated from.

Definition 12 (HSVPγ: γ-Hermite shortest vector problem). Given a basis B of a lattice L of dimension n and
a factor γ we call Hermite Factor, find y ∈ L such that ‖y‖ ≤ γ det(L)1/n.

Some cryptosystems are based on worst-case hardness on uSVP with polynomial gap, such as [2, 66]. The

practical hardness of uSVP depends on its gap compared to a fraction of the Hermite factor, where the con-

stant in front of the factor depends on the lattice and the algorithm used [24]. There exists an attack that was

specifically built to exploit high gaps [44].

Definition 13 (BDDγ: γ-bounded distance decoding). Given a basis B of a latticeL, a point x and an approxi-
mation factor γ such that there exists v ∈ L such that ‖x − v‖ < γλ

1
(B), find v ∈ L such that ‖x − v‖ ≤ ‖x − w‖

for all w ∈ L.

It has beenproved that BDD
1/(2γ) reduces to uSVPγ in polynomial time, and the samegoes for uSVPγ to BDD1/γ

when γ is polynomially bounded by n [48]; in cryptography, the gap is polynomial, so the target point xmust

be polynomially bounded, and therefore solving one or the other is relatively the same in our case.

2.3 The GGH cryptosystem

GGH is a public key cryptosystem named after its creators (Goldreich, Goldwasser and Halevi). Like every

public key encryption scheme, GGH is composed of three algorithms, namely, a key generator, an encryption

algorithm, and a decryption algorithm.

∙ KeyGen(n). Take a “good” basis Sk of a lattice L of dimension n; compute a “bad” basis Pk from L(Sk);
provide Pk as the public key, and keep Sk as the secret key.

∙ Encrypt(Pk,m). Use Pk to encrypt a message m, which is a “small” vector, less than half the size of the

smallest vector of Sk, by adding a random vector v of L; output c = m + v.
∙ Decrypt(Sk, c). Use Sk to decrypt a message, solving the BDD instance of c on L(Pk), thus separating m

from v and thus recovering m.
To be able to decryptm, it has to be relatively short, say, ‖m‖ ⪅ γ, thus solving special instances of BDDγ. For

this cryptosystem to be relevant, it must rely on three important points.

∙ It is easy to encrypt a message with a public key (i.e., generate c given (Pk,m)).
∙ It is easy to decrypt a message with a secret key (i.e., solve BDDγ with Sk).

∙ It is hard to recover the secret key/original message from the public key.



A. Sipasseuth, T. Plantard and W. Susilo, Enhancing GGH’s scheme with intersecting lattices | 173

The first point is pretty straightforward, and the second is guaranteed only by a proper key generation, which

iswhere the concepts of “good basis” and “bad basis” are originated from. Sk is typically a diagonal dominant

matrix and Pk its Hermite normal form. Because v is generated from Pk and L(Pk) = L(Sk), we can then

recover v from c and thus m by solving BDDγ with the “good” basis Sk (typically composed of short and

nearly orthogonal vectors). The problem stems from the third point.

2.4 Attacks on classical GGH

2.4.1 Message attacks and basis reduction on semi-orthogonal basis

The original GGH challenges [28] used an error vector whose entries are drawn in {−σ, σ}, which allowed

Nguyen to easily retrieve messages in high dimension [55]. Using entries from [−σ, σ] fixes the problem,

but the structure present in secret keys were still exploitable. Basis reduction techniques allowed Gama and

Nguyen to recover very good bases from structural weaknesses within L(Pk) (see [24]), comparing them to

semi-orthogonal bases.

2.4.2 Special key recovery attack on diagonal dominant keys

For diagonally dominant keys of the formSk = D + R, whereD = d × Id, it is easier to attack the basis structure
rather than the message itself.

Solving BDDγ for vectors

(d, 0, . . . , 0), (0, d, 0, . . . , 0), . . . , (0, . . . , 0, d) in L(d × Id + R) = L(Sk) = L(Pk)

to recover R yields very short vectors R[1], . . . , R[n] and thus recovers the secret key: the difference between
the i-th vector of the matrix d × Id and L(d × Id + R) is exactly the i-th vector of R, which holds small values

within [−μ, μ] and is much shorter than a message. We will denote ϕ the BDDγ solving algorithm. It is not an

oracle, but rather analgorithm that anybody could choose to solve theproblem.Our suggestion forϕwouldbe

to use Kannan’s embedding technique [35], which transforms the BDD instance into a uSVPγ instance, and

then apply lattice reduction techniques on the extended basis, using Klein’s algorithm [40] or more recent

works such as Liu and Nguyen enumeration-based solver [43].

Note that on the above algorithm, each iteration on a position of the diagonal makes the next iteration

easier: since L(Pk) = L(Sk), each short vector found of Sk decreases the complexity of ϕ. In fact, like most

lattice-based cryptosystems, finding one shortest vector is enough to break GGH.

Input: the public key Pk of full rank n, the diagonal coefficient d, a BDDγ solver ϕ
Output: the secret key Sk
Sk← d × Idn;
// Loop on every position of the diagonal

foreach {i ∈ [1, . . . , n]} do
// find the difference r between (0, . . . , di , . . . , 0) and L(Pk)
r ← ϕ(L(Pk), Sk[i]);
Sk[i] ← Sk[i] + r;

end
return Sk

Algorithm 1: Diagonal dominant key recovery attack.
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3 Enhanced GGH cryptosystem

3.1 Modification of GGH using an intersecting lattice

If we denote Pk the public key and Sk our private key, our modification is to go from L(Pk) = L(Sk) to
L(Pk) = L(Sk) ∩ L(R), where R is a random non-singular integer matrix of dimension n. The modified GGH

scheme, informally, is the following:

∙ KeyGen
2
(n). Take a “good” basis Sk = (D × Idn) + ([−μ, μ]n×n) of dimension n; compute the HNF basis Pk

of L(Sk) ∩ L(R), where R is a random integral matrix of dimension n with a perfect HNF with a determi-

nant co-prime to Sk; provide Pk as the public key, and keep Sk as the secret key.

∙ Encrypt
2
(Pk,m). Use Pk to encrypt a message m encoded in a small vector by adding a random vector v

of L(Pk); output c = m + v.
∙ Decrypt

2
(Sk, c). Use Sk to decrypt a message the same way as in a classical GGH, separatingm from v by

solving the corresponding BDD instance and thus recovering m.
The secret key in our experiments used a diagonal coefficient D = √n and a low noise of random values

in μ = 1, and our security analysis will be based on those parameters. However, we do not see a problem

in taking noise within μ = 4 as in the original GGH proposal [27] or as it was the case when Micciancio

applied the use of a HNF [50]. Following the work in [27, 50], we can also choose our messages such that

‖m‖
2
≤ 1

2

min ‖s∗i ‖2, where s
∗
i is the i-th vector of the orthogonalized basis obtained from the secret key using

the Gram–Schmidt orthogonalization process, or simply encode it as a vector in [1 − μ, μ − 1]n. However, the
message space we actually use in this paper will be different as we resort to a padding technique to attempt

to reach IND-CCA security. The decryption works as v ∈ L(Pk) ⊂ L(Sk), thus separating m from v as before.
We will discuss security concerns related to this scheme in the next section (and the appendix), especially

why det(R) has to be co-prime to Sk and has to have a perfect HNF. In particular, we will show that structural

attacks are no longer effective when R is sufficiently large. Then L(Pk) no longer admits a diagonally domi-

nant basis D + R; therefore, the BDDγ key recovery attack on (d, 0, . . . , 0), (0, d, 0, . . . , 0), . . . (0, . . . , 0, d)
is no longer applicable. Nevertheless, the ratio between the size of the messages we can decrypt and the size

of the public key will decrease. We will explicitly express the factor later. The question is now whether we

solve the problem with the previous third point “it is hard to recover the secret key from the public key” in

our modified scheme.

3.2 Modified attack on the intersected GGH key

As stated earlier, the structural key recovery attack using BDDγ on (d, 0, . . . , 0), (0, d, 0, . . . , 0), . . . ,
(0, . . . , 0, d) in L(Pk) does not work since L(d × Id + R) ̸= L(Pk), but L(d × Id + R) = L(Sk) ⊂ L(Pk). Adapt-
ing this attack toL(Pk) requires findingL(Sk) inL(Pk), and then using the structural key recovery attack.We

assume the existence of a function ∆ which finds the “optimal” overlatticeL(Sk) givenL(Pk) (the overlattice
that admits a diagonal basis; experimental data suggests it is indeed the “weakest” overlattice; see the next

section).

To the best of our knowledge, the difficulty of recoveringL(Sk) inL(Pk) ismostly dependent on the values

of det(Pk) and det(Sk). The efficiency of the modified attack is dependent on the efficiency of the overlattice

recovery function ∆.

In this case, we will consider Pk and R to have a perfect HNF and Sk to be able to be reduced to a perfect

HNF as we believe it offers the best security assumptions. As a bonus, it also allows a fair comparison with

random matrices as randomly selected matrices from an increasingly big random determinant tend to have

a perfect HNF [29]. Experimental results also suggest that most lattices are “equivalent” to a lattice admitting

a perfect HNF, whose easily computable “equivalency” relation might cover most of co-cyclic lattices (see

Appendix A.2) and allow us to use Gama’s work on their structural worst-case to average-case reduction [23].

We state the following theorem, which partly solve the problem of requiring perfect HNFs for intersections.
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Input: the public key Pk of full rank n, the diagonal coefficient d, a BDDγ solver ϕ, an “optimal” overlattice ∆

Output: the secret key Sk
// find L = L(Sk) among all integer overlattices of L(Pk)
L← ∆(L(Pk));
Sk← d × Idn;
// loop on every position of the diagonal

foreach {i ∈ [1, . . . , n]} do
// find the difference r between (0, . . . , di , . . . , 0) and L

r ← ϕ(L, Sk[i]);
Sk[i] ← Sk[i] + r;

end
return Sk

Algorithm 2:Modified diagonal dominant key recovery attack.

Theorem 2. Let A and B be perfect HNF bases of latticesL(A) andL(B) of full rank n, where det(A), det(B) are
co-prime. Let C be the HNF basis of L(A) ∩ L(B). Then det(C) = det(A)det(B); C has perfect HNF, and

Ci,1 =
{
{
{

Ai,1 mod det(A),
Bi,1 mod det(B)

for all i ∈ [2, n].

Example 2. A, B have perfect HNF, and L = L(A) ∩ L(B).

A =
[[[[

[

17 0 0 0

12 1 0 0

5 0 1 0

1 0 0 1

]]]]

]

, B =
[[[[

[

3 0 0 0

1 1 0 0

2 0 1 0

2 0 0 1

]]]]

]

; therefore, HNF(L) =
[[[[

[

51 0 0 0

46 2 0 0

23 1 1 0

35 0 0 1

]]]]

]

.

The proof of this theorem can be found in Appendix A.1. If we intersect two lattices whose HNF bases are

not perfect or whose determinant are not co-prime, the result will not be perfect, and common factors might

appear (see Appendix A.1).

In our case, considering C = Pk, A = Sk and B = R, we have to avoid L(Sk) to be easily recovered. The-
orem 2 is also interesting for an attacker as it reveals one of the main issues of our approach, which we

discuss in the next subsection. Let ω(M) be the number of prime factors counted without multiplicity in the

decomposition of det(M). Then

det(C) =
ω(A)
∏
i=1

pi , det(B) =
ω(B)
∏
i=0

qi , det(C) = (
ω(A)
∏
i=1

pi)(
ω(B)
∏
i=1

qi), (3.1)

which means ω(C) = ω(A) + ω(B) and very easily leads to the following property.

Property 1. Let C be a perfect HNF square matrix of dimension n. The couples (L(A),L(B)), where A and B
are perfect HNFs of the same dimension with det(A) and det(B) co-prime such that L(C) = L(A) ∩ L(B) and
det(A)det(B) = det(C), correspond exactly to the couples (a > 0, b > 0), where a and b are co-primes such

that ab = det(C); there are exactly 2ω(C) possibilities.
Each possible solution (L(A),L(B)) corresponds exactly to (det(A), det(B)).

Therefore, recoveringL(A) fromL(C), i.e., the complexity of the overlattice distinguisher ∆, is assumed to be

at least polynomially equivalent to distinguishing pi from qi in equation (3.1). As we work in post-quantum
cryptography, we assume that the factorization problem can be solved in polynomial time [70]. As we explain

later, we will purposely choose keys with very smooth determinants, which make factorization easy even in

the non-quantum case.

As ω(C) is lower-bounded by ω(A) and has no upper bound limit (as we have complete control over

det(B)), one might first think that the number of combinations to search is 2

ω(C)
. However, if we assume an
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oracle that knowswhat type of lattice to search for, then it is unsafe to assume the attacker has no knowledge

of ω(A). We then assume an attacker has possession of exactly ω(A) and ω(B); the number of combinations¹

he has to try is then (ω(C)ω(A)) = (
ω(C)
ω(B)). In practice, the attacker will probably only have an approximation, which

increases the number of combinations by quite a lot and is a much bigger number depending on how precise

the approximation is, but for simplicity, we assume he has the exact value.

Hence, if ω(C) is small or if ω(A) or ω(B) is too small relative to the number of possibilities, it might be

too easy to recover L(A), which would nullify the point of our modification. In practice, if we let the scheme

untouched as it is, then ω(A) will most often be very low, as illustrated by the following theorem.

Theorem 3 (Erdős–Kac theorem [18]). Let ρ(n) be the number of prime factors of the integer n. Then the prob-
ability distribution of ρ(n)−log log n

√log log n
is the standard normal distribution.

Experimental data on low dimensions suggest that ω(Pk) is indeed too low to ensure a reasonable number

of combinations. To deal with that problem, we first optimistically assume that, without the knowledge of

det(Sk), an attacker will have no choice rather than trying every possible combination stated by Property 1.

Our proposed solution to this apparent weakness is to ensure the number of combinations is sufficiently large

to make sure it is not feasible to recover L(Sk). Therefore, our target public key should have the form

Pk =
[[[[[

[

det(Pk) 0 . . . 0

Pk[2, 1]
.

.

. Idn−1
Pk[n, 1]

]]]]]

]

, det(Pk) =
ω(Pk)
∏
i=1

pi for all i ̸= j, gcd(pi , pj) = 1,

where ω(Sk) + ω(R) = ω(Pk) is large enough to allow a large number of combinations. To achieve this, we

must generate Sk and R such that HNF(Sk) and R have the same form as Pk (Theorem 2) while controlling

ω(Sk) and ω(R).

3.3 Countermeasure by controlling ω(Sk), ω(R) on key generation

From the last subsection, two properties must arise from our keys if we want our modification to be effective:

one is the perfectness of our HNF basis; the other the smoothness of our keys’ determinants.

First of all, we begin by showing the generation algorithm of the random matrix R. We first choose the

determinant det(R) we want to obtain, and create

R =
[[[[[

[

det(R) 0 . . . 0

R[2, 1]
.

.

. Idn−1
R[n, 1]

]]]]]

]

such that R[i, 1] are random integer values in [0, det(R) − 1] for all i ∈ [2, n].
With the knowledgeof how togenerateR, one simpleway tomaximizeω(Pk), and thus thenumber of pos-

sibilities, is to increaseω(R) until we reach the number of required combinationswithout caring aboutω(Sk).
However, this is not wise; we mentioned before that the ratio of message size over size of the public key is

lower in ourmodifiedGGH than in the original GGH.As, in both schemes,weuse the sameprivate key, the size

of themessagemwe decrypt remains unchanged. Let Pk
org

be the public key of the original GGH scheme (i.e.,

HNF(Sk)). Note that Size(Pk) ≈ Size(HNF(Sk)) + Size(R) = Size(Pk
org
) + Size(R) ≈ Size(Pk

org
) + n log(det(R)).

Let c be the factor determining the ratio decrease. Then we have

c ≈
Size(Pk

org
)

Size(Pk
org
) + n log(det(R))

=
Size(HNF(Sk))

Size(HNF(Sk)) + n log(det(R))
.

1 We note that the notation Cnr is often used instead of (
n
r). They both mean “n choose r” and equal n!

r!(n−r)!
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Therefore, compared to the original GGH, the size increase of the public key is solely determined by det(R).
Thus, for the benefit of key size, we choose to have ω(R) < ω(Sk). We will discuss later what this implies at

the end of this subsection.

We know have to generate Sk. It is a bit harder to obtain a perfect HNF of a diagonal dominant matrix

with a chosen determinant det(Sk). Our targeted end result is

HNF(Sk) =
[[[[[

[

det(Sk) 0 . . . 0

HNF(Sk)[2, 1]
.

.

. Idn−1
HNF(Sk)[n, 1]

]]]]]

]

such that HNF(Sk)[i, 1] are integer values in [0, det(Sk) − 1] for all i ∈ [2, n] and det(Sk) = ∏ω(Sk)
i=1 pi and

gcd(pi , pj) = 1 for all i ̸= j.
In the following,wewill illustrate and then explain theway to achieve this. LetDd be adiagonal dominant

matrix of dimension n − 1 with diagonal coefficient d whose HNF is perfect, and let c be a column of n − 1
entries within [−μ, μ], where μ is also the bound of the noise of Dd. We concatenate c on the left of Dd and

compute the HNF of the result to obtain

D󸀠d = HNF(
[[

[

c Dd
]]

]

) =
[[[[[

[

a b 0 . . . 0

.

.

.

.

.

. Idn−2

]]]]]

]

.

If a = D󸀠d[1, 1] and b = D
󸀠
d[1, 2] are not co-prime,we retrywith adifferent column c until those two values

are co-primes. Once they are co-prime, we compute u, v such that |ua − bv| = det(Sk), ensuring det(Sk) is
co-prime with either a or b (for simplicity, we assume b is co-prime with u; the algorithm in Appendix A.3

provides a more general form), such that

2d × det(Dd) > det(Sk) > d × det(Dd), det(Sk) ∤ det(Dd). (3.2)

We create a line l of n entries with l[1] = v and l[2] = u, reduce l with Babai’s nearest plane algorithm

and concatenate the result l󸀠 to c and Dd as shown below to obtain Sk as we wanted, which is still a diagonal

dominant matrix relatively close of parameters d and μ and possess a perfect Hermite normal form.

l = [v, u, 0, . . . , 0], l󸀠 = NearestPlane(l, [c|Dd]), Sk =
[[[[

[

l󸀠[1] l󸀠[2] . . . l󸀠[n]

c Dd

]]]]

]

.

The Hermite normal form of Sk is perfect since

HNF(Sk) = HNF(
[[[[

[

l󸀠[1] l󸀠[2] . . . l󸀠[n]

c Dd

]]]]

]

) = HNF((

(

[[[[[[[[

[

v u 0 . . . 0

a b 0 . . . 0

.

.

.

.

.

. Idn−2

]]]]]]]]

]

))

)

,

and because we ensured a and b co-prime, |ua − bv| = det(Sk) and u and b co-primes,

HNF(Sk) =
[[[[[

[

det(Sk) 0 . . . 0

.

.

. Idn−1

]]]]]

]

.
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Now that we know how to create Sk and R with chosen determinants, we must decide how to choose

det(Sk) and det(R) to obtain secure values of ω(Sk) and ω(Pk). This is how we suggest to do it and use in

most experimentations.We first generate Dd as we see fit (the samematrix usedwhen generating Sk), andwe

fix a prime we call a “scaling factor” that must be prime to det(Dd), then enumerate all primes from a certain

point (at least strictly greater than the “scaling factor”) and choose to pick them randomly until their product

is bigger than Dd (and prime to det(Dd)). We denote that set of primes Sp. We then take as much factors of Sp
as we see fit to construct det(R), keep the rest and multiply the remaining product by a power of the scaling

factor to respect the bound given by equation (3.2). Suppose that the scaling factor is given away for free; the

number of combinations an attacker has to search is indeed ( |Sp |ω(R)). Note that, given Sp, themaximumnumber

of combinations is achievable if ω(R) = |Sp |
2

.

Overall, the generation of keys is done in polynomial time; the computations of the HNF and Babai’s

nearest plane algorithm are the most time consuming operations, and they both run in polynomial time. To

study the complexity and how this can be generated in practice, we refer the readers to Appendix A.3.

We present in this table theminimum ratioω(R)/ω(Pk) required to go over some 2

λ
combinations in total

using the algorithm we just described, and to ensure ωR < ω Sk, we use a scaling factor of 2, enumerating

and choosing all primes from 3 until the product Sp is bigger than det(Dd)d, assuming a diagonal coefficient

of d = √n, where n is the dimension, and getting an average determinant of nn/2 for Sk. When Sp is not

sufficiently large, then we put the symbol “—”.

λ 300 400 500 600 700 800

80 34/87 24/115 21/142 19/168 18/195 17/222
100 — 37/115 29/142 26/168 24/195 23/222
120 — — 42/142 35/168 32/195 29/222
140 — — — 48/168 41/195 37/222
160 — — — 69/168 53/195 47/222

However, if we start enumerating from 2741, which is the 400th prime, and then its successive primes,

we have the following table.

λ 200 300 400 500 600 700 800

80 — — — 28/96 23/119 21/141 19/164
100 — — — — 35/119 30/141 27/164
120 — — — — — 42/141 36/164
140 — — — — — — 49/164
160 — — — — — — —

We put a blank entry at λ = 160 for dimension n = 800, but we are actually very close with

log
2
((

164

82

)) > 159.99.

If we want to enforce ω(R) < ω(Sk) while using the same algorithm, we only need to increase d to a big-

ger value, increasing det(Sk) and thus ω(Pk). The next table shows the minimum amount of primes to put

in Sp, which means the minimum value of ω(Pk) (+1 if we count the scaling factor) to achieve a number of

combinations strictly superior to 2

λ
.

λ 80 100 120 140 160 180 200 220 240
ω(Pk) 84 104 124 144 165 185 205 225 245
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As a “rule of thumb”, to achieve a number of combinations of 2

λ
, we require |Sp| = ω(Pk) + 1 > λ + 4 for

λ ∈ [1, 250].We can deduce that, in practice, the number of combinationswill always be as high aswe need it

to be, either by increasing the diagonal coefficient d of our secret key Sk or by adding factors to R. Therefore,
security concerns do not lie in the number of combinations (L(Sk),L(R)) any longer.

3.4 Key size comparisons and perfect HNFs

First of all, we would like to stress that this comparison only aims to show that our obfuscation technique

applied to GGH is not impractical as far as storage is concerned. LWE-based cryptosystems usually rely on

stronger security assumptions than our proposal, and other cryptosystems, like NTRU, have been studied

for a much longer time; the lack of literature on lattice intersections does not let us claim the same level of

confidence in security assumptions. Here we compare in Table 1 our public key sizes to the public key sizes

(in bits) presented in Lindner and Peikert’s work for LWE-based encryption [42] and the key sizes we obtain

with intersections (in average). We only compare with the size of their keys per user, and not their full key

which is already much bigger. Note that, unlike q-ary lattices, the values of the determinant are not set at

the key generation, but usually do not stray away from each other by too much bits. To compute the key size

of a perfect HNF, one just has to look at the number of bits of the determinant and multiply it by the lattice

dimension. For dimension n, we use√n as the diagonal coefficient and [−1, 1] as the noise interval.
Aswe see, their partial public key is only smaller than our full public keys for higher dimensions. Further-

more, the technique used in their scheme is a very clever way to delegate part of the key to a trusted source

or to the user that is an instance from an abstract system presented by Micciancio [51], while our scheme

has mostly kept the basic setup from the GGH cryptosystem [27]. It might be possible that, in the future,

such techniques become available for classical random lattices (and most of them admitting a perfect HNF),

leading to better key sizes per user for higher dimensions.

Dimension q Public key size per user

128 2053 1.8×105

192 4093 2.9×105

256 4093 4.0×105

320 4093 4.9×105

n

s 125 150 175 200 225 250

20 6.1×104 8.8×104 1.2×105 1.6×105 2.1×105 2.6×105

40 6.5×104 9.4×104 1.3×105 1.7×105 2.2×105 2.7×105

60 7.7×104 1.0×105 1.4×105 1.8×105 2.3×105 2.8×105

80 — — 1.6×105 2.0×105 2.4×105 2.9×105

100 — — — 2.2×105 2.6×105 3.1×105

n

s 275 300 325 350 375 400

20 3.2×105 3.9×105 4.6×105 5.3×105 6.2×105 7.1×105

40 3.3×105 4.0×105 4.7×105 5.5×105 6.3×105 7.3×105

60 3.4×105 4.1×105 4.9×105 5.6×105 6.5×105 7.5×105

80 3.6×105 4.3×105 5.0×105 5.8×105 6.7×105 7.6×105

100 3.8×105 4.4×105 5.2×105 6.0×105 6.9×105 7.8×105

Table 1: LWE key sizes from Lindner and Peikert on top, key sizes from perfect HNFs and intersections at the bottom
(n = dimension, s = log2 (

ω(Pk)
ω(Sk)))
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Perfect Hermite normal forms also allow us to improve the encryption scheme. Instead of sending a vec-

tor c = m + v, where v ∈ L is random, we can choose v such as v = (c
1
, 0, . . . , 0), i.e., only a single integer of

size det(L) in averagewill be sent. This is done by reducing themessagem by a Gaussian eliminationwith the

rows of the public key, where they all have 1 in their diagonal. Furthermore, the security is not affected. Since

the transformation will give the same result as m for any m󸀠 = m + v󸀠 with any v󸀠 ∈ L, breaking this transfor-
mation will break all schemes which use BDDγ as a security assumption. The decryption is left unchanged

since the only difference is that c = m + v󸀠, where v󸀠 ∈ L is not random anymore. This is actually convenient

from a practical point of view, where encryption can be reduced to n additions and n − 1 multiplications (by

relatively low integers on one side and big ones on the other side)modulo the determinant; this is comparable

to a modular knapsack. Lindner and Peikert also presented in their paper their different ciphertext size for

messages of 128 bits. The smallest ciphertext size they presented was for n = 128 and q = 2053, and it has
the same size of our average determinant size (hence, in our case, ciphertext size) for a lattice of dimension

n = 475 and combinations security s = 100.
Generating public keys, however, is slow as it involves computing Hermite normal forms. On the other

hand, Gaussian sampling, which is required for a lot of LWE-based cryptosystems, was also far from fast

and memory efficient and led to alternatives like LWR [9] or uniform distribution [45]. Weiden et al. reported

that Gaussian sampling takes 50% on the running time of their implementation of Lyubashevsky’s signa-

ture scheme [46], and Dwarakanath and Galbraith [17] reported that Peikert’s sampler can take up to 12MB

for some parameters [61]. Nevertheless, the research is still very active on that matter and has seen various

improvements [12, 16, 17]mostly targeted at lattice-based cryptography thanks to the popularity of thatmat-

ter in the community but not to a point where sampling is both very fast and memory efficient. On the other

hand, research to compute Hermite normal forms nowadays is mostly done for randommatrices [60, 63] and

not targeted at structured matrices, especially ones that arise in cryptography. A rebound of interest towards

Hermite normal forms in the community might lead to similar improvements in the future.

4 Security
The security assumptions rely on three important points.

∙ Assumption 1: recovering the “optimal” integer overlattice is hard. (∆ is polynomial on the number of

combinations.)

∙ Assumption 2: the underlying BDDγ problem is hard (on our specific keys).

∙ Assumption 3: the underlying modular knapsack problem is hard (on our specific keys and messages).

Like every cryptosystem, even when based on a hard problem, what we use are specific instances of a hard

problem, which might not be as hard as the original problem. Therefore, we discuss in the following the

special structure which arise from our scheme. Note that, because the main idea is to change the public key

without changing the secret key while keeping the encryption/decryption process unchanged, the message

space is left unchanged alongwith the BDDγ problem from the previous iteration fromMicciancio [50], except

the lattice has a slightly bigger determinant.

Furthermore, our first assumption is actually very pessimistic. Micciancio’s scheme has not been broken

asymptotically, and up to this day, basis reduction techniques are still not well enough understood to pre-

dict, given a HNF, how easy it would be to reduce the corresponding lattice. It is therefore possible that, in

the future, further theoretical studies will allow us to strongly reinforce our first assumption. Our particular

structure (perfect HNF) also allows to convert our instance of the BDDγ problem to an instance of a single

general modular knapsack problem with very smooth moduli; therefore, our third assumption is that our

instances of modular knapsack with smooth determinant are hard, which can be seen as a multiple modular

knapsack with co-prime moduli.
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4.1 Smoothness of determinant

To discuss the problem of the smoothness of the determinant, we assume the existence of a polynomial time

solving oracle which can determine if a combination of primes lattice is correct and output a weak basis out

of it if yes. We also assume that the attacker does not have an algorithm that permits to eliminate prime over-

lattices one by one until only factors of Sk remain, or something easy to decipher, which would lead to an

easier solution than searching through every possibility, which we think is reasonable as our experimenta-

tions could not distinguish any overlattice from random lattices. If there was such an algorithm, then this

might apply to any random lattice and lowers the overall security of lattice problems. However, it is possible

that the problem is much easier depending on the kind of secret keys we actually use and what we intersect

it with.

The only attacks based on overlattices according to the best of our knowledge were one from Becker,

Gama and Joux [22] and one from Gama et al. [23]; even then, the way their overlattices are generated is very

different and does not search for integer overlattices specifically. Aside from the overlattices consideration,

there is also no attack to the best of our knowledge that makes use of a smooth determinant on random

lattices, and other popular schemes such as NTRU [31] and Ring-LWE [49] also rely on lattices with smooth

determinants (q-ary lattices have naturally smooth determinants, but their factorization differ).

Under all of those assumptions, the total security provided by our enhancement is either solving the

problemdirectly on thepublic key, finding the right combinationmultipliedby the timeof running adetection

oracle (find which integer overlattice is weak), or working in a properly chosen non-integer overlattice of

a large enough volume. The latter possibility, which could seem the most efficient, is in our opinion not-

effective; to the best of our knowledge, our systemdoes not hold a particular weakness towards this approach

compared to anyother random lattice as our public key seems tohold the same structure as far as our heuristic

experimentations onHKZ-reduced bases are concerned (see the next subsection) Assuming the “weak integer

overlattice” detection oracle runs in polynomial time (for simplification, we will consider it constant, but in

practice, we do not know how to even create a practical one; the latter security is bounded by ( ω(Pk)
⌈ω(Pk)/2⌉),

which, as we discussed in the previous section, is not a problem in high dimensions as ω(Pk) grow big, as,

in our tests, we never reach that bound (Figure 2)).

We stress that finding the shortest vector for a small prime overlattice does not help solving the problem

in the ring product in general. It is, in fact, still a research problem to be able to compare two numbers given

their decompositions over a ring product without computing them back as it is the main issue with residue

number systems (RNS for cryptography is an old and still active research topic [6–8, 25]). This is even more

problematic when comparing vectors.

4.2 Perfectness of basis and primality between factors

Due to Goldstein and Mayer [29], taking a perfect Hermite normal form matrix with a random prime deter-

minant can be considered as taking a random lattice. As we are intersecting a lot of lattices of this type, with

different prime determinants which result in a perfect HNF, we are comparing our results with other perfect

HNF bases with the same determinant and random entries. Since our experimental results show that 80% of

the bases generated with coefficients from bounded entries admits a perfect HNF or are equivalent to one by

permutation of columns (see Appendix A.2), we believe the comparison to be fair.

This is further reinforced due to recent works from Nguyen and Shparlinski [57], used shortly after by

Gama et al. [23] tomake their generalizedworst-case to average-case reductionwhich allows us to use amuch

more general lattice form and is therefore very different from those q-ary lattices first introduced by Ajtai [1].
In practice, Chen andNguyen’swork [14] onDarmstadt’s lattice challenges lead us to think it is easier to solve

problems (find short vectors) in a q-ary lattice than in a random lattice of large volume; therefore, in terms of

basis recovery attacks, the perfect Hermite normal form could be actually more desirable.

On top of that, there is no currently known algorithm to our knowledge that will provide efficient secret

keys with an imperfect HNF on purpose (one that cannot be converted to a perfect HNF; see Appendix A.2),
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where the imperfect coefficients do not leak information on the first element of the diagonal (they very often

have common divisors for example). We also keep in mind that if L(M) is a lattice that admits a diagonal

dominant basis, then so do L(σ(M)), where σ is a column permutation, retaining the exact same values,

measuring basis quality in every criteria known (see Appendix A.2).

Furthermore, given a finite set of prime factors on the diagonal, the perfect form gives the hardest chal-

lenge as it is harder to guess a large number of factors in a single position rather than a small fixed amount

in multiple positions (given the same total amount of primes), provided we could make sure it could not be

transformed into a perfect HNF by permutation (if having a perfect HNF becomes a weakness).

Having factors prime to each other not only ensures an easier perfect HNF, but also avoids giving infor-

mation beneficial to the attacker (see Appendix A.1). As stated before, having a perfect HNF is also desirable

when managing keys.

4.3 Shortest vector and basis structure

We present the result of experimentations for intersecting diagonal dominant type matrices with a random

one with a perfect HNF form below. We chose 3 as our scaling factor, allowing our perturbation matrix to

have a measurable determinant as a power of 2. To determine the impact of R over Pk’s resistance against

enumeration and classical lattice reduction techniques compared to random lattices [69], we also observe the

distribution of coefficients using SVP on small dimension (40), comparing them to the random case (every

time with the exact same determinant and dimension). It seems like, after reaching a size of 32 bits, there

is almost no difference between Pk or random lattices of the same determinant (Figure 1). As the difference

tends to decrease very rapidly, we scale the graphs to the extrema.

(a) det(R) = 1 (b) det(R) = 28

(c) det(R) = 216 (d) det(R) = 232

Figure 1: Distribution of the shortest vector’s coefficients.
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However, the obfuscation of L(Sk)’s structure is not exclusive to L(Sk)’ shortest vectors. We show with

the following tests that the obfuscation works on the whole HKZ-reduced basis of L(Pk). In that regard, we

compare condition numbers (CN)with themaximumnorm. The test is done in dimensions 30, 40 and 50with

over 20 matrices per dimension and 20 witnesses per new determinant, the diagonal dominant type having

noise in [−1, 1] with the diagonal being ⌈√dim⌉. We only choose matrices with a perfect form. Every matrix

computed has been HKZ-reduced.

First, with dimension 30, det(Sk) has on average 79 bits.

det(R) 1 24 28 212 216 220 224 228 232

Avg CN (inter) 55.33 158.48 199.38 234.25 260.06 263.49 262.40 268.40 263.10
Avg CN (rdm) 269.41 273.39 272.88 273.99 273.74 267.13 267.31 271.71 272.65

With dimension 40, det(Sk) has on average 113 bits.

det(R) 1 24 28 212 216 220 224 228 232

Avg CN (inter) 69.52 304.18 400.67 529.02 620.70 691.42 709.63 748.11 769.18
Avg CN (rdm) 755.89 760.90 805.09 755.15 789.46 786.06 770.28 760.09 786.72

With dimension 50, det(Sk) has on average 151 bits.

det(R) 1 24 28 212 216 220

Avg CN (inter) 78.98 524.19 636.06 837.49 1087.47 1426.19
Avg CN (rdm) 2038.68 1976.51 1993.44 1952.17 1944.57 2021.48

det(R) 224 228 232 236 240 244

Avg CN (inter) 1616.31 1682.42 1795.90 1830.14 1870.03 1871.08
Avg CN (rdm) 2074.12 1991.93 1964.16 1979.45 2000.98 1998.67

According to our experimental results, there is little influence on increasing the size of the perturbation

over 32 bits aswe get very close to the same condition number as a randomHKZ-reducedmatrixwith the same

determinant. This reflects the resultswehavewhenmeasuring thedistributionof shortest vectors’ coefficients

values. This means that obtaining a good basis of the public key will allow to decrypt nearly as well as with

a good basis of a random matrix, being very sensitive to noise. Therefore, the only factor to consider is the

number of primes, and as we grow larger in dimension, we will obviously take much bigger primes, ending

up in a noise with a determinant size of over 32 bits. We can then take small primes to minimize the lattice

gap (as we will measure below).

What we need to consider is the possibility to distinguish the different overlattices very easily (which

would nullify our improvement of GGH), or the possibility to know if, by intersecting different overlattices,

we could determine if we are getting closer to the right combination or not. Therefore, we compare condi-

tion numbers of Sk’s and R’s overlattices, the intersection of Sk’s and R’s overlattices separately or mixed

together (with all matrices being HKZ-reduced) to HKZ-reduced bases of random lattices of the same respec-

tive determinant for every test. The result is that the overlattices themselves seem to be indistinguishable

from random cases. Since removing several factors of Sk randomly does seem tomake the problem harder (in

the sense that the resulting lattice looks more random than keeping all factors), this observation should also

hold for non-integer overlattices. For now, it does not seem that an attack on a random overlattice would be

more effective.
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4.4 Message recovery attacks

We nowmeasure the influence of R on Pk against message recovery attacks, and wewill use the lattice gap in

that regard. We assume the attack used is the popular heuristic transformation from CVP to SVP by attacking

an extended basis B. What we need then is closely enough approximate values of λ
1
(B) and λ

2
(B). In that

regard, we consider λ
1
(B) the size of our message m. With maximum decryption capacity, we have

‖mS−1k ‖∞ ≤ ‖m‖∞‖S
−1
k ‖∞ ≤

1

2

.

As we take the best value possible,

‖m‖∞ =
1

2‖S−1k ‖∞
, λ

1
(B) = ‖m‖

2
≈
√n

2‖S−1k ‖∞
,

and we assume λ
2
(B) ≈ √ n

2πe Det(Pk)
1/n

with the Gaussian heuristic. It is the best approximation we can use

as we do not know the length of the shortest vector in the public key². Therefore, the lattice gap is

δ(Pk, Sk) = (Det(Pk)
1/n × 2‖Sk−1‖∞
√2πe

).

It is a bit different thanmost schemes as our public key does not represent the same lattice as our private key.

The first remark we dowhen looking at the formula is that the gap increases as det(R) increases, whichmight

give us a good reason to carefully manage Size(det(R)) besides key size considerations.
Here, we present our experimental results for the simulations on computing the root lattice gap (with

primes starting from 3, scaling factor 2). From the earlier work of Gama and Nguyen [24], the problem is

solvable as soonas the lattice gap is lower thana fraction of theHermite factor.Weobserve the evolution of the

lattice gap for different numbers of combinations over increasing dimensions, and it appears that increasing

the number of combinations has a lower impact as we increase dimensions; thus a high value for det(R) is
not a problem as dimensions increase.

As the constants mentioned in Gama and Nguyen’s work [24] depend on the algorithm used and the

lattice structure, we scale the curve with factors 0.50 and 0.20. We can observe that, under the pessimistic

assumption of a constant of 0.20 (which is not the worst since [24] mentions a factor of 0.18 for BKZ-20),

we do not reach the optimal factor of 1.005 (considered by many to be impossible to reach without proper

structure in dimension 500, see [24]) even past dimension n = 850.

(a) C = 1/2 (b) C = 1/5

Figure 2: Evolution of the root lattice gap from dimension 225 to 850.

2 We note that other competitive approximations for random lattices [37, 73] do exist, but, as those results are relatively recent,

they seem to be widely ignored by the cryptography community; thus we use more “popular” analysis tools for now.
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4.5 IND-CCA security and message space

Suppose the private key has been generated by a diagonal coefficient D and a noise bound μ for a full-rank

lattice of dimension; a first suggestion would be to usemessages in the space [−M,M]n, whereM = D−μ
2

. This

allowsus to decrypt anumber of bitswhichwouldbe amultiple of the lattice dimension.However, the scheme

does not achieve IND-CCA security that way, and it is advised to sacrifice the number of bits and restrict the

message space to achieve IND-CCA security.

To achieve IND-CCA security, one can set the ciphertext to encrypt only a single bit with a technique sim-

ilar to the one proposed in Regev’s first LWE-based public-key encryption scheme [67], where the decryption

is a test whether an integer is closer to 0 or to a certain bound, which, from a lattice-based point of view, just

consists of set bounds for a normondeciphered vectorsm (originalmessages); for all deciphered plaintextsm
and ‖m‖ ∈ ]a, b[, where a > 0 and b is within our decryption capacity, if ‖m‖ > a+b

2

, then return the bit 1 as

the message, or 0 otherwise.

4.5.1 Using padding techniques

Alternatively, we can also use techniques which are already used for number theoretical schemes. Suppose

our message is composed of bits; then we can apply padding techniques such as OAEP [10] to make the

schememore secure (and its further improvements such as [71]), or more general ones such as REACT [58] or

the Fujisaki–Okamoto transformation [21]. Those techniques work assuming the one-wayness of our initial

problem as it is done with NTRU. This seems to be the most straightforward method to achieve IND-CCA

security in the random oracle model, and we will briefly present the Fujisaki–Okamoto transformation as it

was recently suggested by Peikert for his suggestion of lattice-based cryptography for the internet [62].

The Fujisaki–Okamoto transformation [21] is to transform the encryption of the message m to

E
hy

pk

[m, c] = Easy
pk

[c, H(c, EsyG(c)[m])] ‖ E
sy

G(c)[m],

where

∙ E
asy

pk

[m, c] is the asymmetric encryption of the indicatedmessagem using the indicated coins c as random
bits and the public key pk,

∙ E
sy

sk

[m] is the symmetric encryption of the indicated message m using the private key sk,

∙ σ is a random string chosen from an appropriate domain,

∙ G, H are hash functions, where G(σ), H(σ) are the hashes of σ by G, H, respectively.
We need to choose a symmetric encryption scheme to apply this transformation, and depending on the sym-

metric scheme chosen, onemight be interested to look at the earlier, simpler andmore specializedproposition

first given in [20]. The same can be said for the choices of the hash functions, and such considerations are

also important if using OAEP or REACT (which, on the other hand, do not require an additional symmetric

scheme and seem computationally less complex).

NTRU, on the other hand, uses padding schemes such as NAEP [33, 34] that are specific to NTRU due to

its usage of polynomials and cannot be applied to other lattice schemes. We stress that a precise choice of

a padding scheme is not trivial, as earlier choices for NTRU have been proven insecure, due to the particular

nature of NTRU rather than the padding itself [32, 56].

REACT is also a good candidate for padding, due to its efficiency. The encryption of the message m is

transformed to

E
pk
(m; R, r) = Easy

pk

(R; r) ‖ G(R) ⊕ m ‖ H(m, R, Easy
pk

(R; r), G(R) ⊕ m),

where

∙ E
asy

pk

(m, c) is the asymmetric encryption of themessagem using the coins c as randombits and the public

key pk,

∙ R is a random element from the message space,

∙ r is a random element from the random coin space,

∙ G, H are hash functions.
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Here both encryption and decryption only require two more hashings compared to the original scheme and

do not require an additional symmetric encryption scheme unlike the Fujisaki–Okamoto transformation.

Since we have to use a padding scheme for real life applications and padding schemes are mostly made

for binary written messages (XOR operations are almost always involved), we define our message space as

[−b, b]n−k, where b = ⌊log
2
( D−μ

2

)⌋ − 1 (that way, each cell can be XOR-ed with any binary string and remain

in the decryption space), D being the diagonal coefficient and μ the noise bound of the secret key, n the lattice
dimension and 0 ≤ k ≤ n the number of dimensionswe sacrifice in themessage space to add the padding and

extra surjections (to make the original scheme pre-padding surjective and not bijective, especially, to assign

a space for random coins). Values for D, μ are suggested in the next section.

5 Discussions

5.1 Parameter choices

To achieve a reasonably improved security (from lattice reduction techniques) without drastically increas-

ing the key size, we suggest to use a matrix of dimension at least 400, with a diagonal coefficient of 20 and

a noise bound of 1. Suppose we sacrifice half of the dimension for padding; this yields 4 bits per remain-

ing dimension, which will be 800 bits. We suggest using any random family of primes whose total products

slightly exceed the size of the determinant of the secret key, and furthermore, whenever possible, we should

avoid very small primes to avoid any information potentially recovered by the scaling factor (even if unreal-

istic). The increase in key size will depend on the size of the random matrix we use to hide the secret lattice

(as shown in Section 2). Moreover, taking too big primes will reduce the number of combinations, hence low-

ering the security in terms of discovering the secret lattice. We then recommend using primes between 541

(the 100th prime) and 2741 (the 400th prime); those are arbitrary choices but offer enough combinations

for whatever matrix of such dimension, or even much higher, would need from what we see in the previous

tables, and the size of the noise generated is, in our opinion, enough to protect against basis recovery attacks.

The scaling factor can be as small as 2. Depending on the security level required (for various applications,

as mentioned by NIST [54]), we can let λ > 64, 80, 96, 128 as far as the number of combinations 2

λ
is con-

cerned. We note that intersecting a small random lattice is already improving the security; therefore, even if

we do not reach the same average as randommatrices, the public key is still more secure.

Intersecting lattices is a technique that can be used with any kind of lattice. This technique may give rise

to other useful applications, which remain unknown.

5.2 Alternate secret keys

Our approach is not only limited to a diagonal dominant matrix. As any message generated using Pk is

equal to a message generated using HNF(Sk), any decryption process using HNF(Sk) as a secret key remains

unchanged. The main problem in our opinion is always how to hide the overlattice L(Sk). As an exam-

ple, using tensor products as secret keys [19] would leave a slightly different issue in hiding det(Sk). Other
improvements on GGH type cryptosystems could be compatible with ours as we leave the decryption and

message space unchanged; therefore, security improvements may become cumulative (a case-by-case study

and adaptationmight be necessary). An example of such a possible cumulative improvement to study can be

found in [68].

Additionally, our approach is not limited to a perfect HNF either. A lot of properties do indeed arise when

intersecting lattices which determinants are not co-prime which could lead to security issues when not kept

in mind, as information on the factorization of det(Sk) is leaked (see Appendix A.1). However, if we carefully
generate non-perfect HNFmatrices on purpose from intersections it might be possible to ensure a reasonable

security without increasing the key size too much.
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Another idea is to useweaker secret keys. In our experiments, we randomized the occurrence of the noise

values in [−1, 1]. However, seeing how intersections allow us to hide the secret basis’ structure, we canmake

it so in a line vector of the secret key (or even in both lines and columns) the number of times a non-zero value

is used is limited. For example, what if we set 1 to appear α times and −1 to appear β times, which will leave

χ zeroes, where χ = n − 1 − (α + β)? If we allow a big χ, this will lead to a bigger decryption capacity. We do

not know if such a prefixed setting would create visible weaknesses in the result of the intersection, or the

overlattices, and how much impact it will have on the root lattice gap.

Another type of weaker secret key is using ideal lattices. Ideal lattices are a powerful tool to compress

keys and to enable fully homomorphic encryption [26]. The research development in ideal lattices has been

very popular in the last years; hence we are providing some remarks on the intersection of ideal lattices.

The advantage of ideal lattices is allowing a stable multiplication and offering very compressed keys. Some

interesting properties arise when intersecting ideal lattices (see Appendices A.1 and A.2), but, to the best

of our knowledge, there is no method to control the determinant of an ideal lattice, which is how we make

intersections secure in our paper. The possibility of reinforcing the security of ideal lattice based schemes

with intersections also remains an open question.

A Appendix

A.1 Arithmetic of HNF basis from intersections

In this section, we present all the proofs and technical details concerning intersections of HNF. We do not

focus on the perfect case, as it is just seen as a particular case, but it allows to understand how an intersection

of lattices can break the perfectness of a HNF and what phenomenons appear when randomly intersecting

lattices successively.

We will start with a few definitions. We consider line vectors with Mi being the i-th line vector and Mi,j
being the coefficient in the i-th line and j-th column in thematrixM, andwedenoteL(M) the lattice generated
by M. If v is a vector, we denote vi its i-th coefficient.

Definition 14. We denote Sm(M, (i, j)) the square submatrix of M of size (j − i + 1)2 extracted from the h-th
lines and columns i ≤ h ≤ j with 1 ≤ i ≤ j ≤ n. We denote Sm(M, (1, i)) = Sm(M, i) the square submatrix with

only the first i lines and columns.

Definition 15. LetL(A) be a full-rank lattice with A in HNF. We denoteLi(A) the sublattice ofL(A) such that
Li(A) is trivially isomorphic to L(Sm(A, i)), i.e., Li(A) is generated by the first i vectors of A.

Definition 16. Avector v is a “standard” vector if it is also a vector of the Idmatrix basis (i.e., 1 in oneposition,

0 in all the others) and “p-standard” if it is a vector of a p × Idmatrix, andwe say it is the i-th p-standardwhen
the non-zero entry is at the i-th position.

Definition 17. For a triangular matrix M of dimension n and i ≤ n, we denote

dg(M, i) =
i
∏
1

Mi,i = det(Sm(M, i)) and Diag(M, i) = {Mj,j , 1 ≤ j ≤ i}

Definition 18. LetM be the basis of an integer latticeL of dimension n in HNF form. Then we define by Φ(L)
the number of non-1 values in the diagonal ofM (which is also the number of non-standard columns). As the

HNF form is unique, we canwrite Φ(B) = Φ(L) for any basis B ofL. We sayM is of pseudo-perfect formwhen

Φ(M) = 1 and of perfect form if Sm(M, n − 1) = Idn−1.

Definition 19. We say a lattice is prime if it is an integer lattice whose determinant is the power of a prime

number and it is pseudo-perfect.
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Property 2. Suppose L(C) = L(A) ∩ L(B), all lattices are of dimension n > i, and A, B, C in HNF; then every

vector Ci is uniquely determined by Sm(A, i) and Sm(B, i) and C
1,1
= lcm(A

1,1
, B

1,1
). In particular,

L(Sm(C, i)) = L(Sm(A, i)) ∩ L(Sm(B, i)).

Therefore, modifying Sm(A, (i + 1, n)) and Sm(B, (i + 1, n)) has no influence on Sm(C, i).

Proof. IfM is in HNF, the HNF basis ofLi(M) is the first i lines ofM. Apply this directly toL(C) = L(A) ∩ L(B)
to obtain the above property.

Property 3. Let A be the HNF basis of a full-rank lattice of dimension n ≥ i ≥ 1, and denote g = dg(A, i). The
i-th g-standard vector always belongs to L(A).

Proof. We know that, for any vector v ∈ Li(A), we have Ai,i | vi.
Let us put α ← g

Ai,i
and v󸀠 ← αAi. Note that α is divisible by every coefficient in Diag(A, i − 1). Then v󸀠

has g as its head coefficient, and all of its other coefficients are multiples of α.
Let us eliminate v󸀠i+1 by subtraction. First set α ←

α
Ai+1,i+1

; then v󸀠 ← v󸀠 − αAi+1. We note that all coeffi-

cients of v󸀠 are still multiples of α. Rinse and repeat for coefficients (v󸀠i+2, . . . , v
󸀠
n) until the end result is v󸀠 = v,

i.e., v ∈ L(A).

Property 4. Suppose A, B, C are in HNF. If L(C) = L(A) ∩ L(B), then

lcm(Ai,i , Bi,i) | Ci,i | lcm(dg(A, i), dg(B, i)).

Proof. Using Property 2, it is sufficient to work on Li(C), and we know that Ci = αAi + a󸀠 = βBi + b󸀠 with
a󸀠 ∈ Li−1(A) and b󸀠 ∈ Li−1(B), for some α, β ∈ ℤ. Therefore, Ci,i = αAi,i = βBi,i, hence the left part of the

expression.

For the right part, just apply the reasoning of the previous property to the i-th g-standard vector with

g = lcm(dg(A, i), dg(B, i)) and find it belongs to L(A) ∩ L(B).

We note that those bounds are reached in practice and are therefore tight. What we will be showing next is

how the head coefficients are actually affected by the big non-standard column of the HNF.

Property 5. Suppose A and B are perfect-form HNF bases of lattices L(A) and L(B) of full rank n, with
a = det(A) = A

1,1
and b = det(B) = B

1,1
. ThenL(C) = L(A) ∩ L(B) admits a perfect HNF basis C if and only if

for all i, there exists k
1
< b, k

2
< a such that A

1,i + k1a ≡ B1,i + k2b mod lcm(a, b) = C
1,1

.

If the condition is respected, then

C
1,i = A1,i + k1a = B1,i + k2b mod C

1,1
.

Proof. If the condition is respected for a certain i, then there exists a common vector in both L(A) and L(B)
that have 1 in its i-th position, A

1,i + k1a = A1,i + k2b in its first position, and 0 everywhere else. Therefore,
it must be representable by the basis C, and since Ci,i | vi,i for all i, perfect form or not, thus enforces Ci,i = 1.

Now suppose the condition is not respected for a certain i such that Sm(C, i − 1) already has perfect form.

Since Sm(C, i − 1) has perfect form, then every coefficient that is neither the first nor the i-th one is reduced
to 0 by definition of the HNF. If Ci,i was equal to 1, then A being perfect would mean C

1,i ≡ A1,i (mod a)
since Ci,i ∈ L(A) and the same reasoning for B. That would respect the condition, which is contradictory;

hence Ci,i ̸= 1.

Property 6. Let A, B be two perfect HNF bases of lattices such that det(A) = det(B) = p is a prime number.

Then either det(C) = det(A ∩B) = p2 and Φ(C) = 2 with two p-standard vectors, or A = B.

Proof. If A = B, then it is obvious. Otherwise, Property 5 tells us it is not possible to have a perfect HNF. Using
the same reasoning, the first i such that A

1,i ̸= B1,i will have Ci as the i-th p-standard vector, as Property 4

leaves us only p as a diagonal coefficient. Since Sm(C, i − 1) is a perfect HNF, the only solution for Ci to be
a vector of L(A) ∩ L(B) is to have Ci = pAi − A1,iA1

= pBi − B1,iB1, i.e., the i-th p-standard vector; since p is
prime, there is no lower integer that would make this work.
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Now that we have to prove that Sm(C, (i, n)) is a perfect formmatrix. For that, inℤp, we just have to prove
that,

for all j ∈ ]i, n], there exists x, y ∈ ℤp such that xAi + Aj = yBi + Bj ,

which is always true in our case as it corresponds to finding a solution (x, y) to yBi,1 + Bj,1 = xAi,1 + Aj,1 and

yBi,i + Bj,i = xAi,i + Aj,i.

Theorem 2 is a direct consequence of Property 5 (and to a lesser extent of Property 6). Applying the same rea-

soning onmore than two columns, if we carefully choose i < n lattices all with the same prime determinant p,
then it is possible to make the intersection of those i lattices contain i p-standard vectors in their HNF basis.
For i = n, the HNF of their intersection can be the orthogonal matrix p × Idn. Generally, the more lattices of

determinant d (prime or not) we get, the closer we get to d × Idn.
It is actually possible to list all possibilities leading to the result of a prime collision, as we show in this

example where p “moves” to the second column (i.e., a
2,1
̸= b

2,1
):

L([[

[

p 0 0

a
2,1

1 0

a
3,1

0 1

]]

]

) ∩ L([[

[

p 0 0

b
2,1

1 0

b
3,1

0 1

]]

]

) = L([[

[

p 0 0

0 p 0

c
3,1

c
3,2

1

]]

]

) ,

which leads to c
3,1
≡ c

3,2
b
2,1
+ b

3,1
≡ c

3,2
a
2,1
+ a

3,1
mod p.

And supposing we have higher dimension n > 3, then, for all i ∈ [3, n],

ci,1 ≡ ci,2b2,1 + bi,1 ≡ ci,2a2,1 + ai,1 mod p.

Hence, a prime collision has lots of easily computable solutions, and anybody having to solve this can choose

the solution he sees fit (just choose a
2,1

and b
2,1

, p(p − 1) possibilities). For the general case (“collision”
at column j), just change 2 by j and 3 by j + 1. The generalization can go even further with determinants

det(A) = px and det(B) = py with x = y. When x ̸= y, the result is still predictable but requires a little more

work.

Property 7. The following statements hold.

∙ If a lattice is prime, every possible decomposition into an intersection of prime latticesmust include itself.

∙ If a lattice has prime determinant, it has no integer overlattice (except itself).

∙ For any integer latticewith diagonal coefficients primewith each other (in its HNF form), there is a unique

decomposition into an intersection of prime lattices with determinants that are prime with each other.

(every condition is important as it becomes false otherwise)

The three properties, directly deduced from the previous ones, are important to understand the recovery of

overlattices. To obtain a prime lattice decomposition, you just have to use the Chinese remainder theorem on

every prime factor.

Property 8. Suppose L(C) = L(A) ∩ L(B), and A, B, C are integer matrices. Then we can recover A, B from C
with only the knowledge of Diag(A, n) or Diag(B, n) in polynomial time on det(C) and n.

Proof. The decomposition into prime lattices allow us to choose which prime lattices are part of A or B.
Obtaining the decomposition into prime lattices is done in polynomial time with the Chinese remainder

theorem, and then knowledge of the diagonal coefficients allow us to recover exactly A and B.

Note that if gcd(Diag(A, n), Diag(B, n)) = 1, then the solution is unique.
This recovery assumes the knowledge about the positions of diagonal coefficients.We do not need to con-

sider the case when both determinants are co-prime; however, it can become tricky when determinants are

not co-prime and positions are unknown. In that case, we will have to use the results from Property 6. Sup-

posedly, 80% of random lattices with randomly chosen bounded entries have perfect HNF or are equivalent

to one by permutation, and we do want to be as close as possible to the random case (see Appendix A.2); the

bigger the primes are, the more likely a random matrix of the same determinant is going to have an perfect

form [29].
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Furthermore, having an imperfect HNFmeans we have certain coefficients on the diagonal which poten-

tially reveals some information about the secret key (whether by their value or by their position), and thus

having transforming into a perfect HNF allows us to hide that information. Therefore, even if we do not obtain

an equivalent perfect HNF for a basis M, minimizing Φ(M) is still useful.
Properties 4 and 5 ensure that if a lattice has perfect HNF, then prime lattices from its decomposition all

have perfect HNF. In fact, Property 4 makes it unwise to use non-perfect HNF as secret keys (at least with-

out prior study), as the information would be leaked instantly and cannot be hidden with intersections or

permutations as we explain in the next subsection.

Another basis type to consider, besides diagonal dominant matrices for the secret key, are ideal lattices.

Definition 20. Let Rf = ℤ[X]/⟨f⟩ be a ring of polynomials over integers, where f is a monic polynomial of

degree n, and consider the map Φf : X(i−1) → vi, where vi is the i-th standard vector of ℤn, and Xi
is the

monomial of degree i overRf .We can thendefine anon-trivial ring structure over a particular set of sublattices

ofℤn bymapping Rf toℤn via Φ. Suppose we take an ideal of Rf , namely, Rf (p) = ⟨p⟩with p ∈ Rf . We denote

L(p, f) the lattice Im
Φf (Rf (p)).

For any lattice L, if there exists p, f such that L = L(p, f), we say L is an ideal lattice.

Since we have an isomorphism of rings betweenL(p, f) and Rf (p), working on one or the other is equivalent.
In the literature, we usually see f = Xn − 1 or f = Xn + 1.

Property 9. L(lcm(p, q) mod f, f) ⊆ L(p, f) ∩ L(q, f).

Proof. Let r = lcm(p, q) mod f . Hence r ∈ ⟨p⟩ and r ∈ ⟨q⟩; therefore, Φf (r) ∈ L(p, f) and Φf (r) ∈ L(q, f); thus
L(r, f) ⊆ L(p, f) ∩ L(q, f).

The equality happens quite often in experimentations. Intersecting two ideal lattices with two different quo-

tients bring results which are, in general, unknown to the best of our knowledge.

Property 10. LetL
1
,L

2
be two integer latticeswith co-primedeterminants and admitting a basiswith perfect

HNF. Then L
1
∩ L

2
is an ideal lattice if and only if L

1
and L

2
are.

Proof. Recall the perfect HNF of an ideal lattice, which only uses one root and a determinant (one visual rep-

resentation can be seen in [65, p. 4]). If the HNF of bothL
1
andL

2
respects the root exponentiation structure

of ideal lattices, the same goes forL
1
∩ L

2
as Theorem 2 shows. If not, then the root exponentiation structure

in the intersection is not respected either, while being a perfect HNF.

The intersection of an ideal lattice and a random lattice is therefore not an ideal lattice.

A.2 Permutations and perfectness

There is a way to greatly increase the chance to obtain a perfect HNF basis, and it comes with a column

permutation. The advantage of using permutations is to be able to obtain perfect HNFs without changing the

norms or the orthogonality of any basis. If one needs a perfect HNF, it also drastically increases the chance

to get a secret key with perfect HNF rather than discarding it and generating a new one. It is also used to hide

various structures, but this is not the main point here.

We note that Tourloupis [74] had a way to select matrices with a perfect HNF with a 99% chance of

success; however, our aim is different here as we are trying to transform a secret key into another one rather

than discarding it completely.

Property 11. If M is a diagonal dominant matrix, then L(σ(M)) for σ ∈ Sn still admits a diagonal dominant

basis with the same parameters as far as noise bound and diagonal value are concerned.

This is trivial to see if we just permute the lines of the permuted columns on M.
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Property 12. LetM be an integer matrix which admits a perfect HNF. Then if a permutation σ ∈ Sn leaves the
first column untouched, HNF(σ(M)) still has perfect form.

What happens is just a permutation of the coefficients in the first column. It allows us to reorder themasmuch

as we see fit, whichmight lead one day to interesting properties on any type of lattice. More noteworthy is the

following property.

Theorem 4. Let A be an integer matrix. If there exists σ󸀠 ∈ Sn such thatHNF(σ󸀠(A)) has perfect form, then there
exists a column swap σ = (1 i) ∈ Sn with i ∈ [1, n] such that HNF(σ(A)) has perfect form.

Proof. Suppose there is such a permutation σ󸀠. Then we denote σ󸀠(A) = A󸀠 with HNF(A󸀠) being perfect. Now,
σ󸀠 can be decomposed to X ∘ σ, where σ = (1 i), i ∈ [1, n], and X leaves the first column untouched. Also,

X−1 leaves the first column untouched, and therefore X−1(σ󸀠(A)) = σ(A) also has perfect form.

This reduces the number of combinations to obtain perfect HNFs from n! to 1. The single permutation (1 n) is
sufficient to check since if (1 i) transformsM into a basisM󸀠 of an equivalent latticeL(M󸀠) admitting a perfect

HNF basis, then (i n) transformsM󸀠 intoM󸀠󸀠 still admitting a perfect HNF. However, for hiding a certain type

of basis, any element σ ∈ Sn can be used as a part of the secret key.
Also, we can easily identify some automatic failure cases, which allows us to avoid computations of HNFs

in guaranteed case of failure.

Property 13. The following statements hold.

∙ Let A, B, C denote three lattices such that A = B ∩ C. Then σ(A) = σ(B) ∩ σ(C) for any column permuta-

tion σ ∈ Sn.
∙ Let L be an imperfect lattice, and let us take any decomposition into prime lattices (as it might not be

unique). Then L is equivalent by permutation to a perfect lattice if and only if there exists σ ∈ Sn such
that every integer overlattice in that decomposition is made perfect by σ, and they all respect towards

each other Property 5.

∙ Let M be an integer matrix in HNF which is not perfect. Let i < n be the biggest integer such that

Sm(M, (i, n)) has perfect form. Then HNF(σ(M)) for every σ = (1 a), a ∈ [1, i − 1] does not have perfect
form.

The following test is madewith randommatrices with coefficients that vary between −7 and 7.We then trans-

form them into HNF and exclude every matrix which already has a perfect HNF, only keeping the imperfect

ones to try conversion on. This is a test with 1000matrices non-perfect HNFmatrices on various dimensions.

Dimension 50 80 100 120 150 180 200 300
Success rate 0.756 0.726 0.741 0.748 0.744 0.749 0.728 0.737

Counting the ones that have already a perfect HNF, we believe the probability of a random matrix with

bounded entries to have a perfect HNF or being equivalent to one by column permutation raises to be over

80% (up from at most 40%without permutation [68]). This is actually incredibly close to the 85% presence

of co-cyclic lattices among all lattices counted by Nguyen and Shparlinski [57] and used by Gama et al. [23]

for their average-case to worst-case proof for most randomly chosen lattices.

The following property gives us an important case of non-convertible non-perfect HNFs.

Property 14. Denote by A, B matrices in perfect Hermite normal form. Let C be the Hermite normal form

basis of the lattice L(A) ∩ LB. If C does not have a perfect form (i.e., A and B do not respect Properties 5

and 6 relative to each other), then Φ(σ(C)) > 1 for any σ ∈ Sn.

This is noticeable by looking at the prime decomposition and looking at the prime collision. The colliding

primes will never intersect into amatching lattice, and despite the high success rate of permutations in trans-

forming anon-perfect lattice innon-perfect form, nopermutation (acting on the twomatrices simultaneously)

would change that.



192 | A. Sipasseuth, T. Plantard and W. Susilo, Enhancing GGH’s scheme with intersecting lattices

Property 15. LetM be a perfect HNF basis of an ideal lattice. In general, with σ ∈ Sn,L(σ(M)) is not an ideal
lattice.

This is because permuting columns change the root exponentiation structure present in the perfect HNF of

an ideal lattice basis. This could prove useful to hide ideal lattices structure, but we do not knowwhether the

inverse permutation is easily recoverable or not.

A.3 Generation algorithm and complexity

To make the following easier to read, we introduce the following functions.

∙ HNF(M): given a matrix M, returns its Hermite normal form,

∙ IsCoprime(a, b): returns true if a, b are co-prime, false otherwise,

∙ Prod(S): given a set S, returns the product of all elements of S,
∙ Det(M): returns the determinant of M,

∙ M
1
catM

2
: given M

1
,M

2
, concatenates them into a new matrix,

∙ Babai(M, v): applies Babai’s nearest plane algorithm to v with the latticeL(M). IfM is HKZ-reduced, it is

incredibly effective, especially, with a diagonal dominant lattice.

The parameters are a family of primes Sp, a scaling factor f , a security parameter λ for the number of combi-

nations, a dimension, and parameters (D, b) for generating the diagonal dominantmatrix. Of course, we have

to check beforehand that Sp is large enough to meet 2

λ
combinations but not too big to have a high chance to

respect equation (3.2).

Note that, following Theorem 2, computing the HNF basis of the intersection of two full rank n lattices
L
1
,L

2
with perfectHNFbasis of co-primedeterminants d

1
and d

2
has only complexityO(n log(d

1
d
2
)) in time

and inmemory, as it is nothingmore than using the Chinese remainder theorem to reconstruct n integers. We

believe this is faster inpractice than computingDual(Dual(L
1
) ∪ Dual(L

2
)) to obtainL

1
∩ L

2
in ourparticular

case.

The complexity is mostly the computation of the HNF and Babai’s nearest plane algorithm; the rest are

manipulations of integers that are linear in the dimension and polynomial in the determinant (GCD compu-

tations,multiplications). UsingMicciancio andWarinschi’s algorithm for obtaining HNF [52], the complexity

is O(n4 polylog(M, n)) arithmetical operations, which can be improved in practice using later works like [63],

and Babai’s nearest plane algorithm is also polynomial [4]. Trying to get a perfect HNF can appear to be costly

in the while loop, but, in experimentations, we have in average only one retry when using permutations.

This goes in line with the probability of having two random numbers being co-prime which is

6

π2 ≈ 61%
(first solved by Euler in 1735; see [30, Theorem332, p. 269 in the 4th edition] for proof) and our experimental

results with obtaining a perfect HNF from permutations with over 80% (0.8 × 0.6 = 0.48). The probability is
slightly higher if we use the concatenated column c as a permutable column, and we might even gain more

in efficiency by reinitializing the permutable column c instead of Sk−, even though it does not change the

overall complexity much. Another way to heuristically improve speed at the cost of memory in the genera-

tion of Pk

c
is to save the transformation matrix T such that T × Sk− = HNF(Sk−), and using the first of row

of T, one can quickly find c such that (Tc)[1] is prime to det(Sk−). In that case, the extra computation due to

Pk

∗[1][1], Pk∗[1][2] not being co-prime becomes negligible.

Nowwe have to explain why this algorithmworks and outputs the correct result. The first part is the part

of the algorithm which has a note above “ensuring the end result is in perfect form”. This is to ensure that

the small square we complete with Bézout coefficients can be reduced in perfect form. If those two columns

are not co-prime with det(Sk), then the final result cannot be reduced to a perfect form (as reducing is using

linear combinations); therefore, we choose a column we will ensure to be co-prime with det(Sk), and this

guarantees the result.

The second part is to explain why the end result is still a diagonal dominant matrix (at least with over-

whelming probability). Suppose we have not used any permutation (if we used one, the result is the same

according to a property in the previous section), and for simplicity, we denote Pk

c[1][2] = |det(Sk−)| = a,
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Input: Sp, min(Sp) > f > 1, λ, n > 1, (D, b)
Output: Sk, Pk
NbPrimes← 0;

while 2λ > ( |Sp |
NbPrimes

) do
NbPrimes← NbPrimes + 1;

end
Pk

∗ = [2, 2];
while IsCoprime(Pk∗[1][1], Pk∗[1][2]) do

Sk− ← DDmatrix Sk− of dimension n − 1 with diagonal coefficient D and noise b;
Sk

c ← Sk− cat (c, a column of n − 1 values bounded by b);
// new column position is 1

Pk

c = HNF(Sk∗);
// use permutations to raise chance of perfect HNF on Sm(Pkc , (2, n))
if Pkc amputated of its first column is not a perfect HNF then

continue;

end
end
find coefficients u, v such that uPkc[1][2] + vPkc[1][1] = 1;
// ensuring the end result is in perfect form

if IsCoprime(f, Pkc[1][1]) then
Id← 1

else
Id← 2

end
DR ← 1; DSk ← 1;

// choosing det(R)
foreach {p ∈ Sp, p|Pkc[1][Id]} do

remove p from Sp; NbPrimes← NbPrimes − 1; DR ← DRp;
end
while NbPrimes > 0 do

Remove p randomly from Sp;
DR ← DRp;
NbPrimes← NbPrimes − 1;

end
// choosing det(Sk)
DSk ← Prod(Sp);
// using the scaling factor f to respect equation (3.2)

while DSk < DDet(Sk−) do
DSk ← DSk f ;

end
Y ← line of n zeroes; Y[1] ← uDSk ; Y[2] ← −vDSk ;

Pk← HNF(Pkc cat Y) ∩ (random perfect HNF of determinant DR);
Sk← Sk

c
cat Babai(Skc , Y);

return Pk, Sk

Algorithm 3: Generating new GGH keys using diagonal dominant matrices.
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Pk

c[1][1] = b. Subtracting a vector from the other ones does not change the determinant. Let us reduce l by
the vectors of Sk

c
(with Babai’s nearest plane algorithm, which is the final step of the algorithm to compute

Sk), and denote that reduced vector l󸀠. Because Sk− is diagonal dominant with diagonal coefficient d, reduc-
ing the line l with Sk

c
will reduce all its coefficients except the first to integers below d; therefore, l󸀠[2] < d.

We denote Pk

l󸀠
the square matrix (l󸀠 cat Pkc). We know det(Pkl

󸀠
) = det(Pk). Now we look at the computation

of det(Pkl
󸀠
) developing over the first row l󸀠 and naturally obtain det(Pk) = l󸀠[1]a − l󸀠[2]b. Since a and det(Pk)

are positive, l󸀠[2] and b have the same sign if and only if l󸀠[1] is positive. Now, because of equation (3.2),

da < l󸀠[1]a − l󸀠[2]b < 2da; therefore, d < l󸀠[1] − l󸀠[2]b
a < 2d, and since |b| < a with overwhelming probabil-

ity (the opposite has never occurred in experimentations) and |l󸀠[2]| < d, this forces l󸀠[1] to be positive and
reasonably close to [d, 2d]. In practice, it seems closer to 2d than d.
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