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Abstract: RC4 has attracted many cryptologists due to its simple structure. In [9], Paterson, Poettering and
Schuldt reported the results of a large scale computation of RC4 biases. Among the biases reported by them,
we try to theoretically analyze a few which show very interesting visual patterns. We first study the bias which
relates the key stream byte z; with i — k[0], where k[O] is the first byte of the secret key. We then present
a generalization of the Roos bias. In 1995, Roos observed the bias of initial bytes S[i] of the permutation
after KSA towards f; = Z';:l r+ ZLO K{[r]. Here we study the probability of S[i] equaling f, = Z’,’zl r+ Z)r;o K[r]
for i # y. Our generalization provides a complete correlation between z; and i - f,,. We also analyze the key-
keystream relation z; = f;_1 which was studied by Maitra and Paul [6] in FSE 2008. We provide more accurate
formulas for the probability of both z; = i — f; and z; = f;_; for different i’s than the existing works.
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1 Introduction

RC4 is a stream cipher which has been widely used worldwide and has become one of the most popular
ciphers in the world for the last 25 years. RC4 is a very simple cipher and can be implemented only in a few
lines of code. This cipher was designed by Ron Rivest in 1987. Its first application was in Data security. It was
also used in RSA Lotus Notes. Though RC4 was a trade secret in the beginning, in 1994 it was published. The
first adoption of this cipher was done by the network protocol TLS. Later it has been used in WEP in 1997 [18],
SSLin 1995, WPA in 2003 [19], etc.

At first, we describe the design of RC4 briefly. It has two components. The first component is the key
scheduling algorithm (KSA) and the other one the pseudo-random generation algorithm (PRGA). Here, all
the operations are done modulo 256. The KSA takes an identity permutation S of O to 255. By using an
£-byte secret key, it scrambles the identity permutation over Zy, and derives another permutation. After the
completion of KSA, PRGA generates a pseudo-random sequence of keystream bytes, using the scrambled per-
mutation of KSA for zq, z5, . . .. After each iteration from O to 255, an output z; is produced. These are bitwise
XOR-ed with the plaintext to produce the ciphertext. Both for the KSA and the PRGA, two indices i and j are
used in the permutation. In both of these, a swap between S[i] and S[j] takes place.
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KSA.
N = 256;
Initialization:
Fori=0,...,N-1
Sli] =1
j=0;
Scrambling:
Fori=0,...,N-1
Jj =@+ Slil + K[iD);
Swap(S[i], S[j]).

PRGA.
Initialization:
i=j=0;
Keystream Generation Loop:
i=i+1;
j=Jj+Slil;
Swap(Sli], S[j1)s
t = S[i] + S[jl;
Output z = S[t].

We use SKSA, iKSA and jXSA to denote the permutation and the two indices after the r-th round of RC4 KSA.
Hence S%SA is the permutation after the complete key scheduling. By S;, i,, j» we denote the permutation and
the two indices after the r-th round of RC4 PRGA. So SESA = So. We use I, to denote the indicator function.

So
1 fora=hb,
Ia,b =

0 fora#+b.

Also, by the notation f, we denote the expression M + Z)r/:o K[r] (0 <y < N - 1), which plays a vital
role in most of the proposed attacks on RC4.

For having such a simple design, many cryptologists have been attracted to this cipher. Throughout the
last 25 years, multiple weaknesses of RC4 have been found. One of the most remarkable attacks was presented
by Fluhrer, Mantin and Shamir [2] in 2001. This attack was based on the weaknesses in the key schedul-
ing algorithm. In 1995, Roos [12] observed that after the KSA, the most likely value of SK**[y] for the first
few values of y is given by SX°A[y] = f,. The experimentally found values of the probabilities P(SK>A[y] = f,)
decrease from 0.37 to 0.006 as y increases from O to 47. Later, the theoretical proof of this was given by
Paul and Maitra in SAC 2007 [11]. Recently, Sarkar and Venkateswarlu [13] improved the analysis of [11].
Paul and Maitra [11] also discussed a reconstruction algorithm to find the key from the final permutation Sy
after KSA using Roos biases. Klein [5] observed correlations between keystreams and key using Roos biases.
In FSE 2008, Maitra and Paul [6] showed that not only the permutation bytes SIIf,SA [y], but also the bytes
SKSATSKSA[y1], SKSA[SKSA[SKSA[y]]], etc. are biased towards f,. Then in SAC 2010, Sepehrdad, Vaudenay and
Vuagnoux [15] showed some biases on the state variables, initial keystream bytes and secret key of RC4. They
also gave a key recovery attack on RC4 in WPA. In Eurocrypt 2011, Sepehrdad, Vaudenay and Vuagnoux [16]
presented an attack on WEP by using all the previous known attacks in the literature and by introducing a few
new correlations.

In USENIX 2013, AlFardan, Bernstein, Paterson, Poettering and Schuldt [1] used a Bayesian statistical
method that recovers plaintexts in a broadcast attack model, i.e., plaintexts that are repeatedly encrypted
with different keys under RC4. AlFardan et al. successfully used their idea to attack the cryptographic pro-
tocol TLS by exploiting biases in RC4 keystreams. In FSE 2014, Paterson, Schuldt and Poettering [10] and
Sengupta, Maitra, Meier, Paul and Sarkar [14] exploited independently keystream and key correlations to
recover plaintext in WPA since the first three bytes of the RC4 key in WPA are public. In Asiacrypt 2014,
Paterson, Poettering and Schuldt [9] improved the attack of [10]. They performed large-scale computations
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using the Amazon EC2 cloud computing infrastructure to obtain accurate estimates of the single-byte and
double-byte distributions.

The recent attacks on RC4-based protocols have led to the consensus that RC4 is insecure and should
be phased out. For an example, Vanhoef and Piessens [17] presented an attack on TLS and WPA using
RC4 (USENIX 2015). Also, Jha, Banik, Isobe and Ohigashi [4] presented some works on joint distribution of
keystream biases. These works show that RC4 is still an active area of research.

Our contribution and the organisation of the paper. (i) In Asiacrypt 2014, Paterson et al. [9] showed a sig-
nificant negative bias of z; towards i — K[0] (see [9, Figure 2]). But so far there was no theoretical justifi-
cation behind this. In Section 2, for the first time we give a theoretical justification for this bias.

(ii) In 1995, Roos [12] observed the relation between S}@SA[I'] and f;. This observation was later justified
in [11]. We generalize the Roos bias in Section 3 and study the relation between S}@SA[i] and f), fori #y.

(iii) In Section 3, our generalized Roos bias gives complete distribution of z; and i - f, for y # i. We observe
a significant negative bias between z; and i - f;, for a small positive integer ¢.

(iv) Klein discovered the correlation between z; and i - f; for 1 < i < N — 1. Maitra and Paul [6] proved these
biases theoretically in FSE 2008. Using our general result of Theorem 3.7, we revisit this problem. In
Table 1, we compare our result to the previous one. Our analysis gives much closer values to the experi-
mental values.

(v) In FSE 2008, Maitra and Paul [6] also studied the biases between z; and f;_ fori=1and3 <i<N-1.
In Section 4, we analyze the bias of z; towards f;_; . In Table 3, we present the comparative study between
our result and [6]. In this case also, our analysis gives a much better approximation to the experimental
values than the work [6].

2 Negative bias of z; towards i — K[0]

Let us start with the following lemma.
Lemma 2.1. After KSA, P(S\>*[i] = K[0]) = (1 - )NV1D fori > 1.

Proof. If SKSA[jXSA] = K[0], after the swap, S&or [i¥5A] = K[0]. Now

i+1

1
KSA [ :KSA _1
P U] = KIOD) =

i+1
sincej<°M is random. Also SK°A[i] will be K[0] only if the jA’s cannot touch i again, i.e., ifall j*, . . . , jX* are
different from i, then SX>*[i] will be K[0]. The probability of jo, K&, | jKSA 2 1is (1 - L)W-1-D, Therefore,
mﬁ%m_KmD_M1 PV fori > 1. O

Now we have the following result.
Lemma 2.2. In PRGA, fori>1,

i-1 1r111

P(Siali) = K(OD = pi(1- )+ 1 (1- )llelmeNr(l——) sz(i;:l>’

where p; = §(1 - £)N-170,

Proof. We find the probability of this event by breaking it into mutually disjoint events and finding their

probabilities separately.

o Event 1: After the completion of KSA, K[0] is in the i-th location of the array (whose probability is p; from
Lemma 2.1), and this position is not touched by ji, . . ., ji_1. The probability of this event is p;(1 — %)"‘1.

« Event 2: After the completion of KSA, K[0] is in some [-th location of the array (wWhose probability is p;),
where 1 < I <i- 1. This position is not touched by ji, ..., ji_1. Then j; = i. After that, j;.1,...,ji-1 # 1.
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Since [ can vary from 1 to i — 1, the total probability of the above path is
i-1 :
1 1,\i-2
Yy(t-g) we
I=1
o Event 3: After the completion of KSA, K[0] is in [-th location of the array, where 1 < [ < i — 1. This position

isnottouched byji,...,ji-1.Thenj; = tforl+ 1 < t <i- 1. Afterthat, jj;1,...,j1 # t. Thenj; = i. Also
jts1, -+ -, Jjic1 # 1. The total probability of this path is

i1 -1 103
—(1-= .
22 wloy) »

Similarly, K[0O] can come to the i-th location with more than two jumps. If it comes through the (r + 1)-st
jump, the total probability will be

1 1 \ior-1 2121 il ipq i1 i-1 -1 i-1
W(l—ﬁ) Z Z Z Z p, = (1——) szl( Z Z Z 1)
Li=11L=L+1 13 L+1 L=l_1+1 =1 L=lL1+1 l3=lz+1 L=l_1+1

1 1\ir-1 &3 i-l-1
wlo) Ty

Thus adding the probabilities of these three disjoint events, we have
. 11 1 12 E Ea 1yt fiol-1
P(Sialil =KD =pif1-5)  +5(1-7) ELED) w(1-5) ;pl( L ) O
We can use this lemma to find the probability P(z; = i — K[0]). The following result gives a bias of z; towards
(i — K[0])).

Theorem 2.3. We have

1 1 1.1
PSo[1]=K[O)-~-(1-=)+(1-=+—)= fori=1,

P(z;i = i — K[O]) = N( Nz S N NZ)N
P(Si-a[i] = K(0)) - <1_N)N fori> 1.

Proof. First consideri > 1.
(i) Consider the event A : ((Si_1[i] # K[0]) N (S;_1[j;] = i — K[0])). So after the swap, S;[i] =i- K[O] and
Silji]l # K[0]. So z; = S;[S;[i] + Si[jil] # Si[i] = i - K[O].
(ii) Next consider the event B : ((Si_1[i] = K[0]) N (S;_1[j;] = i — K[0])). Then
zi = Si[Sili] + Siljill = Sili] = i - K[O].
(iii) Now consider the event C = (A U B). In this case, P(z; = i — K[0]) = %, considering a random association.
AlsoP(C) =1-P(AUB) =1-P(S;_1[ji] =i-K[0]) =1 - %
Thus,
P(z; =i-K[0]) = P(z; =i — K[0] | A)P(A) + P(z; =i — K[O] | B)P(B) + P(z; = i — K[0] | C)P(C)

=0~P(A)+1-P(B)+%-P(C)

= P(Siali] = K[O)) % +(1- %)%

Now fori = 1, we have j; = 1 when Sp[1] = 1. In this case, B is an impossible event. So for i = 1 we take
A : ((So[1] # K[0]) N (Solj1] = 1 - K[O]) n (K[O] # 1)),
B : ((Soli] = K[0]) N (Solj1] = 1 = K[0]) n (K[O] # 1)).
In this case, X L L 11
P(z1 = 1-K[0)) = P(So[1] = K[0) - - (1- 5 ) + (1- 5 + 73 ) - m
In Figure 1, we plot the theoretical as well as experimental values of P(z; = i — K[0]) with key length 16, where
the experiments have been run over 100 billion trials of RC4 PRGA with randomly generated keys.
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P(z; =i-K[0]) —

Figure 1: Distribution of P(z; = i — K[0]) for i € [1, 255].

3 Generalization of Roos bias and bias of z; =i - f,

A theoretical justification of the Roos bias has first appeared in [11]. Recently, the work of [11] has been
revisited in [13]. We need the following result of [13, Lemma 2].

Lemma 3.1. In KSA, the probability of P(S*A[i] = f;) can be given by

i+1

(1) (-0 ) TI0- )= repa- )1 1))

r=1
where

min{cN+0.5,i(i+1)/2}

neY ey | (e

buy o k) O o
=1 O(=5) - D(-5) N20.5
© 1 1 min{(c+1)N-0.5,i(i+1)/2}
X-|
D2 = Z — ' — J o —— )dx,
S (P -k O - =)
i p-1
Ty\x1
U= 1-=) —=(p-x),
p:Ox:O( N) N
i p-1 r-1 2
- 1yx1 5 1yx1
=Y | X(-y) §e-0-(2(-§) ge-0) |
p=0 = x=0 x=0
1,2
where ¢(x) = € \% is the density function of the standard normal distribution.
Also the following result is proved in [13, Theorem 2].
Lemma 3.2. We have
1 \N-1-i N-1 4 1 \N-1-t
KSArs1 _ £y _ prcKSA[:1 _ £, KSA[:1 _ f.
PSKAT = f) = PSSR = f) - (1- )+ (1- PSS [z]—ﬁ))-[glm(l—ﬁ) :

Now we find P(SKA[i] = f,) for0<i<N-1land1<y<N-1withi#y.
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Figure 2: Probability P(SESA[i] = fy) for0 < i, y < 50 with i # y. Here (a) are the theoretical values and (b) the experimental
results with a 16 byte key, and (c) are the experimental results with a 256 byte key.

Lemma 3.3. Fori + y withy > 1, we have

1 \N-i-1 1y, N2 1 \N-1-¢
KSA[j) = f ) = B ~PSSAy = f,) - = N PR
P(SKSALi] = £,) = (1 ) (PSS = £) N>(t§1N2 (1-%) )
Proof. We have two cases.

(i) Casel: Let S{°A[jXSA] = f,,. This happens with probability +. So after the swap, S}'[i] becomes f,. Also

i+1 i+1
Jom L ,]}f,SA # i. So the probability of this path is 4 (1 — #)N~"1. On the other hand, if S\°*[ji1] = fy
andie {jX5, ... jX5A}, then SKPA[i] will be always different from f,,.
(i) Casell:Ifi < yand Siff‘f[y] = fy, then SX*A[i] cannot be f, as the y-th location of the array S cannot move

to the left when the running index is greater than y. On the other hand, if i > y and S}3}[y] = fy, then

SKSATi] can be f, only through the first event. So we need S*5} # f,. Let us consider the scenario where

y+1
SFSA[t] = f, for some t > i. This holds with probability 4. Suppose that jiop = iand jior, . . ., j5>* are all

different from i. Hence after the swap we get Sﬁsi’*[ il = fy, and this location is not disturbed in further
rounds of KSA. This path holds with probability 5 - (1 - §)¥"17.

Thus ifi # y, then

P(SN il = fy) = %(1 _ l)N—i—l 14 1(1 _ (1 B 1>N+1) ”

N N N
N-1 o
+<1_P(S§f‘?[y]:fY)_%)<t=lZﬂ$’(1_%)N 1 t>. -

In Figure 2, we present both theoretical and experimental results for P(Sﬁf,SA [il = fy)for0 <i,y <50withi #y.
From the figure it is clear there are some anomalies when the length of the keys is 16. This is because there are
some f,,’s whose parities are the same when the key length is 16. We will discuss this issue for key-keystream
relations in Theorem 3.9.

Lemma 3.4. In PRGA,

PSialil fy)‘P(SKSAUl—fy(l‘—) Z =(1- ) (ZP(SKSA[I fy)(i;Sl))

forl<i<N-land1<y<N-1.
Proof. This is similar to the proof of Lemma 2.2. O

Now consider the following event C; for an occurrence of z; = i — f; fori > 1:

(i) SYAL=fi,

(i) jise.enjicr #1,

(iii) Si-1[jil # 1 - fi.

Since S;[i] + Silji] # fi + i- f, =1, we have P(z; =i-f;) = . The above path holds with the probability
= P(SPALi = f)(1 - &
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Now we prove the following theorems.

Theorem 3.5. We have

1 1 1 1 1
PSol1] = fy) 5 (1- )+ g+ (1- 5 + 33 —aaluy) fory #2,
Par=1-f)= 1 1 1 1 42 1
Pwdu=nyﬁ-0—ﬁ)+@—N+N5(N 3 PGol21 = )1 fory=2,

where a; = P(SNA[1] = f1)(1 - &
Proof. Here the events are
A:(Soll]#fynSoljil=1-fynfy+#0) and B:(Sol[l]=f,NSolj1]l=1-f,nfy #0).

OnecanseethatP(z; =1-f,|A)=0 and P(zi1=1-f,|B)=1.
Also if So[1] + So [So[l]] = 2 and So[2] = f>, then z; will always be different from 1 - f,. Also, we have
P(So[1] + So[So[1]] = 2) = N NZ as one path comes from Sp[1] = 1. Hence the required result follows. [

Similarly, we find the bias of z, towards 2 - f in the next theorem.

Theorem 3.6. We have

1 1 1 1
P(S1[2] =fy) s+ ar————Dy + (1 -—- azlz,y)— fory <2,
- _ N N-1 N N
P(ZZ—Z_fy)— 1 1 1
P(51[2 fy +ﬁ m+(1—ﬁ—a— )N fory>2,

where

:P6§A91=hxl—%)3

Proof. Fory < 2, the paths are the same as in Theorem 2.3. But for y > 2, we have two more paths:
@) C:(S1lyl=f)n(fy #2)n(z2 =0)),
(i) D: ((S1lyl =fy)n(fy #2) N (z2 # 0)).
WehaveP(z; =2-f, | C)=0.AlsoP(z; =2-f, | D) = 1 aszy #0,fy # 2.
Now consider the events j<* ¢ {¢,...,y}for1 < t < y,fy ¢{0,1,...,y -1}, /" £ f, for1 < t <y. Then
SV = fy. Alsoiif ji35, .., i\, ja # fy, we have Sy[y] = f,. Call this path E. Here

=10 3)-(1-3) (- 5)"

One can see [11] that P(S1[y] = f, | E) = 1. Also assume P(Si[y] = f, | E°) = . From [8] we know that
P(z, =0) = § - 7. We have

P(C) =P(S1lyl =fy nfy # 2)P(z2 = 0)

- (2 - )wwﬂﬂ fynfy # 20 E)+ PS1lyl = fy 0 fy # 20 EY)

N N2
(1%] Nz)(P(E)+P(31[Y] fy | E) - P(ES) - P(fy # 2))
(; Nﬂ@wh-—u HB)@—%».

Similarly, P(D) = (1 - % + 7)(P(E) + % - (1 -P(E)) - (1 - %)). =
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Figure 3: Probability P(z; = i - f,) for 1 < < 50,0 < y < 50 with i # y. Here (a) are the
theoretical values and (b) the experimental results with a 16 byte key.

Now, for all i greater than 2, the following theorem gives the probability P(z; = i - f}).

Theorem 3.7. We have

1

. 1
Plai = i~ fy) = PSiali) = fy) -y + @i Tiy + (1 - 3 - @iliy)

N N-1"
for3<i<N-1land1<y<N-1,wherea; =Pyl =fi)(1-H)11- ).

Proof. Similarly to the proof of Theorem 2.3, we consider the events A : ((Si-1[i] # K[0]) N (S;-1[ji] =i — K[0]))
and B : ((Si-1[i] = K[O]) N (Si-1[ji] = i - K[0])). In these cases, P(z; = i - f,) are 0 and 1, respectively.

Next we consider C = (A U B)¢. Then P(C) = (1 - %). But in case of i = y, the event C can be divided into
two mutually disjoint events C; and C¢ (as mentioned just before Theorem 3.5). Evaluating the probabilities
of all these events, we get the result. O

In Figure 3, we present both theoretical and experimental results for P(zi =i - fy) for 1 <i< 50,0 <y <50
withi # y. From the figure it is clear that there are some anomalies. Among them the probabilityof z, = 2 — f31

is the most significant. We observe P(z, = 2 - f31) = § + %32. However, if the key length is 256, we get

P(z, =2 - f31) = § — %L, which matches exactly with the theoretical value. When the key length is 16, we

have the following result.

Theorem 3.8. When the length of the key is 16, then
2 1 2 1y Y¥-12
P(Zz—z f31) (N N2)+(1_N+m)(—N—1)N

Proof. We divide it into two disjoint events, A : (z, = 0) and B : (z2 # 0). We know that P(A) = % — = and

P(B) = (1 - § + §)- Also one can see that, if the length of the key is 16, then

1
N2

31 15
f31=496+2 ) Kli] =496 +2 ) K[i]
i=0 i=0

is always even. Hence P(f31 = 2) = % So,
P(z2=2-f31)=P(z2=2-f31N22=0)+P(z22 =2 -f31 N2, # 0)

=P(z2=2-f31122=0)P(z2 =0) +P(z2 =2~ f31 | z2 # 0)P(z2 # 0)
=P(f31=2122,=0)-P(z2=0)+P(z2 =2 -f31 | 22 # 0)P(2z2 # 0)

N
2,2 1 2 1y/5-1\2
“3E-w) - w3 v -
Theorem 3.8 gives P(z, = 2 — f31) = N NZ , which matches closely with the experimental value. We also have
another set of biases when the key length is 16.
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Theorem 3.9. We have

1-2
P =347 frs) = (3 - o) 2+ S (1= 2))P(Ss0ral3 411 = o)
-5 2 1 2
((N_q) St (t-5)) A -PSsral3+11=f00)
forr > 0, when the length of the key is 16.
Proof. We have
35+r 3+r
frser=foor = (X @+ K1) - ( Y60+ KD)
i=0 i=0
35+r 3+4r 35+r 3+4r
:(z 1) (ZKI]—ZK[:])
i=0 i=
35+r
- 624+3zr+( Y Kiil
i=4+r
19+r 35+r
=624+32r+( S Kil+ Y K[z])
i=4+r i=20+r
19+r 19+r
=624+32r+( S Kiil+ Y K[)+16) (= (i-16))
i=4+r j=4+r
19+r 19+4r
=6z4+32r+( RGED) K[j]) (since the key length is 16 and K[j + 16] = K[j])
i=4+r j=4+r
19+r
=624+32r+2< 5 K[i]).
i=4+r

One can see that f35,, — f3;, will always be even, which means that f3;, and f35,, will be of the same

parity for r > 0, i.e., either both are even or both are odd (exclusive) when the length of the key is 16. So for

one value of f3,, there are ¥ possible values for f3s.r. SOP(f3s.r = f31r) = %.AlsoP(zy = r = S,4[r]) = § - 15

by Jenkins’ Correlation [3].
Now,

P(z3:r =347~ f3511) = P(z34r =3 + 1 = f354r | S34r-1[3 + 11 = f34r-1)P(S34r-1[3 + 7] = f347)

+P(z34r =3+ 7= f3540 | S34r-1[3 + 11 # f3:0)P(S340-1[3 + 11 # f341)
= (P(z34r = 3+71~f354r | S34r-1[3 + 11 = f341 N f34r = f3541)

P(f34r = f3541) + P(z34r = 3 + 7 = f3540 | S34r-1[3 + 1] = f34r N f34r # f3541)
P(f34r # f3541))P(S34r-1[3 + 1] = f341)
+(P(z34r =3+ 7 = f350r | S340r-1[3 + 1] # f34r 0 f34r = f35:0)P(f34r = f3547)
+P(z31r = 347 = f3547 | S34r-1[3 + 11 # 340 N 341 # f3500)P(F34r # f3540))
P(S34r-1[3 + 11 # f341)

:((E— ! )2 (1_N)<1—3)) P(S34r-1[3 + 1] = f34r)

N 1V2 N N-1 N
((Il\l_xll)il 117(1__))(1 P(S34r-1[3 + 11 = f341)). -

Using Lemma 3.4, we can find P(S3,,-1[3 + 1] = f34). From Theorem 3.9 we calculate P(z3,, = 3 + r — f354r),
which is (3 + %2!) when r = 0, and decreases as r increases.

Remark 3.10. In Theorem 3.8 and Theorem 3.9, we justified two biases observed in the experiment for key
length 16. However, using the same argument, we can generalize the results for any key length. If the key
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i Pzi=i-fi)
1-8 [6] 0.005367 0.005332 0.005305 0.005273 0.005237 0.005196 0.005153 0.005106
Exp. 0.005264 0.005298 0.005280 0.005241 0.005211 0.005169 0.005127 0.005077
Thm.3.5 0.005320 0.005298 0.005270 0.005238 0.005202 0.005161 0.005117 0.005070
9-16 [6] 0.005056  0.005005 0.004951 0.004897 0.004842 0.004787 0.004732 0.004677
Exp. 0.005028 0.004974 0.004921 0.004864 0.004808 0.004751 0.004697 0.004639
Thm.3.5 0.005020 0.004968 0.004914 0.004859 0.004803 0.004747 0.004691 0.004636
17-24  [6] 0.004624 0.004572 0.004521 0.004473 0.004426 0.004382 0.00434 0.004301
Exp. 0.004586  0.004532 0.004481 0.004431 0.004385 0.004338 0.004298 0.004256
Thm.3.5 0.004582 0.004529 0.004478 0.004429 0.004382 0.004338 0.004291 0.004252
25-32  [6] 0.004264 0.004230 0.004198 0.004169 0.004142 0.004117 0.004095 0.004075
Exp. 0.004220 0.004184 0.004154 0.004123 0.004097 0.004073 0.004050 0.004031
Thm.3.5 0.004215 0.004181 0.004149 0.004121 0.004094 0.004070 0.004049 0.004029
33-40 [6] 0.004057 0.004041 0.004026 0.004014 0.004002 0.003993 0.003984 0.003976
Exp. 0.004013  0.003998 0.003985 0.003972 0.003962 0.003953 0.003945 0.003938
Thm.3.5 0.004012 0.003997 0.003983 0.003971 0.003961 0.003952 0.003944 0.003937
41-48  [6] 0.003970 0.003964 0.003959 0.003955 0.003952 0.003949 0.003946 0.003944
Exp. 0.003932 0.003927 0.003922 0.003919 0.003916 0.003914 0.003911 0.003910
Thm.3.5 0.003931 0.003926 0.003922 0.003919 0.003916 0.003913 0.003911 0.003909
49-56  [6] 0.003942 0.003940 0.003939 0.003938 0.003937 0.003937 0.003936 0.003935
Exp. 0.003908 0.003907 0.003906 0.003906 0.003905 0.003905 0.003904 0.003904
Thm.3.5 0.003908 0.003907 0.003906 0.003905 0.003905 0.003904 0.003904 0.003904
57-64  [6] 0.003935 0.003935 0.003934 0.003934 0.003934 0.003934 0.003934 0.003934
Exp. 0.003904 0.003904 0.003904 0.003904 0.003904 0.003905 0.003905 0.003905

Thm.3.5 0.003904 0.003904 0.003904 0.003904 0.003904 0.003905 0.003905 0.003905

Table 1: Comparison of our work with the work [6] and experimental values.

length is ¢, we will observe a similar bias in P(z; = 2 — fo_1) and P(z3,, = 3 + r — f342¢4r). These biases can
be explained similarly, i.e., fo¢-1 and (f342¢+r — f3+r) are always even. So this increases the probabilities
P(foe-1 = 2) and P(f.2e4r = f34r) tO £

3.1 Probabilityz; =i - f;

Let us first start with y = i. In this case, results were discovered in [5] and proved rigorously in [6]. It was
shown in [6, Theorem 3] that

Per=1-f = p(1+(F0) 4 3),
P(zi = i—f;) = %(1 + [(NA; 1.)(%)[“31)% + %] : [(%)H - %] + 1\17) forie[2,N—1].

Using Table 1, we present our comparative study of the correlation probabilities. We present the theoret-
ical values of P(z; = i — f;) for 1 < i < 64 according to Theorem 3.5 and also according to the above formulas
from [6]. We have calculated the values p;, which are required to find the coefficients a; in P(z; = i - f;), using
numerical methods available in [20]. The experimental values are averaged over 100 billion key schedulings,
where the keys are of length 16 and are randomly generated.

From Table 1 it is clear that our estimation gives a much better approximation than [6]. One can
note that from Table 1, P(z; =i-f;) < % for i € [52, 64]. The formulas of [6] cannot capture this neg-
ative bias. For example, when y = 64, the formulas of [6] give P(ze4 = 64 — fg4) =  + 182, but actually
P(zgy = 64 — feu) < 7.

Remark 3.11. In [14], Sengupta et al. studied linear relations between the keystream bytes and key. They
used these relations to recover plaintexts of WPA as the first three bytes of the key are public. To recover
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P(z1=1-f) P(z1=1-f3) P(z1 =1~ f4) P(z1=1-f5) P(z1 =1-fe)
Thm. Exp. Thm. Exp. Thm. Exp. Thm. Exp. Thm. Exp.

0.003886 0.003882 0.003897 0.003897 0.003897 0.003998 0.003898 0.003998 0.003898 0.003998
P(zz=2-f3) P(z2=2~f4) P(z2 =2~ fs) P(z2 =2~ ) P(z2=2-f7)
Thm. Exp. Thm. Exp. Thm. Exp. Thm. Exp. Thm. Exp.

0.003892 0.003891 0.003892 0.003892 0.003892 0.003892 0.003893 0.003892 0.003893 0.003893
P(z3 =3 -f4) P(z3 =3 -fs) P(z3 =3~ fe) P(z3=3-f7) P(z3 =3 -f3)
Thm. Exp. Thm. Exp. Thm. Exp. Thm. Exp. Thm. Exp.

0.003897 0.003897 0.003898 0.003897 0.003898 0.003898 0.003898 0.003898 0.003898 0.009899
P(z4 = 4~ fs) P(z4 =4~ fe) P(z4 =4~ f7) P(z4 = 4 ~fs) P(z4 =4~ f9)
Thm. Exp. Thm. Exp. Thm. Exp. Thm. Exp. Thm. Exp.

0.003898 0.003897 0.003898 0.003898 0.003898 0.003898 0.003898 0.003898 0.003899 0.003898

Table 2: Theoretical and experimental values of afew z; = i — f, fory > i.

the first byte of plaintext, they used the relation z; = 1 — f;. From Table 1 one can note that our theoretical
estimation of P(z1 = 1 — f1) is better than the existing work [6].

Theorem 3.7 also gives a negative bias of P(z; = i — f;,) for y > i. In Table 2, we present a few theoretical and
experimental values. The experimental values are averaged over 100 billion different keys, where the keys
are of length 16 and are randomly generated.

4 Biases of z; towards f;_;

In this section, we study the probability P(z; = f;_1). In FSE 2008, Maitra and Paul [6] observed this type of
biases. In [6, Theorem 6], it is claimed that

N-1\/N-i\//N-i N -1\ N — 2 \N-i/ N — 3ri-
= fion = () ) T D) ) e

yi = %(%)N—l—u %(NA—,1>_ %(N]\—ll)N—z

S%}SA [

where

From [7], we know that y; is the probability of
Let us start with the following lemma.

i] equaling zero after KSA.

Lemma 4.1. In PRGA,

fis(l—%)l 1- szl)/l(i;l__

2) fori>3
P(S;_1[i] = 0) 5 1 ’

Il
[
1]
_

yi(l_%)l_l for1<i<3.

Proof. Fori > 3, we have the following paths:

(i) Let SKR[i] = 0. This holds with probability y;. Also all jy, . . . , ji_1 are different from i.

(ii) If SX5A[0] = 0 or SKSA[1] = 0, then S;_[i] will be always different from zero. Again if SK*[1] = 0 with
1<l<i-1, zero can move through s jumps with 1 <s <i- 3 as zero cannot move forward through
i — 2 jumps, one jump in each step. This happens with probability

1 1yi-1-s' 3 fi-1-2
(-5 EZW( so1 )
So the total probability for this path is

Yl ()

For 1 < i < 3, we have only the first path. O
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i P(z; = fi-1)

3-10 [6] 0.004413 0.004400 0.004384 0.004368 0.004350 0.004331 0.004312 0.004292
Exp. 0.004400 0.004386 0.004376 0.004356 0.004339 0.004321 0.004301 0.004281

Thm. 4.2 0.004400 0.004387 0.004372 0.004356 0.004339 0.004320 0.004301 0.004281

11-18 [6] 0.004271 0.00425 0.004229 0.004209 0.004188 0.004168 0.004148 0.004129
Exp. 0.004261 0.004241 0.004220 0.004200 0.004179 0.004162 0.004139 0.004120

Thm. 4.2 0.004261 0.004240 0.004220 0.004199 0.004179 0.004159 0.004139 0.004120

19-26 [6] 0.004111 0.004093 0.004076 0.004061 0.004046 0.004032 0.004019 0.004007
Exp. 0.004102 0.004085 0.004068 0.004052 0.004038 0.004024 0.004011 0.003999

Thm. 4.2 0.004102 0.004085 0.004068 0.004053 0.004038 0.004024 0.004011 0.004000

27-34  [6] 0.003996 0.003986 0.003976 0.003968 0.003960 0.003954 0.003948 0.003942
Exp. 0.003988 0.003978 0.003969 0.003961 0.003954 0.003950 0.003941 0.003937

Thm. 4.2 0.003989 0.003979 0.003970 0.003962 0.003954 0.003948 0.003942 0.003937

35-42 [6] 0.003937 0.003933 0.003929 0.003926 0.003923 0.003921 0.003919 0.003917
Exp. 0.003932 0.003928 0.003924 0.003922 0.003919 0.003917 0.003915 0.003913

Thm. 4.2 0.003932 0.003929 0.003925 0.003922 0.00392 0.003917 0.003915 0.003914

43-50 [6] 0.003915 0.003914 0.003913 0.003912 0.003911 0.003911 0.003910 0.003910
Exp. 0.003912 0.003911 0.003910 0.003909 0.003908 0.003907 0.003907 0.003907

Thm.4.2 0.003912 0.003911 0.003910 0.003910 0.003909 0.003908 0.003908 0.003908

Table 3: Comparison of our work with the work [6] and experimental values for zj = fj_1.

Now we will prove the following bias of z; towards f;_;.

Theorem 4.2. In PRGA,
1
P(z; = fi-1) = 1pbny + (1 — 1pbnyp — 1p6(1 —~ M)y — 1p(1 - SNy — 7(1 - p)on) - N

where T = P(Si_1[i] = 0), p = PSP SKAi - 111 = fi1), 6 =(1- D)2 =1 -5 p=1- %) andi> 2.

Proof. Consider the following five events:

(i) The first event A is S;_1[i] = O.

(i) The second event A; is S\A[SKSA[i - 1]] = fi_1.
(i) A3 = {1 #i-1)n---NGia #i-1h

(iv) Ay ={(1 #Syli-1D)n---n (i # Syli- 1]}

(V) As ={(1 # Syli-1D)n---n i1 # Snli - 1D}
Now one can see that

Pzi=fii|A1nA;NnAsnAsNAs) =1, P(zi=fia|A1nANnA3nA;NAs) =0,
P(zi=fii1 |A1NAy ﬂAgﬂA4 NAs)=0, P(zi=fi1|A1 ﬂAgﬂA3 NAz;NAs)=0.

Also,
P(41) = P(Si-1[i] = 0),
P(A;) = P(SKA[SKSA[I - 1]] = fiq),
1\i-2
PAs) = (1-5)
i
P4 = (1- 5 ).
1\i-1
P(4s) = (1 - N) )
Assuming z; = f;_1 occurs with % in the other cases, we have the required result. O

Now one can find P(SX>A[SKSA[i — 1]] = f;_1) by using the following theorem of [13].
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Theorem 4.3. After the completion of KSA, the probability P(S\* [SKSMi]] = f;) is

(1) RPN = fo v e (Ao pisitin 4 o,

where

i

a=(1-2) - D= D05 R 203

s=1
- (- )

Using Table 3, we present our comparative study of the correlation probabilities. We present the theoretical
values of P(z; = fi_1) for 3 < i < 64 according to Theorem 4.2 and also according to the formulas of [6]. The
experimental values are averaged over 100 billion key schedulings, where the keys are of length 16 and are
randomly generated. From Table 3 it is clear that our estimation gives a much better approximation than [6].

5 Conclusion

In this paper, we have given a justification of the negative bias between z; with i — k[0] which was observed
experimentally by Paterson et al. [9, 10]. Next we have considered a generalization of the Roos bias. We have
also presented the complete correlation between z; and i — f,. Our formulas for the probabilities of z; = i - f;
and z; = fi_1 give a better approximation than the existing works.
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