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Abstract: RC4 has attracted many cryptologists due to its simple structure. In [9], Paterson, Poettering and
Schuldt reported the results of a large scale computation of RC4 biases. Among the biases reported by them,
we try to theoretically analyze a fewwhich show very interesting visual patterns.We first study the biaswhich
relates the key stream byte zi with i − k[0], where k[0] is the first byte of the secret key. We then present
a generalization of the Roos bias. In 1995, Roos observed the bias of initial bytes S[i] of the permutation
after KSA towards fi = ∑ir=1 r + ∑

i
r=0 K[r]. Herewe study the probability of S[i] equaling fy = ∑

y
r=1 r + ∑

y
r=0 K[r]

for i ̸= y. Our generalization provides a complete correlation between zi and i − fy. We also analyze the key-
keystream relation zi = fi−1 which was studied byMaitra and Paul [6] in FSE 2008.We providemore accurate
formulas for the probability of both zi = i − fi and zi = fi−1 for different i’s than the existing works.
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1 Introduction
RC4 is a stream cipher which has been widely used worldwide and has become one of the most popular
ciphers in the world for the last 25 years. RC4 is a very simple cipher and can be implemented only in a few
lines of code. This cipher was designed by Ron Rivest in 1987. Its first application was in Data security. It was
also used in RSA Lotus Notes. Though RC4 was a trade secret in the beginning, in 1994 it was published. The
first adoption of this cipherwas done by the network protocol TLS. Later it has been used inWEP in 1997 [18],
SSL in 1995, WPA in 2003 [19], etc.

At first, we describe the design of RC4 briefly. It has two components. The first component is the key
scheduling algorithm (KSA) and the other one the pseudo-random generation algorithm (PRGA). Here, all
the operations are done modulo 256. The KSA takes an identity permutation S of 0 to 255. By using an
ℓ-byte secret key, it scrambles the identity permutation over ℤN , and derives another permutation. After the
completion of KSA, PRGA generates a pseudo-random sequence of keystream bytes, using the scrambled per-
mutation of KSA for z1, z2, . . . . After each iteration from 0 to 255, an output zi is produced. These are bitwise
XOR-ed with the plaintext to produce the ciphertext. Both for the KSA and the PRGA, two indices i and j are
used in the permutation. In both of these, a swap between S[i] and S[j] takes place.
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KSA.
N = 256;
Initialization:

For i = 0, . . . , N − 1
S[i] = i;

j = 0;
Scrambling:

For i = 0, . . . , N − 1
j = (j + S[i] + K[i]);
Swap(S[i], S[j]).

PRGA.
Initialization:

i = j = 0;
Keystream Generation Loop:

i = i + 1;
j = j + S[i];
Swap(S[i], S[j]);
t = S[i] + S[j];
Output z = S[t].

We use SKSAr , iKSAr and jKSAr to denote the permutation and the two indices after the r-th round of RC4 KSA.
Hence SKSAN is the permutation after the complete key scheduling. By Sr , ir , jr we denote the permutation and
the two indices after the r-th round of RC4 PRGA. So SKSAN = S0. We use Ia,b to denote the indicator function.
So

Ia,b =
{
{
{

1 for a = b,
0 for a ̸= b.

Also, by the notation fy we denote the expression y(y+1)
2 + ∑

y
r=0 K[r] (0 ≤ y ≤ N − 1), which plays a vital

role in most of the proposed attacks on RC4.
For having such a simple design, many cryptologists have been attracted to this cipher. Throughout the

last 25 years,multipleweaknesses of RC4havebeen found.Oneof themost remarkable attackswaspresented
by Fluhrer, Mantin and Shamir [2] in 2001. This attack was based on the weaknesses in the key schedul-
ing algorithm. In 1995, Roos [12] observed that after the KSA, the most likely value of SKSAN [y] for the first
few values of y is given by SKSAN [y] = fy. The experimentally found values of the probabilities P(SKSAN [y] = fy)
decrease from 0.37 to 0.006 as y increases from 0 to 47. Later, the theoretical proof of this was given by
Paul and Maitra in SAC 2007 [11]. Recently, Sarkar and Venkateswarlu [13] improved the analysis of [11].
Paul and Maitra [11] also discussed a reconstruction algorithm to find the key from the final permutation SN
after KSA using Roos biases. Klein [5] observed correlations between keystreams and key using Roos biases.
In FSE 2008, Maitra and Paul [6] showed that not only the permutation bytes SKSAN [y], but also the bytes
SKSAN [S

KSA
N [y]], S

KSA
N [S

KSA
N [S

KSA
N [y]]], etc. are biased towards fy. Then in SAC 2010, Sepehrdad, Vaudenay and

Vuagnoux [15] showed some biases on the state variables, initial keystreambytes and secret key of RC4. They
also gave a key recovery attack on RC4 inWPA. In Eurocrypt 2011, Sepehrdad, Vaudenay and Vuagnoux [16]
presented an attack onWEPby using all the previous known attacks in the literature and by introducing a few
new correlations.

In USENIX 2013, AlFardan, Bernstein, Paterson, Poettering and Schuldt [1] used a Bayesian statistical
method that recovers plaintexts in a broadcast attack model, i.e., plaintexts that are repeatedly encrypted
with different keys under RC4. AlFardan et al. successfully used their idea to attack the cryptographic pro-
tocol TLS by exploiting biases in RC4 keystreams. In FSE 2014, Paterson, Schuldt and Poettering [10] and
Sengupta, Maitra, Meier, Paul and Sarkar [14] exploited independently keystream and key correlations to
recover plaintext in WPA since the first three bytes of the RC4 key in WPA are public. In Asiacrypt 2014,
Paterson, Poettering and Schuldt [9] improved the attack of [10]. They performed large-scale computations
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using the Amazon EC2 cloud computing infrastructure to obtain accurate estimates of the single-byte and
double-byte distributions.

The recent attacks on RC4-based protocols have led to the consensus that RC4 is insecure and should
be phased out. For an example, Vanhoef and Piessens [17] presented an attack on TLS and WPA using
RC4 (USENIX 2015). Also, Jha, Banik, Isobe and Ohigashi [4] presented some works on joint distribution of
keystream biases. These works show that RC4 is still an active area of research.

Our contribution and the organisation of the paper. (i) In Asiacrypt 2014, Paterson et al. [9] showed a sig-
nificant negative bias of zi towards i − K[0] (see [9, Figure 2]). But so far there was no theoretical justifi-
cation behind this. In Section 2, for the first time we give a theoretical justification for this bias.

(ii) In 1995, Roos [12] observed the relation between SKSAN [i] and fi. This observation was later justified
in [11]. We generalize the Roos bias in Section 3 and study the relation between SKSAN [i] and fy for i ̸= y.

(iii) In Section 3, our generalized Roos bias gives complete distribution of zi and i − fy for y ̸= i. We observe
a significant negative bias between zi and i − fi+t for a small positive integer t.

(iv) Klein discovered the correlation between zi and i − fi for 1 ≤ i ≤ N − 1. Maitra and Paul [6] proved these
biases theoretically in FSE 2008. Using our general result of Theorem 3.7, we revisit this problem. In
Table 1, we compare our result to the previous one. Our analysis gives much closer values to the experi-
mental values.

(v) In FSE 2008, Maitra and Paul [6] also studied the biases between zi and fi−1 for i = 1 and 3 ≤ i ≤ N − 1.
In Section 4, we analyze the bias of zi towards fi−1. In Table 3, we present the comparative study between
our result and [6]. In this case also, our analysis gives a much better approximation to the experimental
values than the work [6].

2 Negative bias of zi towards i − K[0]
Let us start with the following lemma.

Lemma 2.1. After KSA, P(SKSAN [i] = K[0]) =
1
N (1 −

1
N )
(N−1−i) for i ≥ 1.

Proof. If SKSAi [j
KSA
i+1 ] = K[0], after the swap, S

KSA
i+1 [i

KSA] = K[0]. Now

P(SKSAi [j
KSA
i+1 ] = K[0]) =

1
N

since jKSAi+1 is random.Also SKSAN [i]will beK[0]only if the jKSA’s cannot touch i again, i.e., if all j
KSA
i+2 , . . . , j

KSA
N are

different from i, then SKSAN [i]will beK[0]. Theprobability of j
KSA
i+2 , j

KSA
i+3 , . . . , j

KSA
N ̸= i is (1 − 1

N )
(N−1−i). Therefore,

P(SKSAN [i] = K[0]) =
1
N (1 −

1
N )
(N−1−i) for i ≥ 1.

Now we have the following result.

Lemma 2.2. In PRGA, for i ≥ 1,

P(Si−1[i] = K[0]) = pi(1 −
1
N )

i−1
+
1
N (

1 − 1
N )

i−2 i−1
∑
l=1
pl +

i−1
∑
r=2

1
N r (

1 − 1
N )

i−r−1 i−1
∑
l=1
pl(

i − l − 1
r − 1 ),

where pi = 1
N (1 −

1
N )
(N−1−i).

Proof. We find the probability of this event by breaking it into mutually disjoint events and finding their
probabilities separately.
∙ Event 1: After the completion of KSA, K[0] is in the i-th location of the array (whose probability is pi from

Lemma 2.1), and this position is not touched by j1, . . . , ji−1. The probability of this event is pi(1 − 1
N )

i−1.
∙ Event 2: After the completion of KSA, K[0] is in some l-th location of the array (whose probability is pl),

where 1 ≤ l ≤ i − 1. This position is not touched by j1, . . . , jl−1. Then jl = i. After that, jl+1, . . . , ji−1 ̸= i.
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Since l can vary from 1 to i − 1, the total probability of the above path is
i−1
∑
l=1

1
N (

1 − 1
N )

i−2
pl .

∙ Event 3:After the completion of KSA,K[0] is in l−th location of the array,where 1 ≤ l ≤ i − 1. This position
is not touched by j1, . . . , jl−1. Then jl = t for l + 1 ≤ t ≤ i − 1. After that, jl+1, . . . , jt−1 ̸= t. Then jt = i. Also
jt+1, . . . , ji−1 ̸= i. The total probability of this path is

i−1
∑
l=1

i−1
∑
t=l+1

1
N2 (1 −

1
N )

i−3
pl .

Similarly, K[0] can come to the i-th location with more than two jumps. If it comes through the (r + 1)-st
jump, the total probability will be

1
N r (

1 − 1
N )

i−r−1 i−1
∑
l1=1

i−1
∑

l2=l1+1

i−1
∑

l3=l2+1
⋅ ⋅ ⋅

i−1
∑

lr=lr−1+1
pl1 =

1
N r (

1 − 1
N )

i−r−1 i−1
∑
l1=1

pl1(
i−1
∑

l2=l1+1

i−1
∑

l3=l2+1
. . .

i−1
∑

lr=lr−1+1
1)

=
1
N r (

1 − 1
N )

i−r−1 i−1
∑
l1=1

pl1(
i − l1 − 1
r − 1 ).

Thus adding the probabilities of these three disjoint events, we have

P(Si−1[i] = K[0]) = pi(1 −
1
N )

i−1
+
1
N (

1 − 1
N )

i−2 i−1
∑
l=1
pl +

i−1
∑
r=2

1
N r (

1 − 1
N )

i−r−1 i−1
∑
l=1
pl(

i − l − 1
r − 1 ).

We can use this lemma to find the probability P(zi = i − K[0]). The following result gives a bias of zi towards
(i − K[0]).

Theorem 2.3. We have

P(zi = i − K[0]) =
{{{
{{{
{

P(S0[1] = K[0]) ⋅
1
N
⋅ (1 − 1N ) + (1 −

1
N
+

1
N2 )

1
N

for i = 1,

P(Si−1[i] = K[0]) ⋅
1
N
+ (1 − 1N )

1
N

for i > 1.

Proof. First consider i > 1.
(i) Consider the event A : ((Si−1[i] ̸= K[0]) ∩ (Si−1[ji] = i − K[0])). So after the swap, Si[i] = i − K[0] and

Si[ji] ̸= K[0]. So zi = Si[Si[i] + Si[ji]] ̸= Si[i] = i − K[0].
(ii) Next consider the event B : ((Si−1[i] = K[0]) ∩ (Si−1[ji] = i − K[0])). Then

zi = Si[Si[i] + Si[ji]] = Si[i] = i − K[0].

(iii) Nowconsider the event C = (A ∪ B)c. In this case, P(zi = i − K[0]) = 1
N , considering a randomassociation.

Also P(C) = 1 − P(A ∪ B) = 1 − P(Si−1[ji] = i − K[0]) = 1 − 1
N .

Thus,

P(zi = i − K[0]) = P(zi = i − K[0] | A)P(A) + P(zi = i − K[0] | B)P(B) + P(zi = i − K[0] | C)P(C)

= 0 ⋅ P(A) + 1 ⋅ P(B) + 1
N
⋅ P(C)

= P(Si−1[i] = K[0]) ⋅
1
N
+ (1 − 1N )

1
N
.

Now for i = 1, we have j1 = 1 when S0[1] = 1. In this case, B is an impossible event. So for i = 1 we take

A : ((S0[1] ̸= K[0]) ∩ (S0[j1] = 1 − K[0]) ∩ (K[0] ̸= 1)),
B : ((S0[i] = K[0]) ∩ (S0[j1] = 1 − K[0]) ∩ (K[0] ̸= 1)).

In this case,
P(z1 = 1 − K[0]) = P(S0[1] = K[0]) ⋅

1
N
⋅ (1 − 1N ) + (1 −

1
N
+

1
N2 )

1
N
.

In Figure 1,weplot the theoretical aswell as experimental values of P(zi = i − K[0])with key length 16,where
the experiments have been run over 100 billion trials of RC4 PRGA with randomly generated keys.
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i →

P(
z i
=
i−
K[
0]
)→

Thm. 1
P(zi = i − K[0])

1
N

Figure 1: Distribution of P(zi = i − K[0]) for i ∈ [1, 255].

3 Generalization of Roos bias and bias of zi = i − fy
A theoretical justification of the Roos bias has first appeared in [11]. Recently, the work of [11] has been
revisited in [13]. We need the following result of [13, Lemma 2].

Lemma 3.1. In KSA, the probability of P(SKSAi+1 [i] = fi) can be given by

(
i
∏
r=1
(1 − rN ) + p1) ⋅ (1 −

i
N )
⋅ (1 − 1N )

i
+
1
N
⋅ [1 − ((1 − iN ) ⋅ (1 −

1
N )

i
+
i
N
⋅ (1 − 1N )

i

+ (1 − iN ) ⋅ (1 − (1 −
1
N )

i
)) ⋅

i
∏
r=1
(1 − rN ) − (p1 + p2)(1 −

i
N )(

1 − 1
N )

i
],

where

p1 =
∞

∑
c=1

1
Φ( b−μσ ) − Φ(−

μ
σ )
⋅
1
σ

min{cN+0.5,i(i+1)/2}

∫
cN−0.5

ϕ( x − μσ )
dx,

p2 =
∞

∑
c=0

1
Φ( b−μσ ) − Φ(−

μ
σ )
⋅
1
σ

min{(c+1)N−0.5,i(i+1)/2}

∫
0.5+cN

ϕ( x − μσ )
dx,

μ =
i
∑
p=0

p−1
∑
x=0
(1 − 1N )

x 1
N
(p − x),

σ2 =
i
∑
p=0
[
p−1
∑
x=0
(1 − 1N )

x 1
N
(p − x)2 − (

r−1
∑
x=0
(1 − 1N )

x 1
N
(p − x))

2
],

where ϕ(x) = e
− 1
2 x

2

√2π is the density function of the standard normal distribution.

Also the following result is proved in [13, Theorem 2].

Lemma 3.2. We have

P(SKSAN [i] = fi) = P(S
KSA
i+1 [i] = fi) ⋅ (1 −

1
N )

N−1−i
+ (1 − P(SKSAi+1 [i] = fi)) ⋅

N−1
∑
t=i+1

1
N2 (1 −

1
N )

N−1−t
.

Now we find P(SKSAN [i] = fy) for 0 ≤ i ≤ N − 1 and 1 ≤ y ≤ N − 1 with i ̸= y.
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(a) (b) (c)

Figure 2: Probability P(SKSAN [i] = fy) for 0 ≤ i, y ≤ 50 with i ̸= y. Here (a) are the theoretical values and (b) the experimental
results with a 16 byte key, and (c) are the experimental results with a 256 byte key.

Lemma 3.3. For i ̸= y with y ≥ 1, we have

P(SKSAN [i] = fy) =
1
N (

1 − 1
N )

N−i−1
+ (1 − P(SKSAy+1[y] = fy) −

1
N )(

N−1
∑
t=i+1

1
N2 ⋅ (1 −

1
N )

N−1−t
).

Proof. We have two cases.
(i) Case I: Let SKSAi [j

KSA
i+1 ] = fy. This happens with probability 1

N . So after the swap, S
KSA
i+1 [i] becomes fy. Also

jKSAi+2 , . . . , j
KSA
N ̸= i. So the probability of this path is 1

N (1 −
1
N )

N−i−1. On the other hand, if SKSAi [ji+1] = fy
and i ∈ {jKSAi+2 , . . . , j

KSA
N }, then S

KSA
N [i] will be always different from fy.

(ii) Case II: If i < y and SKSAy+1[y] = fy, then S
KSA
N [i] cannot be fy as the y-th location of the array S cannot move

to the left when the running index is greater than y. On the other hand, if i > y and SKSAy+1[y] = fy, then
SKSAN [i] can be fy only through the first event. So we need SKSAy+1 ̸= fy. Let us consider the scenario where
SKSAt [t] = fy for some t > i. This holds with probability 1

N . Suppose that j
KSA
t+1 = i and j

KSA
t+2 , . . . , j

KSA
N are all

different from i. Hence after the swap we get SKSAt+1 [i] = fy, and this location is not disturbed in further
rounds of KSA. This path holds with probability 1

N2 ⋅ (1 − 1
N )

N−1−t.
Thus if i ̸= y, then

P(SKSAN [i] = fy) =
1
N (

1 − 1
N )

N−i−1
⋅ 1 + 1

N (
1 − (1 − 1N )

N−i−1
) ⋅ 0

+ (1 − P(SKSAy+1[y] = fy) −
1
N )(

N−1
∑
t=i+1

1
N2 ⋅ (1 −

1
N )

N−1−t
).

In Figure2,wepresent both theoretical andexperimental results for P(SKSAN [i] = fy) for 0 ≤ i, y ≤ 50with i ̸= y.
From the figure it is clear there are some anomalies when the length of the keys is 16. This is because there are
some fy’s whose parities are the same when the key length is 16. We will discuss this issue for key-keystream
relations in Theorem 3.9.

Lemma 3.4. In PRGA,

P(Si−1[i] = fy) = P(SKSAN [i] = fy)(1 −
1
N )

i−1
+
i−1
∑
r=1

1
N r (

1 − 1
N )

i−r−1
(
i−1
∑
l=1

P(SKSAN [l] = fy)(
i − l − 1
r − 1 ))

for 1 ≤ i ≤ N − 1 and 1 ≤ y ≤ N − 1.

Proof. This is similar to the proof of Lemma 2.2.

Now consider the following event C1 for an occurrence of zi = i − fi for i ≥ 1:
(i) SKSAN [i] = fi,
(ii) j1, . . . , ji−1 ̸= i,
(iii) Si−1[ji] ̸= i − fi.
Since Si[i] + Si[ji] ̸= fi + i − fi = i, we have P(zi = i − fi) = 1

N−1 . The above path holds with the probability
ai = P(SKSAN [i] = fi)(1 −

1
N )

i.
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Now we prove the following theorems.

Theorem 3.5. We have

P(z1 = 1 − fy) =
{{{
{{{
{

P(S0[1] = fy)
1
N (

1 − 1
N )
+ a1

1
N − 1 I1,y + (1 −

1
N
+

1
N2 − a1I1,y)

1
N

for y ̸= 2,

P(S0[1] = fy) ⋅
1
N
⋅ (1 − 1N ) + (1 −

1
N
+

1
N2 − (

2
N
−

1
N2 )⋅P(S0[2] = f2))

1
N

for y = 2,

where a1 = P(SKSAN [1] = f1)(1 −
1
N ).

Proof. Here the events are

A : (S0[1] ̸= fy ∩ S0[j1] = 1 − fy ∩ fy ̸= 0) and B : (S0[1] = fy ∩ S0[j1] = 1 − fy ∩ fy ̸= 0).

One can see that P(z1 = 1 − fy | A) = 0 and P(z1 = 1 − fy | B) = 1.
Also if S0[1] + S0[S0[1]] = 2 and S0[2] = f2, then z1 will always be different from 1 − f2. Also, we have

P(S0[1] + S0[S0[1]] = 2) = 2
N −

1
N2 as one path comes from S0[1] = 1. Hence the required result follows.

Similarly, we find the bias of z2 towards 2 − fy in the next theorem.

Theorem 3.6. We have

P(z2 = 2 − fy) =
{{{
{{{
{

P(S1[2] = fy) ⋅
1
N
+ a2

1
N − 1 I2,y + (1 −

1
N
− a2I2,y)

1
N

for y ≤ 2,

P(S1[2] = fy) ⋅
1
N
+ β ⋅ 1

N − 1 + (1 −
1
N
− α − β) 1N for y > 2,

where

α = ( 2N −
1
N2 )(η +

1
N
⋅ (1 − η) ⋅ (1 − 1N )),

β = (1 − 2N +
1
N2 )(η +

1
N
⋅ (1 − η) ⋅ (1 − 1N )),

η =
y
∏
i=1
(1 − iN ) ⋅ (1 −

y
N )
⋅ (1 − 1N )

N
,

a2 = P(SKSAN [2] = f2)(1 −
1
N )

2
.

Proof. For y ≤ 2, the paths are the same as in Theorem 2.3. But for y > 2, we have two more paths:
(i) C : ((S1[y] = fy) ∩ (fy ̸= 2) ∩ (z2 = 0)),
(ii) D : ((S1[y] = fy) ∩ (fy ̸= 2) ∩ (z2 ̸= 0)).

We have P(z2 = 2 − fy | C) = 0. Also P(z2 = 2 − fy | D) = 1
N−1 as z2 ̸= 0, fy ̸= 2.

Now consider the events jKSAt ∉ {t, . . . , y} for 1 ≤ t ≤ y, fy ∉ {0, 1, . . . , y − 1}, jKSAt ̸= fy for 1 ≤ t ≤ y. Then
SKSAy+1[y] = fy. Also if j

KSA
y+2 , . . . , j

KSA
N , j1 ̸= fy, we have S1[y] = fy. Call this path E. Here

P(E) =
y
∏
i=1
(1 − iN ) ⋅ (1 −

y
N )
⋅ (1 − 1N )

N
.

One can see [11] that P(S1[y] = fy | E) = 1. Also assume P(S1[y] = fy | Ec) = 1
N . From [8] we know that

P(z2 = 0) = 2
N −

1
N2 . We have

P(C) = P(S1[y] = fy ∩ fy ̸= 2)P(z2 = 0)

= (
2
N
−

1
N2 )(P(S1[y] = fy ∩ fy ̸= 2 ∩ E) + P(S1[y] = fy ∩ fy ̸= 2 ∩ E

c))

= (
2
N
−

1
N2 )(P(E) + P(S1[y] = fy | E

c) ⋅ P(Ec) ⋅ P(fy ̸= 2))

= (
2
N
−

1
N2 )(P(E) +

1
N
⋅ (1 − P(E)) ⋅ (1 − 1N )).

Similarly, P(D) = (1 − 2
N +

1
N2 )(P(E) + 1

N ⋅ (1 − P(E)) ⋅ (1 −
1
N )).
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(a) (b)

Figure 3: Probability P(zi = i − fy) for 1 ≤ i ≤ 50, 0 ≤ y ≤ 50 with i ̸= y. Here (a) are the
theoretical values and (b) the experimental results with a 16 byte key.

Now, for all i greater than 2, the following theorem gives the probability P(zi = i − fy).

Theorem 3.7. We have

P(zi = i − fy) = P(Si−1[i] = fy) ⋅
1
N
+ ai

1
N − 1 Ii,y + (1 −

1
N
− ai Ii,y)

1
N

for 3 ≤ i ≤ N − 1 and 1 ≤ y ≤ N − 1, where ai = P(SKSAN [i] = fi)(1 −
1
N )

i−1(1 − 1
N ).

Proof. Similarly to the proof of Theorem2.3, we consider the events A : ((Si−1[i] ̸= K[0]) ∩ (Si−1[ji] = i − K[0]))
and B : ((Si−1[i] = K[0]) ∩ (Si−1[ji] = i − K[0])). In these cases, P(zi = i − fy) are 0 and 1, respectively.

Next we consider C = (A ∪ B)c. Then P(C) = (1 − 1
N ). But in case of i = y, the event C can be divided into

two mutually disjoint events C1 and Cc1 (as mentioned just before Theorem 3.5). Evaluating the probabilities
of all these events, we get the result.

In Figure 3, we present both theoretical and experimental results for P(zi = i − fy) for 1 ≤ i ≤ 50, 0 ≤ y ≤ 50
with i ̸= y. From the figure it is clear that there are someanomalies. Among them the probability of z2 = 2 − f31
is the most significant. We observe P(z2 = 2 − f31) = 1

N +
0.82
N2 . However, if the key length is 256, we get

P(z2 = 2 − f31) = 1
N −

0.11
N2 , which matches exactly with the theoretical value. When the key length is 16, we

have the following result.

Theorem 3.8. When the length of the key is 16, then

P(z2 = 2 − f31) =
2
N (

2
N
−

1
N2 ) + (1 −

2
N
+

1
N2 )(

N
2 − 1
N − 1 )

2
N
.

Proof. We divide it into two disjoint events, A : (z2 = 0) and B : (z2 ̸= 0). We know that P(A) = 2
N −

1
N2 and

P(B) = (1 − 2
N +

1
N2 ). Also one can see that, if the length of the key is 16, then

f31 = 496 + 2
31
∑
i=0
K[i] = 496 + 2

15
∑
i=0
K[i]

is always even. Hence P(f31 = 2) = 2
N . So,

P(z2 = 2 − f31) = P(z2 = 2 − f31 ∩ z2 = 0) + P(z2 = 2 − f31 ∩ z2 ̸= 0)
= P(z2 = 2 − f31 | z2 = 0)P(z2 = 0) + P(z2 = 2 − f31 | z2 ̸= 0)P(z2 ̸= 0)
= P(f31 = 2 | z2 = 0) ⋅ P(z2 = 0) + P(z2 = 2 − f31 | z2 ̸= 0)P(z2 ̸= 0)

=
2
N (

2
N
−

1
N2 ) + (1 −

2
N
+

1
N2 )(

N
2 − 1
N − 1 )

2
N
.

Theorem3.8 gives P(z2 = 2 − f31) = 1
N +

1
N2 , whichmatches closelywith the experimental value.We also have

another set of biases when the key length is 16.
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Theorem 3.9. We have

P(z3+r = 3 + r − f35+r) = ((
2
N
−

1
N2 )

2
N
+
(1 − 2

N )
N − 1 (1 −

2
N ))

P(S3+r−1[3 + r] = f3+r)

+ (
(1 − 2

N )
N − 1 ⋅

2
N
+
1
N (

1 − 2
N ))
⋅ (1 − P(S3+r−1[3 + r] = f3+r))

for r ≥ 0, when the length of the key is 16.

Proof. We have

f35+r − f3+r = (
35+r
∑
i=0
(i + K[i])) − (

3+r
∑
i=0
(i + K[i]))

= (
35+r
∑
i=0

i −
3+r
∑
i=0
i) + (

35+r
∑
i=0

K[i] −
3+r
∑
i=0
K[i])

= 624 + 32r + (
35+r
∑
i=4+r

K[i])

= 624 + 32r + (
19+r
∑
i=4+r

K[i] +
35+r
∑

i=20+r
K[i])

= 624 + 32r + (
19+r
∑
i=4+r

K[i] +
19+r
∑
j=4+r

K[j + 16]) (j = (i − 16))

= 624 + 32r + (
19+r
∑
i=4+r

K[i] +
19+r
∑
j=4+r

K[j]) (since the key length is 16 and K[j + 16] = K[j])

= 624 + 32r + 2(
19+r
∑
i=4+r

K[i]).

One can see that f35+r − f3+r will always be even, which means that f3+r and f35+r will be of the same
parity for r ≥ 0, i.e., either both are even or both are odd (exclusive) when the length of the key is 16. So for
one value of f3+r, there are N

2 possible values for f35+r. So P(f35+r = f3+r) =
2
N . Also P(zr = r − Sr−1[r]) =

2
N −

1
N2

by Jenkins’ Correlation [3].
Now,

P(z3+r = 3 + r − f35+r) = P(z3+r = 3 + r − f35+r | S3+r−1[3 + r] = f3+r−1)P(S3+r−1[3 + r] = f3+r)
+ P(z3+r = 3 + r − f35+r | S3+r−1[3 + r] ̸= f3+r)P(S3+r−1[3 + r] ̸= f3+r)

= (P(z3+r = 3 + r − f35+r | S3+r−1[3 + r] = f3+r ∩ f3+r = f35+r)
P(f3+r = f35+r) + P(z3+r = 3 + r − f35+r | S3+r−1[3 + r] = f3+r ∩ f3+r ̸= f35+r)
P(f3+r ̸= f35+r))P(S3+r−1[3 + r] = f3+r)
+ (P(z3+r = 3 + r − f35+r | S3+r−1[3 + r] ̸= f3+r ∩ f3+r = f35+r)P(f3+r = f35+r)
+ P(z3+r = 3 + r − f35+r | S3+r−1[3 + r] ̸= f3+r ∩ f3+r ̸= f35+r)P(f3+r ̸= f35+r))
P(S3+r−1[3 + r] ̸= f3+r)

= ((
2
N
−

1
N2 )

2
N
+
(1 − 2

N )
N − 1 (1 −

2
N ))

P(S3+r−1[3 + r] = f3+r)

+ (
(1 − 2

N )
N − 1

2
N
+
1
N (

1 − 2
N ))
(1 − P(S3+r−1[3 + r] = f3+r)).

Using Lemma 3.4, we can find P(S3+r−1[3 + r] = f3+r). From Theorem 3.9 we calculate P(z3+r = 3 + r − f35+r),
which is ( 1N +

0.31
N2 ) when r = 0, and decreases as r increases.

Remark 3.10. In Theorem 3.8 and Theorem 3.9, we justified two biases observed in the experiment for key
length 16. However, using the same argument, we can generalize the results for any key length. If the key
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i P(zi = i − fi)

1–8 [6] 0.005367 0.005332 0.005305 0.005273 0.005237 0.005196 0.005153 0.005106
Exp. 0.005264 0.005298 0.005280 0.005241 0.005211 0.005169 0.005127 0.005077
Thm. 3.5 0.005320 0.005298 0.005270 0.005238 0.005202 0.005161 0.005117 0.005070

9–16 [6] 0.005056 0.005005 0.004951 0.004897 0.004842 0.004787 0.004732 0.004677
Exp. 0.005028 0.004974 0.004921 0.004864 0.004808 0.004751 0.004697 0.004639
Thm. 3.5 0.005020 0.004968 0.004914 0.004859 0.004803 0.004747 0.004691 0.004636

17–24 [6] 0.004624 0.004572 0.004521 0.004473 0.004426 0.004382 0.00434 0.004301
Exp. 0.004586 0.004532 0.004481 0.004431 0.004385 0.004338 0.004298 0.004256
Thm. 3.5 0.004582 0.004529 0.004478 0.004429 0.004382 0.004338 0.004291 0.004252

25–32 [6] 0.004264 0.004230 0.004198 0.004169 0.004142 0.004117 0.004095 0.004075
Exp. 0.004220 0.004184 0.004154 0.004123 0.004097 0.004073 0.004050 0.004031
Thm. 3.5 0.004215 0.004181 0.004149 0.004121 0.004094 0.004070 0.004049 0.004029

33–40 [6] 0.004057 0.004041 0.004026 0.004014 0.004002 0.003993 0.003984 0.003976
Exp. 0.004013 0.003998 0.003985 0.003972 0.003962 0.003953 0.003945 0.003938
Thm. 3.5 0.004012 0.003997 0.003983 0.003971 0.003961 0.003952 0.003944 0.003937

41–48 [6] 0.003970 0.003964 0.003959 0.003955 0.003952 0.003949 0.003946 0.003944
Exp. 0.003932 0.003927 0.003922 0.003919 0.003916 0.003914 0.003911 0.003910
Thm. 3.5 0.003931 0.003926 0.003922 0.003919 0.003916 0.003913 0.003911 0.003909

49–56 [6] 0.003942 0.003940 0.003939 0.003938 0.003937 0.003937 0.003936 0.003935
Exp. 0.003908 0.003907 0.003906 0.003906 0.003905 0.003905 0.003904 0.003904
Thm. 3.5 0.003908 0.003907 0.003906 0.003905 0.003905 0.003904 0.003904 0.003904

57–64 [6] 0.003935 0.003935 0.003934 0.003934 0.003934 0.003934 0.003934 0.003934
Exp. 0.003904 0.003904 0.003904 0.003904 0.003904 0.003905 0.003905 0.003905
Thm. 3.5 0.003904 0.003904 0.003904 0.003904 0.003904 0.003905 0.003905 0.003905

Table 1: Comparison of our work with the work [6] and experimental values.

length is ℓ, we will observe a similar bias in P(z2 = 2 − f2ℓ−1) and P(z3+r = 3 + r − f3+2ℓ+r). These biases can
be explained similarly, i.e., f2ℓ−1 and (f3+2ℓ+r − f3+r) are always even. So this increases the probabilities
P(f2ℓ−1 = 2) and P(f3+2ℓ+r = f3+r) to 2

N .

3.1 Probability zi = i − fi

Let us first start with y = i. In this case, results were discovered in [5] and proved rigorously in [6]. It was
shown in [6, Theorem 3] that

P(z1 = 1 − f1) =
1
N (

1 + (N − 1N )
N+2
+
1
N )

,

P(zi = i − fi) =
1
N (

1 + [(N − iN )(
N − 1
N )
[ i(i+1)2 +N] +

1
N ]
⋅ [(

N − 1
N )

i−1
−
1
N ]
+
1
N )

for i ∈ [2, N − 1].

Using Table 1, we present our comparative study of the correlation probabilities. We present the theoret-
ical values of P(zi = i − fi) for 1 ≤ i ≤ 64 according to Theorem 3.5 and also according to the above formulas
from [6]. We have calculated the values pi, which are required to find the coefficients ai in P(zi = i − fi), using
numerical methods available in [20]. The experimental values are averaged over 100 billion key schedulings,
where the keys are of length 16 and are randomly generated.

From Table 1 it is clear that our estimation gives a much better approximation than [6]. One can
note that from Table 1, P(zi = i − fi) < 1

N for i ∈ [52, 64]. The formulas of [6] cannot capture this neg-
ative bias. For example, when y = 64, the formulas of [6] give P(z64 = 64 − f64) = 1

N +
1.82
N2 , but actually

P(z64 = 64 − f64) < 1
N .

Remark 3.11. In [14], Sengupta et al. studied linear relations between the keystream bytes and key. They
used these relations to recover plaintexts of WPA as the first three bytes of the key are public. To recover
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P(z1 = 1 − f2) P(z1 = 1 − f3) P(z1 = 1 − f4) P(z1 = 1 − f5) P(z1 = 1 − f6)
Thm. Exp. Thm. Exp. Thm. Exp. Thm. Exp. Thm. Exp.

0.003886 0.003882 0.003897 0.003897 0.003897 0.003998 0.003898 0.003998 0.003898 0.003998
P(z2 = 2 − f3) P(z2 = 2 − f4) P(z2 = 2 − f5) P(z2 = 2 − f6) P(z2 = 2 − f7)
Thm. Exp. Thm. Exp. Thm. Exp. Thm. Exp. Thm. Exp.

0.003892 0.003891 0.003892 0.003892 0.003892 0.003892 0.003893 0.003892 0.003893 0.003893
P(z3 = 3 − f4) P(z3 = 3 − f5) P(z3 = 3 − f6) P(z3 = 3 − f7) P(z3 = 3 − f8)
Thm. Exp. Thm. Exp. Thm. Exp. Thm. Exp. Thm. Exp.

0.003897 0.003897 0.003898 0.003897 0.003898 0.003898 0.003898 0.003898 0.003898 0.009899
P(z4 = 4 − f5) P(z4 = 4 − f6) P(z4 = 4 − f7) P(z4 = 4 − f8) P(z4 = 4 − f9)
Thm. Exp. Thm. Exp. Thm. Exp. Thm. Exp. Thm. Exp.

0.003898 0.003897 0.003898 0.003898 0.003898 0.003898 0.003898 0.003898 0.003899 0.003898

Table 2: Theoretical and experimental values of a few zi = i − fy for y > i.

the first byte of plaintext, they used the relation z1 = 1 − f1. From Table 1 one can note that our theoretical
estimation of P(z1 = 1 − f1) is better than the existing work [6].

Theorem 3.7 also gives a negative bias of P(zi = i − fy) for y > i. In Table 2, we present a few theoretical and
experimental values. The experimental values are averaged over 100 billion different keys, where the keys
are of length 16 and are randomly generated.

4 Biases of zi towards fi−1
In this section, we study the probability P(zi = fi−1). In FSE 2008, Maitra and Paul [6] observed this type of
biases. In [6, Theorem 6], it is claimed that

P(zi = fi−1) = (
N − 1
N )(

N − i
N )((

N − i + 1
N )(

N − 1
N )

i(i−1)
2 +i +

1
N )(

N − 2
N )

N−i
(
N − 3
N )

i−2
γi +

1
N
,

where
γi =

1
N (

N − 1
N )

N−1−i
+
1
N (

N − 1
N )
−
1
N (

N − 1
N )

N−i
.

From [7], we know that γi is the probability of SKSAN [i] equaling zero after KSA.
Let us start with the following lemma.

Lemma 4.1. In PRGA,

P(Si−1[i] = 0) =
{{{{
{{{{
{

γi(1 −
1
N )

i−1
+
i−3
∑
s=1

1
Ns (

1 − 1
N )

i−1−s i−1
∑
l=2
γl(

i − l − 2
s − 1 ) for i > 3,

γi(1 −
1
N )

i−1
for 1 < i ≤ 3.

Proof. For i > 3, we have the following paths:
(i) Let SKSAN [i] = 0. This holds with probability γi. Also all j1, . . . , ji−1 are different from i.
(ii) If SKSAN [0] = 0 or SKSAN [1] = 0, then Si−1[i] will be always different from zero. Again if SKSAN [l] = 0 with

1 < l < i − 1, zero can move through s jumps with 1 ≤ s ≤ i − 3 as zero cannot move forward through
i − 2 jumps, one jump in each step. This happens with probability

1
Ns (

1 − 1
N )

i−1−s i−1
∑
l=2
γl(

i − l − 2
s − 1 ).

So the total probability for this path is
i−3
∑
s=1

1
Ns (

1 − 1
N )

i−1−s i−1
∑
l=2
γl(

i − l − 2
s − 1 ).

For 1 < i ≤ 3, we have only the first path.
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i P(zi = fi−1)

3–10 [6] 0.004413 0.004400 0.004384 0.004368 0.004350 0.004331 0.004312 0.004292
Exp. 0.004400 0.004386 0.004376 0.004356 0.004339 0.004321 0.004301 0.004281
Thm. 4.2 0.004400 0.004387 0.004372 0.004356 0.004339 0.004320 0.004301 0.004281

11–18 [6] 0.004271 0.00425 0.004229 0.004209 0.004188 0.004168 0.004148 0.004129
Exp. 0.004261 0.004241 0.004220 0.004200 0.004179 0.004162 0.004139 0.004120
Thm. 4.2 0.004261 0.004240 0.004220 0.004199 0.004179 0.004159 0.004139 0.004120

19–26 [6] 0.004111 0.004093 0.004076 0.004061 0.004046 0.004032 0.004019 0.004007
Exp. 0.004102 0.004085 0.004068 0.004052 0.004038 0.004024 0.004011 0.003999
Thm. 4.2 0.004102 0.004085 0.004068 0.004053 0.004038 0.004024 0.004011 0.004000

27–34 [6] 0.003996 0.003986 0.003976 0.003968 0.003960 0.003954 0.003948 0.003942
Exp. 0.003988 0.003978 0.003969 0.003961 0.003954 0.003950 0.003941 0.003937
Thm. 4.2 0.003989 0.003979 0.003970 0.003962 0.003954 0.003948 0.003942 0.003937

35–42 [6] 0.003937 0.003933 0.003929 0.003926 0.003923 0.003921 0.003919 0.003917
Exp. 0.003932 0.003928 0.003924 0.003922 0.003919 0.003917 0.003915 0.003913
Thm. 4.2 0.003932 0.003929 0.003925 0.003922 0.00392 0.003917 0.003915 0.003914

43–50 [6] 0.003915 0.003914 0.003913 0.003912 0.003911 0.003911 0.003910 0.003910
Exp. 0.003912 0.003911 0.003910 0.003909 0.003908 0.003907 0.003907 0.003907
Thm. 4.2 0.003912 0.003911 0.003910 0.003910 0.003909 0.003908 0.003908 0.003908

Table 3: Comparison of our work with the work [6] and experimental values for zi = fi−1.

Now we will prove the following bias of zi towards fi−1.

Theorem 4.2. In PRGA,

P(zi = fi−1) = τρδηψ + (1 − τρδηψ − τρδ(1 − η)ψ − τρ(1 − δ)ηψ − τ(1 − ρ)δηψ) ⋅
1
N
,

where τ = P(Si−1[i] = 0), ρ = P(SKSAN [S
KSA
N [i − 1]] = fi−1), δ = (1 −

1
N )

i−2, η = (1 − i
N ), ψ = (1 −

1
N )

i−1 and i > 2.

Proof. Consider the following five events:
(i) The first event A1 is Si−1[i] = 0.
(ii) The second event A2 is SKSAN [S

KSA
N [i − 1]] = fi−1.

(iii) A3 = {(j1 ̸= i − 1) ∩ ⋅ ⋅ ⋅ ∩ (ji−2 ̸= i − 1)}.
(iv) A4 = {(1 ̸= SN[i − 1]) ∩ ⋅ ⋅ ⋅ ∩ (i ̸= SN[i − 1])}.
(v) A5 = {(j1 ̸= SN[i − 1]) ∩ ⋅ ⋅ ⋅ ∩ (ji−1 ̸= SN[i − 1])}.
Now one can see that

P(zi = fi−1 | A1 ∩ A2 ∩ A3 ∩ A4 ∩ A5) = 1, P(zi = fi−1 | A1 ∩ A2 ∩ A3 ∩ Ac4 ∩ A5) = 0,
P(zi = fi−1 | A1 ∩ A2 ∩ Ac3 ∩ A4 ∩ A5) = 0, P(zi = fi−1 | A1 ∩ Ac2 ∩ A3 ∩ A4 ∩ A5) = 0.

Also,

P(A1) = P(Si−1[i] = 0),

P(A2) = P(SKSAN [S
KSA
N [i − 1]] = fi−1),

P(A3) = (1 −
1
N )

i−2
,

P(A4) = (1 −
i
N )

,

P(A5) = (1 −
1
N )

i−1
.

Assuming zi = fi−1 occurs with 1
N in the other cases, we have the required result.

Now one can find P(SKSAN [S
KSA
N [i − 1]] = fi−1) by using the following theorem of [13].
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Theorem 4.3. After the completion of KSA, the probability P(SKSAN [S
KSA
N [i]] = fi) is

(
1
N (

1 − 1
N )

N−1−i
+ β)P(SKSAi+1 [i] = fi) + α + (

1 − α − β
N )P(Si+1[i] ̸= fi),

where

α = (1 − 2N )
N−i−1 i
∏
r=1
(1 − rN )(1 −

i
N )(

1 − 1
N )

i−1 1
N

i
∑
s=1
(1 − 1N )

i−s
,

β = (N − i − 1N )(1 − 1N )
i+1
(1 − 2N )

N−i−2
.

Using Table 3, we present our comparative study of the correlation probabilities. We present the theoretical
values of P(zi = fi−1) for 3 ≤ i ≤ 64 according to Theorem 4.2 and also according to the formulas of [6]. The
experimental values are averaged over 100 billion key schedulings, where the keys are of length 16 and are
randomly generated. From Table 3 it is clear that our estimation gives a much better approximation than [6].

5 Conclusion
In this paper, we have given a justification of the negative bias between zi with i − k[0] which was observed
experimentally by Paterson et al. [9, 10]. Next we have considered a generalization of the Roos bias. We have
also presented the complete correlation between zi and i − fy. Our formulas for the probabilities of zi = i − fi
and zi = fi−1 give a better approximation than the existing works.
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