DE GRUYTER J. Math. Cryptol. 2016; 10 (3-4):157-180

Research Article

Ashwin Jha* and Mridul Nandi

Revisiting structure graphs:
Applications to CBC-MAC and EMAC

DOI: 10.1515/jmc-2016-0030
Received May 24, 2016; accepted October 12, 2016

Abstract: In [2], Bellare, Pietrzak and Rogaway proved an O(¢£q2/2™) bound for the PRF (pseudorandom func-
tion) security of the CBC-MAC based on an n-bit random permutation I, provided £ < 2"/3. Here an adversary
can make at most g prefix-free queries each having at most £ many “blocks” (elements of {0, 1}"). In the same
paper an 0(£°Y g2 /2™) bound for EMAC (or encrypted CBC-MAC) was proved, provided £ < 2"/%, Both proofs
are based on structure graphs representing all collisions among “intermediate inputs” to II during the com-
putation of CBC. The problem of bounding PRF-advantage is shown to be reduced to bounding the number
of structure graphs satisfying certain collision patterns. In the present paper, we show that [2, Lemma 10],
stating an important result on structure graphs, is incorrect. This is due to the fact that the authors overlooked
certain structure graphs. This invalidates the proofs of the PRF bounds. In [31], Pietrzak improved the bound
for EMAC by showing a tight bound 0(g?/2") under the restriction that £ < 2"/8, As he used the same flawed
lemma, this proof also becomes invalid. In this paper, we have revised and sometimes simplified these proofs.
We revisit structure graphs in a slightly different mathematical language and provide a complete characteri-
zation of certain types of structure graphs. Using this characterization, we show that PRF security of CBC-MAC
is about oq/2" provided ¢ < 2"/3 where o is the total number of blocks in all queries. We also recover tight
bound for PRF security of EMAC with a much relaxed constraint (¢ < 2"/*) than the original (¢ < 2™/8),

Keywords: CBC, EMAC, structure graph, random permutation, pseudorandom function

MSC 2010: 94A60, 68R0O5, 68R10, 68Q87

Communicated by: Simon Blackburn

1 Introduction

Brief history on CBC and EMAC. The notion of authentication in cryptographic protocols was first introduced
by Diffie and Hellman in their seminal paper [8] of 1976. In symmetric key settings, this need is fulfilled by
message authentication codes, better known as MACs. CBC-MAC is a block cipher based MAC construction
which is based on the CBC mode of operation invented by Ehrsam et al. [12]. The CBC-MAC was an interna-
tional standard [16] which was proven to be secure for fixed length messages [1, 3] or prefix-free message
spaces [15, 30]. The fixed length constraint is not desired in practice. One way to circumvent this is to use the
length of message as the first block in CBC computation. This requires prior knowledge of the message length.
A more reasonable and popular approach is to encrypt the CBC output with an independent keyed permuta-
tion. This later approach is called the EMAC which has been proved to be secure without any restrictions on
the message [30]. We refer readers to Section 2 for a brief overview of literature related to CBC-MAC.

CBC and EMAC functions. Throughout the paper, we fix a positive integer n and let B := {0, 1}"". Ele-
ments of these sets are called blocks. Let Perm := Perm(n) be the set of all permutations over B. The

*Corresponding author: Ashwin Jha: Indian Statistical Institute, Kolkata, India, e-mail: ashwin.jha1991@gmail.com
Mridul Nandi: Indian Statistical Institute, Kolkata, India, e-mail: mridul.nandi@gmail.com

158 —— A.Jhaand M. Nandi, Revisiting structure graphs DE GRUYTER

CBC (cipher block chaining) function with key 7 € Perm, denoted by CBC,, takes as input a message
M = (M[1], ..., M[m]) € B™and outputs a block out”(M)[m] which is inductively computed as out™ (M)[0] =
0" and

out"(M)[i] = m(out™(M)[i — 1] e M[i]), i=1,...,m.

For 0 < i < m, in™(M)[i] := out™(M)[i — 1] ® M! and out™(M)[i] are said to be the intermediate input and out-
put, respectively. Figure 3 in Section 3.6 provides an illustration of CBC computation and intermediate values.

Security definitions. In this paper, we consider two types of attacks for an adversary which makes queries
of at most ¢ blocks: atk = pf and atk = any mean no query is a prefix of another and the queries are arbitrary
distinct strings, respectively. Let Advgtk(q, ¢, 0) denote the maximum advantage attainable by any adversary
making q queries and the total number of blocks in all q queries is at most o, mounting an atk attack, in dis-
tinguishing whether its oracle is F or a random function that outputs n bits.* To analyze the security of CBC

and EMAC for the random permutation II, the collision probability and full collision probability,

CP, (M1, M,) := Prp[CBCr(M;) = CBCr(M,)],
FCP, (M1, M5) := Pr[out™(M>)[m>] = out™(M,)[j]; 3 (1) # (2, m2)],

were introduced for distinct messages M1 and M, with lengths m; and m,, respectively. Moreover, let cpgf§
and FCng'} denote the maximum collision and full collision probabilities, respectively, where the maximum
is taken over all distinct messages M, M' having at most £ blocks and satisfies atk. In [2], the following results
were shown:

AdvYY, (g, 0) < (‘;)(cpg[‘g +27), AdvPE (g, ©) < g*(FCPY', + 4¢/2").

As EMAC encrypts output of CBC-MAC under an independent key, as long as there is no collision in the
output of CBC-MAC, the final output behaves randomly. This is essentially the same as the Carter-Wegman
construction [33]. The CBC-MAC function can be similarly viewed as a (dependent) nested construction in
which the final encryption is computed under the same key as the internal computation. This is why we need
an extended definition of collision which is appropriately captured by the full collision event. Thus, bounding
PRF advantages are reduced to bounding (full) collision probabilities. These are again reduced to bounding
the number of structure graphs as described in the following paragraph.

Structure graph. A block-vertex structure (BS) graph G with vertex set V ¢ {0, 1}" associated to a message M
and a permutation 7 is the directed edge-labeled graph induced by the edge set E consisting of all edges

e : out (M)[i - 1] - out™(M)[i] := (out™(M)[i - 1], out™(M)[i]), 1<i<m.

Thelabel for e; is £(e;) = M[i]. Note that a BS graph can be simply viewed as an M-walk. Informally, an M-walk
is nothing but the walk generated by the message M starting at 0™. In this paper we often use this equivalent
representation of BS graphs. A structure graph G* over a vertex set V* ¢ J(anindex set) is an isomorphic graph
of the BS graph G mapping 0" to 0. The labeled walk of G is preserved in G* (in isomorphism sense) due to
the isomorphism between G and G*. So we can have a similar representation of a structure graph in terms of
walks. We refer readers to Definition 5.1 for a more formal definition of a structure graph. The (block-vertex)
structure graph is also similarly defined for a tuple (or sometimes pair) of messages M = (M, ..., My).

Given a structure graph G* = (V*, E*), suppose we reconstruct the graph by defining edges one by one
along the M-walk. Now there are three possibilities at any point of time: (1) we add a new edge heading to a
new vertex (not obtained so far), (2) we get an old edge which is already defined, and (3) we add a new edge
heading to an already existing vertex. True collisions correspond to the last case. The number of such true
collision can be equivalently defined as the following sum:

TC(G) := in-deg(0") + Z (in-deg(v) - 1).
veV\{0}

1 In this paper, F is either CBC-MAC or EMAC based on the random permutation IT on n bits (i.e., IT is chosen uniformly from
Perm).

DE GRUYTER A.Jha and M. Nandi, Revisiting structure graphs =— 159

Figure 1. Counter-example for [2, Lemma 10]. The walks corresponding to the two messages start at v1, and end at v3. Here
M3[1] := M[1] ® M1[2] ® M1[3] and * can be any number of blocks. In particular, when = has no block, the figures in (a) and
(b) are identical. In (a) we have two input-collisions 97 := (vq, va; v;) and 0, := (v1, v2; v3). The two linear equations L5, and
Ls, corresponding to the two input-collisions are the same as Yy, ® Y,, = M1[1] @ M1[2] and so the rank of all collisions (which
is also the accident) is one. However, true collision is two (at v’2 and v3), which contradicts [2, Lemma 10]. A similar argument
can be given for (b).

Let us assign a variable Y,, meant for the intermediate output, for each node v € V*. Let 6 := (u, v; z) be
a triple such that u — z, v — z and u # v. We call such triple input-collision (also called collision). Given
any such input-collision the following linear equation, denoted by Ls, must hold whenever Y-variables are
actually assigned as intermediate outputs:

Y,®Y,=cs, wherecs=L(v,2)® L(u,z).

When 0 has no in-degree, the accident of a structure graph G*, denoted by Acc(G), is the rank of all linear
equations Lg over all collisions of the graph. When 0 has positive in-degree, we add one to the rank to define
the accident. In Section 5, we provide a more detailed study on the structure graph.

Aflawin [2,Lemma 10]. Lemma 10 of [2] states that for any structure graph G* realized by a pair of messages
Acc(G*) = 1 implies TC(G*) = 1. This result has been used to bound FCP;, (in [2]) as well as CP,, (in [2, 31]).
Unfortunately, the claim is incorrect as illustrated in Figure 1 where we have two structure graphs with true
collision 2 and accident 1. Surprisingly, this flaw remained unobserved till now, although it has been applied
for other results.

1.1 Our contributions

The flaw in [2, Lemma 10] is an important observation that affects several results [2, 14, 31, 35] based on it.
Naturally, the next course of action should be to study the impact of this flaw to those results in addition to
[2], where it has been applied. This work serves this purpose. To our best knowledge, it has been applied in
[31] and probably in [9, Lemma 3] (no proof of this claim is publicly available though). The bound on FCPE;
(see [2]) is also used in the PRF analysis of truncated CBC [14]. Any revision in the FCPE‘;,f bound [2] will also
necessitate revision of bound in [14].

Characterization of all accident-one structure graphs. As[2, Lemma 10] is wrong and we have identified two
graphs which violate this lemma, it is important to see whether there are any more missing cases. We first
settle this issue and show that these are the only missing cases. To do so, we characterize all structure graphs
(realized by a single message) having at most accident 1 (see Lemma 6.1). This will actually help when we
study structure graphs for two messages.

Revision of the CP and FCP, and PRF bound of CBC. We revise the FCP bound of [2]. Fortunately, the upper
bounds of FCP, and hence PRF advantage of CBC, are only increased by a constant factor keeping the order
of the bound unchanged (see Section 7). In case of the CP bound due to Bellare, Pietrzak and Rogaway, their
[2, Lemma 15] used to bound the main claim is false. Fortunately, it can be shown that the main claim remains
true after revision.

160 —— A.Jhaand M. Nandi, Revisiting structure graphs DE GRUYTER

Revision of the PRF bound of EMAC. We revisit Pietrzak’s [31] proof of the PRF bound for EMAC in Section 8.
Unfortunately, a straightforward revision gives a non-tight bound on EMAC. Then, we take a different ap-
proach (by considering a different bad event) to show in Theorem 8.2 the tight bound for EMAC. Our approach
is much simpler and gives the tight bound even for a more relaxed choice of ¢, namely ¢ < 214 whereas the
original constraint was ¢ < 2"/8,

Other consequences. The CP and FCP bounds in [2] have been used in multiple subsequent works. For in-
stance, GaZzi, Pietrzak and Tessaro [14] applied this result to bound the probability of a bad event in PRF
analysis of truncated CBC. Similarly, Yasuda [35] used the CP bound of [2]. Fortunately, the proofs in these
works hold with small changes in constant factors. Since these changes are minor, in this paper we concen-
trate solely on [2, 31].

2 Related works

The security of MAC constructions has seen constant research interest. Among the block cipher based con-
structions CBC-MAC and its variants are the most popular. Here we try to summarize the research on PRF
security of CBC-MAC and its variants. The aim is to list the state of the art results as well as emphasize the
progress that has been made till date.

Analysis of CBC-MAC. First concrete results on CBC-MAC were given by Bellare, Kilian and Rogaway [1]. They
showed a bound of 2¢£2g? /2" for fixed length queries, which was further improved to £2g2/2" by Maurer [22].
Later Bernstein [3] simplified the proof for fixed-length CBC-MAC. Petrank and Rackoff [30] extended the proof
in [1] to prefix-free queries, and a similar extension on Bernstein’s proof was done by Rackoff and Gorbunov
[15]. Both bounds are about £2g?/2". The most recent bound on CBC-MAC is by Bellare, Pietrzak and Rogaway
[2] who improved (in terms of ¢) the bound to 12£q%/2™ + 64£*g?/22". Another way of improving the bound
is to show the PRF bound of the form qo/2" (see [26]).

Analysis of EMAC. In [1], Bellare, Kilian and Rogaway also suggested some variants of CBC-MAC to handle
variable length messages. In particular, they mentioned a construction where the output of CBC-MAC is fur-
ther encrypted by an independent key. This construction known as EMAC was first developed during the RACE
project [4]. Petrank and Rackoff [30] proved that DMAC (same as EMAC) is secure up to 2.5¢2q2/2". Bellare,
Pietrzak and Rogaway [2] improved the bound to g2 - d’(¢£)/2" which was further improved by Pietrzak [31]
to q2/2" for ¢ < 2"/8, However, the proof of the later result is invalid due to the flaw that we discussed eatlier.
A result on CP;?f stated in [9] also gives a tight bound of 0(q?/2") for equal length messages.

Analysis of variants of CBC-MAC and EMAC. Although the EMAC construction is tolerant to variable length
messages it has a domain limited to B*. Black and Rogaway [6] introduced three refinements to EMAC, viz.,
ECBC, FCBC and XCBC to allow use of variable block length strings. They showed that ECBC and FCBC are
secure up to 2.502/2", and that the bound on XCBC is 3.7502%/2". Jaulmes, Joux and Valette [19] gave a ran-
domized version of EMAC which they called RMAC and proved that the construction resists birthday attacks.
However the proof seems to be incorrect (as suggested in [2]). Other excellent variants of CBC-MAC are TMAC
[21], OMAC [17] and GCBC [24]. A variant of OMAC, namely OMAC1 is equivalent to CMAC which became an
NIST recommendation [11] in 2005. Another design approach is the PMAC construction proposed by Black
and Rogaway [5] which is inherently parallel. In [18, 23, 25, 27], the improved bounds for XCBC, TMAC,
PMAC and OMAC are shown in the form of O(£g?/2"), 0(c?/2") and O(oq/2"). Apart from these specific con-
structions Jutla [20] suggested a general class of DAG-based PRF constructions.

Beyond birthday bound (BBB) security. Another direction of research is BBB security, where the aim is to
achieve more than n/2-bits security in 0. Among the block cipher based BBB secure MACs, PMAC_Plus [36]
and 3kf9 [37] are two efficient candidates. Both these candidates are three-key constructions. Recently, Dutta
et al. [7] proposed a one-key candidate named 1kf9, which also offers beyond birthday security of 3kf9.

DE GRUYTER A.Jha and M. Nandi, Revisiting structure graphs —— 161

Structure graph analysis. Structure graphs are the basic tool for analyzing sequential construction based on
random permutation as evident from the work on CBC based MACs [2, 14, 31] and 1kf9 [7]. Although structure
graphs have been mainly used in analysis of random permutation based constructions, they have also found
application in random function based construction as evident from the analysis of NI MAC by GaZi, Pietrzak
and Rybér [13] and the one key compression function based MAC by Dutta, Nandi and Paul [10]. From our
observation these later works [7, 10, 13] are free from the flaw that we observed for [2, 31].

3 Preliminaries

Basic notation. Throughout the paper, we fix a positive integer n. Let Perm be the set of all permutations on
B := {0, 1}". Elements of B are called blocks. For any two integers a < b, we write [a..b] (or simply [b], when
a = 1) to denote the set {a,a + 1, ..., b}. Let ¢ be a property defined for the elements of S. We define the
subset

S[¢] := {x € S : x satisfies ¢}.

The above set will appear in this paper many times for different choices of S and ¢. Let
P(m,k):=m(m-1)---(m-k+1)

denote the k-permutations of m.

3.1 Notation on sequences

Let J and S be two sets. A S-sequence x over the index set J is denoted as (x[a])qcs Where x[a] € S for
all a € J. The length of the sequence is |J|, the size of the index set. In this paper we mostly consider
block sequences, i.e. S = B. When the index set is [a..b], we also write the sequence as a tuple or vector
x[a..b] := (x[a], ..., x[b]). Sometimes, by abusing notation, x also represents the set {x[a] : a € J}. Sim-
ilarly x[a..b] represents {x[a] : « € [a..b]}. We write #x to denote the number of distinct elements in the
sequence x. We write S* and S=¢ := | J;_, S’ to represent the set of all S sequences of positive and finite length,
and of length at most ¢, respectively. Now we define an equivalence relation that captures the equalities
among the elements of the sequence x.

Definition 3.1. Given a sequence x over an index set J, we define an equivalence relation ~, over the index
set as follows: a ~x B if x[a] = x[f].

Letp : D — R. Let x and y be, respectively, D- and R-sequences over an index set J. We write x 2 y to mean
that p(x[a]) = y[a] for all a € J and we simply say that p multi-maps x to y. This is a property of function p.
When D = R, the subset Perm[x R y] represents the set of all permutations 7 multi-mapping x to y. We say
that (x, y) is permutation compatible if there exists a permutation 77 such that x R y.Itis easy to see that (x, y)
is permutation compatible if and only if ~y = ~y.

3.2 Notation on strings

We call B an alphabet and its elements will be referred to as letters. A string over the alphabet B is an element
of B*. We can also say that a string is a finite concatenation S := a4|laz| ... |lar where a; € B. Note that the
elements of B are also strings. We can also view strings as B-sequences over an index set J. The length of
a string S, denoted by |S|, is defined as the total number of letters in it. Note that for an empty string the
length will be 0 as it does not have any letters in it. For a string S = X||Y, X (respectively Y) is said to be a
prefix (respectively suffix) of S. We write X <; S if X is a prefix of S. We write X <, S if X[1..x — 1] <1 S but

162 —— A.Jhaand M. Nandi, Revisiting structure graphs DE GRUYTER

X[x] + S[s], where x = |X| and s = |S|. For two strings S; and S, of lengths s; and s,, respectively, a non-
negative integer p := LCP(S1; S,) (respectively s := LCS(S1; S»)) is called the index of the largest common prefix
(respectively largest common suffix), if S1[1..p] = Sz[1..p] and S1[p + 1] # Sa[p + 1] (or Sy[s..s1] = S5 [s..53]
and Sq[s - 1] # S>[s - 1]).

3.3 Basic definitions and notation of graph

Directed edge-labeled graph. A directed edge-labeled graph is a pair G := (V, E) with E € V x V x L where V
is the set of vertices, L is the set of edge labels, and E is the set of edges along with their corresponding labels.
In this paper we will consider only those directed edge-labeled graphs where for each pair of vertices u, v € V
there exists at most one label a € L with ((u, v); a) € E. We also write u %, v to mean that ((u,v);a) € E.

Convention. By abusing notation, E also denotes the set of unlabeled edges and the label a of the edge
e := (u,v) is expressed as L (e) (this notation makes sense as there is a unique choice of the label for an
edge) or simply £(e) whenever the graph is understood.

For an edge e := (u, v), vertex u is called a predecessor of v, and v a successor of u. An edge (u, v) is called
aloop if u = v. We define two sets:
(i) The predecessor set of a vertex vis nbd(* — v) := {u : (u,v) € E}.
(ii) The successor set of vis nbd(v — %) :={u : (v, u) € E}.

The sizes of the predecessor and successor sets of v are called in-degree and out-degree, respectively. We
implicitly assume that no vertex has both in-degree and out-degree 0. So the vertex set and hence the graph
without the edge labels is uniquely determined by the edge set.

Definition 3.2. A walk of length s is defined as a vertex sequence w := (w[0], ..., w[s]) such that w[i — 1] —
w(i] foralli € [s]. We define the label of the walk as £(w) := (a4, ..., as) where a; = L(w[i — 1], w[i]), i € [s].

Since awalkisa VV-sequence over theindex set {0, 1, ..., s}, wedefineasubwalk w[a..b] := (w[a], ..., w[b])
where0<a<b<s.

When all vertices of a walk sequence are distinct, we call it a path. When all vertices w[0], ..., w[s — 1]
are distinct and w[s] = w[0], then we call it a cycle. Other special examples of walks, which will be studied
later in the paper, are p walks and p’ walks.

A pwalkisawalkw := (w[0], ..., w[s]) such that for some 0 < i < j < s, w[0..j — 1] is a path, w[j] = w[i]
and forall j < k <'s, w[k] = w[i + r] where 0 < r < (j — i) and (k — r) is a multiple of (j — 7). It is illustrated in
Figure 2 (a). In words, a p walk comes back to one previous vertex (which makes a cycle) and afterwards it
remains in the cycle.

A p' walk is an extension of a p walk that leaves the cycle and does not come back. It is illustrated in
Figure 2 (b). Note that the lengths of the subwalks labeled with * can be zero.

A directed edge-label graph G = (V, E) is called a function graph if for all v € V, there do not exist two dis-
tinct successors vq and v, of vwith L5(v, v1) = Lg(v, v2). In other words, for every vertex v and any label a we
can find at most one successor w for which the label of the edge (u, v) is a. This observation can be extended
for a walk in a function graph G as follows:

w1[0] = w2[0], L(wy) = L(wy) = wy =w,.

So if there is a walk with label M, then it must be unique and we call such a walk M-walk.

3.4 PRF advantage of a keyed function

If S is a finite set, then x S S denotes t}ée uniform random sampling of x from S. Let D € B* be a finite set. A
random function from D to B is RF(D) «— Func(D, B), the set of all functions from D to B. When the domain
D is understood, we simply write the random function as RF.

DE GRUYTER A.Jha and M. Nandi, Revisiting structure graphs —— 163

Vi * V2 Vi * V)
'/@ m
(a) p walk (b) p’ walk

Figure 2. The graphs corresponding to p and p’ walks. Note that the lengths of the parts labeled with * can be zero.

Definition 3.3. Let F be a keyed function from D to B with a finite key space K. We define the prf-advantage
(or pseudorandom function advantage) of an adversary A against F as

Advi(4) = |Pr{AFx = 1: K & %] - Pr[aR = 1|,
The maximum prf-advantage of F is defined as
Advi¥(q, ¢, 0) = max Advi®(4),
where the maximum is taken over all adversaries A making at most g queries from the domain D, say
My, ..., Mgwith M; € B™, such that }; m; < 0 and max; m; < €. Note that atk = pf means none of the query
is a prefix of another; atk = eq means the queries are of equal length; and atk = any means all queries are
arbitrary distinct strings. This is an information theoretic definition and we allow an unbounded time adver-

sary. There is no loss to assume that A always makes exactly g distinct queries, represented by a sequence,
say M = (M1, ..., My). Inthis case, forany T = (T4, ..., Ty) € BY, we have

Pree[M o T] = 2714,

3.5 Coefficient-H technique

Let A be an adversary which makes g distinct queries (possibly adaptive) to F. Let the queries be x1, .. ., X4
and the corresponding F outputs y1, ..., y4. Let view(AF) denote the g-tuple of pairs ((x1, 1), . .., (Xq,¥q)
where x; denotes the i-th query and y; is the corresponding response.

For any g-tuple of pairs 7 = ((x1, y1), . . . , (Xq, ¥q)), the probability

PF(T) = PrE[(X1, o« o2 Xq) o (V1s - o2 V)]

is called the interpolation probability, where the probability is taken under the randomness of F’s key. Here
we assume that F is stateless and so the above probability is independent of the order of the pairs.

Theorem 3.4 (Coefficient-H technique). Let Tgo0q be some set of g-tuples of pairs. Suppose the interpolation
probability for a (stateless) oracle O follows the inequality

POo>(r)>(1-€)-PX(1) = (1-€)27™ forall T € Tgo0d-
Then, for any adversary A we have
Adva™*(A) < € + Pr[view(AR) ¢ Tgood].

This technique was first introduced by Patarin in his PhD thesis [28] (as mentioned in [32]). The proof of this
theorem can be found in [29]. So we skip the proof. We use this theorem to bound the PRF advantage of CBC
function defined in the next subsection.

3.6 CBC-MAC and EMAC functions based on permutations

CBC function. The CBC (cipher block chaining) function (see Figure 3) with an oracle 7 € Perm, viewed as a
key of the construction, takes as input a message M = (M[1], ..., M[m]) € B™ with m blocks and outputs

CBC(M) := out™(M)[m].

164 —— A.Jhaand M. Nandi, Revisiting structure graphs DE GRUYTER

CBCr(M)

Figure 3. CBC function and its intermediate values.

This is inductively computed as follows: out”(M)[0] = 0" and
out™(M)[i] = n(in"(M)[i]), in"(M)[i] = out™(M)[i — 1] ® M[i], i€ [m].

We call in(M) and out™(M) intermediate input and output vectors, respectively, associated to 7. Note that the
intermediate input vector in” is uniquely determined by out” (and does not depend on the permutation 7).
We can write down this association generically as a function out2iny; : B™ — B™ mapping any block vector y
to a block vector x where x[1] = M[1] and x[i] = y[i — 1] @ M[i] if 1 < i < m. So for all permutations 71 € Perm,
we have out2in(out”) = in”.

EMAC function. The EMAC function (E for encrypted) is derived from the CBC function by additionally en-
crypting the output with another permutation 77’ € Perm. Formally, EMAC, (M) := i’ (CBCr(M)).

4 PRF analysis of CBC and EMAC

In this section we quickly recall the PRF analysis of CBC and EMAC as done in [2, 31]. Here CBC is based
on a uniform random permutation II chosen uniformly from Perm and EMAC is based on two independent
random permutations IT and IT'. In this section we reduce the bounding PRF advantages of CBC and EMAC to
the full bounding collision and collision probability, respectively. We use the coefficient-H technique rather
than the game playing technique used in [2].

4.1 PRF advantage of EMAC

Let M1 and M> be two distinct tuples of blocks. Let coll; (M7 ; M) denote the event that CBC, (M) = CBC,(M>),
we call it the collision event for a pair of messages M, and M,. We similarly define the collision event for a
tuple of g > 2 distinct messages M = (M1, ..., My) as

coll(M) = | colly(M;; Mj).
i#j
We define the collision probability as CP,,(M) = Pr[colly(M)].

Let CPZE'; = maxy¢ CP,, (M) where the maximum is taken over all g-tuples of distinct messages M having
at most £ blocks each and satisfy atk (i.e., when atk = eq, messages must have equal length, similarly when
atk = pf no message is prefix to others, and finally atk = any means no restriction other than length restric-
tion). Following [2], we view EMAC as an instance of the Carter-Wegman paradigm [33]. This enables us to
reduce the problem of bounding the prf-advantage of EMAC to bounding the collision probability as

Advpyf,.(q,€) < CP}) + ST

Note that CPZ?(}' < (g)CPg"}' as the collision for g messages is the union of collision events for each of the

(%) pairs of messages. Bellare, Pietrzak and Rogaway [2] proved that

2d'(¢) 6484
on + 22n ’

any
CPY") <

DE GRUYTER A.Jha and M. Nandi, Revisiting structure graphs —— 165

where d'(¢) = maxy<, d(¢') and d(€') is the number of divisors of ¢'. In [34], Wigert showed that
d’(€) — el/@(lnlnf) — eo(l).

Using this bound of collision probability for a pair of messages, we see that the prf-advantage of EMAC is
about 0(d'(£)g?/2™) for ¢ < 2™/*, Later Pietrzak [31] provided an improved analysis of EMAC and proved that
the PRF advantage of EMAC is about O(g2/2™") for ¢ < min{q'/2, 2"/8}. We revisit this improved analysis later
in Section 8. A related claim on CP is

CPY, =27+ (d(e)* - €- 272"+ £5. 277"

(see [9]) which gives a tight bound for equal length messages.

4.2 PRF advantage of CBC

Now we revisit the security analysis of CBC-MAC construction. Let Fcoll,;(M1; M>), called full collision, denote
the event that
in"(M)[my] = in"(M,)[j] for some (1, j) # (2, m).

In other words, if the full collision event does not hold, then the last intermediate input of 7 is “fresh” (not
appeared before) while computing CBC,(M;). So when 7 is replaced by a random permutation and this event
does not hold, then the CBC-output should behave “almost” randomly. We use this intuition while we provide
a bound of prf-advantage of CBC.

Remark 4.1. We would like to remark that in the original paper [2], the full collision event is defined through
the intermediate outputs instead of inputs. Since we consider CBC based on permutation only, equalities
among inputs and equalities among outputs are the same.

For a g-tuple of messages M, the union of full collision events is similarly denoted by Fcoll,()M). The proba-
bility of this event, called full collision probability, is denoted by FCP,,(M). The maximum full collision prob-

ability is denoted by FCPZEE. Similar to inequality (1), the following result has been proved in [2]:

AdvPy (g, €) < q*(FCPY, + 4¢/2"). @)

Note that we must restrict the adversary to make prefix-free queries, since otherwise it would be easy to dis-
tinguish CBC from a random function (using the classical length extension attack). Similarly, if M; is a prefix
of My, it is easy to see that FCP,(M1, M) = 1, so the above result becomes meaningless. As before, we also
state an equivalent form of PRF advantage of CBC in terms of full collision probability among g messages.
The above inequality (2) would be again a straightforward application of the following result.

Proposition 4.2. We have

209 q?

on + on+l’

Proof. Let Tgooq := (M1, T1), (M3, T2), ..., (Mg, Ty)) bethesetofall pairs of M = (M1, ..., My) € (B*)?and
T =(Tq,..., Ty € BYsuch that the M; are distinct and the T; are also distinct. Trivially, random function RF
returns a collision pair on any g distinct queries with probability at most ()27 for any adversary A. Thus,

Adv;.(q, €, 0) < FCPY, +

2

Priview(A®") ¢ Tgo0a] < SniT

Using the coefficient H-technique, now we only need to bound the relationship between the interpola-
tion probabilities. We fix M = (M1, ..., My) € (B*)? and T = (T4, ..., Ty) € BY such that the M; € B™ are
distinct and the T; are also distinct. Let m; < ¢ for all i and write) ; m; = m < 0. Now, a permutation 7 is
called bad if
(i) Fcoll;(OV) holds, or
(ii) out™(M,)[i] = Ty forsomer, 1’ € [q], i € [m,].

166 —— A.Jhaand M. Nandi, Revisiting structure graphs DE GRUYTER

All other permutations are called good. We define an equivalence relation ~ on Perm as m ~ i’ if
in"(M,) = in™ (M,) for all r. It is clearly an equivalence relation and a good permutation can only be re-
lated with another good permutation. Let € be an equivalence class consisting of some good permutations.
Let s be the number of distinct intermediate inputs for the computation of all CBC,(M,) where 71 € C. Note
that s is the same for all 7 € C. Then, |C| = (2" — s — q)! as the outputs of exactly (2" — s — q) inputs of 7 are
determined. Since the T; are not intermediate outputs, we have

e 55 1)) = (2 - s

(since g additional restrictions on input-output are being added). So for any class of good permutations €,

(2" - s)!

- 7 —nq
Qs—qi =

PrIM 2, T | T e €] =

Thus,
CBC CBC . “n
PrIM+— T]>) Pr{M+— T|II € €] x Pr[Il € €] > Pr[ITis good] x 27,
@ is good

So it is sufficient to bound a random permutation being bad. Then we will be done by using the coefficient
H-technique as stated in Theorem 3.4. By definition of full collision probability, the first condition for a per-
mutation to be bad can happen with probability at most FCPZ;. The second condition says that we sample
at most m outputs of a random permutation and one of them belongs to the set {T+, ..., T4}. This can hap-
pen with probability at most mq/(2" — m) which is further less than mq/2"~! provided m < 2"1, Note that
m < 0. If m > 21, then the above bound holds trivially. So the probability of bad permutation is bounded
by FCPZ; +mq/2"1. After applying the coefficient-H technique, we have proved the result. O
Remark 4.3. Note that FCPZ; <q(q- 1)FCP;?2{ by considering all ordered pairs (M;, M;). This also proves
the original claim from [2] as stated in inequality (2). In fact, it is potentially a better bound than the original
as it uses the total number of blocks o instead of £¢. In [2], it is proved that

of 80 64%
<

FCP), < o0+ 5

In Section 7 we revisit the above bound. In particular, we revise the proof in light of the flaw in [2, Lemma 10]
and get an increment in the multiplication factor. Moreover, our revised bound of FCPS; would be in the order
0q/2" instead of £q%/2" (whenever £ < 2"/3). So our analysis rectifies the previous proof and also provides a
better bound in some cases (e.g., average message length is much smaller than the length of longest messages
which may occur when message lengths are very skewed).

5 Revisiting structure graph

In the previous section we have seen how the PRF advantage of CBC or EMAC is essentially reduced to bound
some collision events of internal inputs or outputs of the underlying permutation. Thus, it would be useful
to have an object which deals with the intermediate inputs and outputs. The structure graph does so and it
has been used to bound the (full) collision probabilities in [2]. In this section we revisit the structure graph
and show that one of the main claims in [2] (namely, [2, Lemma 10]) about structure graphs is false.

Notation and conventions for this section. Let us fix a tuple of messages M = (M1, . . ., M) throughout this
section where M; € B™ andlet m := Z?:l m; and max; m; = £.

DE GRUYTER A.Jha and M. Nandi, Revisiting structure graphs —— 167

5.1 Intermediate inputs and outputs

Index set. We first collect all intermediate inputs and outputs which are obtained through the computation
of CBC,(M,) for all r. These intermediate values will be defined as a sequence over a two-dimensional index
set. Each index is a pair where the first element of the pair corresponds to the message number and the second
element is the block number of that message. More formally, we define the index set

J={(ri):relql,iec[ml}

and the dictionary order < on it as follows: (r, i) < (r', i) if r < ' orr = ¥’ and i < i’. Let x be a sequence over
thisindex set. For any r € [g], we denote the subsequence (x[r, 1], ..., x[r, m;]) by x[r, *]. Sometimes we also
consider the index set Jo = Ju {(, 0) : r € [q]}, and the natural extension of the order < on Jy.

Sequences for intermediate inputs and outputs. We denote the sequences of intermediate outputs and inputs
over the index set J as out”(M) and in™()\), respectively, where

out"(M)[r, #] = out™(M,), in"(M)[r, *] =in"(M,) forallr e [q].

For a single message, we have seen before that the intermediate input sequence is uniquely determined by
the intermediate output sequence and we denote the association by a function out2in. The same is true for g
messages and we extend this definition as follows: Given any block sequence y over the index set J, we define
out2in(y) as a block sequence x over the same index space where x[r,] = out2iny, (y[r, *]), r € [g]. Thus, for
any 71, we have out2in(out”) = in”.

5.2 Structure graphs and block-vertex structure graphs

A block-vertex structure graph is a graph theoretical representation of intermediate output out”. The block-
vertex structure graph Bstruct” for a permutation 7 is defined by the set of labeled edges

q
E := | J{(out™[r, i - 1], out™[r, il; M [i]) : i € [m,]}.
r=1

Clearly, G is a union of M;-walks for all i € [gq], and vertex O" € V has positive out-degree. Let Bstruct(M)
denote the set of all block structure graphs for the tuple of messages M. Note that as explained below,

A
vow = n(vel)=w.

So, forevery v € V, all outward edges (similarly for inward edges) have distinct edge labels. Using this property,
itis easy to see that the walks are unique and we denote them by wy, or simply w; whenever the message tuple
is understood. See Figure 4 for a single message (i.e., ¢ = 1) in which the input and output vectors are stored
in a directed graph.

While storing the intermediate sequences as a set of labeled edges, we may loose the order as well as the
repetition of the elements. Interestingly, we see that we can uniquely reconstruct the intermediate sequences
from such an edge-labeled graph by using uniqueness of M;-walks. More precisely, out™[r, i] = w,[i].

Let G = (V, E) be a labeled directed graph and f: V — V* a bijective function. Then one can define
a labeled directed graph G* = (V*, E*) isomorphic to G for which f is an isomorphism. More precisely,
((u, v); a) € E if and only if ((f(u), f(v)); a) € E*. When f is an injective function, we can view the function
where the range set is the image set of the function and this makes the function bijective. We call the graph
obtained as described above a transformed G with respect to f.

Definition 5.1. For every vertex v of a block-vertex structure graph G = (V, E), we define a mappinga : V. — J
as ay = a(v) = (r, i) where (1, i) is the minimum index such that w,[i] = v. Clearly, it is an injective mapping
with animage set, say V*. The structure graph G* = (V*, E*) associated to m is the a-transformed block-vertex
structure graph.

168 —— A.Jhaand M. Nandi, Revisiting structure graphs DE GRUYTER

1 2
o o

0

Figure 4. Let M; = (1,0, 0,0, 0) and (1) = 2, m(2) = 3, n(3) = 2. For any such m, we have out” = (2, 3, 2, 3, 2) and
in™ = (1, 2, 3, 2, 3). However, the graph consists of three vertices {0, 2, 3} and edge set £ = {(0, 2), (2, 3), (3, 2)}
with labels 1, 0 and 0, respectively. We see that the intermediate input and output sequences actually can be
reconstructed from this labeled structure graph. The walk corresponding to the message My will uniquely identify
the output vector as out™ = (2, 3, 2, 3, 2), and the input vector in™ = (1, 2, 3, 2, 3) can be constructed using the
relation between input, output and message.

Mi(1] Y, Mi[1] (1,1)
Yo =0" o——>9 (1,0) o——>s
| |
| |
M;[1] : M (3] Mi[2] LN M;[1] : Mi[3] Mi[2]
| |
i(—(t(—(
Y; Mi[4] Y» (1,5) Mi[4] (1,2)
() (b)

Figure 5. Structure graph corresponding to the labeled structure graph.

Example 5.2. Let
My = (M1[1], M1 (2], M1[3], Ma[2], M1 [4]), M; = (M2[1])

be two messages, and for 7 € Perm let

in[1,] = (Yo ® M1[1], Y1 ® M1[2], Y, ® M1[3], Y1 © M1[2], Y> ® M1 [4]),
OUtﬂ[ly *] =(Y15 YZ’Y19Y2’ Y3)’ inﬂ[z’ *] =(Y0@M2[1])’ OUtﬂ[z’ *] =(Y3)'

The corresponding block labeled structure graph Bstruct” is as shown in Figure 5 (a). Following the above
steps, we arrive at a valid structure graph struct™ in Figure 5 (b).

Let w,* denote the M,-walk in G*. It is easy to see that a structure graph is again a union of M,-walks w;
starting from 0.2 A structure graph is called a zero-output graph if 0 has positive in-degree, otherwise we call
it non-zero output graph. To express it mathematically, we define a binary function Iszero such that for each
zero-output graph G*, Iszero(G*) = 1, otherwise it maps to O.

To reconstruct a block-vertex structure graph realizing G* we have to find labels from B for all the vertices
in a “consistent manner”, and we call such a labeling valid. Basically, we need to find an injective mapping
a~!: V* - Bsuch that image set of a1 is V and a := (a~1)~! is an isomorphism.

Definition 5.3. Aninjective function Y : V* — B is called valid block label for a structure graph 8 = (V*, E*)
if the graph G = (V, E) is a block-vertex structure graph where

(i) V={0"u{Y;:=Y(i):i€ V*}and

(ii) E isthe edge set after relabeling i by Y; (we assume Yj := O™).

Necessary condition of valid labeling function Y. Now we try to find necessary conditions of a valid la-
beling. First of all, by definition, Y; should be all distinct as the valid block label is injective (distinct ver-
tex should get distinct block label). In addition to this, whenever e; := (u, z), e, := (v, 2z) € E we must have
Y, @ L(ey) = Y, ® L(ey) as these are input for the vertex z. An input-collision or simply a collision of a graph G
is defined by such a triple 6§ = (u, v; z). The set {u, v} is called the source of the collision whereas z is called the
head of the collision. We also say the edges e; and e, are colliding edges. Thus, an input-collision § = (u, v; z)
induces a linear restriction Ls : Y, ® Y\, = ¢s where cs = £L(u, z) ® £(v, z) € B. Thus, a valid block label must
satisfy the above condition for all collisions . Let Ag+« denote the set of all collisions of G*. Let rank(G*)

2 Note that, as per the convention used here and in the preceding discussion, wj [i] = a(w;[i]).

DE GRUYTER A.Jha and M. Nandi, Revisiting structure graphs —— 169

denote the rank of all linear equations {Ls : § € Ag-}. The accident of a structure graph is defined depending
on whether the graph is zero-output or not.

Definition 5.4. We define the accident of a structure graph G* as Acc(G*) := rank(G*) + Iszero(G*). Thus, the
accident of a non-zero structure graph G* is defined to be rank(G*), whereas the accident of a zero-output
graph is rank(G*) + 1.

Lemma 5.5. Ifthereis avertex v within-degree d, then rank(G*) > d — 1. Moreover, if the graph is a zero-output
graph, then Acc(G*) > d.

Proof. Letvq,...,vq beall predecessors of v. Let us define an input-collision §; j := (v;, vj; v). It is now easy
to see that Ls,; = L1,; ® L1,j. Moreover, the L, ; are linearly independent. Thus, the first part is proved. The
second part is also trivial from the first part and the definition of the accident. O

Remark 5.6. Another simple but useful observation is as follows: if a structure graph G* has at least two
collisions with different source, then rank(G*) > 2.

Let S = (V*, E*) be a structure graph with rank r and |V*| = s + 1. Then from linear algebra we know that
some s — r choices of Y; values will uniquely determine the rest, and so the number of valid block labelings is
at most P(2", s — r). Any valid choice of Y induces a block-vertex structure graph G = (V, E) such that G* = S.
Note that s + Iszero(G) is the number of vertices v € V with positive in-degree. So exactly (2" — s — Iszero(G))!
number of permutations can result in a block-vertex structure graph G. Therefore,

(2" — (s +Iszero(G)))! 1

Pr[Bstruct!! = G] = = '
r[Bstruc] on P(2", s + Iszero(G))

So
Pristruct’! =S]=) Pr[Bstruct”" = G].
G:G =S

Here the sum is taken over all block-vertex structure graphs G such that the induced structure graph G* = S.
As there are at most P(2", s — r) many vertex-label structure graphs (by bounding the number of valid block
label functions as described above and using s + 1 < m), we proved the following important result.

Lemma 5.7. For any structure graph S with accident a, we have

Pr[StrUCtH = S] < m.

Now we state another important result which bounds the number of structure graphs with accident a. The
proof of this result can be found in [2, 31]. So we skip the proof here.

Lemma 5.8. The number of structures graphs associated to M = (M1, . .., M) with accident a is at most ('g)a.
In particular, there exists exactly one structure graph with accident 0.

Corollary 5.9. Let a > 1 be an integer. Then,

2
Pr[Acc(struct™) > a : II K2 Perm] < (r;_n)a

This can be shown by making a straightforward algebraic simplification after applying Lemma 5.7 and
Lemma 5.8. So we skip the proof.

5.3 True collision and an observation on [2, Lemma 10]
The definition of the accident is not obvious by looking at the structure graph. It would be good to have

some transparent definition for a structure graph. True collision is such a metric. Let G* be a structure graph
and w; the M;-walks. Suppose we reconstruct the graph G* again by making all the walks w; for i =1

170 —— A.Jhaand M. Nandi, Revisiting structure graphs DE GRUYTER

My[2]

Figure 6. The counter-examples. (@) M1 = (M1[1], M1[2], M1[3], M1[2], M1[4]) and M, = (M,[1]) are two messages such that
M3 [1] := M1[1] ® M1[3] @ M1[4]. Here we have two input-collisions d; := ((1, 0), (1, 2); (1, 1)) and J; := ((1, 0), (1, 2); (1, 5)).
The two linear equations L5, and Ls, corresponding to the two input-collisions are the same as Y(1,0) ® Y(1,2) = M1[1] @ M1[3]
and so the rank (which is also the accident in this case) is one. However, the true collision is two (at (1, 1) and (1, 5)) which
contradicts [2, Lemma 10]. Similar arguments can be given for figure (b), where My = (M1[1], M1[2], M1[3]) and M, = (M,[1]),
such that M, [1] := M{[1] ® M{[2] ® M[3].

to g. While we walk along w; for all i, we count how many times we reach an existing vertex which in-
creases its current in-degree. The total count is defined to be the number of true collisions of the graph.
Mathematically, one can define it as follows: For a vertex v € V* \ {0}, we define the number of true colli-
sions at v by TC(v) := |[nbd(x — v)| — 1 and TC(0) = |[nbd(x — 0)|. So the above count is actually the sum
TC(G*) := Y ,cy- TC(v). By Lemma 5.5 we know that Acc(G*) > TC(v) for all v € V*. From the definition of
the accident it is also obvious that Acc(G*) < TC(G*).

Lemma 10 of [2]. To identify all structure graphs with accident 1 it would be good if we have some rela-
tionship between true collision and accident. Lemma 10 of [2] was meant for this. It says that when g = 2,
Acc(G*) =1 = TC(G*) = 1. This lemma is wrong due to the counter-examples given in Figure 6. The lemma
has been used to bound the PRF advantage of CBC [2] and EMAC [2, 31]. As this becomes wrong, it would be
very important to look back the proof and rectify the results as much as possible.

6 Characterization of accident-one structure graphs

In this section we characterize all structure graphs with accident 0 or 1. We have already seen that the authors
of [2] have missed some structure graphs for two messages. Thus, it is important to see whether there are
other such graphs or not. To do so we characterize single message structure graphs which is much easier
to convince. Later in this section we characterize all structure graphs for a pair of messages satisfying some
event. Note that from here onwards we will not deal with the block-vertex structure graph. So for simplicity
from here onwards we will use G (instead of G*) to represent a structure graph and w, (instead of w}) to
represent the M,-walk in the structure graph.

Let struct, (M) = {G € struct(M) : Acc(G) = a}, the set of all structure graphs associated to M with ac-
cident a. In particular, we are interested in structo(M) and struct; (M), the sets of all structure graphs with
accident 0 and 1, respectively. Lemma 5.8 says that the number of graphs with accident 1 is at most (}) where
m =Y, m; and M; € B™. The number of structure graphs with accident 0 is at most one. In the following we
actually identify a structure graph and hence it is unique. We call it the free graph associated to M.

Free graphs. As there is no accident, every non-zero vertex has in-degree 1, and O has in-degree O (i.e.,
non-zero output graph). Being a structure graph, G is a union of M;-walks wy,. An M;-walk starting from
0 with no vertex having in-degree 2 must be a path. So G is a union of M;-paths wy,. Now for any i + j, let
p = LCP(M;; M;). Then, w;[1..p] = wj[1..p] and w;[p + 1] # w;[p + 1] (if these are defined). It is also easy to
see that w;[1..p], wi[p + 1..m;], and wj[p + 1..m;] are disjoint paths. Thus, any two paths w; and w; are the
same up to the length of the largest common prefix of M; and M; and afterwards they remain disjoint. We call
this unique graph free graph. A free graph for three messages is illustrated in Figure 7.

DE GRUYTER A. Jha and M. Nandi, Revisiting structure graphs =— 171

>e Wy [m;]

iw;[m;]

Figure 7. Free structure graph for three messages.

Oe _ ip-1 io Oe _ ip—-1 io
T T -- S - —-_
i N
S —_-—
- —— =
2@ —
7 (tc+s+1) jo-1 jo—1
() (b) (0)
Oe ip—1
0 _io—l io ==
¢ Ok\\\ io—1
jo-1 s -5 <
Jo = 1o
‘-’/’(tc+s+1)
(d) (e) ®

Figure 8. Characterizing all accident-one structure graphs realizable by a single message. The dashed lines in these
illustrations represent optional subwalks. Here the vertex w(i] is represented by i, for notational simplicity.

6.1 Accident one for a single message

Now we consider the structure graph for a single message M € B*. Note that any such structure graph must
be a walk w of length m. We say a node w(i] is fresh in the walk if w[i] + w[j] for all j # i.

Case A: 0 has positive in-degree. As 0 has positive in-degree, there can not be any more collision pairs,

otherwise the accident would be at least two. Let ¢ be the minimum positive integer such that w[c] = 0, so

we have a cycle (w[0], w[1], ..., w[c]). Let X be its label. Suppose M = X{||Y where i is the maximum positive

integer for which we can write M in this form. So X is not a prefix of Y. Let s = LCP(X; Y). Thus, w(ic + j] = w{j]

forallj € [0..s].

(i) IfYisaprefix of X, then the structure graph is a cycle of size c ending at w[s]. Itis illustrated in Figure 8 (a)
where the = is empty.

(ii) If Y is not a prefix of X, then w[ic + s] = w[s] and wl[ic + s + 1] # w[s + 1]. Further, wlic + s + 1] # w[j]
for all j € [c] since otherwise we get a collision. In fact, it can be shown that all subsequent nodes are
fresh. Suppose not, then let j > ic + s + 1 be the first such integer for which w[j] = w[k] for some k < j,
hence we obtain a collision. So the structure graph is an edge disjoint union of a cycle of size ¢ and a path
starting from s, as illustrated in Figure 8 (a). The length of the cycle is ¢, whereas the length of the path
is m — ic — s. We also call this graph p’ graph. The tail (path from 0 to the cycle) of the p’ walk is empty.

Case B: 0 has in-degree 0. As 0 has in-degree 0, there is a collision 6 = (ug, vo; 2). In fact, all other collisions
must have the same source as that of 6.

Consider the M-walk (w[0], w[1], ...) which is clearly not a path. Let (ip, jo) be the smallest positive
distinct integers such that w[ip] = w[jo].> As O has in-degree 0, so 1 < iy < jo and we can assume that
wlip — 1] = up and w[jo — 1] = vo. Now, as in Case A, let A = £L(w[0..ip]), X = L(Wl[ip..jol), jo — io = c. Then,
A| X is the prefix of M. Let t be the largest positive integer such that M = A[|X!|Y. So X isnot a prefix of Y. If Y

3 ip and jo can be fixed one by one. First fix iy to be the smallest positive integer such that w(ig] = wl[jl, j € [ip + 1..m]. Now, fix
the smallest positive integer jo such that w(jo] = wlip].

172 — A.Jhaand M. Nandi, Revisiting structure graphs DE GRUYTER

is a prefix of X, then we have a structure graph as illustrated in Figure 8 (d) and (f) (the end point lies inside
the cycle). Suppose Y is not a prefix and let s = LCP(X; Y).

Claim. The walk after A|X!|Y[1..s] is a path and disjoint from the rest; illustrated in Figure 8 (c).
Proof. Suppose there exists v # w[s] € w[tc + s..m] nw[1..tc + s]. We distinguish the following cases.

CaseB.1: w[tc +s + 1] = w[i], i € [tc + s]. Ifs # jo — 1, then we have a new collision &' = (w[i—1], w[tc +5];
w(i]) independent of § which increases the accident to 2. If s = jo — 1, then i # iy as X[s + 1] # Y[1]. Now
the only way to make 8’ dependent on § is to have i — 1 = ip — 1. This implies a collision at w[j] where
j € [1..ip — 1], as the walk must come back to iy — 1 at the (i — 1)-th step. This again gives a new accident.

Case B.2: w[tc +s + 1] ¢ w[l..tc + s] and w[j] = wli], i € [tc + s], j € [tc + s + 2..m]. So, there is a new col-
lision 8’ = (w[j — 1], w[i — 1]; w[i]) which is independent of §. This gives a new accident. Thus, we have
wltc+s+1.m]nw[l..tc +s] = 0.

Case B.3: w(tc + s..m] is not a path. Therefore there exist i, j € [tc + s..m] such that (w[i], w[j]; w[i + 1]) is
a collision. Clearly this will be independent from § and hence gives a new accident. So none of the cases 1, 2
or 3 is possible. O

Observe that s = jo — 1isaspecial case. In addition to this condition, suppose we have an edge e := (w[ip — 1],
wltc + s + 1]) which creates a collision §' = (w[ig — 1], w[jo — 1]; w[tc + s + 1]) dependent on . The edge e
cannot occur in a single message graph, as that will imply nbd(x — w[j]) > 2 for some j € [0..ip — 1] which
gives a new accident. But for a two-message graph this is realizable (counter-examples) as illustrated in
Figure 8 (b) and (e). We summarize our discussion in the following lemma.

Lemma 6.1. For m > 1, M € B™ and r € Perm, the graphs in Figure 8 exhaust all possible forms for G, (M)
when the accident is 1.

7 Revisiting CP,(M,, M,) and FCP,(M,, M) bounds

In this section our main aim is to revise the proofs of CP and FCP bounds and consequently the PRF advan-
tages in [2]. As mentioned earlier the motivation for this revision is our observation that one of the main tools
[2, Lemma 10] in bounding |struct;[coll]| and |structy [Fcoll]| is false.

We start off with a discussion that establishes the role of structure graphs in the PRF security analysis of
CBC-MAC and EMAC. Note that we have already seen that bounding PRF advantages of CBC-MAC and EMAC is
reduced to bounding full collision probability FCng , and collision probability CP;'E,’ , Tespectively. So it would
be sufficient to bound these probabilities. For this we first prove a general claim (Proposition 7.1).

Structure graph events. Let M = (M4, ..., My) be a tuple of g messages. Let E be an event defined on the
intermediate output sequence out™(M) for a permutation 77. We say that the event E is defined by a structure
graph if there is an event E' defined on the structure graph struct” such that E holds if and only if E' holds. We
call such an event a structure graph event. Moreover, we say that E is non-free if it is false for the free structure
graph (the structure graph with accident 0). Note the collision event for any distinct messages as well as the
full collision event for prefix-free messages are examples of non-free structure graph events. In consistency
with our notation, we denote by struct,(E) the set of all structure graphs with accident a and satisfying a
non-free event E.

Proposition 7.1. Let E be a non-free structure graph event for the message tuple M. Then,

|struct;[E]|] m*
Prl'[[E] < —2" — ﬁ.

DE GRUYTER A.Jha and M. Nandi, Revisiting structure graphs = 173

Proof. Note that for any structure graph event E,

Pru[E] = z Pr[struct! € struct,[E]].

a=0

As the event is non-free, the sum can be done for a > 1. Moreover, we know that

I m*
Pr[Acc(struct™) > 2] < S

So the result follows from Lemma 5.7 which bounds the probability of realizing a structure graph with acci-
dent a. O

7.1 Revisiting the CP, , bound

Suppose M; € B™ and M, € B™ such that M[m;] # M;[m>], 0 < my < m,, since otherwise we can re-
move the largest common suffix which does not change the collision probability. Note that the first mes-
sage M; now can be empty (then M, is not, as they are distinct) and in this case collision event means that
out(M,)[m,] = O". This is a structure graph event because 0 is a vertex of the structure graph. Due to Propo-
sition 7.1, we only need to bound the number of structure graphs with accident 1 satisfying the coll event for
the pair of messages. More precisely, we have to bound the size of the set struct; (M1, M>)[coll].

Case 1: M, is an empty message. In this case, we have
structy (M1, My)[coll] = structy (My)[wp, [m3] = 0].

Now, we make the following claim which is essentially [2, Lemma 14]:
Claim. [structy(M>)[w>[m>] = 0]| < d(m>).

Proof. Let x be the smallest positive integer such that w,[x] = 0. Let X be the label of the walk w-[0..x]. If
M, = X% with some positive integer d, then struct; (M,)[w2[x] = 0] contains exactly one structure graph. Note
that x must divide m, and hence the number of possible choices of such x is at most d(m;), the number of divi-
sors of m;. Suppose M, = X4||Y for some non-empty Y where d is the largest such integer of this form. If Y is a
prefix, then W;,[m;] is the point in the cycle and it must be 0. This can be zero only if Y = X which contradicts
the maximality of d. So now assume that Y = Y7 |Y, such that Y7 is the largest common prefix of X and Y, and
Y, is some non-empty string. If s is the length of Y7, then Y,[1] # Y[s + 1]. Thus, wa[dx + s + 1] # wa[s + 1].
As it is a zero-output structure graph, we can not have any collision. So there is no way to obtain w,[m;] = 0.
This proves the claim. O

Case 2: M is not an empty message. In this case, we have a collision
(U :=wi[my - 1], v = wa[my - 1], z := wy[my])

as the labels of the last edges for walks w; and w, are different. Any other collision, if any, must have the
same source set {u, v}. Moreover, 0 can not have positive in-degree. Now we consider different sub-cases:

Case 2.1: Both w; and w; are paths. In this case, the union of wy[1..m; — 1] and w,[1..m, — 1] is a free
graph (as wi[m, — 1] and w,[m> — 1] can not appear before in the graph and so no collision among the path
can occur). This gives only one choice of the graph as shown in Figure 9 (a). So the number of choices is
bounded by at most 1. This is proved as part of the incorrect lemma [2, Lemma 15].

Case 2.2: w; is not a path. Then we have already characterized all possibilities of w,. So there exist some
integers t, ¢ such that w;[1..t] is a path with w;[t — 1] = u and w»[t] = p, w;[t..t + c] is a cycle of length ¢
such that w [t + ¢ — 1] = v. (Note that w[t — 1] # w,[m> — 1].) Now, wi[m; — 1] = u.

Claim. wi[1..m; - 1] = wy[1..t - 1] and so m; = t.

174 =— A.Jhaand M. Nandi, Revisiting structure graphs DE GRUYTER

(a) (b) (©)

Figure 9. Characterizing all accident-one structure graphs realizable by two messages which satisfy the coll event.
Dashed lines represent w; and solid lines represent w;.

Proof. Let s be the length of the largest common prefix of wy[1..m; — 1] and w,[1..t — 1]. If s < t — 1, then
in the walk w; there is no way to reach u without coming back to the walk w,[1..t — 1]. Coming back is not
possible as it leads to a collision with a different generator set. Similarly we can disprove that s = ¢t - 1 and
m, > t. Thus, we have m; = tand wq[1..m; — 1] = wp[1..t - 1]. O

Now, we distinguish two cases for the choices of p = LCP(M1; M>).

Case 2.2.1a. If wy[p] = z, then we have the structure graph as illustrated in Figure 9 (b). In this case, M; is
a prefix of M;. The number of such structure graphs is again at most d(m, — my) (similar to the previous case
where M, is the empty message). This is also [2, Lemma 13].

Case 2.2.1b. If wi[p] # z. Then we get a case which was not considered in [2]. In this case, w;[p] should be
a fresh node, otherwise we get a collision with different source set. Thus, we get a structure graph which is
shown in Figure 9 (c). Let M1 = A|la where A = M1[1..t — 1] and a = M [t]. Note that ¢ — 1 is the length of the
largest common prefix of M; and M,. Then,

M, = A|bI(XIx)% Y Xllc, wherec=M>[m,],b=M[t],x=aebec.

The choice of X is variable. But it must satisfy the above for some d > 1. In fact, X is determined by its length
which is c. Again, ¢ must divide m, — m; and hence the number of choices of c is at most d(m, — mq) - 1.

This completes the characterization of all structure graphs satisfying coll with accident 1 and bounds
the number of such graphs for all cases. Note that Cases 2.2.1a and 2.2.1b cannot hold simultaneously.
But, Cases 2.2.1b and 2.1 can hold simultaneously which makes the total count of these two cases at most
d(m;, — my). Since the order of messages does not matter in coll, we are done.

Lemma 7.2. Let M1 € B™, M, € B™2,

(1) If My <1 M, then struct;(My, M>)[coll] is of the form illustrated in Figure 9 (b) and the number of such
graphs is at most d' (m5).

(ii) If M1 <, M>, then structy (M1, M>)[coll] is of the form illustrated in Figure 9 (c) and the number of such
graphs is at most d'(m;).

(iii) In all other cases, structy (M1, M>)[coll] is of the form illustrated in Figure 9 (a) and the number of such
graphs is at most one.

Corollary 7.3. We have |struct, (M1, M;)[coll]| < d'(m,) for any distinct messages M1, M, with m; <m,. Thus,

d'(e) 16¢*

any
CP,, < Iy RSy

7.2 Revision of FCP} , bound

Since Fcoll is a non-free structure graph event, we have, using Proposition 7.1,

[struct; (Fcoll)] (my + my)*
FCP) (M1, M) < .
n (M1 2) 2"~ my - m, + 52n
Thus, it would be again sufficient to bound the number of structure graphs for two messages with accident 1

satisfying full collision property. Bellare, Pietrzak and Rogaway [2] proved |struct; (Fcoll)| < 4 max{m;, m,}.

DE GRUYTER A. Jha and M. Nandi, Revisiting structure graphs =— 175

While bounding |struct; (Fcoll)|, they proved a strong result [2, Lemma 19] that will be also useful in our
analysis. We reproduce it here in our notations.

Lemma 7.4. Forb € {1,2}and any i € [0..mp],
|structy (M1, M) [wp[i] € wp[0..i— 1,1+ 1..mp]]| < my.

Since the proof of Lemma 7.4 can be found in [2], we skip it here. Now, we revise the FCP bound to
|structy (Fcoll)| < 3(my + m,) and the new bound is as follows.

Lemma 7.5. We have
3(my+my) (ma + my)*

pf
FCP,, (M1, M;) < P — Son

Proof. We need to bound the number of structure graphs for a pair of prefix-free messages M; € B™ and
M, e B™2 which satisfy the Fcoll event and have at most accident 1. Note that the event implies that the
structure graphs must have at least accident 1 as the messages are prefix-free. The event Fcoll can be written
as wo[ms] € wo[0..my — 1] Uwy[my] € wy[l..mq].

Case 1: wy[m;] € w»[0..m> — 1]. This case can be bounded to at most m, by direct application of Lemma 7.4.

Case 2: wo[m;] € wq[1..mq]. Suppose Fcoll(M1; M,) happens due to w,[m,] = wy[r] for an arbitrary r €
[1..mq - 1]. Then Fcoll(M;; M>) is equivalent to coll(M1[1..r], M>). For simplicity let M} := M;[1..r]. Let
s := LCS(M!; M3). Then M/ [s — 1] # My[m, —r + s — 1]. Let

M; =Mi[1l..s-1], M;=M[l..my-r+s-1].

From Lemma 7.2 we know that G* € struct (M7 ; M5)[coll] must be one of (a), (b) or (c) in Figure 9. Note that
G* is a subgraph of some G € struct; (M1; M>)[Fcoll].

Case 2.1: G* is as in Figure 9 (a). In this case, w; and wj are paths. For a fixed r the only possible collision
isat (wj[s - 2], wj[my —r + s - 2]; wi[s — 1]) and hence the number of such graphs is at most 1. There are
at most m, possible values for r. So, the number of choices for G € struct;(M1; M;)[Fcoll] is at most m.

Case 2.2: G* is either as in Figure 9 (b) or (c). In this case, at least one of wj and w; is not no path. Without
loss of generality assume wj is not a path. Let p* = LCP(M7; M3). We know that M <1 My and M; <1 M,.
Thus M1[1..p*] = M[1..p*]. Now we must have a collision (u, v; z) in wi. From Lemma 7.2 we know that
the graph can be either Figure 9 (b) or (c) depending on whether z = wj [p*] or z = wj[p* + 1]. Next we make
two claims which will enable us to bound the two cases. The proofs for these two claims are given later in the
section.

Claim 1. If G* is Figure 9 (b), then w1 [LCP(M1; M>)] is not fresh in w.
Claim 2. If G* is Figure 9 (c), then w1 [LCP(M1; M>) + 1] is not fresh in w.

Recall that in a walk w a vertex wli] is not fresh if there exists j # i such that w[j] = w[i]. By Claim 1 we
know that w{[LCP(M; M>)] is not fresh when G* is as in Figure 9 (b). Similarly, by Claim 2 we know that
w1 [LCP(M1; M>) + 1] is not fresh when G* is as in Figure 9 (c). So using Lemma 7.4, we bound the number
of such graphs G to at most m; + m; = 2m; when wj is not a path. Similarly we have at most 2m, choices
when wj is not a path. Therefore the total number of choices in Case 2.2 is at most 2(m; + m;). Combining
Cases 1, 2.1 and 2.2, we have at most 3(m, + m,) choices. The result follows. O

Proof of Claim 1. If G* is like Figure 9 (b), we must have z = w}[p*]. Let g be the minimum index such that
wilgl = wilp*].Let P = L(w][0..p*]) and X = L(w][p*..q]), c = g — p*. Then M] = P|X and M; = P. As M}
and M; are formed by removing the largest common suffix from of M} and M,, respectively, therefore

M} = (M;|X"]Y) = (PIX"*Y) and M, = (M;1X2|Y) = (PIX2||Y),

where i1, i, > 0 are the largest such indices. Since M} and M, are prefix-free, we have i; + 1 > i,. Now
My = (M}11Z) = (P|X"*1||Y||Z), where |Z| > 0. From now onwards we will work on the walk w; (instead of w}

176 —— A.Jhaand M. Nandi, Revisiting structure graphs DE GRUYTER

which is a subwalk of wy) corresponding to M. If Y is a prefix of X, then M, <y M; which contradicts the
prefix-free condition. So Y is not a prefix of X. If X is a prefix of Y, then it contradicts the maximality of i1, i>.
So X is not a prefix of Y. Assume Y = Y| Y, such that Y; is the largest common prefix of X and Y, and Y5 is
some non-empty string. If p is the length of Y1, then Y>[1] = Y[p + 1] # X[p + 1]. Thus,

Mq[1..iy¢c+ p] = My[1..ic+p] and Mqlioc+p+ 1]+ My[ioc+p + 1].

So, p = LCP(M1; M>). Further since i, < i1 + 1, wq[p] is traversed twice. Thus, w1 [LCP(M1; M;)] will not be
fresh. Note that we started off with an arbitrary r. So w; [LCP(M1; M>)] will not be fresh irrespective of the
value of r. O

Proof of Claim 2. If G* is like Figure 9 (c), we must have z = wj [p* + 1]. As noted earlier in the revision of the
CP bound, this case was missing in the proof in [2]. Using a similar line of argument as in the previous case,
we can conclude that irrespective of the value of r, the cycle goes through w1 [LCP(M1; M;) + 1] twice. Thus,
w1 [LCP(M1; M>) + 1] is not fresh. O

Note that our approach in Case 2.2 above is a bit subtle. We used Lemma 7.2 to identify a fundamental prop-
erty (cycle goes through p or p + 1 twice) and then exploited this property to bound the counting. A straight-
forward approach of summing the counts for graphs in Figure 9 (b) and (c) over all values of r will give a
worse bound of mpd'(myp), b € {1, 2}. To get a tighter bound of m;, we needed this subtlety. Now we extend
the bound for FCP,pr(M 13 M>) to FCPZ;, in order to get the revised prf bound for CBC-MAC:

FCP’, < Y FCP} (M;; M)

i#j€lq]
3(m; + m; m; + m;)*
< Z zn(_rln _;,)1 +(122n))
itjelq] 1=
6(mi + mj) (m,- + mj)“
+
= n 2n
i#j€lq] 2 2
12mq 16mgqe> 120q 160qe3
< 2cmd, Comat 2299, 2594E 3)
on 22n on 22n

Here we have computed the bound in terms of g, £ and 0. Another approach (as used in [2]) is to bound the
value using g and ¢ only, in which case the bound will be

of _ 120q%> 16£%¢?
FCP,, < -t

Using Proposition 4.2 and (3), we get the following theorem.

Theorem 7.6. We have

of l40q 160qe® g2
AdVCBC(q’ ¢, U) < on + 22n + on+l :
This gives a bound of O(aq/2") for ¢ < 2"/3, As noted earlier, this is a better bound whenever the average

message length is much smaller than the length of the longest message.

8 Revised security analysis of EMAC

In this section we revisit the PRF analysis of EMAC due to Pietrzak [31]. We first identify the actual flaw in
the proof and then provide a different proof to obtain, in fact, a better bound of EMAC (in terms of ¢). For
notational simplicity we will keep our bounds in order notation and avoid the constant factors.

DE GRUYTER A. Jha and M. Nandi, Revisiting structure graphs =— 177

8.1 Flaw and revision of PRF advantage of EMAC

The proposed bound for EMAC as stated in [31] is

2 8
prf q 14
AdvEY, (g, ¢,0) = 0(5(1 + ﬁ))
provided ¢? < q. Thus, it becomes tight bound g?/2" when ¢ < min(g*/2, 2"/8). To show the above result we
need to bound the collision probability CP, ¢. One possible approach is to group the ¢ message into 0(q/¢?)
groups, each group consists of about £2 messages. So the collision event among g messages implies that a
collision occurs in two of the groups. Since coll is a non-free event, Proposition 7.1 gives

|structy (V0)[coll]]|) . O(qtet)

CPCIJ’ = O(on 22n

Applying this with g = 2¢2 (i.e. for two groups), we have

CP,, = O(Z—j) x CPp2 ¢ = O(Z;Nn) + O(q;;f),

where N denote the number of accident-one structure graphs satisfying coll for £ messages with maxi-
mum length ¢£. The 0(q?/¢*) term is due to the number of ways in which we can choose two groups. In [31,
Lemma 4], Pietrzak claimed that N = O(¢*). So, plugging this bound for £, we have the desired bound. Now,
to prove this bound for N, Pietrzak considered two cases for a pair of messages M and M’ (note that accident 1
and collision must occur for a pair of messages). More precisely, it can be shown that

N = ¢* max |struct, (M.M")[coll]| + £*. (4)
M¢ M

Recall that M ¢; M’ means that they become prefix-free after removing the largest common suffix of M and M'.
Claim ([31, Claim 1]). If M ¢, M’, then |struct;(M.M")[coll]| = 1.

If this claim happens to be true, then N = O(¢£*). However, we have seen before there exist M, M’ with M <, M’
(such that M ¢; M') with |struct, (M, M")[coll]| = d(¢ - 1). Thus,

[structy (M, M")[coll AM ¢1 M']| = O(d' (¢)).

If we plug in this, we find the modified bound as N = 0(£*(d'(¢))?) and so the revised bound for the collision
probability becomes 0(g2d’(£)/2") which is not tight.

8.2 Simple proof of EMAC

We have seen in the last subsection that the influence of the flaw from [2, Lemma 10] is more serious having
a tight bound of EMAC. So it is very crucial to revisit the security analysis of EMAC. One possible approach
to fix the proof of [31] is to bound N in a different way. For example, we can consider two cases M <; M’ and
M <, M' (i.e., M[1..m - 1] <1 M, but M ¢, M"). For any pair of messages which are not related by any one of
these two relations, the number of structure graphs can be shown to be one. However, we need to show that
the number of remaining graphs is still about £* (see second term of (4)).

In this subsection we actually take a slightly different and, in fact simpler, approach. Instead of making
groups of g messages, we directly bound the number of structure graphs for a slightly different choice of per-
mutations. We will ignore all those permutations (i.e. bad permutations) which induce one of the following:
(i) For some pair of messages M; and M; the accident is two or more.

(ii) For some message M;, the accident is one.

Let ¢ be the property to represent the complement of the event. Let S be a structure graph associated to a

g-tuple of messages. We recall that S is a union of g walks w;. We use the sub-graphs S; and S; ; to represent the

178 —— A.Jhaand M. Nandi, Revisiting structure graphs DE GRUYTER

walks w; and w; U wj, respectively. Note that these are again structure graphs associated to M; and (M;, M;),
respectively. In this notation, ¢ is a property on all structure graphs S on M such that Acc(S; ;) < 1 foralli # j
and Acc(S;) = O for all i. We call a permutation good if its induced structure graph satisfies ¢, otherwise we
call it bad. Now we claim our new bound.

Lemma 8.1. We have

2 2 4 2
cp 00 < 0(L)+ 0(51) + o(S55).

Proof. We first bound the probability of bad random permutation. For a bad permutation, (i) there exist i
and j such that the accident for the pair of messages M; and M; is at least 2, or (ii) there exists i such that the
accident for M; is at least one. The first event can happen with probability 0(£*g?/22") by using Corollary 5.9.
Similarly the second event can happen with O(£2q/2™). Now we bound the probability p := Pr[coll A ¢b]. Note
that coll implies that there exist i and j such that the collision event holds for the message M; and M;. Now ¢
implies that the accident of S; ; is one whereas the accident of S; and the accident of S; are zero. In Section 6
we have characterized all structure graphs for a pair of messages with accident 1 satisfying collision. Among
all possibilities only one structure graph satisfies ¢p. Hence there is exactly one structure graph. This implies
that Pr[coll(M;, Mj) A ¢] = O(27"). Hence, by summing over all possible i, j, we have

)

|>-Q
N

Prcoll(M) A ¢] = O(

N

The above discussion can be summarized as follows:

CP, (M) = Prig[colly (M) A (struct™ (M) € struct(M)[¢])] + Pr[struct™ (M) ¢ struct™(V)[¢]]

_ Z O(|struct(M;, ;Vflj)[coll/\ q,'>]|) s O(ezz_r?) . O(ez‘*zqnz)

i#]

2 2 4 2
- o(g—n) + o(g—f) + o("zzqn)-

This completes the proof. O

Theorem 8.2. We have
2q2 qe2 q2€4)

any
Advg,(q,¢,0) = O(on t 5mm S):

So if ¢ < min{g'/2, 2"/4}, then
any q2
Adviyac (4. €,0) = 0(35)-

Note that our theorem gives a tight bound for a better constraint than what we had before in [31]. The condi-
tion g > £2 can be dropped if we assume ¢ < 2"/4~* for some small k such that 2% is negligible. More precisely,

if £ < 24k then the PRF advantage of EMAC is about 4 + %

9 Conclusion

In this paper we have revisited the PRF security analysis of CBC-MAC and EMAC. We made the revision as we
have found that one of the main claims in the original papers providing improved bounds is not correct. This
claim, in fact, influences some of the other claims. More importantly, the tight bound claim of EMAC becomes
invalid even after a simple fix of the claim. So we feel that revision is essential and this paper serves this.
Fortunately we have recovered the same bounds, at least in terms of the order, for both constructions. For
CBC-MAC, we have attained the potentially better bound of O(gq/2™). Moreover, we have found a better way
to analyze EMAC which provides a tight bound with a much relaxed constraint on message length ¢. Namely
our constraint is £ < 2"/ whereas the original constraint was ¢ < 2™/8,

DE GRUYTER A.Jha and M. Nandi, Revisiting structure graphs = 179

Acknowledgment: We have communicated with the authors of the papers [2, 31] and they have acknowl-
edged our findings. We would like to thank them for giving their valuable time to go through our findings.

References

[1] M. Bellare,). Kilian and P. Rogaway, The security of the cipher block chaining message authentication code, J. Comput.
Syst. Sci. 61 (2000), 362-399.

[2] M. Bellare, K. Pietrzak and P. Rogaway, Improved security analyses for CBC MACs, in: Advances in Cryptology — CRYPTO
2005, Lecture Notes in Comput. Sci. 3621, Springer, Berlin (2005), 527-545.

[3] D.J.Bernstein, A short proof of the unpredictability of cipher block chaining, preprint (2005), https://cr.yp.to/antiforgery/
easycbc-20050109.pdf.

[4] A.Bosselaers and B. Preneel, Integrity Primitives for Secure Information Systems. Final Report of Race Integrity Primitives,
Lecture Notes in Comput. Sci. 1007, Springer, Berlin, 1995.

[5] J.Black and P. Rogaway, A block-cipher mode of operation for parallelizable message authentication, in: Advances in Cryp-
tology — EUROCRYPT 2002, Lecture Notes in Comput. Sci. 2332, Springer, Berlin (2002), 384-397.

[6]).Black and P. Rogaway, CBC MACs for arbitrary-length messages: The three-key constructions, J. Cryptology 18 (2005),
111-131.

[71 N.Datta, A. Dutta, M. Nandi, G. Paul and L. Zhang, One-key double-sum MAC with beyond-birthday security, preprint
(2015), http://eprint.iacr.org/2015/958.

[8] W. Diffie and M. E. Hellman, New directions in cryptography, IEEE Trans. Inform. Theory 22 (1976), 644-654.

[9] Y. Dodis, R. Gennaro,). Hastad, H. Krawczyk and T. Rabin, Randomness extraction and key derivation using the CBC, cas-
cade and HMAC modes, in: Advances in Cryptology — CRYPTO 2004, Lecture Notes in Comput. Sci. 3152, Springer, Berlin
(2004), 494-510.

[10] A.Dutta, M. Nandi and G. Paul, One-key compression function based MAC with BBB security, preprint (2015),
http://eprint.iacr.org/2015/1016.

[11] M. Dworkin, Recommendation for block cipher modes of operation: The CMAC mode for authentication, preprint (2005),
http://dx.doi.org/10.6028/NIST.SP.800-38B-2005.

[12] W.F. Ehrsam, C. H. W. Meyer, . L. Smith and W. L. Tuchman, Message verification and transmission error detection by
block chaining, US Patent 4074066, 1976.

[13] P.Gazi, K. Pietrzak and M. Rybar, The exact PRF-security of NMAC and HMAGC, in: Advances in Cryptology. Part | — CRYPTO
2014, Lecture Notes in Comput. Sci. 8616, Springer, Berlin (2014), 113-130.

[14] P.GaZi, K. Pietrzak and S. Tessaro, Tight bounds for keyed sponges and truncated CBC, preprint (2015), http://eprint.iacr.
org/2015/053.

[15] S. Gorbunov and C. Rackoff, On the security of cipher block chaining message authentication code, preprint (2016),
https://cs.uwaterloo.ca/~sgorbuno/publications/securityOfCBC.pdf.

[16] International Organization for Standardization, Information technology — Xecurity techniques — Message authentication
codes (MACs) — Part 1: Mechanisms using a block cipher, ISO/IEC 9797-1, Geneva, 1999.

[17] T.Iwata and K. Kurosawa, OMAC: One-key CBC MAC, in: Fast Software Encryption (Lund 2003), Lecture Notes in Comput.
Sci. 2887, Springer, Berlin (2003), 129-153.

[18] T.Iwata and K. Kurosawa, Stronger security bounds for OMAC, TMAC, and XCBC, in: Progress in Cryptology — INDOCRYPT
2003, Lecture Notes in Comput. Sci. 2904, Springer, Berlin (2003), 402-415.

[19] E.Jaulmes, A. Joux and F. Valette, On the security of randomized CBC-MAC beyond the birthday paradox limit: A new con-
struction, in: Fast Software Encryption (Leuven 2002), Lecture Notes in Comput. Sci. 2365, Springer, Berlin (2002),
237-251.

[20] C.S.)utla, PRF domain extension using DAGs, in: Theoryof Cryptography, Third Theory of Cryptography Conference (New
York 2006), Lecture Notes in Comput. Sci. 3876, Springer, Berlin (2006), 561-580.

[21] K. Kurosawa and T. lwata, TMAC: Two-key CBC MAC, IEICE Trans. 87-A (2004), 46-52.

[22] U. M. Maurer, Indistinguishability of random systems, in: Advances in Cryptology — EUROCRYPT 2002, Lecture Notes in
Comput. Sci. 2332, Springer, Berlin (2002), 110-132.

[23] K. Minematsu and T. Matsushima, New bounds for PMAC, TMAC, and XCBC, in: Fast Software Encryption (Luxembourg
2007), Lecture Notes in Comput. Sci. 4593, Springer, Berlin (2007), 434-451.

[24] M. Nandi, Fast and secure CBC-type MAC algorithms, in: Fast Software Encryption (Leuven 2009), Lecture Notes in Comput.
Sci. 5665, Springer, Berlin (2009), 375-393.

[25] M. Nandi, Improved security analysis for OMAC as a pseudorandom function, J. Math. Cryptol. 3 (2009), 133-148.

[26] M. Nandi, A unified method for improving PRF bounds for a class of blockcipher based MACs, in: Fast Software Encryption
(Seoul 2010), Lecture Notes in Comput. Sci. 6147, Springer, Berlin (2010), 212-229.

[27] M. Nandi and A. Mandal, Improved security analysis of PMAC, J. Math. Cryptol. 2 (2008), 149-162.

https://cr.yp.to/antiforgery/easycbc-20050109.pdf
https://cr.yp.to/antiforgery/easycbc-20050109.pdf
http://eprint.iacr.org/2015/958
http://eprint.iacr.org/2015/1016
http://dx.doi.org/10.6028/NIST.SP.800-38B-2005
http://eprint.iacr.org/2015/053
http://eprint.iacr.org/2015/053
https://cs.uwaterloo.ca/~sgorbuno/publications/securityOfCBC.pdf

180 —— A.Jhaand M. Nandi, Revisiting structure graphs DE GRUYTER

[28]

[29]

[30]
[31]

[32]
[33]

[34]
[35]

[36]

[37]

). Patarin, E,tude des générateurs de permutations pseudo-aléatoires basés sur le schéma du DES, Ph.D. thesis, Université
de Paris, 1991.

J. Patarin, The “coefficients H” technique, in: Selected Areas in Cryptography (Sackville 2008), Lecture Notes in Comput.
Sci. 5381, Springer, Berlin (2008), 328-345.

E. Petrank and C. Rackoff, CBC MAC for real-time data sources, J. Cryptology 13 (2000), 315-338.

K. Pietrzak, A tight bound for EMAC, in: Automata, Languages and Programming. Part Il (Venice 2006), Lecture Notes in
Comput. Sci. 4052, Springer, Berlin (2006), 168-179.

S. Vaudenay, Decorrelation: A theory for block cipher security, J. Cryptology 16 (2003), 249-286.

M. N. Wegman and L. Carter, New classes and applications of hash functions, in: 20th Annual Symposium on Foundations
of Computer Science (San Juan 1979), |EEE Press, Piscataway (1979), 175-182.

S. Wigert, Sur l'ordre de grandeur du nombre des diviseurs d’un entier, Ark. Mat. Astron. Fys. 3 (1907), no. 18, 1-9.

K. Yasuda, The sum of CBC MACs is a secure PRF, in: Topics in Cryptology — CT-RSA 2010, Lecture Notes in Comput. Sci.
5985, Springer, Berlin (2010), 366-381.

K. Yasuda, A new variant of PMAC: Beyond the birthday bound, in: Advances in Cryptology — CRYPTO 2011, Lecture Notes
in Comput. Sci. 6841, Springer, Berlin (2011), 596-609.

L. Zhang, W. Wu, H. Sui and P. Wang, 3kf9: Enhancing 3GPP-MAC beyond the birthday bound, in: Advances in Cryptology —
ASIACRYPT 2012, Lecture Notes in Comput. Sci. 7658, Springer, Berlin (2012), 296-312.

	Revisiting structure graphs: Applications to CBC-MAC and EMAC
	1 Introduction
	1.1 Our contributions

	2 Related works
	3 Preliminaries
	3.1 Notation on sequences
	3.2 Notation on strings
	3.3 Basic definitions and notation of graph
	3.4 PRF advantage of a keyed function
	3.5 Coefficient-H technique
	3.6 CBC-MAC and EMAC functions based on permutations

	4 PRF analysis of CBC and EMAC
	4.1 PRF advantage of EMAC
	4.2 PRF advantage of CBC

	5 Revisiting structure graph
	5.1 Intermediate inputs and outputs
	5.2 Structure graphs and block-vertex structure graphs
	5.3 True collision and an observation on [Lemma 10]bpr05

	6 Characterization of accident-one structure graphs
	6.1 Accident one for a single message

	7 Revisiting $CP_n(M_1,M_2)$ and $FCP_n(M_1,M_2)$ bounds
	7.1 Revisiting the $CP_{2,\ell}$ bound
	7.2 Revision of $FCP^{pf}_{2,\ell}$ bound

	8 Revised security analysis of EMAC
	8.1 Flaw and revision of PRF advantage of EMAC
	8.2 Simple proof of EMAC

	9 Conclusion

