
J. Math. Cryptol. 2016; 10 (3–4):157–180

Research Article

Ashwin Jha* and Mridul Nandi

Revisiting structure graphs:
Applications to CBC-MAC and EMAC
DOI: 10.1515/jmc-2016-0030
Received May 24, 2016; accepted October 12, 2016

Abstract: In [2], Bellare, Pietrzak and Rogaway proved an O(ℓq2/2n) bound for the PRF (pseudorandom func-

tion) security of the CBC-MAC based on an n-bit randompermutation Π, provided ℓ < 2n/3. Here an adversary
canmake at most q prefix-free queries each having at most ℓmany “blocks” (elements of {0, 1}n). In the same

paper an O(ℓo(1)q2/2n) bound for EMAC (or encrypted CBC-MAC) was proved, provided ℓ < 2n/4. Both proofs
are based on structure graphs representing all collisions among “intermediate inputs” to Π during the com-

putation of CBC. The problem of bounding PRF-advantage is shown to be reduced to bounding the number

of structure graphs satisfying certain collision patterns. In the present paper, we show that [2, Lemma 10],

stating an important result on structure graphs, is incorrect. This is due to the fact that the authors overlooked

certain structure graphs. This invalidates the proofs of the PRF bounds. In [31], Pietrzak improved the bound

for EMAC by showing a tight bound O(q2/2n) under the restriction that ℓ < 2n/8. As he used the same flawed

lemma, this proof also becomes invalid. In this paper, we have revised and sometimes simplified these proofs.

We revisit structure graphs in a slightly different mathematical language and provide a complete characteri-

zation of certain types of structure graphs. Using this characterization,we show that PRF security of CBC-MAC

is about σq/2n provided ℓ < 2n/3 where σ is the total number of blocks in all queries. We also recover tight

bound for PRF security of EMAC with a much relaxed constraint (ℓ < 2n/4) than the original (ℓ < 2n/8).
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1 Introduction

Brief history on CBC and EMAC. The notion of authentication in cryptographic protocols was first introduced
by Diffie and Hellman in their seminal paper [8] of 1976. In symmetric key settings, this need is fulfilled by

message authentication codes, better known as MACs. CBC-MAC is a block cipher based MAC construction

which is based on the CBC mode of operation invented by Ehrsam et al. [12]. The CBC-MAC was an interna-

tional standard [16] which was proven to be secure for fixed length messages [1, 3] or prefix-free message

spaces [15, 30]. The fixed length constraint is not desired in practice. One way to circumvent this is to use the

length ofmessage as the first block in CBC computation. This requires prior knowledge of themessage length.

A more reasonable and popular approach is to encrypt the CBC output with an independent keyed permuta-

tion. This later approach is called the EMAC which has been proved to be secure without any restrictions on

the message [30]. We refer readers to Section 2 for a brief overview of literature related to CBC-MAC.

CBC and EMAC functions. Throughout the paper, we fix a positive integer n and let B := {0, 1}n. Ele-
ments of these sets are called blocks. Let Perm := Perm(n) be the set of all permutations over B. The
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CBC (cipher block chaining) function with key π ∈ Perm, denoted by CBCπ, takes as input a message

M = (M[1], . . . ,M[m]) ∈ Bm
and outputs a block out

π(M)[m]which is inductively computed as out

π(M)[0] =
0

n
and

out

π(M)[i] = π(outπ(M)[i − 1] ⊕M[i]), i = 1, . . . ,m.

For 0 < i < m, inπ(M)[i] := outπ(M)[i − 1] ⊕Mi
and out

π(M)[i] are said to be the intermediate input and out-
put, respectively. Figure 3 in Section 3.6 provides an illustration of CBC computation and intermediate values.

Security definitions. In this paper, we consider two types of attacks for an adversary which makes queries

of at most ℓ blocks: atk = pf and atk = anymean no query is a prefix of another and the queries are arbitrary

distinct strings, respectively. Let Advatk
F

(q, ℓ, σ) denote themaximum advantage attainable by any adversary
making q queries and the total number of blocks in all q queries is at most σ, mounting an atk attack, in dis-

tinguishing whether its oracle is F or a random function that outputs n bits.¹ To analyze the security of CBC
and EMAC for the random permutation Π, the collision probability and full collision probability,

CPn(M1
,M

2
) := Pr

Π
[CBC

Π
(M

1
) = CBC

Π
(M

2
)],

FCPn(M1
,M

2
) := Pr

Π
[outΠ(M

2
)[m

2
] = outΠ(Mr)[j]; ∃ (r, j) ̸= (2,m2

)],

were introduced for distinct messages M
1
and M

2
with lengths m

1
and m

2
, respectively. Moreover, let CPatk

2,ℓ
and FCPatk

2,ℓ denote the maximum collision and full collision probabilities, respectively, where the maximum

is taken over all distinctmessagesM,M�
having atmost ℓ blocks and satisfies atk. In [2], the following results

were shown:

Advany
EMAC

(q, ℓ) ≤ (q
2

)(CPany
2,ℓ + 2−n),AdvpfCBC(q, ℓ) ≤ q2(FCPpf2,ℓ + 4ℓ/2n).

As EMAC encrypts output of CBC-MAC under an independent key, as long as there is no collision in the

output of CBC-MAC, the final output behaves randomly. This is essentially the same as the Carter–Wegman

construction [33]. The CBC-MAC function can be similarly viewed as a (dependent) nested construction in

which the final encryption is computed under the same key as the internal computation. This is why we need

an extendeddefinition of collisionwhich is appropriately captured by the full collision event. Thus, bounding

PRF advantages are reduced to bounding (full) collision probabilities. These are again reduced to bounding

the number of structure graphs as described in the following paragraph.

Structure graph. A block-vertex structure (BS) graph Gwith vertex set V ⊆ {0, 1}n associated to a message M
and a permutation π is the directed edge-labeled graph induced by the edge set E consisting of all edges

ei : outπ(M)[i − 1] → out

π(M)[i] := (outπ(M)[i − 1], outπ(M)[i]), 1 ≤ i ≤ m.

The label for ei isL(ei) = M[i]. Note that aBSgraphcanbe simply viewedas anM-walk. Informally, anM-walk

is nothing but the walk generated by the messageM starting at 0

n
. In this paper we often use this equivalent

representationofBSgraphs.A structure graphG∗
over a vertex setV∗ ⊆ I (an index set) is an isomorphic graph

of the BS graph G mapping 0

n
to 0. The labeled walk of G is preserved in G∗

(in isomorphism sense) due to

the isomorphism between G and G∗
. So we can have a similar representation of a structure graph in terms of

walks. We refer readers to Definition 5.1 for a more formal definition of a structure graph. The (block-vertex)

structure graph is also similarly defined for a tuple (or sometimes pair) of messagesM = (M
1
, . . . ,Mq).

Given a structure graph G∗ = (V∗
, E∗), suppose we reconstruct the graph by defining edges one by one

along the M-walk. Now there are three possibilities at any point of time: (1) we add a new edge heading to a

new vertex (not obtained so far), (2) we get an old edge which is already defined, and (3) we add a new edge

heading to an already existing vertex. True collisions correspond to the last case. The number of such true

collision can be equivalently defined as the following sum:

TC(G) := in-deg(0n) + ∑
v∈V\{0}(in-deg(v) − 1).

1 In this paper, F is either CBC-MAC or EMAC based on the random permutation Π on n bits (i.e., Π is chosen uniformly from

Perm).
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Figure 1. Counter-example for [2, Lemma 10]. The walks corresponding to the two messages start at v1, and end at v3. Here
M2[1] := M1[1] ⊕ M1[2] ⊕ M1[3] and ∗ can be any number of blocks. In particular, when ∗ has no block, the figures in (a) and
(b) are identical. In (a) we have two input-collisions δ1 := (v1 , v2; v�2) and δ2 := (v1 , v2; v3). The two linear equations Lδ1 and
Lδ2 corresponding to the two input-collisions are the same as Yv1 ⊕ Yv2 = M1[1] ⊕ M1[2] and so the rank of all collisions (which
is also the accident) is one. However, true collision is two (at v�2 and v3), which contradicts [2, Lemma 10]. A similar argument
can be given for (b).

Let us assign a variable Yv, meant for the intermediate output, for each node v ∈ V∗
. Let δ := (u, v; z) be

a triple such that u → z, v → z and u ̸= v. We call such triple input-collision (also called collision). Given

any such input-collision the following linear equation, denoted by Lδ, must hold whenever Y-variables are
actually assigned as intermediate outputs:

Yv ⊕ Yu = cδ , where cδ = L(v, z) ⊕ L(u, z).

When 0 has no in-degree, the accident of a structure graph G∗
, denoted by Acc(G), is the rank of all linear

equations Lδ over all collisions of the graph. When 0 has positive in-degree, we add one to the rank to define

the accident. In Section 5, we provide a more detailed study on the structure graph.

A flaw in [2, Lemma 10]. Lemma 10 of [2] states that for any structure graph G∗
realized by a pair of messages

Acc(G∗) = 1 implies TC(G∗) = 1. This result has been used to bound FCPn (in [2]) as well as CPn (in [2, 31]).
Unfortunately, the claim is incorrect as illustrated in Figure 1 where we have two structure graphs with true

collision 2 and accident 1. Surprisingly, this flaw remained unobserved till now, although it has been applied

for other results.

1.1 Our contributions

The flaw in [2, Lemma 10] is an important observation that affects several results [2, 14, 31, 35] based on it.

Naturally, the next course of action should be to study the impact of this flaw to those results in addition to

[2], where it has been applied. This work serves this purpose. To our best knowledge, it has been applied in

[31] and probably in [9, Lemma 3] (no proof of this claim is publicly available though). The bound on FCPpf
2,ℓ

(see [2]) is also used in the PRF analysis of truncated CBC [14]. Any revision in the FCPpf
2,ℓ bound [2] will also

necessitate revision of bound in [14].

Characterization of all accident-one structure graphs. As [2, Lemma 10] is wrong andwe have identified two

graphs which violate this lemma, it is important to see whether there are any more missing cases. We first

settle this issue and show that these are the onlymissing cases. To do so, we characterize all structure graphs

(realized by a single message) having at most accident 1 (see Lemma 6.1). This will actually help when we

study structure graphs for two messages.

Revision of the CP and FCP, and PRF bound of CBC. We revise the FCP bound of [2]. Fortunately, the upper

bounds of FCP, and hence PRF advantage of CBC, are only increased by a constant factor keeping the order
of the bound unchanged (see Section 7). In case of the CP bound due to Bellare, Pietrzak and Rogaway, their
[2, Lemma15] used to bound themain claim is false. Fortunately, it can be shown that themain claim remains

true after revision.
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Revision of the PRF bound of EMAC. We revisit Pietrzak’s [31] proof of the PRF bound for EMAC in Section 8.

Unfortunately, a straightforward revision gives a non-tight bound on EMAC. Then, we take a different ap-

proach (by considering a different bad event) to show in Theorem8.2 the tight bound for EMAC. Our approach

is much simpler and gives the tight bound even for a more relaxed choice of ℓ, namely ℓ < 2n/4, whereas the
original constraint was ℓ < 2n/8.
Other consequences. The CP and FCP bounds in [2] have been used in multiple subsequent works. For in-

stance, Gaži, Pietrzak and Tessaro [14] applied this result to bound the probability of a bad event in PRF

analysis of truncated CBC. Similarly, Yasuda [35] used the CP bound of [2]. Fortunately, the proofs in these

works hold with small changes in constant factors. Since these changes are minor, in this paper we concen-

trate solely on [2, 31].

2 Related works

The security of MAC constructions has seen constant research interest. Among the block cipher based con-

structions CBC-MAC and its variants are the most popular. Here we try to summarize the research on PRF

security of CBC-MAC and its variants. The aim is to list the state of the art results as well as emphasize the

progress that has been made till date.

Analysis of CBC-MAC. First concrete results on CBC-MACwere given by Bellare, Kilian and Rogaway [1]. They
showed a bound of 2ℓ2q2/2n for fixed length queries, whichwas further improved to ℓ2q2/2n byMaurer [22].
Later Bernstein [3] simplified theproof for fixed-lengthCBC-MAC. PetrankandRackoff [30] extended theproof

in [1] to prefix-free queries, and a similar extension on Bernstein’s proof was done by Rackoff and Gorbunov

[15]. Both bounds are about ℓ2q2/2n. Themost recent boundonCBC-MAC is byBellare, Pietrzak andRogaway

[2] who improved (in terms of ℓ) the bound to 12ℓq2/2n + 64ℓ4q2/22n. Another way of improving the bound

is to show the PRF bound of the form qσ/2n (see [26]).

Analysis of EMAC. In [1], Bellare, Kilian and Rogaway also suggested some variants of CBC-MAC to handle

variable length messages. In particular, they mentioned a construction where the output of CBC-MAC is fur-

ther encrypted by an independent key. This construction knownas EMACwasfirst developedduring theRACE

project [4]. Petrank and Rackoff [30] proved that DMAC (same as EMAC) is secure up to 2.5ℓ2q2/2n. Bellare,
Pietrzak and Rogaway [2] improved the bound to q2 ⋅ d�(ℓ)/2n which was further improved by Pietrzak [31]

to q2/2n for ℓ ≤ 2n/8. However, the proof of the later result is invalid due to the flaw that we discussed earlier.

A result on CPeq
2,ℓ stated in [9] also gives a tight bound of O(q2/2n) for equal length messages.

Analysis of variants of CBC-MAC and EMAC. Although the EMAC construction is tolerant to variable length

messages it has a domain limited to B+. Black and Rogaway [6] introduced three refinements to EMAC, viz.,

ECBC, FCBC and XCBC to allow use of variable block length strings. They showed that ECBC and FCBC are

secure up to 2.5σ2/2n, and that the bound on XCBC is 3.75σ2/2n. Jaulmes, Joux and Valette [19] gave a ran-

domized version of EMAC which they called RMAC and proved that the construction resists birthday attacks.

However the proof seems to be incorrect (as suggested in [2]). Other excellent variants of CBC-MAC are TMAC

[21], OMAC [17] and GCBC [24]. A variant of OMAC, namely OMAC1 is equivalent to CMAC which became an

NIST recommendation [11] in 2005. Another design approach is the PMAC construction proposed by Black

and Rogaway [5] which is inherently parallel. In [18, 23, 25, 27], the improved bounds for XCBC, TMAC,

PMAC and OMAC are shown in the form of O(ℓq2/2n), O(σ2/2n) and O(σq/2n). Apart from these specific con-

structions Jutla [20] suggested a general class of DAG-based PRF constructions.

Beyond birthday bound (BBB) security. Another direction of research is BBB security, where the aim is to

achieve more than n/2-bits security in σ. Among the block cipher based BBB secure MACs, PMAC_Plus [36]

and 3kf9 [37] are two efficient candidates. Both these candidates are three-key constructions. Recently, Dutta

et al. [7] proposed a one-key candidate named 1kf9, which also offers beyond birthday security of 3kf9.
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Structure graph analysis. Structure graphs are the basic tool for analyzing sequential construction based on
randompermutation as evident from thework onCBCbasedMACs [2, 14, 31] and1kf9 [7]. Although structure

graphs have beenmainly used in analysis of random permutation based constructions, they have also found

application in random function based construction as evident from the analysis of NI MAC by Gaži, Pietrzak

and Rybár [13] and the one key compression function based MAC by Dutta, Nandi and Paul [10]. From our

observation these later works [7, 10, 13] are free from the flaw that we observed for [2, 31].

3 Preliminaries

Basic notation. Throughout the paper, we fix a positive integer n. Let Perm be the set of all permutations on

B := {0, 1}n. Elements ofB are called blocks. For any two integers a ≤ b, we write [a..b] (or simply [b], when
a = 1) to denote the set {a, a + 1, . . . , b}. Let ϕ be a property defined for the elements of S. We define the

subset

S[ϕ] := {x ∈ S : x satisfies ϕ}.

The above set will appear in this paper many times for different choices of S and ϕ. Let

P(m, k) := m(m − 1) ⋅ ⋅ ⋅ (m − k + 1)

denote the k-permutations of m.

3.1 Notation on sequences

Let I and S be two sets. A S-sequence x over the index set I is denoted as (x[α])α∈I where x[α] ∈ S for

all α ∈ I. The length of the sequence is |I|, the size of the index set. In this paper we mostly consider

block sequences, i.e. S = B. When the index set is [a..b], we also write the sequence as a tuple or vector

x[a..b] := (x[a], . . . , x[b]). Sometimes, by abusing notation, x also represents the set {x[α] : α ∈ I}. Sim-

ilarly x[a..b] represents {x[α] : α ∈ [a..b]}. We write #x to denote the number of distinct elements in the

sequence x. We write S+ and S≤ℓ := ⋃i≤ℓ Si to represent the set of all S sequences of positive and finite length,
and of length at most ℓ, respectively. Now we define an equivalence relation that captures the equalities

among the elements of the sequence x.

Definition 3.1. Given a sequence x over an index set I, we define an equivalence relation ∼x over the index
set as follows: α ∼x β if x[α] = x[β].

Let ρ : D→ R. Let x and y be, respectively,D- and R-sequences over an index set I. We write x ρ
ÜÚ→ y to mean

that ρ(x[α]) = y[α] for all α ∈ I and we simply say that ρ multi-maps x to y. This is a property of function ρ.
WhenD = R, the subset Perm[x π

ÜÚ→ y] represents the set of all permutations π multi-mapping x to y. We say

that (x, y) is permutation compatible if there exists a permutation π such that x π
ÜÚ→ y. It is easy to see that (x, y)

is permutation compatible if and only if ∼x = ∼y.

3.2 Notation on strings

We callB an alphabet and its elements will be referred to as letters. A string over the alphabetB is an element

of B∗
. We can also say that a string is a finite concatenation S := a

1
‖a

2
‖ . . . ‖aℓ where ai ∈ B. Note that the

elements of B are also strings. We can also view strings as B-sequences over an index set I. The length of

a string S, denoted by |S|, is defined as the total number of letters in it. Note that for an empty string the

length will be 0 as it does not have any letters in it. For a string S = X‖Y, X (respectively Y) is said to be a

prefix (respectively suffix) of S. We write X <
1
S if X is a prefix of S. We write X <

2
S if X[1..x − 1] <

1
S but
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X[x] ̸= S[s], where x = |X| and s = |S|. For two strings S
1
and S

2
of lengths s

1
and s

2
, respectively, a non-

negative integer p := LCP(S
1
; S

2
) (respectively s := LCS(S

1
; S

2
)) is called the indexof the largest commonprefix

(respectively largest common suffix), if S
1
[1..p] = S

2
[1..p] and S

1
[p + 1] ̸= S

2
[p + 1] (or S

1
[s..s

1
] = S

2
[s..s

2
]

and S
1
[s − 1] ̸= S

2
[s − 1]).

3.3 Basic definitions and notation of graph

Directed edge-labeled graph. A directed edge-labeled graph is a pair G := (V, E)with E ⊆ V × V × L where V
is the set of vertices, L is the set of edge labels, and E is the set of edges along with their corresponding labels.
In this paper wewill consider only those directed edge-labeled graphs where for each pair of vertices u, v ∈ V
there exists at most one label a ∈ L with ((u, v); a) ∈ E. We also write u a

Ú→ v to mean that ((u, v); a) ∈ E.

Convention. By abusing notation, E also denotes the set of unlabeled edges and the label a of the edge

e := (u, v) is expressed as LG(e) (this notation makes sense as there is a unique choice of the label for an

edge) or simply L(e) whenever the graph is understood.
For an edge e := (u, v), vertex u is called a predecessor of v, and v a successor of u. An edge (u, v) is called

a loop if u = v. We define two sets:

(i) The predecessor set of a vertex v is nbd(∗ → v) := {u : (u, v) ∈ E}.
(ii) The successor set of v is nbd(v → ∗) := {u : (v, u) ∈ E}.

The sizes of the predecessor and successor sets of v are called in-degree and out-degree, respectively. We

implicitly assume that no vertex has both in-degree and out-degree 0. So the vertex set and hence the graph

without the edge labels is uniquely determined by the edge set.

Definition 3.2. A walk of length s is defined as a vertex sequence w := (w[0], . . . , w[s]) such that w[i − 1] →
w[i] for all i ∈ [s]. We define the label of thewalk asL(w) := (a

1
, . . . , as)where ai = L(w[i − 1], w[i]), i ∈ [s].

Since awalk is aV-sequenceover the index set {0, 1, . . . , s},wedefinea subwalkw[a..b] := (w[a], . . . , w[b])
where 0 ≤ a ≤ b ≤ s.

When all vertices of a walk sequence are distinct, we call it a path. When all vertices w[0], . . . , w[s − 1]
are distinct and w[s] = w[0], then we call it a cycle. Other special examples of walks, which will be studied

later in the paper, are ρ walks and ρ� walks.
A ρwalk is a walk w := (w[0], . . . , w[s]) such that for some 0 ≤ i < j ≤ s, w[0..j − 1] is a path, w[j] = w[i]

and for all j < k ≤ s, w[k] = w[i + r] where 0 ≤ r < (j − i) and (k − r) is a multiple of (j − i). It is illustrated in
Figure 2 (a). In words, a ρ walk comes back to one previous vertex (which makes a cycle) and afterwards it

remains in the cycle.

A ρ� walk is an extension of a ρ walk that leaves the cycle and does not come back. It is illustrated in

Figure 2 (b). Note that the lengths of the subwalks labeled with ∗ can be zero.

A directed edge-label graph G = (V, E) is called a function graph if for all v ∈ V, there do not exist two dis-
tinct successors v

1
and v

2
of vwithLG(v, v1) = LG(v, v2). In other words, for every vertex v and any label awe

can find at most one successor w for which the label of the edge (u, v) is a. This observation can be extended
for a walk in a function graph G as follows:

w
1
[0] = w

2
[0], L(w

1
) = L(w

2
) ⇒ w

1
= w

2
.

So if there is a walk with label M, then it must be unique and we call such a walk M-walk.

3.4 PRF advantage of a keyed function

If S is a finite set, then x $

←Ú S denotes the uniform random sampling of x from S. LetD ⊆ B+ be a finite set. A
random function fromD to B is RF(D)

$

←Ú Func(D,B), the set of all functions fromD to B. When the domain

D is understood, we simply write the random function as RF.



A. Jha and M. Nandi, Revisiting structure graphs | 163

v1 v2

(a) ρ walk

v1 v2
v3

(b) ρ� walk

∗ ∗
∗

Figure 2. The graphs corresponding to ρ and ρ� walks. Note that the lengths of the parts labeled with ∗ can be zero.

Definition 3.3. Let F be a keyed function fromD toB with a finite key spaceK. We define the prf-advantage
(or pseudorandom function advantage) of an adversary A against F as

AdvatkF (A) := !!!!Pr[A
FK = 1 : K $

←Ú K] − Pr[ARF = 1]!!!!.

Themaximum prf-advantage of F is defined as

AdvatkF (q, ℓ, σ) = max

A
AdvatkF (A),

where the maximum is taken over all adversaries A making at most q queries from the domain D, say

M
1
, . . . ,Mq withMi ∈ Bmi

, such that∑i mi ≤ σ andmaxi mi ≤ ℓ. Note that atk = pf means none of the query

is a prefix of another; atk = eq means the queries are of equal length; and atk = any means all queries are

arbitrary distinct strings. This is an information theoretic definition and we allow an unbounded time adver-

sary. There is no loss to assume that A always makes exactly q distinct queries, represented by a sequence,
sayM = (M

1
, . . . ,Mq). In this case, for any T = (T1, . . . , Tq) ∈ Bq

, we have

PrRF[M
RF
ÜÚÚ→ T] = 2−nq .

3.5 Coefficient-H technique

Let A be an adversary which makes q distinct queries (possibly adaptive) to F. Let the queries be x
1
, . . . , xq

and the corresponding F outputs y
1
, . . . , yq. Let view(AF) denote the q-tuple of pairs ((x

1
, y

1
), . . . , (xq , yq))

where xi denotes the i-th query and yi is the corresponding response.
For any q-tuple of pairs τ = ((x

1
, y

1
), . . . , (xq , yq)), the probability

ℙF(τ) := PrF[(x1, . . . , xq)
F
ÜÚ→ (y

1
, . . . , yq)]

is called the interpolation probability, where the probability is taken under the randomness of F’s key. Here
we assume that F is stateless and so the above probability is independent of the order of the pairs.

Theorem 3.4 (Coefficient-H technique). Let T
good

be some set of q-tuples of pairs. Suppose the interpolation
probability for a (stateless) oracle O follows the inequality

ℙO(τ) ≥ (1 − ϵ) ⋅ ℙRF(τ) = (1 − ϵ)2−nq for all τ ∈ T
good

.

Then, for any adversary A we have

AdvatkF (A) ≤ ϵ + Pr[view(ARF) ∉ T
good

].

This technique was first introduced by Patarin in his PhD thesis [28] (as mentioned in [32]). The proof of this

theorem can be found in [29]. So we skip the proof. We use this theorem to bound the PRF advantage of CBC

function defined in the next subsection.

3.6 CBC-MAC and EMAC functions based on permutations

CBC function. The CBC (cipher block chaining) function (see Figure 3) with an oracle π ∈ Perm, viewed as a

key of the construction, takes as input a message M = (M[1], . . . ,M[m]) ∈ Bm
with m blocks and outputs

CBCπ(M) := outπ(M)[m].
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M1 M2 M3 Mm−1 Mm

CBCπ(M)

inπ[1] inπ[2] inπ[3] inπ[m − 1] inπ[m]
0n

outπ[1] outπ[2] outπ[3] outπ[m − 1] outπ[m]
π π π π π

Figure 3. CBC function and its intermediate values.

This is inductively computed as follows: outπ(M)[0] = 0n and

outπ(M)[i] = π(inπ(M)[i]), inπ(M)[i] = outπ(M)[i − 1] ⊕M[i], i ∈ [m].

We call inπ(M) and outπ(M) intermediate input and output vectors, respectively, associated to π. Note that the
intermediate input vector inπ is uniquely determined by outπ (and does not depend on the permutation π).
We canwrite down this association generically as a function out2inM : Bm → Bm

mapping any block vector y
to a block vector xwhere x[1] = M[1] and x[i] = y[i − 1] ⊕M[i] if 1 < i ≤ m. So for all permutations π ∈ Perm,
we have out2in(outπ) = inπ.

EMAC function. The EMAC function (E for encrypted) is derived from the CBC function by additionally en-

crypting the output with another permutation π� ∈ Perm. Formally, EMACπ,π� (M) := π�(CBCπ(M)).

4 PRF analysis of CBC and EMAC

In this section we quickly recall the PRF analysis of CBC and EMAC as done in [2, 31]. Here CBC is based

on a uniform random permutation Π chosen uniformly from Perm and EMAC is based on two independent

random permutations Π and Π

�
. In this section we reduce the bounding PRF advantages of CBC and EMAC to

the full bounding collision and collision probability, respectively. We use the coefficient-H technique rather

than the game playing technique used in [2].

4.1 PRF advantage of EMAC

LetM
1
andM

2
be twodistinct tuples of blocks. Let collπ(M1

;M
2
)denote the event that CBCπ(M1

) =CBCπ(M2
),

we call it the collision event for a pair of messages M
1
and M

2
. We similarly define the collision event for a

tuple of q ≥ 2 distinct messagesM = (M
1
, . . . ,Mq) as

collπ(M) = ⋃
i ̸=j collπ(Mi;Mj).

We define the collision probability as CPn(M) = Pr[coll
Π
(M)].

Let CPatkq,ℓ = maxM CPn(M) where the maximum is taken over all q-tuples of distinct messagesM having

at most ℓ blocks each and satisfy atk (i.e., when atk = eq, messages must have equal length, similarly when

atk = pf no message is prefix to others, and finally atk = any means no restriction other than length restric-

tion). Following [2], we view EMAC as an instance of the Carter–Wegman paradigm [33]. This enables us to

reduce the problem of bounding the prf-advantage of EMAC to bounding the collision probability as

Advany
EMAC

(q, ℓ) ≤ CPanyq,ℓ + q(q − 1)
2
n+1 . (1)

Note that CPanyq,ℓ ≤ (q2)CPany2,ℓ as the collision for q messages is the union of collision events for each of the

(q
2

) pairs of messages. Bellare, Pietrzak and Rogaway [2] proved that

CPany
2,ℓ ≤ 2d�(ℓ)

2
n +

64ℓ4

2
2n ,
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where d�(ℓ) = maxℓ�≤ℓ d(ℓ�) and d(ℓ�) is the number of divisors of ℓ�. In [34], Wigert showed that

d�(ℓ) = ℓ1/Θ(ln ln ℓ) = ℓo(1).
Using this bound of collision probability for a pair of messages, we see that the prf-advantage of EMAC is

about O(d�(ℓ)q2/2n) for ℓ < 2n/4. Later Pietrzak [31] provided an improved analysis of EMAC and proved that

the PRF advantage of EMAC is about O(q2/2n) for ℓ < min{q1/2, 2n/8}. We revisit this improved analysis later

in Section 8. A related claim on CP is

CPeq
2,ℓ = 2−n + (d(ℓ))2 ⋅ ℓ ⋅ 2−2n + ℓ6 ⋅ 2−3n

(see [9]) which gives a tight bound for equal length messages.

4.2 PRF advantage of CBC

Nowwe revisit the security analysis of CBC-MAC construction. Let Fcollπ(M1
;M

2
), called full collision, denote

the event that

inπ(M
2
)[m

2
] = inπ(Mr)[j] for some (r, j) ̸= (2,m

2
).

In other words, if the full collision event does not hold, then the last intermediate input of π is “fresh” (not
appeared before) while computing CBCπ(M2

). So when π is replaced by a randompermutation and this event

does not hold, then the CBC-output should behave “almost” randomly.We use this intuitionwhilewe provide

a bound of prf-advantage of CBC.

Remark 4.1. Wewould like to remark that in the original paper [2], the full collision event is defined through

the intermediate outputs instead of inputs. Since we consider CBC based on permutation only, equalities

among inputs and equalities among outputs are the same.

For a q-tuple of messagesM, the union of full collision events is similarly denoted by Fcollπ(M). The proba-
bility of this event, called full collision probability, is denoted by FCPn(M). The maximum full collision prob-

ability is denoted by FCPatkq,ℓ. Similar to inequality (1), the following result has been proved in [2]:

Advpf
CBC

(q, ℓ) ≤ q2(FCPpf
2,ℓ + 4ℓ/2n). (2)

Note that we must restrict the adversary to make prefix-free queries, since otherwise it would be easy to dis-

tinguish CBC from a random function (using the classical length extension attack). Similarly, ifM
2
is a prefix

of M
1
, it is easy to see that FCPn(M1

,M
2
) = 1, so the above result becomes meaningless. As before, we also

state an equivalent form of PRF advantage of CBC in terms of full collision probability among q messages.

The above inequality (2) would be again a straightforward application of the following result.

Proposition 4.2. We have

Advpf
CBC

(q, ℓ, σ) ≤ FCPpfq,ℓ + 2σq
2
n +

q2

2
n+1 .

Proof. LetT
good

:= ((M
1
, T

1
), (M

2
, T

2
), . . . , (Mq , Tq))be the set of all pairs ofM = (M1

, . . . ,Mq) ∈ (B+)q and
T = (T

1
, . . . , Tq) ∈ Bq

such that theMi are distinct and the Ti are also distinct. Trivially, random function RF
returns a collision pair on any q distinct queries with probability at most (q

2

)2−n for any adversary A. Thus,
Pr[view(ARF) ∉ T

good
] ≤

q2

2
n+1 .

Using the coefficient H-technique, now we only need to bound the relationship between the interpola-

tion probabilities. We fix M = (M
1
, . . . ,Mq) ∈ (B+)q and T = (T1, . . . , Tq) ∈ Bq

such that the Mi ∈ Bmi
are

distinct and the Ti are also distinct. Let mi ≤ ℓ for all i and write ∑i mi = m ≤ σ. Now, a permutation π is

called bad if
(i) Fcollπ(M) holds, or
(ii) outπ(Mr)[i] = Tr� for some r, r� ∈ [q], i ∈ [mr].
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All other permutations are called good. We define an equivalence relation ∼ on Perm as π ∼ π� if
inπ(Mr) = inπ

�
(Mr) for all r. It is clearly an equivalence relation and a good permutation can only be re-

lated with another good permutation. Let C be an equivalence class consisting of some good permutations.

Let s be the number of distinct intermediate inputs for the computation of all CBCπ(Mr) where π ∈ C. Note
that s is the same for all π ∈ C. Then, |C| = (2n − s − q)! as the outputs of exactly (2n − s − q) inputs of π are
determined. Since the Ti are not intermediate outputs, we have

!!!!C[M
CBC

ΠÜÚÚÚÚ→ T]!!!! = (2
n − s)!

(since q additional restrictions on input-output are being added). So for any class of good permutations C,

Pr[M CBC
ΠÜÚÚÚÚ→ T | Π ∈ C] =

(2n − s)!
(2n − s − q)!

≥ 2−nq .
Thus,

Pr[M CBC

ÜÚÚÚ→ T] ≥ ∑
C is good

Pr[M CBC

ÜÚÚÚ→ T | Π ∈ C] × Pr[Π ∈ C] ≥ Pr[Π is good] × 2−nq .
So it is sufficient to bound a random permutation being bad. Then we will be done by using the coefficient

H-technique as stated in Theorem 3.4. By definition of full collision probability, the first condition for a per-

mutation to be bad can happen with probability at most FCPpfq,ℓ. The second condition says that we sample

at most m outputs of a random permutation and one of them belongs to the set {T
1
, . . . , Tq}. This can hap-

pen with probability at most mq/(2n − m) which is further less than mq/2n−1 provided m < 2n−1. Note that
m ≤ σ. If m ≥ 2n−1, then the above bound holds trivially. So the probability of bad permutation is bounded

by FCPpfq,ℓ + mq/2n−1. After applying the coefficient-H technique, we have proved the result.

Remark 4.3. Note that FCPpfq,ℓ ≤ q(q − 1)FCPany2,ℓ by considering all ordered pairs (Mi ,Mj). This also proves

the original claim from [2] as stated in inequality (2). In fact, it is potentially a better bound than the original

as it uses the total number of blocks σ instead of ℓq. In [2], it is proved that

FCPpf
2,ℓ ≤ 8ℓ

2
n +

64ℓ4

2
2n .

In Section 7we revisit the above bound. In particular, we revise the proof in light of the flaw in [2, Lemma 10]

and get an increment in themultiplication factor.Moreover, our revised bound ofFCPpfq,ℓwould be in the order
σq/2n instead of ℓq2/2n (whenever ℓ ≤ 2n/3). So our analysis rectifies the previous proof and also provides a
better bound in some cases (e.g., averagemessage length ismuch smaller than the length of longestmessages

which may occur when message lengths are very skewed).

5 Revisiting structure graph

In the previous section we have seen how the PRF advantage of CBC or EMAC is essentially reduced to bound

some collision events of internal inputs or outputs of the underlying permutation. Thus, it would be useful

to have an object which deals with the intermediate inputs and outputs. The structure graph does so and it

has been used to bound the (full) collision probabilities in [2]. In this section we revisit the structure graph

and show that one of the main claims in [2] (namely, [2, Lemma 10]) about structure graphs is false.

Notation and conventions for this section. Let us fix a tuple of messagesM = (M
1
, . . . ,Mq) throughout this

section where Mi ∈ Bmi
, and let m := ∑q

i=1 mi and maxi mi = ℓ.
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5.1 Intermediate inputs and outputs

Index set. We first collect all intermediate inputs and outputs which are obtained through the computation

of CBCπ(Mr) for all r. These intermediate values will be defined as a sequence over a two-dimensional index

set. Each index is a pairwhere the first element of the pair corresponds to themessage number and the second

element is the block number of that message. More formally, we define the index set

I = {(r, i) : r ∈ [q], i ∈ [mr]}

and the dictionary order ≺ on it as follows: (r, i) ≺ (r�, i�) if r < r� or r = r� and i < i�. Let x be a sequence over
this index set. For any r ∈ [q], we denote the subsequence (x[r, 1], . . . , x[r,mr]) by x[r, ∗]. Sometimeswe also

consider the index set I
0
= I ∪ {(r, 0) : r ∈ [q]}, and the natural extension of the order ≺ on I

0
.

Sequences for intermediate inputs and outputs. We denote the sequences of intermediate outputs and inputs
over the index set I as outπ(M) and inπ(M), respectively, where

outπ(M)[r, ∗] = outπ(Mr), inπ(M)[r, ∗] = inπ(Mr) for all r ∈ [q].

For a single message, we have seen before that the intermediate input sequence is uniquely determined by

the intermediate output sequence and we denote the association by a function out2in. The same is true for q
messages andwe extend this definition as follows: Given any block sequence y over the index set I, we define
out2in(y) as a block sequence x over the same index space where x[r, ∗] = out2inMr (y[r, ∗]), r ∈ [q]. Thus, for
any π, we have out2in(outπ) = inπ.

5.2 Structure graphs and block-vertex structure graphs

A block-vertex structure graph is a graph theoretical representation of intermediate output outπ. The block-
vertex structure graph Bstructπ for a permutation π is defined by the set of labeled edges

E :=
q
⋃
r=1{(outπ[r, i − 1], outπ[r, i];Mr[i]) : i ∈ [mr]}.

Clearly, G is a union of Mi-walks for all i ∈ [q], and vertex 0

n ∈ V has positive out-degree. Let Bstruct(M)
denote the set of all block structure graphs for the tuple of messagesM. Note that as explained below,

v A
Ú→ w ⇒ π(v ⊕ A) = w.

So, for every v ∈ V, all outward edges (similarly for inward edges) have distinct edge labels.Using this property,
it is easy to see that the walks are unique andwe denote thembywMi or simplywi whenever themessage tuple

is understood. See Figure 4 for a single message (i.e., q = 1) in which the input and output vectors are stored
in a directed graph.

While storing the intermediate sequences as a set of labeled edges, we may loose the order as well as the

repetition of the elements. Interestingly, we see that we can uniquely reconstruct the intermediate sequences

from such an edge-labeled graph by using uniqueness of Mi-walks. More precisely, outπ[r, i] = wr[i].
Let G = (V, E) be a labeled directed graph and f : V → V∗

a bijective function. Then one can define

a labeled directed graph G∗ = (V∗
, E∗) isomorphic to G for which f is an isomorphism. More precisely,

((u, v); a) ∈ E if and only if ((f(u), f(v)); a) ∈ E∗. When f is an injective function, we can view the function

where the range set is the image set of the function and this makes the function bijective. We call the graph

obtained as described above a transformed G with respect to f .

Definition 5.1. For every vertex v of a block-vertex structure graph G = (V, E), we define amapping α : V → I

as αv = α(v) = (r, i) where (r, i) is the minimum index such that wr[i] = v. Clearly, it is an injective mapping

with an image set, sayV∗
. The structure graphG∗ = (V∗

, E∗) associated to π is the α-transformedblock-vertex

structure graph.
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0
2

3
1

0

0

Figure 4. Let M1 = (1, 0, 0, 0, 0) and π(1) = 2, π(2) = 3, π(3) = 2. For any such π, we have outπ = (2, 3, 2, 3, 2) and
inπ = (1, 2, 3, 2, 3). However, the graph consists of three vertices {0, 2, 3} and edge set E = {(0, 2), (2, 3), (3, 2)}
with labels 1, 0 and 0, respectively. We see that the intermediate input and output sequences actually can be
reconstructed from this labeled structure graph. The walk corresponding to the message M1 will uniquely identify
the output vector as outπ = (2, 3, 2, 3, 2), and the input vector inπ = (1, 2, 3, 2, 3) can be constructed using the
relation between input, output and message.

Y0 = 0n
Y1

Y2Y3

(a)

α
Ú→

(1, 0)
(1, 1)

(1, 2)(1, 5)

(b)

M1[1]

M1[2]M1[3]

M1[4]

M2[1]

M1[1]

M1[2]M1[3]

M1[4]

M2[1]

Figure 5. Structure graph corresponding to the labeled structure graph.

Example 5.2. Let
M

1
= (M

1
[1],M

1
[2],M

1
[3],M

1
[2],M

1
[4]), M

2
= (M

2
[1])

be two messages, and for π ∈ Perm let

inπ[1, ∗] = (Y
0
⊕M

1
[1], Y

1
⊕M

1
[2], Y

2
⊕M

1
[3], Y

1
⊕M

1
[2], Y

2
⊕M

1
[4]),

outπ[1, ∗] = (Y
1
, Y

2
, Y

1
, Y

2
, Y

3
), inπ[2, ∗] = (Y

0
⊕M

2
[1]), outπ[2, ∗] = (Y

3
).

The corresponding block labeled structure graph Bstructπ is as shown in Figure 5 (a). Following the above

steps, we arrive at a valid structure graph structπ in Figure 5 (b).

Let wr∗ denote the Mr-walk in G∗
. It is easy to see that a structure graph is again a union of Mr-walks w∗

r
starting from 0.² A structure graph is called a zero-output graph if 0 has positive in-degree, otherwise we call
it non-zero output graph. To express it mathematically, we define a binary function Iszero such that for each

zero-output graph G∗
, Iszero(G∗) = 1, otherwise it maps to 0.

To reconstruct a block-vertex structure graph realizing G∗
wehave to find labels fromB for all the vertices

in a “consistent manner”, and we call such a labeling valid. Basically, we need to find an injective mapping

α−1 : V∗ → B such that image set of α−1 is V and α := (α−1)−1 is an isomorphism.

Definition 5.3. An injective function Y : V∗ → B is called valid block label for a structure graph S = (V∗
, E∗)

if the graph G = (V, E) is a block-vertex structure graph where
(i) V = {0n} ∪ {Yi := Y(i) : i ∈ V∗} and
(ii) E is the edge set after relabeling i by Yi (we assume Y

0
:= 0n).

Necessary condition of valid labeling function Y. Now we try to find necessary conditions of a valid la-

beling. First of all, by definition, Yi should be all distinct as the valid block label is injective (distinct ver-

tex should get distinct block label). In addition to this, whenever e
1
:= (u, z), e

2
:= (v, z) ∈ E we must have

Yu ⊕ L(e1) = Yv ⊕ L(e2) as these are input for the vertex z. An input-collision or simply a collision of a graph G
is defined by such a triple δ = (u, v; z). The set {u, v} is called the source of the collisionwhereas z is called the
head of the collision. We also say the edges e

1
and e

2
are colliding edges. Thus, an input-collision δ = (u, v; z)

induces a linear restriction Lδ : Yu ⊕ Yv = cδ where cδ = L(u, z) ⊕ L(v, z) ∈ B. Thus, a valid block label must

satisfy the above condition for all collisions δ. Let ∆G∗ denote the set of all collisions of G∗
. Let rank(G∗)

2 Note that, as per the convention used here and in the preceding discussion, w∗
r [i] = α(wr[i]).
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denote the rank of all linear equations {Lδ : δ ∈ ∆G∗ }. The accident of a structure graph is defined depending
on whether the graph is zero-output or not.

Definition 5.4. Wedefine the accident of a structure graphG∗
asAcc(G∗) := rank(G∗) + Iszero(G∗). Thus, the

accident of a non-zero structure graph G∗
is defined to be rank(G∗), whereas the accident of a zero-output

graph is rank(G∗) + 1.
Lemma 5.5. If there is a vertex v with in-degree d, then rank(G∗) ≥ d − 1. Moreover, if the graph is a zero-output
graph, then Acc(G∗) ≥ d.
Proof. Let v

1
, . . . , vd be all predecessors of v. Let us define an input-collision δi,j := (vi , vj; v). It is now easy

to see that Lδi,j = L1,i ⊕ L1,j. Moreover, the L1,i are linearly independent. Thus, the first part is proved. The
second part is also trivial from the first part and the definition of the accident.

Remark 5.6. Another simple but useful observation is as follows: if a structure graph G∗
has at least two

collisions with different source, then rank(G∗) ≥ 2.
Let S = (V∗

, E∗) be a structure graph with rank r and |V∗| = s + 1. Then from linear algebra we know that

some s − r choices of Yi values will uniquely determine the rest, and so the number of valid block labelings is

at most P(2n , s − r). Any valid choice of Y induces a block-vertex structure graph G = (V, E) such that G∗ = S.
Note that s + Iszero(G) is the number of vertices v ∈ V with positive in-degree. So exactly (2n − s − Iszero(G))!
number of permutations can result in a block-vertex structure graph G. Therefore,

Pr[BstructΠ = G] = (2
n − (s + Iszero(G)))!

2
n
!

=
1

P(2n , s + Iszero(G)) .

So

Pr[structΠ = S] = ∑
G:G∗=S Pr[BstructΠ = G].

Here the sum is taken over all block-vertex structure graphs G such that the induced structure graph G∗ = S.
As there are at most P(2n , s − r)many vertex-label structure graphs (by bounding the number of valid block

label functions as described above and using s + 1 ≤ m), we proved the following important result.

Lemma 5.7. For any structure graph S with accident a, we have

Pr[structΠ = S] ≤ 1

(2n − m)a
.

Now we state another important result which bounds the number of structure graphs with accident a. The
proof of this result can be found in [2, 31]. So we skip the proof here.

Lemma 5.8. The number of structures graphs associated toM = (M
1
, . . . ,Mq)with accident a is at most (m

2

)a.
In particular, there exists exactly one structure graph with accident 0.

Corollary 5.9. Let a ≥ 1 be an integer. Then,

Pr[Acc(structΠ) ≥ a : Π $

←Ú Perm] ≤ (
m2

2
n )

a
.

This can be shown by making a straightforward algebraic simplification after applying Lemma 5.7 and

Lemma 5.8. So we skip the proof.

5.3 True collision and an observation on [2, Lemma 10]

The definition of the accident is not obvious by looking at the structure graph. It would be good to have

some transparent definition for a structure graph. True collision is such a metric. Let G∗
be a structure graph

and w∗
i the Mi-walks. Suppose we reconstruct the graph G∗

again by making all the walks w∗
i for i = 1
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(1, 0)

(1, 1) (1, 2)

(1, 5) (1, 0)

(1, 1)

(1, 3)

(a) (b)

M1[1]

M1[2]

M1[3]

M1[4]

M2[1]

M1[1]

M1[2]

M1[3]

M2[1]

Figure 6. The counter-examples. (a) M1 = (M1[1],M1[2],M1[3],M1[2],M1[4]) and M2 = (M2[1]) are two messages such that
M2[1] := M1[1] ⊕ M1[3] ⊕ M1[4]. Here we have two input-collisions δ1 := ((1, 0), (1, 2); (1, 1)) and δ2 := ((1, 0), (1, 2); (1, 5)).
The two linear equations Lδ1 and Lδ2 corresponding to the two input-collisions are the same as Y(1,0) ⊕ Y(1,2) = M1[1] ⊕ M1[3]
and so the rank (which is also the accident in this case) is one. However, the true collision is two (at (1, 1) and (1, 5)) which
contradicts [2, Lemma 10]. Similar arguments can be given for figure (b), where M1 = (M1[1],M1[2],M1[3]) and M2 = (M2[1]),
such that M2[1] := M1[1] ⊕ M1[2] ⊕ M1[3].
to q. While we walk along w∗

i for all i, we count how many times we reach an existing vertex which in-

creases its current in-degree. The total count is defined to be the number of true collisions of the graph.

Mathematically, one can define it as follows: For a vertex v ∈ V∗ \ {0}, we define the number of true colli-

sions at v by TC(v) := |nbd(∗ → v)| − 1 and TC(0) = |nbd(∗ → 0)|. So the above count is actually the sum

TC(G∗) := ∑v∈V∗ TC(v). By Lemma 5.5 we know that Acc(G∗) ≥ TC(v) for all v ∈ V∗
. From the definition of

the accident it is also obvious that Acc(G∗) ≤ TC(G∗).
Lemma 10 of [2]. To identify all structure graphs with accident 1 it would be good if we have some rela-

tionship between true collision and accident. Lemma 10 of [2] was meant for this. It says that when q = 2,
Acc(G∗) = 1⇒ TC(G∗) = 1. This lemma is wrong due to the counter-examples given in Figure 6. The lemma

has been used to bound the PRF advantage of CBC [2] and EMAC [2, 31]. As this becomes wrong, it would be

very important to look back the proof and rectify the results as much as possible.

6 Characterization of accident-one structure graphs

In this sectionwe characterize all structure graphswith accident 0 or 1.Wehave already seen that the authors

of [2] have missed some structure graphs for two messages. Thus, it is important to see whether there are

other such graphs or not. To do so we characterize single message structure graphs which is much easier

to convince. Later in this section we characterize all structure graphs for a pair of messages satisfying some

event. Note that from here onwards we will not deal with the block-vertex structure graph. So for simplicity

from here onwards we will use G (instead of G∗
) to represent a structure graph and wr (instead of w∗

r ) to

represent the Mr-walk in the structure graph.

Let structa(M) = {G ∈ struct(M) : Acc(G) = a}, the set of all structure graphs associated to M with ac-

cident a. In particular, we are interested in struct
0
(M) and struct

1
(M), the sets of all structure graphs with

accident 0 and 1, respectively. Lemma5.8 says that the number of graphswith accident 1 is atmost (m
2

)where
m = ∑i mi andMi ∈ Bmi

. The number of structure graphs with accident 0 is at most one. In the following we

actually identify a structure graph and hence it is unique. We call it the free graph associated toM.

Free graphs. As there is no accident, every non-zero vertex has in-degree 1, and 0 has in-degree 0 (i.e.,

non-zero output graph). Being a structure graph, G is a union of Mi-walks wMi . An Mi-walk starting from

0 with no vertex having in-degree 2 must be a path. So G is a union of Mi-paths wMi . Now for any i ̸= j, let
p = LCP(Mi;Mj). Then, wi[1..p] = wj[1..p] and wi[p + 1] ̸= wj[p + 1] (if these are defined). It is also easy to
see that wi[1..p], wi[p + 1..mi], and wj[p + 1..mj] are disjoint paths. Thus, any two paths wi and wj are the
same up to the length of the largest common prefix ofMi andMj and afterwards they remain disjoint. We call

this unique graph free graph. A free graph for three messages is illustrated in Figure 7.
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w1[0]
w1[i] w1[j]

w1[m1]

w2[m2]

w3[m3]

Figure 7. Free structure graph for three messages.

s

0

(a)

0 i0 − 1 i0

j0 − 1(tc + s + 1)
(b)

0 i0 − 1 i0

j0 − 1

s

(c)

0 i0 − 1 i0

sj0 − 1

(d)

0 i0 − 1

j0 − 1

(tc + s + 1)
(e)

0 i0 − 1

i0

(f)

Figure 8. Characterizing all accident-one structure graphs realizable by a single message. The dashed lines in these
illustrations represent optional subwalks. Here the vertex w[i] is represented by i, for notational simplicity.
6.1 Accident one for a single message

Now we consider the structure graph for a single message M ∈ B+. Note that any such structure graph must

be a walk w of length m. We say a node w[i] is fresh in the walk if w[i] ̸= w[j] for all j ̸= i.

Case A: 0 has positive in-degree. As 0 has positive in-degree, there can not be any more collision pairs,

otherwise the accident would be at least two. Let c be the minimum positive integer such that w[c] = 0, so
we have a cycle (w[0], w[1], . . . , w[c]). Let X be its label. SupposeM = Xi‖Y where i is themaximumpositive

integer for whichwe canwriteM in this form. So X is not a prefix of Y. Let s = LCP(X; Y). Thus,w[ic + j] = w[j]
for all j ∈ [0..s].
(i) If Y is a prefix of X, then the structure graph is a cycle of size c ending atw[s]. It is illustrated in Figure 8 (a)

where the ∗ is empty.

(ii) If Y is not a prefix of X, then w[ic + s] = w[s] and w[ic + s + 1] ̸= w[s + 1]. Further, w[ic + s + 1] ̸= w[j]
for all j ∈ [c] since otherwise we get a collision. In fact, it can be shown that all subsequent nodes are

fresh. Suppose not, then let j > ic + s + 1 be the first such integer for which w[j] = w[k] for some k < j,
hence we obtain a collision. So the structure graph is an edge disjoint union of a cycle of size c and a path
starting from s, as illustrated in Figure 8 (a). The length of the cycle is c, whereas the length of the path
is m − ic − s. We also call this graph ρ� graph. The tail (path from 0 to the cycle) of the ρ� walk is empty.

Case B: 0 has in-degree 0. As 0 has in-degree 0, there is a collision δ = (u
0
, v

0
; z). In fact, all other collisions

must have the same source as that of δ.
Consider the M-walk (w[0], w[1], . . .) which is clearly not a path. Let (i

0
, j
0
) be the smallest positive

distinct integers such that w[i
0
] = w[j

0
].³ As 0 has in-degree 0, so 1 ≤ i

0
< j

0
and we can assume that

w[i
0
− 1] = u

0
and w[j

0
− 1] = v

0
. Now, as in Case A, let A = L(w[0..i

0
]), X = L(w[i

0
..j

0
]), j

0
− i

0
= c. Then,

A‖X is the prefix ofM. Let t be the largest positive integer such thatM = A‖Xt‖Y. So X is not a prefix of Y. If Y

3 i
0
and j

0
can be fixed one by one. First fix i

0
to be the smallest positive integer such that w[i

0
] = w[j], j ∈ [i

0
+ 1..m]. Now, fix

the smallest positive integer j
0
such that w[j

0
] = w[i

0
].
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is a prefix of X, then we have a structure graph as illustrated in Figure 8 (d) and (f) (the end point lies inside
the cycle). Suppose Y is not a prefix and let s = LCP(X; Y).

Claim. The walk after A‖Xt‖Y[1..s] is a path and disjoint from the rest; illustrated in Figure 8 (c).

Proof. Suppose there exists v ̸= w[s] ∈ w[tc + s..m] ∩ w[1..tc + s]. We distinguish the following cases.

Case B.1: w[tc + s + 1] = w[i], i ∈ [tc + s]. If s ̸= j
0
− 1, then we have a new collision δ� = (w[i−1], w[tc+ s];

w[i]) independent of δ which increases the accident to 2. If s = j
0
− 1, then i ̸= i

0
as X[s + 1] ̸= Y[1]. Now

the only way to make δ� dependent on δ is to have i − 1 = i
0
− 1. This implies a collision at w[j] where

j ∈ [1..i
0
− 1], as the walk must come back to i

0
− 1 at the (i − 1)-th step. This again gives a new accident.

Case B.2: w[tc + s + 1] ∉ w[1..tc + s] and w[j] = w[i], i ∈ [tc + s], j ∈ [tc + s + 2..m]. So, there is a new col-

lision δ� = (w[j − 1], w[i − 1];w[i]) which is independent of δ. This gives a new accident. Thus, we have

w[tc + s + 1..m] ∩ w[1..tc + s] = 0.

Case B.3: w[tc + s..m] is not a path. Therefore there exist i, j ∈ [tc + s..m] such that (w[i], w[j];w[i + 1]) is
a collision. Clearly this will be independent from δ and hence gives a new accident. So none of the cases 1, 2

or 3 is possible.

Observe that s = j
0
− 1 is a special case. In addition to this condition, supposewehave an edge e := (w[i

0
− 1],

w[tc + s + 1]) which creates a collision δ� = (w[i
0
− 1], w[j

0
− 1];w[tc + s + 1]) dependent on δ. The edge e

cannot occur in a single message graph, as that will imply nbd(∗ → w[j]) ≥ 2 for some j ∈ [0..i
0
− 1] which

gives a new accident. But for a two-message graph this is realizable (counter-examples) as illustrated in

Figure 8 (b) and (e). We summarize our discussion in the following lemma.

Lemma 6.1. For m ≥ 1, M ∈ Bm and π ∈ Perm, the graphs in Figure 8 exhaust all possible forms for Gπ(M)
when the accident is 1.

7 Revisiting CPn(M1,M2) and FCPn(M1,M2) bounds

In this section our main aim is to revise the proofs of CP and FCP bounds and consequently the PRF advan-

tages in [2]. Asmentioned earlier themotivation for this revision is our observation that one of themain tools

[2, Lemma 10] in bounding |struct
1
[coll]| and |struct

1
[Fcoll]| is false.

We start off with a discussion that establishes the role of structure graphs in the PRF security analysis of

CBC-MAC and EMAC. Note that we have already seen that bounding PRF advantages of CBC-MAC and EMAC is

reduced to bounding full collision probability FCPpf
2,ℓ and collision probabilityCPany2,ℓ , respectively. So it would

be sufficient to bound these probabilities. For this we first prove a general claim (Proposition 7.1).

Structure graph events. Let M = (M
1
, . . . ,Mq) be a tuple of q messages. Let E be an event defined on the

intermediate output sequence outπ(M) for a permutation π. We say that the event E is defined by a structure
graph if there is an event E� defined on the structure graph structπ such that E holds if and only if E� holds.We

call such an event a structure graph event. Moreover, we say that E is non-free if it is false for the free structure
graph (the structure graph with accident 0). Note the collision event for any distinct messages as well as the

full collision event for prefix-free messages are examples of non-free structure graph events. In consistency

with our notation, we denote by structa(E) the set of all structure graphs with accident a and satisfying a

non-free event E.

Proposition 7.1. Let E be a non-free structure graph event for the message tupleM. Then,

Pr
Π
[E] ≤ |struct1[E]|

2
n − m

+
m4

2
2n .
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Proof. Note that for any structure graph event E,

Pr
Π
[E] = ∑

a≥0 Pr[structΠ ∈ structa[E]].
As the event is non-free, the sum can be done for a ≥ 1. Moreover, we know that

Pr[Acc(structΠ) ≥ 2] ≤ m
4

2
2n .

So the result follows from Lemma 5.7 which bounds the probability of realizing a structure graph with acci-

dent a.

7.1 Revisiting the CP2,ℓ bound

Suppose M
1
∈ Bm

1

and M
2
∈ Bm

2

such that M
1
[m

1
] ̸= M

2
[m

2
], 0 ≤ m

1
≤ m

2
, since otherwise we can re-

move the largest common suffix which does not change the collision probability. Note that the first mes-

sage M
1
now can be empty (then M

2
is not, as they are distinct) and in this case collision event means that

outΠ(M
2
)[m

2
] = 0n. This is a structure graph event because 0 is a vertex of the structure graph. Due to Propo-

sition 7.1, we only need to bound the number of structure graphs with accident 1 satisfying the coll event for
the pair of messages. More precisely, we have to bound the size of the set struct

1
(M

1
,M

2
)[coll].

Case 1:M1 is an empty message. In this case, we have

struct
1
(M

1
,M

2
)[coll] = struct

1
(M

2
)[wM

2

[m
2
] = 0].

Now, we make the following claim which is essentially [2, Lemma 14]:

Claim. |struct
1
(M

2
)[w

2
[m

2
] = 0]| ≤ d(m

2
).

Proof. Let x be the smallest positive integer such that w
2
[x] = 0. Let X be the label of the walk w

2
[0..x]. If

M
2
= Xd with somepositive integer d, then struct

1
(M

2
)[w

2
[x] = 0] contains exactly one structure graph. Note

that xmust dividem
2
andhence the number of possible choices of such x is atmost d(m

2
), the number of divi-

sors ofm
2
. SupposeM

2
= Xd‖Y for some non-empty Y where d is the largest such integer of this form. If Y is a

prefix, thenW
2
[m

2
] is the point in the cycle and it must be 0. This can be zero only if Y = X which contradicts

themaximality of d. So now assume that Y = Y
1
‖Y

2
such that Y

1
is the largest common prefix of X and Y, and

Y
2
is some non-empty string. If s is the length of Y

1
, then Y

2
[1] ̸= Y[s + 1]. Thus, w

2
[dx + s + 1] ̸= w

2
[s + 1].

As it is a zero-output structure graph, we can not have any collision. So there is no way to obtain w
2
[m

2
] = 0.

This proves the claim.

Case 2:M1 is not an empty message. In this case, we have a collision

(u := w
1
[m

1
− 1], v := w

2
[m

2
− 1], z := w

2
[m

2
])

as the labels of the last edges for walks w
1
and w

2
are different. Any other collision, if any, must have the

same source set {u, v}. Moreover, 0 can not have positive in-degree. Now we consider different sub-cases:

Case 2.1: Both w1 and w2 are paths. In this case, the union of w
1
[1..m

1
− 1] and w

2
[1..m

2
− 1] is a free

graph (as w
1
[m

1
− 1] and w

2
[m

2
− 1] can not appear before in the graph and so no collision among the path

can occur). This gives only one choice of the graph as shown in Figure 9 (a). So the number of choices is

bounded by at most 1. This is proved as part of the incorrect lemma [2, Lemma 15].

Case 2.2: w2 is not a path. Then we have already characterized all possibilities of w
2
. So there exist some

integers t, c such that w
2
[1..t] is a path with w

2
[t − 1] = u and w

2
[t] = p, w

2
[t..t + c] is a cycle of length c

such that w
2
[t + c − 1] = v. (Note that w

2
[t − 1] ̸= w

2
[m

2
− 1].) Now, w

1
[m

1
− 1] = u.

Claim. w
1
[1..m

1
− 1] = w

2
[1..t − 1] and so m

1
= t.
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0
p

m2

(a)

0
p = z

(b)

0 p = u z

vm2

(c)

∗
∗

∗

∗

Figure 9. Characterizing all accident-one structure graphs realizable by two messages which satisfy the coll event.
Dashed lines represent w1 and solid lines represent w2.

Proof. Let s be the length of the largest common prefix of w
1
[1..m

1
− 1] and w

2
[1..t − 1]. If s < t − 1, then

in the walk w
1
there is no way to reach u without coming back to the walk w

2
[1..t − 1]. Coming back is not

possible as it leads to a collision with a different generator set. Similarly we can disprove that s = t − 1 and
m

1
> t. Thus, we have m

1
= t and w

1
[1..m

1
− 1] = w

2
[1..t − 1].

Now, we distinguish two cases for the choices of p = LCP(M
1
;M

2
).

Case 2.2.1 a. If w
1
[p] = z, then we have the structure graph as illustrated in Figure 9 (b). In this case, M

1
is

a prefix ofM
2
. The number of such structure graphs is again at most d(m

2
− m

1
) (similar to the previous case

where M
1
is the empty message). This is also [2, Lemma 13].

Case 2.2.1 b. If w
1
[p] ̸= z. Then we get a case which was not considered in [2]. In this case, w

1
[p] should be

a fresh node, otherwise we get a collision with different source set. Thus, we get a structure graph which is

shown in Figure 9 (c). LetM
1
= A‖a where A = M

1
[1..t − 1] and a = M

1
[t]. Note that t − 1 is the length of the

largest common prefix of M
1
and M

2
. Then,

M
2
= A‖b‖(X‖x)d−1‖X‖c, where c = M

2
[m

2
], b = M

2
[t], x = a ⊕ b ⊕ c.

The choice of X is variable. But it must satisfy the above for some d > 1. In fact, X is determined by its length

which is c. Again, c must divide m
2
− m

1
and hence the number of choices of c is at most d(m

2
− m

1
) − 1.

This completes the characterization of all structure graphs satisfying coll with accident 1 and bounds

the number of such graphs for all cases. Note that Cases 2.2.1 a and 2.2.1 b cannot hold simultaneously.

But, Cases 2.2.1 b and 2.1 can hold simultaneously which makes the total count of these two cases at most

d(m
2
− m

1
). Since the order of messages does not matter in coll, we are done.

Lemma 7.2. Let M
1
∈ Bm

1 , M
2
∈ Bm

2 .
(i) If M

1
<
1
M

2
, then struct

1
(M

1
,M

2
)[coll] is of the form illustrated in Figure 9 (b) and the number of such

graphs is at most d�(m
2
).

(ii) If M
1
<
2
M

2
, then struct

1
(M

1
,M

2
)[coll] is of the form illustrated in Figure 9 (c) and the number of such

graphs is at most d�(m
2
).

(iii) In all other cases, struct
1
(M

1
,M

2
)[coll] is of the form illustrated in Figure 9 (a) and the number of such

graphs is at most one.

Corollary 7.3. We have |struct
1
(M

1
,M

2
)[coll]| ≤ d�(m

2
) for any distinct messages M

1
, M

2
with m

1
≤m

2
. Thus,

CPany
2,ℓ ≤ d�(ℓ)

2
n − 2ℓ
+
16ℓ4

2
2n .

7.2 Revision of FCPpf2,ℓ bound

Since Fcoll is a non-free structure graph event, we have, using Proposition 7.1,

FCPpfn (M1
,M

2
) ≤

|struct
1
(Fcoll)|

2
n − m

1
− m

2

+
(m

1
+ m

2
)4

2
2n .

Thus, it would be again sufficient to bound the number of structure graphs for two messages with accident 1

satisfying full collision property. Bellare, Pietrzak and Rogaway [2] proved |struct
1
(Fcoll)| ≤ 4max{m

1
,m

2
}.
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While bounding |struct
1
(Fcoll)|, they proved a strong result [2, Lemma 19] that will be also useful in our

analysis. We reproduce it here in our notations.

Lemma 7.4. For b ∈ {1, 2} and any i ∈ [0..mb],
!!!!struct1(M1

,M
2
)[wb[i] ∈ wb[0..i − 1, i + 1..mb]]

!!!! ≤ mb .

Since the proof of Lemma 7.4 can be found in [2], we skip it here. Now, we revise the FCP bound to

|struct
1
(Fcoll)| ≤ 3(m

1
+ m

2
) and the new bound is as follows.

Lemma 7.5. We have
FCPpfn (M1

,M
2
) ≤

3(m
1
+ m

2
)

2
n − m

1
− m

2

+
(m

1
+ m

2
)4

2
2n .

Proof. We need to bound the number of structure graphs for a pair of prefix-free messages M
1
∈ Bm

1

and

M
2
∈ Bm

2

which satisfy the Fcoll event and have at most accident 1. Note that the event implies that the

structure graphs must have at least accident 1 as the messages are prefix-free. The event Fcoll can be written
as w

2
[m

2
] ∈ w

2
[0..m

2
− 1] ∪ w

2
[m

2
] ∈ w

1
[1..m

1
].

Case1:w
2
[m

2
] ∈ w

2
[0..m

2
− 1]. This case canbebounded to atmostm

2
, bydirect applicationof Lemma7.4.

Case 2: w
2
[m

2
] ∈ w

1
[1..m

1
]. Suppose Fcoll(M

1
;M

2
) happens due to w

2
[m

2
] = w

1
[r] for an arbitrary r ∈

[1..m
1
− 1]. Then Fcoll(M

1
;M

2
) is equivalent to coll(M

1
[1..r],M

2
). For simplicity let M�

1

:= M
1
[1..r]. Let

s := LCS(M�
1

;M
2
). Then M�

1

[s − 1] ̸= M
2
[m

2
− r + s − 1]. Let

M∗
1

= M�
1

[1..s − 1], M∗
2

= M
2
[1..m

2
− r + s − 1].

From Lemma 7.2 we know that G∗ ∈ struct
1
(M∗

1

;M∗
2

)[coll]must be one of (a), (b) or (c) in Figure 9. Note that

G∗
is a subgraph of some G ∈ struct

1
(M

1
;M

2
)[Fcoll].

Case 2.1: G∗ is as in Figure 9 (a). In this case, w∗
1

and w∗
2

are paths. For a fixed r the only possible collision
is at (w∗

1

[s − 2], w∗
2

[m
2
− r + s − 2];w∗

1

[s − 1]) and hence the number of such graphs is at most 1. There are

at most m
1
possible values for r. So, the number of choices for G ∈ struct

1
(M

1
;M

2
)[Fcoll] is at most m

1
.

Case 2.2: G∗ is either as in Figure 9 (b) or (c). In this case, at least one of w∗
1

and w∗
2

is not no path. Without

loss of generality assume w∗
1

is not a path. Let p∗ = LCP(M∗
1

;M∗
2

). We know that M∗
1

<
1
M

1
and M∗

2

<
1
M

2
.

Thus M
1
[1..p∗] = M

2
[1..p∗]. Now we must have a collision (u, v; z) in w∗

1

. From Lemma 7.2 we know that

the graph can be either Figure 9 (b) or (c) depending on whether z = w∗
1

[p∗] or z = w∗
1

[p∗ + 1]. Next wemake

two claims which will enable us to bound the two cases. The proofs for these two claims are given later in the

section.

Claim 1. If G∗ is Figure 9 (b), then w
1
[LCP(M

1
;M

2
)] is not fresh in w

1
.

Claim 2. If G∗ is Figure 9 (c), then w
1
[LCP(M

1
;M

2
) + 1] is not fresh in w

1
.

Recall that in a walk w a vertex w[i] is not fresh if there exists j ̸= i such that w[j] = w[i]. By Claim 1 we

know that w
1
[LCP(M

1
;M

2
)] is not fresh when G∗

is as in Figure 9 (b). Similarly, by Claim 2 we know that

w
1
[LCP(M

1
;M

2
) + 1] is not fresh when G∗

is as in Figure 9 (c). So using Lemma 7.4, we bound the number

of such graphs G to at most m
1
+ m

1
= 2m

1
when w∗

1

is not a path. Similarly we have at most 2m
2
choices

when w∗
2

is not a path. Therefore the total number of choices in Case 2.2 is at most 2(m
1
+ m

2
). Combining

Cases 1, 2.1 and 2.2, we have at most 3(m
1
+ m

2
) choices. The result follows.

Proof of Claim 1. If G∗
is like Figure 9 (b), we must have z = w∗

1

[p∗]. Let q be the minimum index such that

w∗
1

[q] = w∗
1

[p∗]. Let P = L(w∗
1

[0..p∗]) and X = L(w∗
1

[p∗..q]), c = q − p∗. ThenM∗
1

= P‖X andM∗
2

= P. AsM∗
1

and M∗
2

are formed by removing the largest common suffix from of M�
1

and M
2
, respectively, therefore

M�
1

= (M∗
1

‖Xi1‖Y) = (P‖Xi1+1‖Y) and M
2
= (M∗

2

‖Xi2‖Y) = (P‖Xi2‖Y),

where i
1
, i
2
≥ 0 are the largest such indices. Since M�

1

and M
2
are prefix-free, we have i

1
+ 1 > i

2
. Now

M
1
= (M�

1

‖Z) = (P‖Xi1+1‖Y‖Z), where |Z| ≥ 0. From now onwards we will work on the walk w
1
(instead of w∗

1
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which is a subwalk of w
1
) corresponding to M

1
. If Y is a prefix of X, then M

2
<
1
M

1
which contradicts the

prefix-free condition. So Y is not a prefix of X. If X is a prefix of Y, then it contradicts the maximality of i
1
, i
2
.

So X is not a prefix of Y. Assume Y = Y
1
‖Y

2
such that Y

1
is the largest common prefix of X and Y, and Y

2
is

some non-empty string. If p is the length of Y
1
, then Y

2
[1] = Y[p + 1] ̸= X[p + 1]. Thus,

M
1
[1..i

2
c + p] = M

2
[1..i

2
c + p] and M

1
[i
2
c + p + 1] ̸= M

2
[i
2
c + p + 1].

So, p = LCP(M
1
;M

2
). Further since i

2
< i

1
+ 1, w

1
[p] is traversed twice. Thus, w

1
[LCP(M

1
;M

2
)] will not be

fresh. Note that we started off with an arbitrary r. So w
1
[LCP(M

1
;M

2
)] will not be fresh irrespective of the

value of r.

Proof of Claim 2. If G∗
is like Figure 9 (c), wemust have z = w∗

1

[p∗ + 1]. As noted earlier in the revision of the
CP bound, this case was missing in the proof in [2]. Using a similar line of argument as in the previous case,

we can conclude that irrespective of the value of r, the cycle goes through w
1
[LCP(M

1
;M

2
) + 1] twice. Thus,

w
1
[LCP(M

1
;M

2
) + 1] is not fresh.

Note that our approach in Case 2.2 above is a bit subtle. We used Lemma 7.2 to identify a fundamental prop-

erty (cycle goes through p or p + 1 twice) and then exploited this property to bound the counting. A straight-

forward approach of summing the counts for graphs in Figure 9 (b) and (c) over all values of r will give a
worse bound of mbd�(mb), b ∈ {1, 2}. To get a tighter bound of mb we needed this subtlety. Now we extend

the bound for FCPpfn (M1
;M

2
) to FCPpfq,ℓ, in order to get the revised prf bound for CBC-MAC:
FCPpfq,ℓ ≤ ∑

i ̸=j∈[q]FCPpfn (Mi;Mj)

≤ ∑
i ̸=j∈[q] 3(mi + mj)

2
n − m

1
− m

2

+
(mi + mj)4

2
2n

≤ ∑
i ̸=j∈[q] 6(mi + mj)

2
n +

(mi + mj)4

2
2n

≤
12mq
2
n +

16mqℓ3

2
2n ≤

12σq
2
n +

16σqℓ3

2
2n . (3)

Here we have computed the bound in terms of q, ℓ and σ. Another approach (as used in [2]) is to bound the
value using q and ℓ only, in which case the bound will be

FCPpfq,ℓ ≤ 12ℓq2
2
n +

16ℓ4q2

2
2n .

Using Proposition 4.2 and (3), we get the following theorem.

Theorem 7.6. We have
Advpf

CBC

(q, ℓ, σ) ≤ 14σq
2
n +

16σqℓ3

2
2n +

q2

2
n+1 .

This gives a bound of O(σq/2n) for ℓ < 2n/3. As noted earlier, this is a better bound whenever the average

message length is much smaller than the length of the longest message.

8 Revised security analysis of EMAC

In this section we revisit the PRF analysis of EMAC due to Pietrzak [31]. We first identify the actual flaw in

the proof and then provide a different proof to obtain, in fact, a better bound of EMAC (in terms of ℓ). For
notational simplicity we will keep our bounds in order notation and avoid the constant factors.
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8.1 Flaw and revision of PRF advantage of EMAC

The proposed bound for EMAC as stated in [31] is

Advprf
EMAC

(q, ℓ, σ) = O( q
2

2
n (1 +

ℓ8

2
n ))

provided ℓ2 ≤ q. Thus, it becomes tight bound q2/2n when ℓ ≤ min(q1/2, 2n/8). To show the above result we

need to bound the collision probability CPq,ℓ. One possible approach is to group the q message into O(q/ℓ2)
groups, each group consists of about ℓ2 messages. So the collision event among q messages implies that a

collision occurs in two of the groups. Since coll is a non-free event, Proposition 7.1 gives

CPq,ℓ = O( |struct1(M)[coll]|
2
n ) + O(q

4ℓ4

2
2n ).

Applying this with q = 2ℓ2 (i.e. for two groups), we have

CPq,ℓ = O(q2ℓ4 ) × CPℓ2 ,ℓ = O( q2Nℓ42n
) + O(q

2ℓ8

2
2n ),

where N denote the number of accident-one structure graphs satisfying coll for ℓ2 messages with maxi-

mum length ℓ. The O(q2/ℓ4) term is due to the number of ways in which we can choose two groups. In [31,

Lemma 4], Pietrzak claimed that N = O(ℓ4). So, plugging this bound for ℓ, we have the desired bound. Now,
to prove this bound for N, Pietrzak considered two cases for a pair ofmessagesM andM�

(note that accident 1

and collision must occur for a pair of messages). More precisely, it can be shown that

N = ℓ4 max

M≮
1
M�

|struct
1
(M.M�)[coll]| + ℓ4. (4)

Recall thatM ≮
1
M�

means that theybecomeprefix-free after removing the largest commonsuffixofM andM�
.

Claim ([31, Claim 1]). If M ≮
1
M�, then |struct

1
(M.M�)[coll]| = 1.

If this claimhappens to be true, thenN = O(ℓ4). However,wehave seen before there existM,M�
withM <

2
M�

(such that M ≮
1
M�

) with |struct
1
(M,M�)[coll]| = d(ℓ − 1). Thus,

|struct
1
(M,M�)[coll ∧M ≮

1
M�]| = O(d�(ℓ)).

If we plug in this, we find the modified bound as N = O(ℓ4(d�(ℓ))2) and so the revised bound for the collision
probability becomes O(q2d�(ℓ)/2n) which is not tight.
8.2 Simple proof of EMAC

We have seen in the last subsection that the influence of the flaw from [2, Lemma 10] is more serious having

a tight bound of EMAC. So it is very crucial to revisit the security analysis of EMAC. One possible approach

to fix the proof of [31] is to bound N in a different way. For example, we can consider two casesM <
1
M�

and

M <
2
M�

(i.e.,M[1..m − 1] <
1
M

2
butM ≮

1
M�

). For any pair of messages which are not related by any one of

these two relations, the number of structure graphs can be shown to be one. However, we need to show that

the number of remaining graphs is still about ℓ4 (see second term of (4)).

In this subsection we actually take a slightly different and, in fact simpler, approach. Instead of making

groups of qmessages, we directly bound the number of structure graphs for a slightly different choice of per-

mutations. We will ignore all those permutations (i.e. bad permutations) which induce one of the following:

(i) For some pair of messages Mi and Mj the accident is two or more.

(ii) For some message Mi, the accident is one.

Let ϕ be the property to represent the complement of the event. Let S be a structure graph associated to a
q-tuple ofmessages.We recall that S is a unionof qwalkswi.Weuse the sub-graphs Si and Si,j to represent the
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walks wi and wi ∪ wj, respectively. Note that these are again structure graphs associated toMi and (Mi ,Mj),
respectively. In this notation, ϕ is a property on all structure graphs S onM such thatAcc(Si,j) ≤ 1 for all i ̸= j
and Acc(Si) = 0 for all i. We call a permutation good if its induced structure graph satisfies ϕ, otherwise we
call it bad. Now we claim our new bound.

Lemma 8.1. We have
CPq,ℓ(M) ≤ O( q

2

2
n ) + O(

ℓ2q
2
n ) + O(ℓ

4q2

2
2n ).

Proof. We first bound the probability of bad random permutation. For a bad permutation, (i) there exist i
and j such that the accident for the pair of messagesMi andMj is at least 2, or (ii) there exists i such that the
accident forMi is at least one. The first event can happenwith probabilityO(ℓ4q2/22n) by using Corollary 5.9.
Similarly the second event can happenwith O(ℓ2q/2n). Nowwe bound the probability p := Pr[coll ∧ ϕ]. Note
that coll implies that there exist i and j such that the collision event holds for the messageMi andMj. Now ϕ
implies that the accident of Si,j is one whereas the accident of Si and the accident of Sj are zero. In Section 6
we have characterized all structure graphs for a pair of messages with accident 1 satisfying collision. Among

all possibilities only one structure graph satisfies ϕ. Hence there is exactly one structure graph. This implies

that Pr[coll(Mi ,Mj) ∧ ϕ] = O(2−n). Hence, by summing over all possible i, j, we have

Pr[coll(M) ∧ ϕ] = O( q
2

2
n ).

The above discussion can be summarized as follows:

CPq,ℓ(M) = Pr
Π
[coll

Π
(M) ∧ (structΠ(M) ∈ struct(M)[ϕ])] + Pr[structΠ(M) ∉ structΠ(M)[ϕ]]

= ∑
i ̸=j O( |struct(Mi ,Mj)[coll ∧ ϕ]|

2
n ) + O(ℓ

2q
2
n ) + O(ℓ

4q2

2
2n )

= O( q
2

2
n ) + O(

ℓ2q
2
n ) + O(ℓ

4q2

2
2n ).

This completes the proof.

Theorem 8.2. We have
AdvanyEMAC(q, ℓ, σ) = O(

2q2

2
n +

qℓ2

2
2n +

q2ℓ4

2
2n ).

So if ℓ ≤ min{q1/2, 2n/4}, then
AdvanyEMAC(q, ℓ, σ) = O(

q2

2
n ).

Note that our theorem gives a tight bound for a better constraint than what we had before in [31]. The condi-

tion q > ℓ2 can be dropped ifwe assume ℓ ≤ 2n/4−k for some small k such that 2−k is negligible.More precisely,
if ℓ ≤ 2n/4−k, then the PRF advantage of EMAC is about q2

2
n + 1

2
k .

9 Conclusion

In this paper we have revisited the PRF security analysis of CBC-MAC and EMAC. We made the revision as we

have found that one of the main claims in the original papers providing improved bounds is not correct. This

claim, in fact, influences some of the other claims. More importantly, the tight bound claim of EMAC becomes

invalid even after a simple fix of the claim. So we feel that revision is essential and this paper serves this.

Fortunately we have recovered the same bounds, at least in terms of the order, for both constructions. For

CBC-MAC, we have attained the potentially better bound of O(σq/2n). Moreover, we have found a better way
to analyze EMAC which provides a tight bound with a much relaxed constraint on message length ℓ. Namely

our constraint is ℓ < 2n/4 whereas the original constraint was ℓ < 2n/8.
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