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Abstract: In this paper we study an RSA variant with moduli of the form N = p’q! (r > [ > 2). This variant
was mentioned by Boneh, Durfee and Howgrave-Graham [2]. Later Lim, Kim, Yie and Lee [11] showed that
this variant is much faster than the standard RSA moduli in the step of decryption procedure. There are two
proposals of RSA variants when N = p’ql. In the first proposal, the encryption exponent e and the decryption
exponent d satisfy ed = 1 mod p"1q""1(p-1)(q—1), whereas in the second proposal ed = 1 mod (p—1)(g—1).
We prove that for the first case if d < N1-GD0+D7 ' one can factor N in polynomial time. We also show
that polynomial time factorization is possible if d < N7-2V7/3(+D) for the second case. Finally, we study
the case when few bits of one prime are known to the attacker for this variant of RSA. We show that given
min( L 2(r-)

w1 a1 ) 108, p least significant bits of one prime, one can factor N in polynomial time.
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1 Introduction

Since the RSA public key cryptosystem has been proposed, this public key scheme is possibly the most studied
topic in cryptology world. To achieve high efficiency in the decryption phase, many variants of RSA schemes
have been proposed.

At Crypto 1997, Takagi [18] proposed an RSA-type cryptosystems using n-adic expansion. One important
variant of RSA is multi-power RSA [19], proposed by Takagi in 1998. In multi-power RSA, the RSA modulus N
is of the form N = p"q, where r > 2. Compared to standard RSA, it is more efficient in both key generation and
decryption. Besides, moduli of this type has been applied in many cryptographic designs, e.g., the Okamoto—
Uchiyama cryptosystem [15], or better known via EPOC and ESIGN [21], which uses the modulus N = p?q.

At Indocrypt 2000, Lim, Kim, Yie and Lee [11] extended Takagi’s cryptosystem to include moduli of the
form N = p"q!, where r, [ > 2. They showed that the choice of either p"g"**, p"1q"*! or p"~2¢"*? is optimal
under the assumption that the sum of exponents is fixed. For example, they claimed that 8192-bit RSA will be
fifteen times faster than standard RSA if one takes N = p2¢>. In Crypto 1999, Boneh, Durfee and Howgrave-
Graham [2] also mentioned as an open problem to factor p’q! using lattice-based approach.

Surprisingly, there had been very little research into the security RSA-type schemes with moduli N = p’q!
for r, 1 > 2. Therefore, it is important to investigate the safety parameters of their algorithm.
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1.1 Related works

The security of this variant of RSA, like that of standard RSA, is based on the hardness of factoring large

integers. Until now there is no known polynomial time algorithm to factorize large numbers except quantum

algorithms. However, in a real-world implementation, partial information regarding the secret prime p can
be leaked by side-channel attacks (known as factoring with known bits problem), hence it is crucial to study
how this affects the factoring problem. In fact, there have been a number of results in this direction.

o  For the case of standard RSA with modulus N = pg: In 1985, Rivest and Shamir [16] first studied this
problem, they designed an algorithm to factor N given %-fraction of the bits of p. In 1996, Coppersmith [3]
improved this bound to % Note that for the above results, the unknown bits are within one consecutive
block. The case of n(n > 2) blocks was first considered by Herrmann and May in [5].

o  For the case of multi-power RSA with moduli N = p"q (r > 2): In 1999, Boneh, Durfee and Howgrave-
Graham [2] showed that N can be recovered efficiently given %-fraction of the most significant bits
(MSBs) of p. In 2013, Lu, Zhang and Lin [12] considered the case of n (n > 2) blocks.

To speed up decryption, the small secret exponent d is often used in some cryptographic applications.
However, it is well known that the RSA scheme is easily broken if the secret exponent d is too small (known as
small secret exponent attack). In 1990, by utilizing the continued fraction method, Wiener [20] showed that
the standard RSA scheme can be broken when d < N°2°, Later, in 1999, Boneh and Durfee [1] improved
Wiener’s bound to N°-22, Recently, in [6], Herrmann and May gave an elementary proof for the Boneh—
Durfee’s bound, and in [9], Kunihiro, Shinohara and Izu also investigated this problem. However, N%-292 is
still the best bound at present.

For the case of multi-power RSA, there exists two variants. In the first variant, ed = 1 mod p"'(p-1)(g-1)
while in the second variant, ed = 1 mod (p — 1)(q — 1). For the first variant, in 1999, Takagi [19] showed
that when the secret exponent d < NY/(20+1)) one can factorize N. Later in 2004, May [14] improved Takagi’s
bound to Nmax{r(r+1)%,0-1)*(r+1)*} Recently, Sarkar [17] used a lattice-based method to improve the previous
bounds when r < 5. In [13], the authors further improved May’s bound to N""-D+1™ 'which is better than
May’s result when r > 2. For the second variant, in 2008, Itoh, Kunihiro and Kurosawa [8] showed that d can
be recovered from if d < N@-V2/+1),

1.2 Our contributions

In this paper,! we analyze the security of RSA-type schemes with moduli N = p’q!, where r > 1> 2 and
ged(r, 1) = 1. Admittedly, RSA-type schemes with moduli N = p’q! have very limited application. However, as
rightly mentioned in [4] a significant fraction of cryptography is still based on RSA and so it is important to
study these RSA-type moduli. Throughout the paper, we assume that g < p < 2q, which means p =~ q.

Small secret exponent attacks on RSA-type schemes with moduli N = p"q!. Considering the form of the
moduli N = p"q!, there are also two variants of encryption and decryption phases. In the first variant, e and
d satisfy ed = 1 mod p"1q"1(p — 1)(q - 1). In the second variant, e and d satisfy ed = 1 mod (p — 1)(q - 1).
For these two variants, we give the analysis respectively.

For the equation ed = 1 mod p"~'¢"1(p — 1)(q - 1), we solve a small solution d of the modular equation
ex —1 =0 mod p"~1q"!. We introduce a new technique to select more helpful polynomials which are used
to construct a lattice. We show that when

3r+l

d< N w2,

one can recover d in polynomial time. Note that when I = 1, our result is the same as the result of [13].

1 This is a thoroughly revised and extended version of the paper “Cryptanalysis of an RSA variant with moduli N = p”¢!” that
has been presented at WCC 2015, April 13-17, 2015, Paris, France. There is no formal proceedings for WCC 2015. Section 4.3 of
this paper is the additional contribution that was not appeared in the workshop version.
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For the equation ed = 1 mod (p — 1)(q — 1), we solve a small solution (k, p, q) of the modular equation
x(y -1)(z-1) +1 =0 mod e, where k = %. By utilizing the property p’q' = N, we give a method of
lattice construction and show that when

7-2N7
d < N30+ s

the small solution (k, p, q) can be found. Note that when [ = 1, our result is exactly the general bound of [8].

Factoring RSA moduli N = p"q! with partial known bits. In the conclusion of Boneh, Durfee and Howgrave-
Graham’s paper [2], the authors raised a question that whether one can generalize the factoring with partial
known bits to the integers of the form N = p"q'. In this paper, we answered this question firmly that we only
need a min(%, 2(:1’) )-fraction of least significant bits (LSBs) of p in order to factor N in polynomial time.
Independently, Coron, Faugére, Renault and Zeitoun [4] also studied this problem. We give a comparison
with their method and give an improvement for certain parameters. Besides, we also extend to the case of the

arbitrary number n (n > 2) of unknown blocks.

Experimental results. To verify the correctness of our above attacks, we have performed the experiments
in Magma 2.11 computer algebra system on a PC with Intel(R) Core(TM) Duo CPU (2.53 GHz, 1.9 GB RAM
Windows 7). And the experimental results demonstrate that the performance of our algorithms is effective.

2 Preliminaries
Consider w linearly independent vectors b1, ..., by, € Z". The set

w
L:{b:b:Zcib,-, cl,...,cweZ}

i=1

is called an w-dimensional lattice with basis B = {b4, ..., by }. Alattice is of full rank when w = n and in this
paper we only use such lattices. The determinant of L is defined as det(£) = det(M), where the rows of M are
the vectors from B. When b, ..., by, € Z", the lattice £ is called an integer lattice.

In 1982, Lenstra, Lenstra and Lovasz [10] proposed a polynomial time algorithm (known as LLL-Algo-
rithm); let us first state the LLL-Algorithm.

Lemma 2.1 (LLL Algorithm). Let £ be a lattice of dimension w. Within polynomial time, LLL-Algorithm outputs
a set of reduced basis vectors vi, 1 < i < w, that satisfies

w(w-1) 1
Ivill < vall <--- < flvill < 270530 det(L) Wi

ikxill ‘e x;f. We define the norm of g by the Euclidean norm of its coefficient

2 2
lgl>= ) ai ;.

Also we need the following result due to Howgrave-Graham [7].

Letg(x1,...,xx) =); i ai,
vector:

.....

Lemma 2.2 (Howgrave-Graham). Let g(x1,...,Xk) € Z[x1, ..., Xx] be an integer polynomial that consists of
at most w monomials. Suppose that
@) g(y1,...,yk) =0mod e™ for [y1] < X1, ..., lyil < Xk,
(11) "g(Xle, ey Xka)" < f_m'
Then g(y1, ..., Yx) = 0 holds over integers.
Suppose we have w (> k) polynomials b1, ..., by in the variables x4, . .., xx such that
b1yi,ee s Vi) = =by(1,...,¥x) = 0mod e™
with

il < X1, ..o Iyl < Xk
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Now we construct a lattice £ with the coefficient vectors of b1 (x1 X1, ..., Xk Xk), ..., bw(x1 X1, ..., XiXk).
After lattice reduction, we get k polynomials v; (x1, ..., Xk), ..., Vk(X1, ..., Xi) such that
Viy1, .o Yi) = = Vi(y1,...,yk) = 0 mod e™

which correspond to first k vectors of the reduced basis. Also by the property of the LLL-Algorithm, we have
w(w-1)
Vi0aX1, .o Xl < - < IveGaXa, . il < 270600 det(C) Wit

Hence by Lemma 2.2, if
2 det() 7 < £

w+l- e wtl-k < —_—,

Vw

then we have v{ (y1,...,¥x) =--- = Vk(¥1, - . . , kx) = 0. Next we want to find y1, ..., yx fromvy,..., vi.
Although our technique works in practice as noted from the experiments we perform, we need a heuristic
assumption for theoretical results.

Assumption 2.3. The lattice-based construction yields algebraically independent polynomials. The common
roots of these polynomials can be efficiently computed using the Grobner basis technique.

We also use the following theorem [13].

Theorem 2.4. Let N be a sufficiently large composite integer (of unknown factorization) with a divisor p"

(p > N and an integer r > 1). Let f(x1, ..., Xn) € Z[X1, ..., Xn] be a linear polynomial in n variables. Under
Assumption 2.3, we can find all the solutions (x(l), ..., X% of the equation f(x1,...,xy) =0 mod p with
X9 < NV, X0 < N if

n 1 - n
izzlyi < (1-a-m% -+ na-mB)1- {1-p)).

The running time of the algorithm is polynomial in log N but exponential in n.

3 Small secret exponent attacks on RSA-type schemes with
moduli N = p'q'

In this section we consider the situation when the secret exponent d is small.

3.1 The first variant

At first, we study the first variant of encryption and decryption phases: e and d satisfy
ed=1modp™ ¢ '(p-1)g-1).

Theorem 3.1. For every € > 0, let N = p'q', where r,1 (r > 1) are two known positive integers and p, q are
primes of the same bit-size. Let e be the public key exponent and let d be the private key exponent satisfying
ed = 1 mod ¢(N). Suppose that

3r+l €

d< N €,

Then N can be factored in polynomial time.

Proof. Since ¢(N) = p"'q'~*(p — 1)(q - 1), we have the following equation:
ed-1=kp ¢ ' (p-1)(g-1) forsomek e N.

Then we want to find the root xo = d of the polynomial

fix) = ex-1mod p" g t.
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Multiplying the inverse of e modulo N, we can obtain the equation
f00) = (E=x) mod p" ¢,

where E denotes the inverse of e modulo N. Note that N (N = 0 mod p"q') is a known multiple of the
unknown p™1g!-1,

Since r > [, we define the following collection of polynomials:
gl(x) —fl(X)NmaX{O [(V 1)(t‘1 ] |— - 1)(12 l)-l}

fori =0, ..., mand positive integer parameters m, t; and t, witht; = ym, t, = 7om (0 < 71, T, < 1), which
will be optimized later. Note that for all i, gi(d) = 0 mod (p{"~Vt1g-Dt2),

Let X (X = NY) be the upper bound on the desired root d. We built a lattice £ of dimension d = m + 1
using the coefficient vectors of g;(xX) as basis vectors. We sorted the polynomials according to the ascending
orderof g, i.e., g; < gjifi <.

From the triangular matrix of the lattice basis, we can compute the determinant as the product of the
entries on the diagonal as det(£) = XSN*~¥. We can calculate s as

s=§i=w.

The computation of sy is somewhat complicated. At first, we have t; < t,. Otherwise, since r > 1, we have

[(7’—1)(&—1’)] S [(1—1)(&—1’)]

r l
fori=0,...,t], in this case, we only consider the exponents of p. Therefore, we let t; < t, to consider the
exponents of p and g at the same time.
Define A as

[l(r -1t —r(l- 1)t2]
A=
r-1
Note that A < t; < t,. In order to get A > 0, we have to satisfy the condition

I(r-=Dty >r(l- Dty (3.1)
Notice that fori =0,1,...,A -1, we have

[(r—l)(t1—i)'| N [(1—1)(tz—i)];

r l
however, fori=A,A+1,...,t, we have
[(T—l)(h—i)] [(1—1)(tz—i)]
. < i .

Then we can calculate sy as
S (r—1)(t1—z) & [ (= 1)(t - i)
vo 3 [CsD], 3 b=

Cr-1DQRHA-A%) (-1t -0 Ar-1) (L -A)(1-1) o .
- 2r " 21 T 21 + )i

Here we rewrite

[(r—n(tl—iw ~(r=1)(t - )
= +
r r
fori=0,...,A-1,and

[(l—l)(tz—i)} _(I-D(t2-1) e
l l !
fori=A,...,t,wherec; € [0, 1).
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Furthermore, we rewrite

_ I(r-1t; —-r(l-1)t, e

A r-1

il

where ¢’ € [0, 1); we have that

. (r-1)U(r-1)83 - 2r(1- Vst + r(l - 1)t3) N cr-D-c?*r-D+1r-1t . i .

2r(r-10 2rl b

To obtain a polynomial with short coefficients that contains all small roots over integer, we apply the
LLL-Basis Reduction Algorithm to the lattice £. Lemma 2.1 gives us an upper bound on the norm of the
shortest vector in the LLL-reduced basis; if the bound is smaller than the bound given in Lemma 2.2, we can
obtain the desired polynomial. We require the following condition:

(r=1t1 +(1-1)tp

2“7 Vo det(L)s < N

where w = m + 1. When plug in the value for det(£) and w, we have that

m(m+1) mel _m(ml) (m+1)((r—1)t1+(lfl)tz)_(Tfl)(l(ffl)f%*lf(lfl)fl[2+’(1*1)[%)_c'(rfl)—clz(r—l)+l(r—1)t1 _th o
274 (m+1) 2 X 2 <N T+l 2r(r=1) 21 i=0 “1

To obtain the asymptotic bound, we let m grow to infinity. Note that for sufficiently large N the powers of 2
and m + 1 are negligible. Thus we only consider the exponent of N. Then we obtain that

t
2r-Dry+20-1)1y)  -DUA-1)T2-2r(=D)71 73 +r(-1)73) (r-DU-D)T2-2r(-D)T1 72 +r(0-D72)  / popy—! -ty lr-1)1y zziio ¢ 3 2)
X < N T+l - r(r=1) . N (m+D)r(r=0) T T mmryl (meDrl - m(m+1) s ( .

where t; = Tymand t, = Tom.
Now we have to decide the optimized values of 71 and 7,. We consider the exponent of N as a func-
tion h(tq, T>):

2r-D11+2(1- D)1y (r=DUr =17 - 2r(1- D71172 + 1(1 - 1)73)
r+l - r(r=10 )

h(tq,12) =

Using h} (11, T2) = 0 and h} (11, T2) = 0, we have

(r-1)(r+Dty-r(I-1)(r+D1+1r(l-1)=0,
r-r+Dt1-(-(Fr+D1t+r-1=0.

Solving the above equations, we get

_r(r+1-2) _

Putting the values of 71 and 7, into equation (3.1), we note that the condition is satisfied. Moreover, since
Zfio ci<ty+1,:5 <Landc -c? < 1, inequality (3.2) can be reduced into,

3r+l _@astenrt-i2-100r3 —(3 612 +80r2 + 213 ~1212 +6lr+14 413 +12

X < Nl_(r+l)2 .N 4ma)(r-D(r+1)3

We appropriate the terms m + 1 by m, and obtain

1 3rel _ skt -2 -100r3 — (3 612 +8Dr2 + (213 ~1212 +6Dr+14 413 +12
X< N (r+)2 4m(r-1)(r+1)3

We can express how m depends on the error term e:

> 151+ Dr* - P —100)r3 — (B - 612 +8D)r2 + 2P - 122 +6D)r+ 1* — 4P + 12
- be(r—D(r+1)3 ’

This concludes the proof of Theorem 3.1. O

Table 1 lists some theoretical and experimental results with 1000-bit N. In all experiments, we obtained an
univariate integer equation with desired integer solution d. Thus we can obtain d.
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dim(L) = 20 dim(L) =
(r, ) theoretical experimental time (in seconds) experimental time (in seconds)
(3,2) 0.560 0.520 77.751 0.530 4433.798
(5,2) 0.653 0.600 64.257 0.620 4177.972
(4,3) 0.694 0.650 61.059 0.660 3209.409
(5,3) 0.719 0.650 52.120 0.680 2894.411

Table 1. The first variant: experimental results for small d.

3.2 The second variant

In the following we study the second variant of encryption and decryption phases: e and d satisfy
ed=1mod (p-1)(q-1).

Theorem 3.2. For every € >0, let N = p’q’, where r,1 (r > 1) are two known positive integers and p, q are
primes of the same bit-size. Let e be the public key exponent and let d be the private key exponent satisfying
ed =1 mod (p - 1)(q - 1). Suppose that
1247 _
d < N3 €
Then N can be factored in polynomial time.
Proof. Sinceed -1 = k(p — 1)(q — 1) for some k € IN, we have the following modular equation:

fx,y,2z) =x(y —1)(z- 1) + 1 mod e.

Obviously, (k, p, q) is the desired solution. Then we have an estlmatlon on the desired roots. Since N = p q!
and p, q are primes of the same bit-size, p and g can be estimated as N m .Lettinge = N*, wehavep,q = e il
Furthermore, let d < N%. Then k can be bounded as follows:

B ed-1 < @
p-1@-1) pgq
r+l

Usually, a is chosen as m In this case, we have p, g = e’ and k =~ 5%, Let X X=e2%,Y(Y= ez) and Z

(Z = e2) be the upper bounds of desired roots (p, g, k). In order to get desired solution, we define a list G of
polynomials sharing the desired root modulo e™,

8 2
2e1+2_a(r+1) .

Sij k(6 Y, 2) = XY Zf(x, y, z)Pe™ P,

To make the matrix triangular whose vectors are corresponding to the coefficients of polynomials, we need
to append polynomials to list G as following ordered,

G=[]
foru=0tom
fori=0tou-1do
forj=0to1do
append gy-,j,0,i to G
forj=r-1toldo
append gy-ij,1,i to G
forj=1-1to1do
append gy_;,r,j,i to G
foru =0tomdo
forj=0tosdo
append go,j,0,u to G
fori=1-1in1do
append go,r+j,i,u to G
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fork=1totdo
forj=r-1to0do
append go,j,k,u t0 G
return G

where each occurrence of y"z! is replaced by N since N = p"q!, m, s, t are non-negative integers.
Then we construct a lattice £1 which is spanned by the coefficient vectors of g; j x.1(xX, yY, zZ). By some
calculations, the determinant of £ is det(£1) = X5 Y5 Z5:¢5¢, where

x =

<2r+21+31r+301> 3 (r+21+rr+al) 2 <r+4l>
m + | —————— |Jm° + m,

6 2
l+301+30%1\ 5 (r?+21r? +2rl+ 4orl - 3r + 21 - 277 - 4or + 201 + 4ol _,
Sy=<—>m +< )m
6 4
3r2 + 67r? + 18rl + 120rl - 21r + 41 — 617 — 1207 + 601
+( )m—(r—rl),
12
r+3tr+3t%r\ 5 (PP +20+2r-1+27%r + 47r - 201\ _,
SZ=< )m +( )m
6 4
(912+6012+4r—9l+6rr—601) (Iz—l)
+ m + ,
12 2
2r+2l+3tr+30l\ 5 (r+2l+tr+ol\_, [(r+4l
o= ( 6 (55 (S

with s = om and t = Tm. On the other hand,

+ 1.

dim(Ll):<r+l+2Tr+Zal>mz+<r+3l+2rr+201>m

2 2

Since there are three unknown variables, based on Lemma 2.1 and Lemma 2.2, one can obtain three
polynomial equations which share the roots (k, p, q) over integers when

dim(£ 1)(dim(£ 1)-1)

m
27 4@m(£1)-2) (sz YSy 75z Se ) dim(Ll D2 < e

Vdim(Z,)

Putting the upper bounds and the value of dim(£;) into the above inequality and neglecting the terms that
do not depend on N, we obtain that

(r+D)5 m(dim(£1)-2)- 3 (Sy+57)-Se
e 2?2 <e Sx s

or equivalently,

(r+ D86 . m(dim(£1) - 2) - 3(Sy +S2) - Se
2 Sy ’

Setting ¢ = 7, moreover, since m < m?, 0 <t <1 and I < r, the left side of the above inequality can be
bounded by

(r+D(A+37-312) . .3 Qr+D)r’+Qr2—6r+2l+4711-1)r-31-211+21>+?+27%1 _ 2
12 m- - 8 m
r+2l+21'r+'rlm2 + r+641m

(r+l)(62+31) m3 +

(67+3)r’—(13+127-181-127)r+912+671>-171+48
2%

(r+I)(62+3T) m3 + r+21+zrr+rl m2

2r+D)(1-1)
A

m+

r+4l
+—g m

(r+D(A+37-372) .3  Qr+D)r’+Qr2-6r+2l+4711-1)r-31-211+ 21+ P +27%1 _ 2
12 m- - g m

(r+l)(62+3‘r) m3

1+37-37% 3(Qr+Dr*+ Q2 -6t +2l+41l-1)r-31-271+ 2712 + I? + 272])
22+31) 4(r+1)(2 +37)m

1+37-312 302 +2rl+12-7r-5I)
2(2+371) - 20(r + hm
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dim(£1) = 81 dim(L1) = 148

(r, ) log,N theoreticald experimentald time of L3 (in seconds) experimentald time of L3 (in seconds)

(3,2) 2000 200 bits 29 bits 35.350 71 bits 2573.002
(3,2) 3000 300 bits 47 bits 103.600 110 bits 5197.392

Table 2. The second variant: experimental results for small d.

Putting an optimized value for 7, whichis T = @, into the above inequality, we obtain

7-27 ~ 3(r2 +2rl+ 12 - 7r = 50)
6 20(r + hm

Then we have
7—2\/7_ 3(r2+2rl+12-7r-5I0)

< 3(r+1) 10(r + I)2m

The relation between the error term € and m can be expressed as

3(r2 +2rl+ 12 -7r-5I)
10(r + 1)2e

This concludes the proof of Theorem 3.2. O

Table 2 lists some theoretical and experimental results. In all experiments, we obtained several integer equa-
tions which share desired roots and successfully obtained the roots by using Grébner basis technique.

4 Factoring RSA moduli N = p"q"' with partial known bits

In this section, we assume that we are given the number of k LSBs of p: p = p mod 2*. Our goal is to determi-
nate the minimal amount of bits of p that one has to know in order to factor N in polynomial time. Below we
present two methods to solve this problem.

4.1 The attack modulo p

The above problem can be reduced to solve modular univariate polynomial equation
f(x) = p +2¥x = 0 mod p.
We can apply Theorem 2.4 withn=1, = % Therefore, we can find all root y if
vl < N,

When [ = 1, the bound . .
NwZ = Nwn? = pni,

This bound is exactly the same as in [2]. As N W = p#, the attacker has to guess (1 - S log, p = # log, p
LSBs of p. Thus the total complexity to factor N = pq! is 2711982 P)PI0sN) \yhere P is a polynomial. This
method is very suitable for the case of r > 1.

4.2 The attack modulo pg

Let us start with the following lemma.
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Lemma 4.1. For a given integer k, consider the modular function f(x) = x* mod 2K whose domain is the
set{1,3,...,2% - 1}. When w is odd and x}{ = amod 2X, then one can get xo.

Proof. Since the domain of f(x) is {1, 3, ..., 2K — 1}, the range of f(x) is also {1, 3, ..., 2k — 1}. On the other
hand, assume that x1, x, € {1, 3,...,2% - 1} and x¥ = x¥ (mod 2¥). Then we can obtain that 2¥ | x¥ - x¥,
namely 2K | (x1 — x2) ¥t + x¥"%xz + -+ x¥71). Since x1, x2, w are odd integers, x¥ 1 + x¥2xp + -+ + XY
is odd and x; — x5 € {~2K + 2, 2K — 2}. Then one can get that x; = x,, namely f(x) is bijective.

Above all, the solution xg is unique and it can be obtained as
Xo = @ mod2! o ok,

This concludes the proof of Lemma 4.1. O

We rewrite N by N = (pq)'p"~!. Notice that at least one of r and I must be odd; we may assume without loss
of generality that [ is odd. Suppose that we have k LSBs of p and let us denote it as p. So p = p mod 2¥. Thus
q' = N(p")~* mod N. Then by Lemma 4.1 we can calculate the number of k LSBs of g: § = g mod 2*. Using p
and g, we can get the number of k LSBs of pg: ¢ = pg mod 2. Now we reduce the above problem to solve
a modular univariate polynomial equation

f(x) = ¢+ 2%x = 0 mod pq.

2

7. Then we can find y if

Now apply Theorem 2.4 withn =1, =
_al_
lyl < Noo,

After we get the value of pq, we can calculate

__N
2

r-1

4l

Then we can get p. Since N ¢+)* = (pq)rzT’l, the attacker has to guess

(1—2—1)10 ——Ilo —z(r_l)lo
— g2pbq = ] g2pbq = — s2Dp

r —

r+
LSBs of p. Thus the total complexity to the factor N = p’q! is 2(*7 108: P}PA%SN) \where Pis a polynomial. This
method is very suitable for the case of r ~ L.

Comparison between the two methods. In the first method, the attacker has to guess # log p bits whereas

in the second method it is required to guess 2Y=2 log p bits. Since -L < 2U=D if 2r > 31, our first attack (mod-

r+l r+l r+l
ulo p) is superior to our second attack (modulo pgq) in the case 2r > 31.
We present our bounds min(-L 20-Dy in Figure 1. In Table 3, we give some experimental results of the

T+ T+l
above two methods.

attack modulo p attack modulo pg

(r, 1) log, N log,p theo. expt. dim. time(sec) theo. expt. dim. time (sec.)

(3,2) 2500 500 200 260 21 19.095 200 260 21 760.661
(3,2) 2500 500 200 230 41 832.983 200 230 41 42447.935
(5,2) 3500 500 143 260 21 21.856 429 - 21 -
(5,2) 3500 500 143 200 41 1205.591 429 497 41 86495.347
(5,4) 4500 500 223 330 21 32.245 112 260 21 4018.133
(5,4) 4500 500 223 280 41 1413.463 112 230 41 163533.305

Table 3. Factoring N with partial known bits of p.
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Figure 1. Our bounds for different r, .

4.3 Comparison with the work of Coron, Faugére, Renault and Zeitoun

Independently, Coron, Faugére, Renault and Zeitoun [4] also studied this problem; they showed that N = p’q!
can be factored in polynomial time when r or I is at least (log p)>. In the following remark, we will briefly
discuss their idea. Moreover, based on an observation of the short vectors in a two-dimensional lattice which
has been introduced in [4], we further improved Coron-Faugére—Renault-Zeitoun’s bound for the moduli
with form of N =prq’, wherer=2k+1,l=k+1and k € Z*.

In [4, p. 5], for the modulus N = p"q!, r and I are first expressed asr = u-a + a and | = u - § + b, where
the integers u, a, 8, a, b should satisfy certain conditions. To find such integers, it is required to apply the
LLL-Algorithm on the two-dimensional lattice which is spanned by the row vectors of the following matrix:

(%" )
o r)°

After lattice reduction, suppose that the short vectoris v = ([r%J -a,-l-a+r-B)forsomef € Z.Nowif § =0

or|7]< 113’ uistakenas|Z |.Ontheotherhandif§ # Oand | ] > %, uissetas[Z].Finally, aistakenasr - ua

and b is taken as | — uf. It has been proved in [4, Lemma 1] that either both a, b > Oor a, b < 0.

«  First suppose that both a, b > 0. Now N can be expressed as N = p'q! = pta+taqub+b — puQ, where
P = p%qP and Q = p%gP». It has been proved in [4, p. 18] that to factor N = P'Q in polynomial time,
the attacker has to guess -5 many bits of P to find P, where Q < P¢. Thus if a, b > 0, it is required to

u+c

guess ;< log P many bits of P. Here we can take ¢ = % as P ~ p®Pf and Q ~ p*?. Thus in this case the

attacker has to guess (Mﬁ‘g% - (a + B) log p many bits.

«  Nextsupposethata, b < 0. Now express N = P—Q", where P = p%gP and Q = p~?¢~". In this case it has been
proved in [4, p. 8] that the attacker has to search over [0, 2Qi ]. So the required guess in this case will be
approximately # log p bits.

Although in most of the cases the bounds of [4] may found the optimal expressions of N = pq!, for some
values of r, [ they could not give the best bound. For example, based on Coron—-Faugére—Renault-Zeitoun’s
method, the modulus N of the form p2k+1gk+1, k > 2, should be expresses as N = P¥Q, where P = p2g and
Q = pq; however, when we express N in the form &, where P = p?q and Q = p, the less number of known

Q
bits is required to factor N.
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More specifically, for the modulus of the form N = p2k*1g*+1 it is required in [4] to apply the LLL-Algo-
rithm on the lattice £ which is spanned by the row vectors of the following matrix:

([(2k+ 1)5] —(k+ 1))
0 2k+1 /)

It is easily checked that A1(£) = (2| (2k + 1)%J, -1) and A,(L) = (|(2k + 1)%J, k), where the minima A;(£L)
denotes the i-th minimum of lattice £.

According to A;(£), we have that a = 2, B = 1. Furthermore, since | 2] = k < ";%, based on Coron-
Faugére—Renault-Zeitoun’s method [4], u is taken as [%«*1] = k. Furthermore, the modulus N should be
expressed as PkQ, where P = p?q and Q = pq. Moreover, for the second shortest vector A,(£), the modulus
N will be expressed as Lk“, where P = pg and Q = g*.

Then for the first expression of N, it is required to guess 5 k >~ log p bits. And for the second expression,
the number of required known bits is 5 k 1 log p bits of p.

Based on our two methods of Section 3.1 and Section 3.2, the number of known LSBs of p which is

required to factor N = pZk+1gk is

min( k+1 2(2k+1—(k+1)))_ k+1
2k+1+k+1" 2k+1+k+1 T 3k+2°

However when we express N as Q , where P = p2q and Q = p, in this case the attacker has to search over
[0, 2p e ]. Namely, the required guess in this case will be approximately - %1 log p bits.

Actually, there does not exist any vector in the two-dimensional £ which will express N = p
where P = p?g and Q = p. Since according to Coron-Faugére—Renault-Zeitoun’s method [4], if one wants
to express N = p?k*1gk as Z_ where P = p?q and Q = p, one should have that « =2, =1 and u = k + 1.
However, for a =2 and 8 = 1 we have |2kt | < kzl then u should be taken as | 2kt | = k, which contra-
dictsu = k+ 1.

Thus in general, the Coron-Faugére—Renault-Zeitoun approach cannot give optimal u, a, . For r < 20
and 2 < [ < r, we search exhaustively to find optimal u, a, 8. Optimal bounds are presented in Figure 2.

2k+1qk as PQ

0.30
0.27
0.4
+ | {o0.24
0332
>
3 | {o21
T
)
£ | {o1s
o
0.1
10.15
0.12
0.09

Figure 2. Optimal bound for some values of r, I.
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4.4 Extend to more unknown blocks

We also consider the case of the number of n (n > 2) unknown blocks.

Theorem 4.2. Let N = p’q!, where p and q are of equal length. Suppose that a % ln(’T”)-fraction of the bits is
known for n blocks in p (n is large). Then, under Assumption 2.3, we can recover p. The running time of the
algorithm is polynomial in log N but exponential in n.

Proof. We can reduce the above problem to solve the following multivariate linear polynomial equation:
f(x1,X2,...,Xn) = Ao + A1X1 + A2X3 + -+ + ApXy = 0 mod p,

where ay = 2! if the k-th unknown blocks start on the I-th bit position. Moreover, if n goes to infinity, from
Theorem 2.4, we have

lim (3(1 —(1-1B)F —(m+ DA -1B)(1 - M))) _p, QZrAInG =B

n—oo\ r r

It shows that if n is very large, we can recover p regardless of n. Conversely, once a (1 — r—};) In(1 - rfB) portion
of the bits from p together with their positions are given, we are able to recover the missing bits. Suppose that

Ipl =g, i.e. B = 1. Then we need a

(1= o= (-2 n(a- ) -l )- )

portion of known bits from p. O

Note that for I = 1, this is exactly the result of [12].

5 Conclusion

In this paper, we have considered the RSA variant with moduli of the form N = p"q!, where r > [ > 2, and
we have given some cryptanalytic results for this kind of RSA variant. For the small secret exponent at-
tacks, we have two cases of encryption and decryption exponents: ed = 1 mod p"'¢q'*(p - 1)(g¢ - 1) and
ed = 1mod(p — 1)(q — 1). For these two cases, we have given the lattice-based attacks and obtained the upper
bounds of decryption exponents d such that d can be recovered in polynomial time. Then we have presented
the partial known bits attacks and successfully factored N = p’q! when least significant bits of one prime
are known.

Funding: Yao Lu is supported by Project CREST, JST and Ligiang Peng is supported by the National Key Basic
Research Program of China (Grant 2013CB834203) and the National Natural Science Foundation of China
(Grant 61472417).
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