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Abstract: In this paper we study an RSA variant with moduli of the form N = prql (r > l ≥ 2). This variant

was mentioned by Boneh, Durfee and Howgrave-Graham [2]. Later Lim, Kim, Yie and Lee [11] showed that

this variant is much faster than the standard RSA moduli in the step of decryption procedure. There are two

proposals of RSA variants when N = prql. In the first proposal, the encryption exponent e and the decryption
exponent d satisfy ed ≡ 1 mod pr−1ql−1(p−1)(q−1),whereas in the secondproposal ed ≡ 1 mod (p−1)(q−1).
We prove that for the first case if d < N1−(3r+l)(r+l)−2

, one can factor N in polynomial time. We also show

that polynomial time factorization is possible if d < N(7−2√7)/(3(r+l))
for the second case. Finally, we study

the case when few bits of one prime are known to the attacker for this variant of RSA. We show that given

min( l
r+l ,

2(r−l)
r+l ) log

2
p least significant bits of one prime, one can factor N in polynomial time.
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1 Introduction

Since theRSApublic key cryptosystemhasbeenproposed, this public key scheme is possibly themost studied

topic in cryptology world. To achieve high efficiency in the decryption phase, many variants of RSA schemes

have been proposed.

At Crypto 1997, Takagi [18] proposed an RSA-type cryptosystems using n-adic expansion. One important

variant of RSA ismulti-power RSA [19], proposed by Takagi in 1998. Inmulti-power RSA, the RSAmodulus N
is of the form N = prq, where r ≥ 2. Compared to standard RSA, it is more efficient in both key generation and

decryption. Besides, moduli of this type has been applied inmany cryptographic designs, e.g., the Okamoto–

Uchiyama cryptosystem [15], or better known via EPOC and ESIGN [21], which uses the modulus N = p2q.
At Indocrypt 2000, Lim, Kim, Yie and Lee [11] extended Takagi’s cryptosystem to include moduli of the

form N = prql, where r, l ≥ 2. They showed that the choice of either prqr+1, pr−1qr+1 or pr−2qr+2 is optimal

under the assumption that the sumof exponents is fixed. For example, they claimed that 8192-bit RSAwill be

fifteen times faster than standard RSA if one takes N = p2q3. In Crypto 1999, Boneh, Durfee and Howgrave-
Graham [2] also mentioned as an open problem to factor prql using lattice-based approach.

Surprisingly, there had been very little research into the security RSA-type schemeswithmoduli N = prql

for r, l ≥ 2. Therefore, it is important to investigate the safety parameters of their algorithm.

Yao Lu: The University of Tokyo, Tokyo, Japan, e-mail: lywhhit@gmail.com
Liqiang Peng: Institute of Information Engineering, Chinese Academy of Sciences, Beijing, P. R. China,
e-mail: pengliqiang@iie.ac.cn
*Corresponding author: Santanu Sarkar: Indian Institute of Technology, Madras, India, e-mail: sarkar.santanu.bir@gmail.com



118 | Y. Lu, L. Peng and S. Sarkar, Cryptanalysis of an RSA variant with moduli N = prql

1.1 Related works

The security of this variant of RSA, like that of standard RSA, is based on the hardness of factoring large

integers. Until now there is no known polynomial time algorithm to factorize large numbers except quantum

algorithms. However, in a real-world implementation, partial information regarding the secret prime p can
be leaked by side-channel attacks (known as factoring with known bits problem), hence it is crucial to study
how this affects the factoring problem. In fact, there have been a number of results in this direction.

∙ For the case of standard RSA with modulus N = pq: In 1985, Rivest and Shamir [16] first studied this

problem, they designed an algorithm to factorN given

2

3

-fraction of the bits of p. In 1996, Coppersmith [3]

improved this bound to

1

2

. Note that for the above results, the unknown bits are within one consecutive

block. The case of n(n ≥ 2) blocks was first considered by Herrmann and May in [5].

∙ For the case of multi-power RSA with moduli N = prq (r ≥ 2): In 1999, Boneh, Durfee and Howgrave-

Graham [2] showed that N can be recovered efficiently given

1

r+1 -fraction of the most significant bits

(MSBs) of p. In 2013, Lu, Zhang and Lin [12] considered the case of n (n ≥ 2) blocks.
To speed up decryption, the small secret exponent d is often used in some cryptographic applications.

However, it is well known that the RSA scheme is easily broken if the secret exponent d is too small (known as

small secret exponent attack). In 1990, by utilizing the continued fraction method, Wiener [20] showed that

the standard RSA scheme can be broken when d ≤ N0.25

. Later, in 1999, Boneh and Durfee [1] improved

Wiener’s bound to N0.292

. Recently, in [6], Herrmann and May gave an elementary proof for the Boneh–

Durfee’s bound, and in [9], Kunihiro, Shinohara and Izu also investigated this problem. However, N0.292

is

still the best bound at present.

For the case ofmulti-powerRSA, there exists twovariants. In thefirst variant, ed ≡ 1 mod pr−1(p−1)(q−1)
while in the second variant, ed ≡ 1 mod (p − 1)(q − 1). For the first variant, in 1999, Takagi [19] showed

that when the secret exponent d ≤ N1/(2(r+1))
, one can factorize N. Later in 2004, May [14] improved Takagi’s

bound to Nmax{r(r+1)−2 ,(r−1)2(r+1)−2}
. Recently, Sarkar [17] used a lattice-based method to improve the previous

bounds when r ≤ 5. In [13], the authors further improved May’s bound to N r(r−1)(r+1)−2 , which is better than
May’s result when r > 2. For the second variant, in 2008, Itoh, Kunihiro and Kurosawa [8] showed that d can
be recovered from if d < N(2−√2)/(r+1)

.

1.2 Our contributions

In this paper,¹ we analyze the security of RSA-type schemes with moduli N = prql, where r > l ≥ 2 and

gcd(r, l) = 1. Admittedly, RSA-type schemes with moduli N = prql have very limited application. However, as

rightly mentioned in [4] a significant fraction of cryptography is still based on RSA and so it is important to

study these RSA-type moduli. Throughout the paper, we assume that q < p < 2q, which means p ≈ q.

Small secret exponent attacks on RSA-type schemes with moduli N = prql. Considering the form of the

moduli N = prql, there are also two variants of encryption and decryption phases. In the first variant, e and
d satisfy ed ≡ 1 mod pr−1ql−1(p − 1)(q − 1). In the second variant, e and d satisfy ed ≡ 1 mod (p − 1)(q − 1).
For these two variants, we give the analysis respectively.

For the equation ed ≡ 1 mod pr−1ql−1(p − 1)(q − 1), we solve a small solution d of the modular equation

ex − 1 ≡ 0 mod pr−1ql−1. We introduce a new technique to select more helpful polynomials which are used

to construct a lattice. We show that when

d < N1− 3r+l
(r+l)2

,

one can recover d in polynomial time. Note that when l = 1, our result is the same as the result of [13].

1 This is a thoroughly revised and extended version of the paper “Cryptanalysis of an RSA variant with moduli N = prql” that
has been presented at WCC 2015, April 13–17, 2015, Paris, France. There is no formal proceedings for WCC 2015. Section 4.3 of

this paper is the additional contribution that was not appeared in the workshop version.
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For the equation ed ≡ 1 mod (p − 1)(q − 1), we solve a small solution (k, p, q) of the modular equation

x(y − 1)(z − 1) + 1 = 0 mod e, where k = ed−1
(p−1)(q−1) . By utilizing the property p

rql = N, we give a method of

lattice construction and show that when

d < N
7−2√7
3(r+l)

,

the small solution (k, p, q) can be found. Note that when l = 1, our result is exactly the general bound of [8].

Factoring RSA moduli N = prql with partial known bits. In the conclusion of Boneh, Durfee and Howgrave-
Graham’s paper [2], the authors raised a question that whether one can generalize the factoring with partial

known bits to the integers of the form N = prql. In this paper, we answered this question firmly that we only

need a min( l
r+l ,

2(r−l)
r+l )-fraction of least significant bits (LSBs) of p in order to factor N in polynomial time.

Independently, Coron, Faugère, Renault and Zeitoun [4] also studied this problem. We give a comparison

with their method and give an improvement for certain parameters. Besides, we also extend to the case of the

arbitrary number n (n ≥ 2) of unknown blocks.

Experimental results. To verify the correctness of our above attacks, we have performed the experiments

in Magma 2.11 computer algebra system on a PC with Intel(R) Core(TM) Duo CPU (2.53GHz, 1.9GB RAM

Windows 7). And the experimental results demonstrate that the performance of our algorithms is effective.

2 Preliminaries

Consider w linearly independent vectors b
1
, . . . , bw ∈ ℤn. The set

L = {b : b =
w
∑
i=1
cibi , c1, . . . , cw ∈ ℤ}

is called an w-dimensional lattice with basis B = {b
1
, . . . , bw}. A lattice is of full rank when w = n and in this

paper we only use such lattices. The determinant of L is defined as det(L) = det(M), where the rows ofM are

the vectors from B. When b
1
, . . . , bw ∈ ℤn, the lattice L is called an integer lattice.

In 1982, Lenstra, Lenstra and Lovász [10] proposed a polynomial time algorithm (known as LLL-Algo-

rithm); let us first state the LLL-Algorithm.

Lemma 2.1 (LLL Algorithm). Let L be a lattice of dimension w. Within polynomial time, LLL-Algorithm outputs
a set of reduced basis vectors vi, 1 ⩽ i ⩽ w, that satisfies

‖v
1
‖ ⩽ ‖v

2
‖ ⩽ ⋅ ⋅ ⋅ ⩽ ‖vi‖ ⩽ 2

w(w−1)
4(w+1−i)

det(L)
1

w+1−i
.

Let g(x
1
, . . . , xk) = ∑i

1
,...,ik ai1 ,...,ik x

i
1

1

⋅ ⋅ ⋅ xikk . We define the norm of g by the Euclidean norm of its coefficient

vector:

‖g‖2 = ∑
i
1
,...,ik

a2i
1
,...,ik .

Also we need the following result due to Howgrave-Graham [7].

Lemma 2.2 (Howgrave-Graham). Let g(x
1
, . . . , xk) ∈ ℤ[x1, . . . , xk] be an integer polynomial that consists of

at most w monomials. Suppose that
(i) g(y

1
, . . . , yk) = 0 mod em for |y

1
| ⩽ X

1
, . . . , |yk| ⩽ Xk,

(ii) ‖g(x
1
X
1
, . . . , xkXk)‖ < em

√w .
Then g(y

1
, . . . , yk) = 0 holds over integers.

Suppose we have w (> k) polynomials b
1
, . . . , bw in the variables x1, . . . , xk such that

b
1
(y

1
, . . . , yk) = ⋅ ⋅ ⋅ = bw(y1, . . . , yk) = 0 mod em

with

|y
1
| ≤ X

1
, . . . , |yk| ≤ Xk .
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Now we construct a lattice L with the coefficient vectors of b
1
(x

1
X
1
, . . . , xkXk), . . . , bw(x1X1, . . . , xkXk).

After lattice reduction, we get k polynomials v
1
(x

1
, . . . , xk), . . . , vk(x1, . . . , xk) such that

v
1
(y

1
, . . . , yk) = ⋅ ⋅ ⋅ = vk(y1, . . . , yk) = 0 mod em

which correspond to first k vectors of the reduced basis. Also by the property of the LLL-Algorithm, we have

‖v
1
(x

1
X
1
, . . . , xkXk)‖ ≤ ⋅ ⋅ ⋅ ≤ ‖vk(x1X1, . . . , xkXk)‖ ≤ 2

w(w−1)
4(w+1−k)

det(L)
1

w+1−k
.

Hence by Lemma 2.2, if

2

w(w−1)
4(w+1−k)

det(L)
1

w+1−k <
em

√w
,

then we have v
1
(y

1
, . . . , yk) = ⋅ ⋅ ⋅ = vk(y1, . . . , kk) = 0. Next we want to find y

1
, . . . , yk from v

1
, . . . , vk.

Although our techniqueworks in practice as noted from the experiments we perform, we need a heuristic

assumption for theoretical results.

Assumption 2.3. The lattice-based construction yields algebraically independent polynomials. The common

roots of these polynomials can be efficiently computed using the Gröbner basis technique.

We also use the following theorem [13].

Theorem 2.4. Let N be a sufficiently large composite integer (of unknown factorization) with a divisor pr

(p ≥ Nβ and an integer r ≥ 1). Let f(x
1
, . . . , xn) ∈ ℤ[x1, . . . , xn] be a linear polynomial in n variables. Under

Assumption 2.3, we can find all the solutions (x0
1

, . . . , x0n) of the equation f(x
1
, . . . , xn) = 0 mod p with

|x0
1

| ≤ Nγ1 , . . . , |x0n| ≤ Nγn if
n
∑
i=1
γi <

1

r (
1 − (1 − rβ)

n+1
n − (n + 1)(1 − rβ)(1 − n√1 − rβ)).

The running time of the algorithm is polynomial in logN but exponential in n.

3 Small secret exponent attacks on RSA-type schemes with
moduli N = prql

In this section we consider the situation when the secret exponent d is small.

3.1 The first variant

At first, we study the first variant of encryption and decryption phases: e and d satisfy

ed ≡ 1 mod pr−1ql−1(p − 1)(q − 1).

Theorem 3.1. For every ϵ > 0, let N = prql, where r, l (r > l) are two known positive integers and p, q are
primes of the same bit-size. Let e be the public key exponent and let d be the private key exponent satisfying
ed ≡ 1 mod ϕ(N). Suppose that

d < N1− 3r+l
(r+l)2
−ϵ
.

Then N can be factored in polynomial time.

Proof. Since ϕ(N) = pr−1ql−1(p − 1)(q − 1), we have the following equation:

ed − 1 = kpr−1ql−1(p − 1)(q − 1) for some k ∈ ℕ.

Then we want to find the root x
0
= d of the polynomial

f
1
(x) = ex − 1 mod pr−1ql−1.
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Multiplying the inverse of e modulo N, we can obtain the equation

f(x) = (E − x) mod pr−1ql−1,

where E denotes the inverse of e modulo N. Note that N (N ≡ 0 mod prql) is a known multiple of the

unknown pr−1ql−1.
Since r > l, we define the following collection of polynomials:

gi(x) := f i(x)Nmax{0,⌈ (r−1)(t
1
−i)

r ⌉,⌈ (l−1)(t
2
−i)

l ⌉}

for i = 0, . . . ,m and positive integer parametersm, t
1
and t

2
with t

1
= τ

1
m, t

2
= τ

2
m (0 ≤ τ

1
, τ

2
< 1), which

will be optimized later. Note that for all i, gi(d) ≡ 0 mod (p(r−1)t1q(l−1)t2 ).
Let X (X = Nγ) be the upper bound on the desired root d. We built a lattice L of dimension d = m + 1

using the coefficient vectors of gi(xX) as basis vectors. We sorted the polynomials according to the ascending

order of g, i.e., gi < gj if i < j.
From the triangular matrix of the lattice basis, we can compute the determinant as the product of the

entries on the diagonal as det(L) = XsNsN . We can calculate s as

s =
m
∑
i=0
i = m(m + 1)

2

.

The computation of sN is somewhat complicated. At first, we have t
1
< t

2
. Otherwise, since r > l, we have

⌈
(r − 1)(t

1
− i)

r ⌉ ≥ ⌈
(l − 1)(t

2
− i)

l ⌉

for i = 0, . . . , t
1
, in this case, we only consider the exponents of p. Therefore, we let t

1
< t

2
to consider the

exponents of p and q at the same time.

Define ∆ as

∆ := ⌈
l(r − 1)t

1
− r(l − 1)t

2

r − l ⌉.

Note that ∆ < t
1
< t

2
. In order to get ∆ > 0, we have to satisfy the condition

l(r − 1)t
1
> r(l − 1)t

2
(3.1)

Notice that for i = 0, 1, . . . , ∆ − 1, we have

⌈
(r − 1)(t

1
− i)

r ⌉ > ⌈
(l − 1)(t

2
− i)

l ⌉;

however, for i = ∆, ∆ + 1, . . . , t
2
, we have

⌈
(r − 1)(t

1
− i)

r ⌉ < ⌈
(l − 1)(t

2
− i)

l ⌉.

Then we can calculate sN as

sN =
∆−1

∑
i=0

⌈
(r − 1)(t

1
− i)

r ⌉ +
t
2

∑
i=∆

⌈
(l − 1)(t

2
− i)

l ⌉

=
(r − 1)(2t

1
∆ − ∆2)

2r
+
(l − 1)(t

2
− ∆)2

2l
+
∆(r − 1)

2r
+
(t
2
− ∆)(l − 1)
2l

+
t
2

∑
i=0
ci .

Here we rewrite

⌈
(r − 1)(t

1
− i)

r ⌉ =
(r − 1)(t

1
− i)

r
+ ci

for i = 0, . . . , ∆ − 1, and

⌈
(l − 1)(t

2
− i)

l ⌉ =
(l − 1)(t

2
− i)

l
+ ci

for i = ∆, . . . , t
2
, where ci ∈ [0, 1).
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Furthermore, we rewrite

∆ =
l(r − 1)t

1
− r(l − 1)t

2

r − l
+ c�,

where c� ∈ [0, 1); we have that

sN =
(r − 1)(l(r − 1)t2

1

− 2r(l − 1)t
1
t
2
+ r(l − 1)t2

2

)
2r(r − l)

+
c�(r − l) − c�2(r − l) + l(r − 1)t

1

2rl
+

t
2

∑
i=0
ci .

To obtain a polynomial with short coefficients that contains all small roots over integer, we apply the

LLL-Basis Reduction Algorithm to the lattice L. Lemma 2.1 gives us an upper bound on the norm of the

shortest vector in the LLL-reduced basis; if the bound is smaller than the bound given in Lemma 2.2, we can

obtain the desired polynomial. We require the following condition:

2

ω−1
4 √ω det(L)

1

ω < N
(r−1)t

1
+(l−1)t

2

r+l
,

where ω = m + 1. When plug in the value for det(L) and ω, we have that

2

m(m+1)
4 (m + 1)

m+1
2 X

m(m+1)
2 < N

(m+1)((r−1)t
1
+(l−1)t

2
)

r+l −
(r−1)(l(r−1)t2

1

−2r(l−1)t
1
t
2
+r(l−1)t2

2

)
2r(r−l) − c

�(r−l)−c�2(r−l)+l(r−1)t
1

2rl −∑t2i=0 ci
.

To obtain the asymptotic bound, we let m grow to infinity. Note that for sufficiently large N the powers of 2

and m + 1 are negligible. Thus we only consider the exponent of N. Then we obtain that

X < N
2(r−1)τ

1
+2(l−1)τ

2

r+l −
(r−1)(l(r−1)τ2

1

−2r(l−1)τ
1
τ
2
+r(l−1)τ2

2

)
r(r−l) ⋅ N

(r−1)(l(r−1)τ2
1

−2r(l−1)τ
1
τ
2
+r(l−1)τ2

2

)
(m+1)r(r−l) − c

�(r−l)−c�2(r−l)
m(m+1)rl −

l(r−1)τ
1

(m+1)rl −
2∑

t
2

i=0 ci
m(m+1)

,

(3.2)

where t
1
= τ

1
m and t

2
= τ

2
m.

Now we have to decide the optimized values of τ
1
and τ

2
. We consider the exponent of N as a func-

tion h(τ
1
, τ

2
):

h(τ
1
, τ

2
) =

2(r − 1)τ
1
+ 2(l − 1)τ

2

r + l
−
(r − 1)(l(r − 1)τ2

1

− 2r(l − 1)τ
1
τ
2
+ r(l − 1)τ2

2

)
r(r − l)

.

Using h�τ
1

(τ
1
, τ

2
) = 0 and h�τ

2

(τ
1
, τ

2
) = 0, we have

l(r − 1)(r + l)τ
1
− r(l − 1)(r + l)τ

2
+ r(l − r) = 0,

(r − 1)(r + l)τ
1
− (r − 1)(r + l)τ

2
+ r − l = 0.

Solving the above equations, we get

τ
1
=
r(r + l − 2)
(r + l)(r − 1)

, τ
2
= 1.

Putting the values of τ
1
and τ

2
into equation (3.1), we note that the condition is satisfied. Moreover, since

∑t
2

i=0 ci < t2 + 1,

1

m2
≤ 1

m and c� − c�2 < 1

4

, inequality (3.2) can be reduced into,

X < N1− 3r+l
(r+l)2 ⋅ N−

(15l+1)r4−(2l2−10l)r3−(l3−6l2+8l)r2+(2l3−12l2+6l)r+l4−4l3+l2

4(m+1)(r−l)(r+l)3
.

We appropriate the terms m + 1 by m, and obtain

X < N1− 3r+l
(r+l)2
− (15l+1)r

4−(2l2−10l)r3−(l3−6l2+8l)r2+(2l3−12l2+6l)r+l4−4l3+l2

4m(r−l)(r+l)3
.

We can express how m depends on the error term ϵ:

m ≥
(15l + 1)r4 − (2l2 − 10l)r3 − (l3 − 6l2 + 8l)r2 + (2l3 − 12l2 + 6l)r + l4 − 4l3 + l2

4ϵ(r − l)(r + l)3
.

This concludes the proof of Theorem 3.1.

Table 1 lists some theoretical and experimental results with 1000-bit N. In all experiments, we obtained an

univariate integer equation with desired integer solution d. Thus we can obtain d.
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dim(L) = 20 dim(L) = 40

(r, l) theoretical experimental time (in seconds) experimental time (in seconds)

(3, 2) 0.560 0.520 77.751 0.530 4433.798
(5, 2) 0.653 0.600 64.257 0.620 4177.972
(4, 3) 0.694 0.650 61.059 0.660 3209.409
(5, 3) 0.719 0.650 52.120 0.680 2894.411

Table 1. The first variant: experimental results for small d.

3.2 The second variant

In the following we study the second variant of encryption and decryption phases: e and d satisfy

ed ≡ 1 mod (p − 1)(q − 1).

Theorem 3.2. For every ϵ > 0, let N = prql, where r, l (r > l) are two known positive integers and p, q are
primes of the same bit-size. Let e be the public key exponent and let d be the private key exponent satisfying
ed ≡ 1 mod (p − 1)(q − 1). Suppose that

d < N
7−2√7
3(r+l) −ϵ

.

Then N can be factored in polynomial time.

Proof. Since ed − 1 = k(p − 1)(q − 1) for some k ∈ ℕ, we have the following modular equation:

f(x, y, z) = x(y − 1)(z − 1) + 1 mod e.

Obviously, (k, p, q) is the desired solution. Then we have an estimation on the desired roots. Since N = prql

and p, q are primes of the samebit-size, p and q canbe estimated asN
1

r+l . Letting e = Nα, wehave p, q ≃ e
1

α(r+l)
.

Furthermore, let d < Nδ. Then k can be bounded as follows:

k =
ed − 1

(p − 1)(q − 1)
<
2ed
pq

< 2e1+
δ
α −

2

α(r+l)
.

Usually, α is chosen as

2

r+l . In this case, we have p, q ≃ e 1

2 and k ≃ e r+l
2

δ
. Let X (X = e r+l

2

δ), Y (Y = e 1

2 ) and Z
(Z = e 1

2 ) be the upper bounds of desired roots (p, q, k). In order to get desired solution, we define a list G of

polynomials sharing the desired root modulo em,

gi,j,k,b(x, y, z) = xiyjzk f(x, y, z)bem−b .

To make the matrix triangular whose vectors are corresponding to the coefficients of polynomials, we need

to append polynomials to list G as following ordered,

G=[]
for u = 0 to m

for i = 0 to u − 1 do

for j = 0 to 1 do

append gu−i,j,0,i to G
for j = r − 1 to 1 do

append gu−i,j,1,i to G
for j = l − 1 to 1 do

append gu−i,r,j,i to G
for u = 0 to m do

for j = 0 to s do
append g

0,j,0,u to G
for i = l − 1 in 1 do

append g
0,r+j,i,u to G
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for k = 1 to t do
for j = r − 1 to 0 do

append g
0,j,k,u to G

return G

where each occurrence of yrzl is replaced by N since N = prql, m, s, t are non-negative integers.
Then we construct a lattice L

1
which is spanned by the coefficient vectors of gi,j,k,l(xX, yY, zZ). By some

calculations, the determinant of L
1
is det(L

1
) = XSxYSyZSz eSe , where

Sx = (
2r + 2l + 3τr + 3σl

6

)m3 + (
r + 2l + τr + σl

2

)m2 + (
r + 4l
6

)m,

Sy = (
l + 3σl + 3σ2l

6

)m3 + (
r2 + 2τr2 + 2rl + 4σrl − 3r + 2l − 2τr − 4σr + 2σ2l + 4σl

4

)m2

+ (
3r2 + 6τr2 + 18rl + 12σrl − 21r + 4l − 6τr − 12σr + 6σl

12

)m − (r − rl),

Sz = (
r + 3τr + 3τ2r

6

)m3 + (
l2 + 2σl2 + 2r − l + 2τ2r + 4τr − 2σl

4

)m2

+ (
9l2 + 6σl2 + 4r − 9l + 6τr − 6σl

12

)m + (
l2 − l
2

),

Se = (
2r + 2l + 3τr + 3σl

6

)m3 + (
r + 2l + τr + σl

2

)m2 + (
r + 4l
6

)m,

with s = σm and t = τm. On the other hand,

dim(L
1
) = (

r + l + 2τr + 2σl
2

)m2 + (
r + 3l + 2τr + 2σl

2

)m + l.

Since there are three unknown variables, based on Lemma 2.1 and Lemma 2.2, one can obtain three

polynomial equations which share the roots (k, p, q) over integers when

2

dim(L
1
)(dim(L

1
)−1)

4(dim(L
1
)−2) (XSxYSyZSz eSe )

1

dim(L
1
)−2 <

em

√dim(L
1
)
.

Putting the upper bounds and the value of dim(L
1
) into the above inequality and neglecting the terms that

do not depend on N, we obtain that

e
(r+l)δ
2 < e

m(dim(L
1
)−2)− 1

2

(Sy+Sz )−Se
Sx ,

or equivalently,

(r + l)δ
2

<
m(dim(L

1
) − 2) − 1

2

(Sy + Sz) − Se
Sx

.

Setting σ = τ, moreover, since m < m2

, 0 ≤ τ ≤ 1 and l < r, the left side of the above inequality can be

bounded by

(r+l)(1+3τ−3τ2)
12

m3 − (2τ+1)r2+(2τ2−6τ+2l+4τl−1)r−3l−2τl+2τl2+l2+2τ2 l
8

m2

(r+l)(2+3τ)
6

m3 + r+2l+τr+τl
2

m2 + r+4l
6

m

−
(6τ+3)r2−(13+12τ−18l−12τl)r+9l2+6τl2−17l+48

24

m + (2r+l)(l−1)
4

(r+l)(2+3τ)
6

m3 + r+2l+τr+τl
2

m2 + r+4l
6

m

<
(r+l)(1+3τ−3τ2)

12

m3 − (2τ+1)r2+(2τ2−6τ+2l+4τl−1)r−3l−2τl+2τl2+l2+2τ2 l
8

m2

(r+l)(2+3τ)
6

m3

=
1 + 3τ − 3τ2

2(2 + 3τ)
−
3((2τ + 1)r2 + (2τ2 − 6τ + 2l + 4τl − 1)r − 3l − 2τl + 2τl2 + l2 + 2τ2l)

4(r + l)(2 + 3τ)m

<
1 + 3τ − 3τ2

2(2 + 3τ)
−
3(r2 + 2rl + l2 − 7r − 5l)

20(r + l)m
.
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dim(L1) = 81 dim(L1) = 148

(r, l) log2N theoretical d experimental d time of L3 (in seconds) experimental d time of L3 (in seconds)

(3, 2) 2000 200 bits 29 bits 35.350 71 bits 2573.002
(3, 2) 3000 300 bits 47 bits 103.600 110 bits 5197.392

Table 2. The second variant: experimental results for small d.

Putting an optimized value for τ, which is τ = √7−2
3

, into the above inequality, we obtain

7 − 2√7
6

−
3(r2 + 2rl + l2 − 7r − 5l)

20(r + l)m
.

Then we have

δ <
7 − 2√7
3(r + l)

−
3(r2 + 2rl + l2 − 7r − 5l)

10(r + l)2m
.

The relation between the error term ϵ and m can be expressed as

m ≥
3(r2 + 2rl + l2 − 7r − 5l)

10(r + l)2ϵ
.

This concludes the proof of Theorem 3.2.

Table 2 lists some theoretical and experimental results. In all experiments, we obtained several integer equa-

tions which share desired roots and successfully obtained the roots by using Gröbner basis technique.

4 Factoring RSA moduli N = prql with partial known bits

In this section, we assume that we are given the number of k LSBs of p: p̃ = p mod 2

k
. Our goal is to determi-

nate the minimal amount of bits of p that one has to know in order to factor N in polynomial time. Below we

present two methods to solve this problem.

4.1 The attack modulo p

The above problem can be reduced to solve modular univariate polynomial equation

f(x) = p̃ + 2

kx = 0 mod p.

We can apply Theorem 2.4 with n = 1, β = 1

r+l . Therefore, we can find all root y if

|y| ≤ N
r

(r+l)2
.

When l = 1, the bound

N
r

(r+l)2 = N
r

(r+1)2 = p
r
r+1
.

This bound is exactly the same as in [2]. As N
r

(r+l)2 = p
r
r+l , the attacker has to guess (1− r

r+l ) log2 p = l
r+l log2 p

LSBs of p. Thus the total complexity to factor N = prql is 2(
l
r+l log2 p)⋅P(logN), where P is a polynomial. This

method is very suitable for the case of r ≫ l.

4.2 The attack modulo pq

Let us start with the following lemma.
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Lemma 4.1. For a given integer k, consider the modular function f(x) = xw mod 2

k whose domain is the
set {1, 3, . . . , 2k − 1}. When w is odd and xw

0

≡ amod2

k, then one can get x
0
.

Proof. Since the domain of f(x) is {1, 3, . . . , 2k − 1}, the range of f(x) is also {1, 3, . . . , 2k − 1}. On the other
hand, assume that x

1
, x

2
∈ {1, 3, . . . , 2k − 1} and xw

1

≡ xw
2

(mod2

k). Then we can obtain that 2

k | xw
1

− xw
2

,

namely 2

k | (x
1
− x

2
)(xw−1

1

+ xw−2
1

x
2
+ ⋅ ⋅ ⋅ + xw−1

2

). Since x
1
, x

2
, w are odd integers, xw−1

1

+ xw−2
1

x
2
+ ⋅ ⋅ ⋅ + xw−1

2

is odd and x
1
− x

2
∈ {−2k + 2, 2

k − 2}. Then one can get that x
1
= x

2
, namely f(x) is bijective.

Above all, the solution x
0
is unique and it can be obtained as

x
0
≡ aw−1

mod2

k−1
mod2

k
.

This concludes the proof of Lemma 4.1.

We rewrite N by N = (pq)lpr−l. Notice that at least one of r and l must be odd; we may assume without loss

of generality that l is odd. Suppose that we have k LSBs of p and let us denote it as p̃. So p̃ = p mod 2

k
. Thus

ql = N(p̃r)−1 mod N. Then by Lemma 4.1 we can calculate the number of k LSBs of q: q̃ = q mod 2

k
. Using p̃

and q̃, we can get the number of k LSBs of pq: c = p̃q̃ mod 2

k
. Now we reduce the above problem to solve

a modular univariate polynomial equation

f(x) = c + 2

kx = 0 mod pq.

Now apply Theorem 2.4 with n = 1, β = 2

r+l . Then we can find y if

|y| ≤ N
4l

(r+l)2
.

After we get the value of pq, we can calculate

pr−l = N
(pq)l

.

Then we can get p. Since N
4l

(r+l)2 = (pq)
2l
r+l , the attacker has to guess

(1 −
2l
r + l)

log
2
pq =

r − l
r + l

log
2
pq =

2(r − l)
r + l

log
2
p

LSBs of p. Thus the total complexity to the factor N = prql is 2(
2(r−l)
r+l log

2
p)⋅P(logN)

, where P is a polynomial. This

method is very suitable for the case of r ≃ l.

Comparison between the two methods. In the first method, the attacker has to guess

l
r+l log p bits whereas

in the second method it is required to guess

2(r−l)
r+l log p bits. Since l

r+l <
2(r−l)
r+l if 2r > 3l, our first attack (mod-

ulo p) is superior to our second attack (modulo pq) in the case 2r > 3l.
We present our bounds min( l

r+l ,
2(r−l)
r+l ) in Figure 1. In Table 3, we give some experimental results of the

above two methods.

attack modulo p attack modulo pq

(r, l) log2 N log2 p theo. expt. dim. time (sec.) theo. expt. dim. time (sec.)

(3, 2) 2500 500 200 260 21 19.095 200 260 21 760.661
(3, 2) 2500 500 200 230 41 832.983 200 230 41 42447.935
(5, 2) 3500 500 143 260 21 21.856 429 – 21 –
(5, 2) 3500 500 143 200 41 1205.591 429 497 41 86495.347
(5, 4) 4500 500 223 330 21 32.245 112 260 21 4018.133
(5, 4) 4500 500 223 280 41 1413.463 112 230 41 163533.305

Table 3. Factoring N with partial known bits of p.
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Figure 1. Our bounds for different r, l.

4.3 Comparison with the work of Coron, Faugère, Renault and Zeitoun

Independently, Coron, Faugère, Renault and Zeitoun [4] also studied this problem; they showed thatN = prql

can be factored in polynomial time when r or l is at least (log p)3. In the following remark, we will briefly

discuss their idea. Moreover, based on an observation of the short vectors in a two-dimensional lattice which

has been introduced in [4], we further improved Coron–Faugère–Renault–Zeitoun’s bound for the moduli

with form of N = prql, where r = 2k + 1, l = k + 1 and k ∈ ℤ+.
In [4, p. 5], for the modulus N = prql, r and l are first expressed as r = u ⋅ α + a and l = u ⋅ β + b, where

the integers u, α, β, a, b should satisfy certain conditions. To find such integers, it is required to apply the

LLL-Algorithm on the two-dimensional lattice which is spanned by the row vectors of the following matrix:

(
⌊r 13 ⌋ −l
0 r

) .

After lattice reduction, suppose that the short vector is v = (⌊r 13 ⌋ ⋅ α, −l ⋅ α + r ⋅ β) for some β ∈ ℤ. Now if β = 0

or ⌊ rα ⌋ ≤
l
β , u is taken as ⌊

r
α ⌋. On the other hand if β ̸= 0 and ⌊ rα ⌋ >

l
β , u is set as ⌈

r
α ⌉. Finally, a is taken as r − uα

and b is taken as l − uβ. It has been proved in [4, Lemma 1] that either both a, b ≥ 0 or a, b ≤ 0.

∙ First suppose that both a, b ≥ 0. Now N can be expressed as N = prql = puα+aquβ+b = PuQ, where
P = pαqβ and Q = paqb. It has been proved in [4, p. 18] that to factor N = PrQ in polynomial time,

the attacker has to guess

c
u+c many bits of P to find P, where Q < Pc. Thus if a, b ≥ 0, it is required to

guess

c
u+c log P many bits of P. Here we can take c = a+b

α+β as P ≈ pα+β and Q ≈ pa+b. Thus in this case the
attacker has to guess

a+b
(α+β)u+a+b ⋅ (α + β) log p many bits.

∙ Next suppose that a, b ≤ 0. Now express N = Pu
Q , where P = pαqβ and Q = p−aq−b. In this case it has been

proved in [4, p. 8] that the attacker has to search over [0, 2Q 1

u ]. So the required guess in this case will be
approximately

−(a+b)
u log p bits.

Although in most of the cases the bounds of [4] may found the optimal expressions of N = prql, for some

values of r, l they could not give the best bound. For example, based on Coron–Faugère–Renault–Zeitoun’s

method, the modulus N of the form p2k+1qk+1, k ≥ 2, should be expresses as N = PkQ, where P = p2q and
Q = pq; however, when we express N in the form

Pk+1
Q , where P = p2q and Q = p, the less number of known

bits is required to factor N.
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More specifically, for the modulus of the form N = p2k+1qk+1, it is required in [4] to apply the LLL-Algo-

rithm on the lattice L which is spanned by the row vectors of the following matrix:

(
⌊(2k + 1)

1

3 ⌋ −(k + 1)
0 2k + 1

) .

It is easily checked that λ
1
(L) = (2⌊(2k + 1)

1

3 ⌋, −1) and λ
2
(L) = (⌊(2k + 1)

1

3 ⌋, k), where the minima λi(L)
denotes the i-th minimum of lattice L.

According to λ
1
(L), we have that α = 2, β = 1. Furthermore, since ⌊2k+1α ⌋ = k ≤ k+1

β , based on Coron–

Faugère–Renault–Zeitoun’s method [4], u is taken as ⌊2k+1α ⌋ = k. Furthermore, the modulus N should be

expressed as PkQ, where P = p2q and Q = pq. Moreover, for the second shortest vector λ
2
(L), the modulus

N will be expressed as

P2k+1
Q , where P = pq and Q = qk.

Then for the first expression of N, it is required to guess 6

3k+2 log p bits. And for the second expression,
the number of required known bits is

k
2k+1 log p bits of p.

Based on our two methods of Section 3.1 and Section 3.2, the number of known LSBs of p which is

required to factor N = p2k+1qk is

min(
k + 1

2k + 1 + k + 1

,

2(2k + 1 − (k + 1))
2k + 1 + k + 1

) =
k + 1

3k + 2

.

However, when we express N as

Pk+1
Q , where P = p2q and Q = p, in this case the attacker has to search over

[0, 2p
1

k+1 ]. Namely, the required guess in this case will be approximately

1

k+1 log p bits.
Actually, there does not exist any vector in the two-dimensionalLwhichwill expressN = p2k+1qk as Pk+1Q ,

where P = p2q and Q = p. Since according to Coron–Faugère–Renault–Zeitoun’s method [4], if one wants

to express N = p2k+1qk as Pk+1
Q , where P = p2q and Q = p, one should have that α = 2, β = 1 and u = k + 1.

However, for α = 2 and β = 1, we have ⌊2k+1α ⌋ ≤ k+1
β ; then u should be taken as ⌊2k+1α ⌋ = k, which contra-

dicts u = k + 1.

Thus in general, the Coron–Faugère–Renault–Zeitoun approach cannot give optimal u, α, β. For r ≤ 20

and 2 ≤ l < r, we search exhaustively to find optimal u, α, β. Optimal bounds are presented in Figure 2.

Figure 2. Optimal bound for some values of r, l.
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4.4 Extend to more unknown blocks

We also consider the case of the number of n (n ≥ 2) unknown blocks.

Theorem 4.2. Let N = prql, where p and q are of equal length. Suppose that a l
r ln(

r+l
l )-fraction of the bits is

known for n blocks in p (n is large). Then, under Assumption 2.3, we can recover p. The running time of the
algorithm is polynomial in logN but exponential in n.

Proof. We can reduce the above problem to solve the following multivariate linear polynomial equation:

f(x
1
, x

2
, . . . , xn) = a0 + a1x1 + a2x2 + ⋅ ⋅ ⋅ + anxn = 0 mod p,

where ak = 2

l
if the k-th unknown blocks start on the l-th bit position. Moreover, if n goes to infinity, from

Theorem 2.4, we have

lim

n→∞
(
1

r (
1 − (1 − rβ)

n+1
n − (n + 1)(1 − rβ)(1 − n√1 − rβ))) = β + (1 − rβ) ln(1 − rβ)

r
.

It shows that if n is very large, we can recover p regardless of n. Conversely, once a (1 − 1

rβ ) ln(1 − rβ) portion
of the bits from p together with their positions are given, we are able to recover themissing bits. Suppose that

|p| = |q|, i.e. β = 1

r+l . Then we need a

(1 −
1

rβ)
ln(1 − rβ) = (1 −

r + l
r ) ln(1 −

r
r + l)

= −
l
r
ln(

l
r + l)

=
l
r
ln(

r + l
l )

portion of known bits from p.

Note that for l = 1, this is exactly the result of [12].

5 Conclusion

In this paper, we have considered the RSA variant with moduli of the form N = prql, where r > l ≥ 2, and

we have given some cryptanalytic results for this kind of RSA variant. For the small secret exponent at-

tacks, we have two cases of encryption and decryption exponents: ed ≡ 1mod pr−1ql−1(p − 1)(q − 1) and
ed ≡ 1mod(p − 1)(q − 1). For these two cases,wehave given the lattice-based attacks and obtained the upper
bounds of decryption exponents d such that d can be recovered in polynomial time. Then we have presented

the partial known bits attacks and successfully factored N = prql when least significant bits of one prime

are known.
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