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Abstract: In this paper, we observe simple yet subtle interconnections among design theory, coding theory
and cryptography. Maximum distance separable (MDS) matrices have applications not only in coding theory
but are also of great importance in the design of block ciphers and hash functions. It is nontrivial to findMDS
matrices which could be used in lightweight cryptography. In the SAC 2004 paper [12], Junod and Vaudenay
considered bi-regular matrices which are useful objects to build MDS matrices. Bi-regular matrices are those
matrices all of whose entries are nonzero and all of whose 2 × 2 submatrices are nonsingular. Therefore MDS
matrices are bi-regularmatrices, but the converse is not true. Theyproposed the constructions of efficientMDS
matrices by studying the two major aspects of a d × d bi-regular matrix M, namely v1(M), i.e. the number of
occurrences of 1 in M, and c1(M), i.e. the number of distinct elements in M other than 1. They calculated
the maximum number of ones that can occur in a d × d bi-regular matrices, i.e. vd,d1 for d up to 8, but with
their approach, finding vd,d1 for d ≥ 9 seems difficult. In this paper, we explore the connection between the
maximum number of ones in bi-regular matrices and the incidence matrices of Balanced Incomplete Block
Design (BIBD). In this paper, tools are developed to compute vd,d1 for arbitrary d. Using these results, we
construct a restrictive version of d × d bi-regular matrices, introducing by calling almost-bi-regular matrices,
having vd,d1 ones for d ≤ 21. Since, the number of ones in any d × dMDSmatrix cannot exceed the maximum
number of ones in a d × d bi-regular matrix, our results provide an upper bound on the number of ones in
any d × d MDS matrix. We observe an interesting connection between Latin squares and bi-regular matrices
and study the conditions under which a Latin square becomes a bi-regular matrix and finally construct MDS
matrices from Latin squares. Also a lower bound of c1(M) is computed for d × d bi-regular matrices M such
that v1(M) = vd,d1 , where d = q2 + q + 1 and q is any prime power. Finally, d × d efficient MDS matrices are
constructed for d up to 8 from bi-regular matrices having maximum number of ones and minimum number
of other distinct elements for lightweight applications.
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1 Introduction
Maximumdistance separable (MDS)matrices incorporate diffusion layers inblock ciphers andhash functions
and are one of the vital constituents of modern age ciphers like Advanced Encryption Standard (AES) [5],
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Twofish [19, 20], SHARK [16], Square [4], Khazad [2], Clefia [27] and MDS-AES [15]. The stream cipher
MUGI [24] uses MDS matrix in its linear transformations. MDS matrices are also used in the design of hash
functions. Hash functions likeMaelstrom [6], Grøstl [7] and PHOTON family of light weight hash functions [8]
use MDS matrices as main part of their diffusion layers. MDS matrices, in general, have a large description
and thus induces costly implementations both in hardware and software. It is nontrivial to findMDSmatrices
which could be used in lightweight cryptography.

It is difficult to define what an optimal matrix is in terms of implementation. In the SAC 2004 paper [12],
Junod and Vaudenay studied MDS matrices M under the angle of efficiency and defined two mathematical
criteria namely v1(M), i.e. the number of occurrences of ones and c1(M), i.e. the number of other distinct
elements in the matrix. These lead to two very interesting combinatorial problems:
(1) how to increase the number of occurrences of ones,
(2) how to minimize the number of occurrences of other distinct elements.
They proved some optimality results relative to these two criteria.

Our contribution. The techniques used in [12] to solve these above mentioned combinatorial problems for
the construction of d × d MDS matrices were very specific to the dimension d for d up to 8 and it seems
difficult to extend their techniques to solve the same combinatorial problems for higher values of d. In this
paper, we further investigate these combinatorial problems in the light of design theory and propose more
generalized results. In [12], the authors mentioned that maximum number of ones in d × d MDS matrices is
close to d√d but no generalized method is yet known to construct d × d bi-regular matrices having almost
d√d ones. A bi-regular matrix is a matrix all of whose entries are nonzero and all of whose 2 × 2 submatrices
are nonsingular. It is evident from the definition that anMDSmatrix is a bi-regular matrix, but the converse is
not true. For higher values of d, the authors of [12] proposed a construction that can guarantee 3d − 3 ones
(see [12, Lemma 3]) in a d × d bi-regular matrix.

In a bi-regular matrix, there does not exist any 2 × 2 submatrix all of whose four entries are the same
(otherwise this submatrix would be a singular matrix). If we replace all non-one entries with blank in
a bi-regular matrix, we get another matrix, which we call almost-bi-regular matrix. An almost-bi-regular
matrix is a matrix all of whose entries are either 1 or blank and all of whose 2 × 2 submatrices contain at
most three ones. To get an MDS matrix with maximum possible number of ones, one approach would be
to start with an almost-bi-regular matrix with maximum possible number of ones and then replace blanks
with suitable non-one values so that the resulting matrix would become MDS. This approach requires two
important steps:
(a) the construction of an almost-bi-regular matrix with maximum possible number of ones,
(b) fill the blank entries with non-one entries so that the resulting matrix would become MDS.
To make the resulting MDS matrix an efficient one, we require that the description of the matrix should be
very low, i.e.
(i) the number of distinct entries should be as low as possible,
(ii) the number of low hamming weight entries should be as high as possible.
These two criteria werementioned in [12] by introducing twomathematical notations, v1(M)which indicates
number of ones and c1(M) which indicates number of distinct entries, for a bi-regular matrix M.

In this paper, we observe an interesting connection between the number of ones in almost-bi-regular
matrices and incidence matrices of Balanced Incomplete Block Design (BIBD). Using results on BIBD, we
exactly compute the maximum number of ones in v × b almost-bi-regular matrix whenever there exists
(v, b, r, k, 1)-BIBD. For arbitrary v and b also, we compute an upper bound on the maximum number of
ones in any v × b almost-bi-regular matrix. Since the number of ones in a v × b MDS matrix cannot exceed
the maximum number of ones in a v × b almost bi-regular matrix, our result gives an upper bound on the
number of ones in any v × b MDS matrix. Moreover, this paper provides exact upper bounds on the number
of ones for d × d almost-bi-regular matrix for d ≤ 21.

We propose another simple technique of construction of bi-regular matrices and MDS matrices using
Latin squares. Using the structure of Latin squares, it is shown that bi-regular matrices and MDS matrices
can be constructed by judicious selection of elements. This paper shows that if vd,d1 is multiple of d, then
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construction of d × d bi-regular matrices with maximum number of ones starting from Latin squares may be
more useful. When d = q2 + q + 1, where q is any prime power, we compute tight lower bound of c1(M) for
d × d bi-regularmatricesM having vd,d1 ones. Finally, d × d bi-regularmatrices are proposedwhich are having
maximum number of ones and minimum number of other elements. Moreover, efficient d × d MDS matrices
are constructed from these bi-regular matrices for d up to 8.

Previous work. Nearly all the ciphers use predefined MDS matrices to incorporate the diffusion property. In
some ciphers, however, the possibility of random selection of MDS matrices with some constraints is pro-
vided [26]. In this context, we would like to mention that in the papers [1, 8–13, 17, 26], different construc-
tions of MDS matrices are provided. In [8], the authors constructed lightweight MDS matrices from compan-
ion matrices by exhaustive search. In [9], new involutory MDS matrices were constructed using properties of
Cauchy matrices over additive subgroup of F2n and its equivalence with Vandermonde matrices based con-
struction under some constraints was proved. In [10], the authors provably constructed new MDS matrices
fromcompanionmatrices overF2n . In [11], the authors constructednewMDSmatrices from circulantmatrices
over F2n . Efficient 4 × 4 and 8 × 8 MDS matrices to be used in block ciphers were constructed in [12]. Involu-
toryMDS matrices using Vandermonde matrices were constructed in [13, 17]. New involutory MDS matrices
using properties of Cauchy matrices were constructed in [26]. Recently in [1], the authors have constructed
MDS matrices based on shortened BCH codes.

The organization of the paper is as follows: In Section 2, we provide definitions and preliminaries. In
Section 3, we study the construction of almost-bi-regular matrices with maximum number of ones using
properties of BIBDs. In Section 4, we study vv,b1 for arbitrary v and b and construct d × d almost-bi-regular
matrices havingmaximumnumber of ones for d up to 21. In Section 5, we study the d × d bi-regularmatrixM
having maximum number of ones and propose the minimum value of c1(M), where d = q2 + q + 1 and q is
any prime power. In that section, we also study the construction of bi-regular matrices from Latin squares. In
Section 6, we propose new and efficient d × d MDS matrices for d up to 8 having maximum number of ones
and minimum number of other distinct elements. We conclude the paper in Section 7.

2 Definition and preliminaries

2.1 MDS code and MDS matrices

An MDS matrix provides diffusion properties that have useful applications in cryptography. The idea comes
from coding theory, in particular from maximum distance separable (MDS) code. Let C be an [n, k, d] code.
Then n − k ≥ d − 1. Codes with n − k = d − 1 are called maximum distance separable code, or MDS code
for short.

Definition 2.1. Let F be a finite field and let p and q be two integers. Let x → M × x be a mapping from Fp to
Fq defined by the q × p matrix M. We say that it is an MDS matrix if the set of all pairs (x,M × x) is an MDS
code, i.e. a linear code of dimension p, length p + q and minimal distance q + 1.

The following theorem characterizes MDS matrices.

Theorem 2.2 ([14, p. 321]). An [n, k, d] code C with generator matrix G = [I|A], where A is a k × (n − k)
matrix, is MDS if and only if every square submatrix (formed from any i rows and any i columns, for any
i = 1, 2, . . . , min{k, n − k}) of A is nonsingular.

From the above theorem, it is evident that a square matrix A is an MDS matrix if and only if every square
submatrices of A is nonsingular. It is easy to check that the MDS property remains invariant under the two
elementary row (or column) operations, namely permutations of rows (or columns) andmultiplying a row (or
column) of a matrix by a scalar except zero. Also the MDS property is invariant under transpose operation.
So we provide the following lemma without proof.
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Lemma 2.3. If A is anMDSmatrix overF, then A�, obtained bymultiplying a row (or column) of A by any c ∈ F̄∗

(nonzero elements of algebraic closure of F) or by permutations of rows (or columns) is MDS. Also if A is MDS,
so is AT .

2.2 Bi-regular matrices

In [12], the authors used bi-regular arrays to build MDS matrices. We call it as bi-regular matrix and define it
slightly differently but equivalently.

Definition 2.4 (Bi-regular matrix). A matrix is called bi-regular if all entries of the matrix are nonzero and all
of its 2 × 2 submatrices are nonsingular.

Our target is to maximize the number of occurrences of ones in an MDS matrix. One approach may be to
construct the bi-regular matrix with maximum number of ones and then to check its MDS property. So, we
first take a matrix M = ((mi,j)), where mi,j is kept blank for all values of i and j. Next, we put the maximum
number of ones in this matrix such that in any 2 × 2 submatrix, not all positions are assigned to 1. We refer
to such matrices as almost-bi-regularmatrices. It may be noted that with judicious choices of other elements
in the blank positions of almost-bi-regular matrices, bi-regular matrices may be constructed.

Definition 2.5 (Almost-bi-regular matrix). Amatrix with entries either 1 or blank is almost-bi-regular if in any
of its 2 × 2 submatrices, there are at most three ones.

The significance of putting the maximum possible number of ones while constructing almost-bi-regular
matrix is that no more 1 can be put in the matrix without violating the almost-bi-regular property. But, it
has to be noted that an almost-bi-regular matrix saturated with ones may not guarantee that it contains
maximum number of ones (see Remark 3.3). In Section 3 and Section 4, we will develop techniques to
construct an almost-bi-regular matrix with maximum number of ones. Next, we replace all blank entries of
the almost-bi-regular matrix by judicious choices of elements from F̄∗ other than 1 to make it a bi-regular
matrix and then check its MDS property. No algorithm is known to select elements except exhaustive search.
It may be noted that, as we construct d × d MDS matrices M with maximum number (i.e. vd,d1 ) of ones with
low value of c1(M), search space gets reduced drastically. For example, to construct a 4 × 4 MDS matrix
over F28 , the size of search space is 28×16 = 2128, but for the 4 × 4matrix of Figure 7, the size of search space
becomes 28×2 = 216.

For an efficient implementation of perfect diffusion layer, it is desirable to have the maximum number of
ones and the minimum number of different entries in the MDS matrix. In [12], the authors studied these two
properties on bi-regular matrices and proposed some bounds.

Definition 2.6 ([12]). Let M = ((mi,j)) be a q × p bi-regular matrix over the field F.
∙ Let v1(M)denote the number of pairs (i, j) such thatmi,j is equal to 1.We call it the number of occurrences

of 1. Also, let vq,p1 be the maximum value of v1(M) over all q × p bi-regular matrices M.
∙ Let c(M) be the cardinality of {mi,j : i = 1, . . . , q, j = 1, . . . , p}. This is called the number of distinct

entries. Also let cq,p be the minimum value of c(M) over all q × p bi-regular matrices M.
∙ If v1(M) > 0, let c1(M) = c(M) − 1; otherwise c1(M) = c(M). This is called the number of nontrivial

entries.

For example, for the matrix

M = (

α α + 1 1 1
1 α α + 1 1
1 1 α α + 1

α + 1 1 1 α

),

where α is the root of the generating polynomial x8 + x4 + x3 + x + 1 of F28 , which is used in the mixColumn
operation in AES [5], we have v1(M) = 8 and c1(M) = 2.
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Remark 2.7. The high value of v1 and the low value of c and c1 are desirable for constructing efficient
MDS matrices.

From [12], we have the following fact.

Fact 1. [12] The following hold:
(a) vp,q1 = vq,p1 .
(b) vp,q1 increases with p and q.

In the next lemma, we state some results from [12, Lemma 1].

Lemma 2.8 ([12, Lemma 1]). The following hold:
(a) v3,p1 = p + 3 for all p ≥ 3.
(b) v4,41 = 9, v5,51 = 12, v6,61 = 16, v7,71 = 21 and v8,81 = 24.

2.3 Balanced Incomplete Block Design (BIBD)

In this paper, we show an interesting connection between almost-bi-regular matrices and incidence matrices
of BIBDs. Although the notations v1(M) and vq,p1 were used for bi-regular matrices in [12], we use them
(abuse of notations!), from here onwards, for almost-bi-regular matrices also for the same purpose. Thus,
in the context of bi-regular matrices, v1(M) represents the number of ones in the bi-regular matrix M and
vq,p1 represents the maximum value of v1(M) over all q × p bi-regular matrices M. Similarly, in the context of
almost-bi-regular matrices, v1(M) represents the number of ones in the almost-bi-regular matrix M and vq,p1
represents the maximum value of v1(M) over all q × p almost-bi-regular matricesM. It is proved in this paper
that for v × b almost-bi-regular matrices, vv,b1 = bk whenever there exists (v, b, r, k, λ)-BIBD where λ = 1. We
also provide a tight upper bound of vd,d1 for any value of d. Using these techniques, we provide very simple
and alternative proof of optimality results of [12] which are given in Lemma 2.8. We propose techniques to
construct any d × d matrix M where v1(M) is either vd,d1 or very close to it.

Remark 2.9. The existence of an almost-bi-regular matrix with l ones may not guarantee the existence of a
bi-regular matrix with the same number of ones, i.e. l ones. But the converse is always true; the existence of
a bi-regular matrix with l ones always guarantees the existence of an almost-bi-regular matrix with the same
number of ones. Constructing almost-bi-regular matrix from bi-regular matrix is straightforward - replace all
non-one elements from the bi-regularmatrix with the blank symbol. The newmatrixwill be almost-bi-regular
matrix.

Definition 2.10 ([23]). A design is a pair (X,A) such that the following properties are satisfied:
∙ X is a set of elements called points,
∙ A is a collection (i.e. multiset) of nonempty subsets of X called blocks.

If two blocks in a design are identical, they are said to be repeated blocks. This is why A is referred to as
amultiset of blocks rather than a set.

Definition 2.11 ([23]). Let v, k and λ be positive integers such that v > k ≥ 2. A (v, k, λ)- balanced incomplete
block design (which we abbreviate (v, k, λ)-BIBD) is a design such that the following properties are satisfied:
(1) |X| = v,
(2) each block contains exactly k points,
(3) every pair of distinct points is contained in exactly λ blocks.

In the following two lemmas, we record two important properties of a BIBD.

Lemma 2.12 ([23]). In a (v, k, λ)-BIBD, every element occurs in exactly r = λ(v−1)
(k−1) blocks. The value r is often

called the replication number of the BIBD.

Lemma 2.13 ([23]). A (v, k, λ)-BIBD has exactly b blocks, where b = vr
k = λ(v2−v)

(k2−k) .
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Definition 2.14 ([23]). A BIBD in which b = v (or, equivalently, r = k or λ(v − 1) = k2 − k) is called a symmet-
ric BIBD.

For example, in a (7, 3, 1)-BIBD, X = {1, 2, 3, 4, 5, 6, 7} and

A = {{1, 2, 3}, {1, 4, 5}, {1, 6, 7}, {2, 4, 6}, {2, 5, 7}, {3, 4, 7}, {3, 5, 6}}.

Here v = |X| = 7 and b = |A| = 7. It is a symmetric BIBD as v = b. Also r = k = 3.

Lemma 2.15 ([23]). Suppose that (X,A) is a symmetric (v, k, λ)-BIBD and denoteA = {A0, . . . , Av−1}. Suppose
that 0 ≤ i, j ≤ v − 1, i ̸= j. Then |Ai ∩ Aj| = λ.

In this paper, a special kind of symmetric BIBDs, called projective planes, will be used for constructions of
almost-bi-regular matrices.

Definition 2.16 (Projective plane, [23]). A (d2 + d + 1, d + 1, 1)-BIBD with d ≥ 2 is called a projective plane
of order d.

It may be noted that although a (3, 2, 1)-BIBD exists, this is not regarded as a projective plane of order 1 (also
see [23]). Here we mention one very important result on projective plane which is crucial in our work.

Theorem 2.17 ([23]). For every prime power q ≥ 2, there exists a (symmetric) (q2 + q + 1, q + 1, 1)-BIBD (i.e.
a projective plane of order q).

In this paper, we will use the notation (v, b, r, k, λ)-BIBD to record the values of all five parameters. Note that
for a projective plane, i.e. a (d2 + d + 1, d + 1, 1)-BIBD,

r = v − 1
k − 1 =

d2 + d + 1 − 1
d

= d + 1

and
b =

vr
k

=
(d2 + d + 1) × (d + 1)

(d + 1) = d2 + d + 1.

So we call it (d2 + d + 1, d2 + d + 1, d + 1, d + 1, 1)-BIBD.
It is often convenient to represent a BIBD by means of an incidence matrix.

Definition 2.18 (Incidence matrix, [23]). Let (X,A) be a design with X = {x0, . . . , xv−1}, A = {A0, . . . , Ab−1}.
The incidence matrix of (X,A) is the v × b matrix M = ((mi,j)) defined by the rule

mi,j =
{
{
{

1, if xi ∈ Aj ,
0, if xi ∉ Aj ,

for any i ∈ {0, 1, . . . , v − 1} and j ∈ {0, 1, . . . , b − 1}.

For constructions of MDS matrices, we use a slightly modified version of incidence matrix, which we call
derived-incidence matrix.

Definition 2.19 (Derived-incidence matrix). If all zeros of an incidence matrix are replaced by a special sym-
bol blank, the derived matrix is called derived-incidence matrix.

Fact 2 ([23]). The incidence matrix M of a (v, b, r, k, λ)-BIBD (or the derived-incidence matrix M� obtained
from M) satisfies the following properties:
(1) Every column of M (or M�) contains exactly k ones.
(2) Every row of M (or M�) contains exactly r ones;
(3) Two distinct rows of M (or M�) both contain ones in exactly λ columns.

2.4 Jensen’s inequality

Theorem 2.20 ([22]). Suppose that f is a continuous and strictly convex function on the interval I. Suppose
further that ∑b−1

i=0 ti = 1, 0 < ti and 0 ≤ i ≤ b − 1. Then f(∑b−1
i=0 tiki) ≤ ∑b−1

i=0 ti f(ki), where ki ∈ I, 0 ≤ i ≤ b − 1.
Further, equality occurs if and only if k0 = k1 = ⋅ ⋅ ⋅ = kb−1.
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If we take the convex function f(x) = x(x−1)
2 and use Jensen’s inequality, Lemma 2.21 can be verified easily.

Lemma 2.21. Let∑b−1
i=0 ki = n, where all ki are positive integers. Then

b ×
n
b × ( nb − 1)

2 ≤
b−1
∑
i=0

(
ki
2).

If nb = k is an integer, then

b × (
k
2) ≤

b−1
∑
i=0

(
ki
2).

Proof. Let f(x) = x(x−1)
2 . Also let ti = 1

b for all i ∈ {0, . . . , b − 1}. So,

f(
b−1
∑
i=0
tiki) = f(n

b
) =

n
b × ( nb − 1)

2 .

Also∑b−1
i=0 ti f(ki) =

1
b ∑

b−1
i=0 (ki2). Thus from Theorem 2.20,

n
b × ( nb − 1)

2 ≤
1
b

b−1
∑
i=0

(
ki
2).

Hence we have proved the result.

3 Finding vv,b1 where (v, b, k, r, 1) is a BIBD
One approach for constructing an MDS matrix is to construct first an almost-bi-regular matrix with l ones
and then assign nonzero field elements other than 1 to the rest of the positions of the matrix. If the resultant
matrix is MDS, return that MDS matrix, else return failure. The above mentioned process can be repeated
iteratively
(a) by trying all possible nonzero elements other than 1 for fixed l,
(b) through all choices of l starting from maximum number of ones that matrix can accommodate till 0.
For efficiency, in the resultant MDS matrix M, it is desired to have a high value of v1 and a low value of c1 as
much as possible. In [12], the authors computed the maximum number of occurrences of 1 in a d × dmatrix,
i.e. vd,d1 for d up to 8 and also determined the position of ones in the corresponding bi-regular matrices. With
their approach, determining vd,d1 seems difficult for higher values of d.

In this section, we study the connection between the incidence matrix of BIBD and the almost-bi-regular
matrix and propose techniques to compute the value of vv,b1 whenever there exists a (v, b, r, k, 1)-BIBD. In
the following lemma, we show that the derived-incidencematrix of (v, b, r, k, λ)-BIBD is an almost-bi-regular
matrix whenever λ = 1. Not only that, this section furthermore shows that the maximum number of ones
which can be put in a v × b almost-bi-regular matrix is equal to the number of ones in the derived-incidence
matrix of (v, b, r, k, 1)-BIBD. The equality in the number of ones in both the almost-bi-regular matrix and the
derived-incidencematrix of (v, b, r, k, 1)-BIBD seems obvious considering the fact that the derived-incidence
matrix of (v, b, r, k, λ)-BIBD is an almost-bi-regular matrix whenever λ = 1. But, this section presents some-
thing more: the maximality of ones. To the best of our knowledge, the literature on BIBDs deals only with the
existence and constructions, while this section provides a result which proves that those constructions, in
fact, yield the maximum number of ones as well.

Lemma 3.1. The derived-incidence matrix of (v, b, r, k, λ)-BIBD is an almost-bi-regular matrix if and only
if λ = 1.

Proof. Let us consider the (v, b, r, k, λ)-BIBD, where λ = 1. Let the set of elements and the set of blocks of
this BIBD be X = {x0, . . . , xv−1} and A = {A0, . . . , Ab−1}, respectively. Let the corresponding v × b derived-
incidence matrix be M = ((mi,j)). So, from the definition of the derived-incidence matrix, mi,j = 1 if xi ∈ Aj
for any i ∈ {0, 1, . . . , v − 1} and j ∈ {0, 1, . . . , b − 1}; otherwise mi,j is blank.
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Let us consider any arbitrary 2 × 2 submatrix

M1 = (
ms1 ,t1 ms1 ,t2
ms2 ,t1 ms2 ,t2

)

of M. Note that not all elements of the submatrix are 1 because then we will get msi ,tj = 1 for i, j ∈ {1, 2}.
This implies that the elements xs1 and xs2 are contained simultaneously in two blocks At1 and At2 , which is
a contradiction to the fact that λ = 1, i.e. a pair of elements can be contained in only one block. So all four
elements of any 2 × 2 submatrix of M are not 1. Thus M is almost-bi-regular.

If λ > 1, then some pair of elements, say xs1 and xs2 , will occur in at least two blocks, say, At1 and At2 .
Thus in the 2 × 2 submatrix M1 all four entries are 1. So M is not almost-bi-regular.

Remark 3.2. Let M be the derived-incidence matrix of a BIBD with λ = 1. We cannot add any more 1 in the
matrix M without disturbing the almost-bi-regular property. For example, suppose that the (i, j)-th entry is
blank and let us fill the (i, j)-th entry by 1. Also, let us consider any other element of the block Aj, say, xk. The
elements xi and xk must be contained in some block, say, Al. So, mk,l = mk,j = mi,l = mi,j = 1. So clearly the
2 × 2 submatrix formed by taking the k-th row, the i-th row, the l-th column and the j-th column of thematrix
M is not almost-bi-regular.

Remark 3.3. Let M be any almost-bi-regular matrix such that no more 1 can be added in the matrix without
disturbing the almost-bi-regular property. Note that this condition does not always guarantee that an almost-
bi-regular matrix has maximum number of ones.

(

1 1 1 1
1
1
1

) ,

no more 1 can be placed without disturbing the bi-regular property. Here the number of occurrences of 1 is
7, but we know v4,41 = 9 and the corresponding matrix may be

(

1 1 1
1 1
1 1
1 1

) .

Remark 3.4. Let M = ((mi,j)) be any v × b almost-bi-regular matrix. Let us associate the element xi corre-
sponding to the i-th row and the block Aj corresponding to the j-th column, where i ∈ {0, . . . , v − 1} and
j ∈ {0, . . . , b − 1}. Let us consider the design (X,A), where X = {x0, . . . , xv−1} and A = {A0, . . . , Ab−1} such
that mi,j = 1 if and only if xi ∈ Aj. So M is the derived-incidence matrix of the design (X,A). Note that, since
M is almost-bi-regular, any pair of elements will occur in at most one of the blocks of A, i.e. |Ai ∩ Aj| ≤ 1 for
all i, j ∈ {0, . . . , b − 1} and i ̸= j.

In Theorem 3.8, we will show that the derived-incidence matrices of BIBDs with λ = 1 contain the maximum
number of onesmaintaining the almost-bi-regular property. But before that, we study some crucial properties
of almost-bi-regular matrices and derived-incidence matrices of BIBDs with λ = 1 in Lemma 3.5, Lemma 3.6
and Lemma 3.7.

Lemma 3.5. Let M be the derived-incidence matrix of a design (X,A), where |X| = v and |A| = b. Also for an
element x ∈ X, let us define the set Sx as follows: Sx = {(x, y, A) : x, y ∈ A and A ∈ A, y ∈ X}. If M is almost-bi-
regular matrix, then |Sx| ≤ v − 1.

Proof. An element x can form maximum v − 1 pairs (x, y) with all different v − 1 elements. More than v − 1
pairs involving x amounts to repetition of some pair inmore than one blocks, but sinceM is almost-bi-regular
matrix, any pair of elements (x, y) occurs at most once. Hence we have proved the result.

Lemma 3.6. Let M be the derived-incidence matrix of a design (X,A), where |X| = v and |A| = b. Also let us
define the set Sas follows: S = {(x, y, A) : x, y ∈ A and A ∈ A}. If M is an almost-bi-regularmatrix, then |S| ≤ (v2).
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Proof. Since M is an almost-bi-regular matrix, any pair of elements (x, y) occurs at most in one of the blocks
ofA. So if (x, y, Ai) ∈ S, then (x, y)will not be contained in any blocks ofA except Ai. Since there are (v2) pairs
that can be formed from the elements of X, we have |S| ≤ (v2).

Lemma 3.7. Let the design (X,A) be a (v, b, r, k, 1)-BIBD and define S by S = {(x, y, A) : x, y ∈ A and A ∈ A}.
Then |S| = (v2).

Proof. Note that in a (v, b, r, k, 1)-BIBD, every pair of elements of X occurs exactly in one block. So, |S| = (v2).
Alternatively, each block has k elements. Hence, each block contributes (k2) elements in S. Since there are b
blocks, we have

|S| = (
k
2) × b =

k(k − 1)
2 ×

vr
k

=
k(k − 1)

2 × v × (v − 1)
(k − 1) × k =

v(v − 1)
2 = (

v
2).

Theorem 3.8. Let there exist some (v, b, r, k, 1)-BIBD whose derived-incidence matrix is M. Then M has the
maximum number of ones, i.e. vv,b1 is the number of ones and vv,b1 = bk.

Proof. Let (X,A) be the (v, b, r, k, 1)-BIBD. From Lemma 3.1 and Fact 2, M is almost-bi-regular matrix with
bk ones. From Lemma 3.7, |S| = (v2), where S = {(x, y, A) : x, y ∈ A for some A ∈ A}.

Let, if possible, there be a v × b almost-bi-regular matrix M� having (bk + 1) ones. For the matrix M�,
let the corresponding design be (X,A�), where A� = {A�

0, . . . , A
�
b−1}. Similar to S, let us define the set S� as

follows:
S� = {(x, y, A) : x, y ∈ A for some A ∈ A�}.

Let M�� be the matrix obtained by replacing one occurrence of 1 by blank from, say, the p-th column of
M� which has at least two elements. NowM�� has b × k ones. For the matrixM��, let the corresponding design
be (X,A��), whereA�� = {A��

0 , . . . , A
��
b−1}. Let us define the set S

�� as follows:

S�� = {(x, y, A) : x, y ∈ A for some A ∈ A��}.

So, |A�
i | = |A��

i | for i = 0, . . . , p − 1, p + 1, . . . , b − 1 and |A�
p| = |A��

p | + 1. Let |A��
i | = k

��
i for i = 0, . . . , b − 1.

Hence, the number of elements inM�� is b × k = ∑b−1
i=0 k

��
i . Also, the block A

��
i contributes (

k��i
2 ) elements in S��.

So,

|S��| =
b−1
∑
i=0

(
k��i
2 ).

From Lemma 2.21,
b−1
∑
i=0

(
k��i
2 ) ≥ b × (

k
2) = (

v
2) = |S|.

So, |S��| ≥ |S|. Also, |S�| = |S��| + |A��
p |. So, |S�| > |S| = (v2), a contradiction to Lemma 3.6.

Corollary 3.9. Let d = q2 + q + 1, where q is any prime power. Then vd,d1 = (q2 + q + 1) × (q + 1).

Proof. Let us consider the (v, b, r, k, λ)-BIBD, where v = b = q2 + q + 1, r = k = q + 1 and λ = 1, and let M be
its derived-incidencematrix. FromTheorem2.17, such aBIBD exists for any prime power q. FromLemma3.1,
M is almost-bi-regular and from Theorem 3.8, the number of ones in M is vd,d = (q2 + q + 1) × (q + 1).

Remark 3.10. From Corollary 3.9, if q = 3, then d = 32 + 3 + 1 = 13 and thus v13,131 = 13 × (3 + 1) = 52 and
the corresponding matrix is given in Figure 4. Similarly, when q = 22 = 4, then d = 42 + 4 + 1 = 21 and thus
v21,211 = 21 × (4 + 1) = 105 and the corresponding matrix is given in Figure 15 of Appendix A.3.

LetM be an almost-bi-regularmatrix havingmaximumnumber of ones and also let the corresponding design
be (X,A). If (X,A) is a BIBD, then for any two elements of X, say xs and xt, there always exists a block A of
A such that xs , xt ∈ A. If (X,A) is not a BIBD, then such a block may not exist. For example, let us consider
the 6 × 6 matrix of Figure 1. This matrix is an almost-bi-regular matrix with maximum number of ones, but
the pair (x0, x1) does not occur in any block. Note that Theorem 3.8 can compute the value vv,b1 if there exists
a (v, b, r, k, λ)-BIBD, where λ = 1.
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(((

(

1 1
1 1

1 1 1
1 1 1

1 1 1
1 1 1

)))

)

Figure 1. Example of 6 × 6 almost-bi-regular matrices having sixteend ones which is maximum.

4 Some results on vv,b1 for arbitrary v and b
In this section, we study some upper bounds of vv,b1 for arbitrary v and b. We also determine vd,d1 for d up to
21. In doing so, we first develop tools which are useful. For simplicity and compactness of expression, here
we first introduce some notations, definitions and discuss few crucial properties, some of which resemble
properties of previous section.

4.1 A few more definitions and notations

Let M = (mij) be a v × b matrix. Let Ri = (mi0,mi1, . . . ,mi(b−1)) and Cj = (m0j ,m1j , . . . ,m(v−1)j), i.e. the i-th
row and the j-th column, respectively. We assume that 0 ≤ i ≤ v − 1 and 0 ≤ j ≤ b − 1.

We define Ri ∧ Cj = mij = Cj ∧ Ri. If mij is 1, we say Ri ∧ Cj = Cj ∧ Ri = 1, else 0. If Ri ∧ Cj = Cj ∧ Ri = 1,
we say that the row Ri makes an intersection with the column Cj and vice versa.

We define Ri ∧ Rk = {j : 0 ≤ j ≤ b − 1 and Ri ∧ Cj = Rk ∧ Cj = 1}, i.e. the index set corresponding to these
blocks containing both the elements corresponding to Ri and Rk. Similarly, we define

Ci ∧ Ck = {j : 0 ≤ j ≤ v − 1 and Ci ∧ Rj = Ck ∧ Rj = 1},

i.e. the set of elements that are contained in both the blocks corresponding to Ci and Ck.
Let i ̸= j. If |Ri ∧ Rj| ≥ 1, then we say that the row Ri makes pairwith the row Rj. Similarly, if |Ci ∧ Cj| ≥ 1,

then we say that the column Ci makes pair with the column Cj. It may be noted that for almost-bi-regular
matrices |Ri ∧ Rj| ≤ 1 and |Ci ∧ Cj| ≤ 1 for all distinct indices i, j, which directly follows from the definition of
almost-bi-regular matrices. So we have the following lemma.

Lemma 4.1. Let M be a v × b matrix. Then M is an almost-bi-regular matrix if and only if |Ri ∧ Rk| ≤ 1 for all
0 ≤ i < k ≤ v − 1 and |Ci ∧ Ck| ≤ 1 for all 0 ≤ i < k ≤ b − 1.

Set |Ri| = |Ri ∧ Ri|, i.e. the number of columns which intersect with the row Ri, and similarly |Ci| = |Ci ∧ Ci|
which denotes the number of rows which intersect with the column Ci. Let max(|C|) = max{|Ci|}b−1i=0 and
max(|R|) = max{|Ri|}v−1i=0 . In a similar manner, we define min(|C|) = min{|Ci|}b−1i=0 and min(|R|) = min{|Ri|}v−1i=0 .
The following two lemmas give interpretations of |Ri| and |Cj|, respectively.

Lemma 4.2. Let M be a v × b almost-bi-regular matrix. Then the row Ri contains l ones if and only if |Ri| = l.

Proof. Let J = {0, 1, . . . , b − 1}. Suppose that |Ri| = |Ri ∧ Ri| = l. By definition,

Ri ∧ Ri = {j : 0 ≤ j ≤ b − 1 and |Ri ∧ Cj| = 1}.

Let J1 = Ri ∧ Ri = {j1, j2, . . . , jl} ⊆ J. Then we have Ri ∧ Cj = mij = 1 if and only if j ∈ J1. Hence we obtain that
Ri = (mi0,mi1, . . . ,mi(b−1)) contains |J1| = l ones. Conversely, suppose that Ri = (mi0,mi1, . . . ,mi(b−1)) con-
tains l ones. Let J1 = {j1, . . . , jn} ⊆ J be the set of indices such that mij = 1 if and only if j ∈ J1. So, |J1| = l.
Moreover, |Ri ∧ Cj| = 1 if and only if j ∈ J1. Therefore, Ri ∧ Ri = J1 and thus |Ri| = |Ri ∧ Ri| = |J1| = l.

Similarly, we have the following lemma.
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Lemma 4.3. Let M be a v × b almost-bi-regular matrix. Then the column Ci contains l ones if and only if |Ci| = l.

In the following lemma, we study the correlation between the number of intersections and the number of
pairs that the row Ri makes with different columns and rows, respectively, in an almost-bi-regular matrix.

Lemma 4.4. Let M bea v × b almost-bi-regularmatrix. Suppose that the row Rimakes intersectionswith exactly
l columns, Cj1 , Cj2 , . . . , Cjl . If |Cjk | = ck, for1 ≤ k ≤ l, then the row Ri makes pair with exactly∑l

k=1(ck − 1) rows.

Proof. Let J(jk)1 = Cjk ∧ Cjk . Since |Cjk | = ck, it follows that |J
(jk)
1 | = ck. Since Ri intersects with column Cjk ,

we obtain i ∈ J(jk)1 . Let
J1(jk) = J

(jk)
1 \ {i}.

So, |J1(jk)| = ck − 1.
Now, we show that J1(jm) ∩ J1(jn) = 0 for all 1 ≤ m < n ≤ l. If not, there exists t ̸= i for some r, s such

that 1 ≤ r < s ≤ l, 0 ≤ t ≤ v − 1 and t ∈ J1(jr) ∩ J1(js). Therefore, |Rt ∧ Cjr | = |Rt ∧ Cjs | = 1 which then implies
mtjr = mtjs = 1. Since Ri makes pair with columns Cjr and Cjs , we have |Ri ∧ Cjr | = |Ri ∧ Cjs | = 1 which then
impliesmijr = mijs = 1. Consider a 2 × 2 submatrix formedby the rows Ri , Rt and columns Cjr , Cjs . The entries
of this submatrix will be mijr ,mijs ,mtjr ,mtjs and all are 1, a contradiction. Hence,

J1(jm) ∩ J1(jn) = 0

for all 1 ≤ m < n ≤ l.
Choose any t ∈ J1(jk). Since t ∈ J1(jk), we have |Rt ∧ Cjk | = 1. Moreover, |Ri ∧ Cjk | = 1 and thus jk ∈ Ri ∧ Rt.

Therefore, |Ri ∧ Rt| ≥ 1, but from Lemma 4.1, |Ri ∧ Rt| ≤ 1 which then implies |Ri ∧ Rt| = 1. Hence, the row
Ri makes pair with the row Rt. Conversely, suppose that Ri makes pair with some row Rt. Then |Ri ∧ Rt| = 1.
Let z ∈ Ri ∧ Rt. Then |Ri ∧ Cz| = |Rt ∧ Cz| = 1 and therefore t ∈ Cz ∧ Cz. Since Ri makes pair with Cz, it follows
that z ∈ {j1, j2, . . . , jl}. Thus t ∈ J1(jk) for some 1 ≤ k ≤ l. Therefore the row Ri makes pair with the row Rt if
and only if t ∈ J1(jk) for some 1 ≤ k ≤ l.

Let J1 = ⋃l
k=1 J1(jk). As J1(jm) ∩ J1(jn) = 0 for all 1 ≤ m < n ≤ l, we have

|J1| =
l
∑
k=1

|J1(jk)| =
l
∑
k=1

(ck − 1).

Therefore, the row Ri makes pair with∑l
k=1(ck − 1) rows.

Similarly, by interchanging rows and columns, we have the following lemma.

Lemma 4.5. Let M be a v × b almost-bi-regular matrix. Suppose that the column Ci makes intersections with
exactly l rows, say Rj1 , Rj2 , . . . , Rjl . If |Rjk | = rk, then the column Ci makes pair with exactly ∑l

k=1(rk − 1)
columns.

In a v × b almost-bi-regular matrix, any row can make pair with at most v − 1 rows and similarly any col-
umn can make pair with at most b − 1 columns. So we have the following two lemmas which are similar to
Lemma 3.6 but in a different setting.

Lemma 4.6. Let M be a v × b almost-bi-regular matrix. Suppose that |Ci| = ki for 0 ≤ i ≤ b − 1. Then

b−1
∑
i=0

(
ki
2) ≤ (

v
2).

Proof. Let Ci ∧ Ci = {j1, j2, . . . , jki } and Ii = {(jr , js) : 1 ≤ r < s ≤ ki}. We now show that Im ∩ In = 0 for all
0 ≤ m < n ≤ b − 1. If not, then for some 0 ≤ m < n ≤ b − 1 and for some 0 ≤ p < q ≤ v − 1, the tuple (p, q)
is an element of Im ∩ In. So, p, q ∈ Cm ∧ Cm and p, q ∈ Cn ∧ Cn. Thus

|Rp ∧ Cm| = |Rq ∧ Cm| = |Rp ∧ Cn| = |Rq ∧ Cn| = 1

which then implies there exists a 2 × 2 submatrix all ofwhose entries are 1, a contradiction. Hence Im ∩ In = 0
for all 0 ≤ m < n ≤ b − 1.
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Let I = {(p, q) : 0 ≤ p < q ≤ v − 1}. It is easy to check that ⋃b−1
i=0 Ii ⊆ I and therefore | ⋃b−1

i=0 Ii| ≤ |I| = (v2).
Since Im ∩ In = 0, we have

!!!!!!!!!

b−1
⋃
i=0

Ii

!!!!!!!!!
=
b−1
∑
i=0

|Ii| =
b−1
∑
i=0

(
ki
2) ≤ |I| = (

v
2).

Hence the lemma.

Similarly, by interchanging rows and columns, we have the following lemma.

Lemma 4.7. Let M be a v × b almost-bi-regular matrix. Suppose that |Ri| = ki for 0 ≤ i ≤ v − 1. Then
v−1
∑
i=0

(
ki
2) ≤ (

b
2).

Now we define Fb(v), which is crucial for determining the upper bound of vv,b1 .

Definition 4.8. Let b and v be two non-negative integers. We define Fb(v) = ⌊ b+√b
2+4bv(v−1)
2 ⌋.

In Theorem 4.13, we study the upper bound of vv,b1 . Before that, we study two important properties of Fb(v)
in Lemma 4.9 and Lemma 4.10, which can be verified by elementary arithmetic.

Lemma 4.9. If 1 ≤ v ≤ b, thenmin(Fv(b),Fb(v)) = Fb(v).

Lemma 4.10. If 1 ≤ v and 1 ≤ b, then Fb(v + 1) − Fb(v) ≥ 1.

Now we introduce another term, Gd(d), which helps in determining maximum number of ones in a matrix
where some row or column previously contains a fixed number of ones.

Definition 4.11. Let d ≥ 1. We define Gd(d) = 2d − 1 and Gd(k) = k + d − 1 + Fd−1(d − k) for 0 ≤ k ≤ d − 1.

In the next lemma, we show that Gd(k) is monotone decreasing.

Lemma 4.12. We have Gd(k + 1) ≤ Gd(k) for d ≥ 2 and 0 ≤ k ≤ d − 1.

Proof. If 0 ≤ k ≤ d − 2, then

Gd(k + 1) − Gd(k) = 1 + Fd−1(d − k − 1) − Fd−1(d − k).

Let d−1 = b and d− k−1 = a. Since d ≥ 2 and 0 ≤ k ≤ d−2, we have b ≥ 1 and 1 ≤ d− k−1 = a ≤ d−1.
Therefore,

Gd(k + 1) − Gd(k) = 1 + Fb(a) − Fb(a + 1).

From Lemma 4.10, Gd(k + 1) − Gd(k) ≤ 1 − 1 = 0.
If k = d − 1, then

Gd(k + 1) − Gd(k) = 2d − 1 − (d − 1) − d + 1 − Fd−1(1) = 1 − (d − 1) = 2 − d ≤ 0.

4.2 Some important bounds

In Theorem 4.13 and its corollary, we provide a tight upper bound of vv,b1 and vd,d1 for all values of v, b and d.

Theorem 4.13. We have vv,b1 ≤ min(Fv(b),Fb(v)).

Proof. Let vv,b1 = n. Also let |Ri| = ri and |Ci| = ci. Then
v−1
∑
i=0
ri = n,

v−1
∑
i=0

(
ri
2) ≤ (

b
2) (1)

from Lemma 4.7, and
b−1
∑
i=0
ci = n,

b−1
∑
i=0

(
ci
2) ≤ (

v
2) (2)
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from Lemma 4.6. From Jensen’s inequality, when (1) holds, we get

v × (
n
v
2) ≤

v−1
∑
i=0

(
ri
2) ≤ (

b
2).

Solving the above inequality, we get n2 − nv − bv(b − 1) ≤ 0 which then implies

n ≤
v + √v2 + 4vb(b − 1)

2 .

So,

n ≤ ⌊
v + √v2 + 4vb(b − 1)

2 ⌋ = Fv(b).

Similarly, when (2) holds, we get n ≤ Fb(v). Thus, n ≤ min(Fv(b),Fb(v)).

Corollary 4.14. We have

vd,d1 ≤ ⌊d ×
1 + √4d − 3

2 ⌋.

Proof. Putting v = b = d in Corollary 4.13, we get

vd,d1 ≤ Fd(d) = ⌊d ×
1 + √4d − 3

2 ⌋.

Remark 4.15. For any prime power q, there exists a projective plane which is a symmetric (q2 + q + 1, q2 +
q + 1, q + 1, q + 1, 1)-BIBD. From Corollary 4.14,

v(q
2+q+1,q2+q+1)

1 ≤ ⌊(q2 + q + 1) × 1 + √4(q2 + q + 1) − 3
2 ⌋ = (q2 + q + 1) × (q + 1).

Also, note that, from Theorem 3.8, v(q
2+q+1,q2+q+1)

1 = (q2 + q + 1) × (q + 1). So, when d = q2 + q + 1 for some
prime power q,

vd,d1 = ⌊d ×
1 + √4d − 3

2 ⌋.

Similarly, when (v, b, r, k, 1)-BIBD exists, vv,b1 = Fb(v).

In thenext theorem,we study theupper boundof v1(M) for a d × dmatrixMwhereoneof its columns contains
k ones.

Theorem 4.16. Let M be a d × d almost-bi-regular matrix with one column having k occurrences of 1. Then
v1(M) ≤ Gd(k).

Proof. We consider two cases.

Case d = 1. If k = 0, then

Gd(k) = k + d − 1 + Fd−1(d − k) = 0 + 1 − 1 + F0(1) = 0.

If k = 1, then
Gd(k) = 2d − 1 = 1.

Case d ≥ 2. If k = 0, then the maximum number of ones in M can be at most Fd(d − 1). From Lemma 4.9,

Fd(d − 1) ≤ Fd−1(d) < k + d − 1 + Fd−1(d − k) = Gd(k).

If k = d, then the maximum number of ones in M can be at most d + d − 1 = 2d − 1 = Gd(k).
Let 1 ≤ k ≤ d − 1.Without loss of generality, assume that thematrixM contains exactly k ones in column

C0. We further assume that |Ri ∧ C0| = 1 for all 0 ≤ i ≤ k − 1 and |Rj ∧ C0| = 0 for all k ≤ j ≤ d − 1. Consider
a submatrix of M, say M1, formed by rows R0, R1, . . . , Rk−1 and columns C0, C1, C2, . . . , Cd−1. Consider
another submatrix of M, say M2, formed by rows Rk , Rk+1, . . . , Rd−1 and columns C0, C1, . . . , Cd−1. Since
any submatrix of an almost-bi-regular matrix is almost-bi-regular, therefore M1 and M2 also will be almost-
bi-regular.
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In the matrix M1, the column C0 makes pair with the rows R0, R1, . . . , Rk−1, i.e. |Ri ∧ C0| = 1 for all
0 ≤ i ≤ k − 1. Therefore, |Cj| ≤ 1 for all 1 ≤ j ≤ d − 1. If not, then say |Ct| ≥ 2 for some 1 ≤ t ≤ d − 1. Since
|Ct| ≥ 2, there exists at least two rows Rj1 , Rj2 for some 0 ≤ j1 < j2 ≤ k − 1 such that |Rj1 ∧ Ct| = |Rj2 ∧ Ct| = 1.
So, t ∈ Rj1 ∧ Rj2 . But 0 ∈ Rj1 ∧ Rj2 (as |Rj1 ∧ C0| = |Rj2 ∧ C0| = 1). Thuswehave {0, t} ⊆ Rj1 ∧ Rj2 which implies
|Rj1 ∧ Rj2 | ≥ 2, a contradiction (by Lemma4.1). Hence |Cj| ≤ 1 for all 1 ≤ j ≤ d − 1. So the total number of ones
in the matrix M1 will be at most∑d−1

i=0 |Ci| = k + d − 1.
In the matrix M2, the column C0 contains no ones, i.e. |C0| = 0. Consider the d − k × d − 1 submatrix

̄M2 of the matrixM2 formed by rows Rk , . . . , Rd−1 and columns C1, . . . , Cd−1. SinceM2 is almost-bi-regular,
therefore M̄2 also is almost-bi-regular. Hence, the maximum number of ones in M̄2 can be vd−k,d−11 .

Thus, the total number of ones in matrix M can be at most

k + d − 1 + vd−k,d−11 ≤ k + d − 1 + Fd−1(d − k) = Gd(k)

(from Theorem 4.13).

In analyzing vd,d1 , we often encounter situations where we need to determine the number of columns (rows)
needed to accommodate some r rows (columns) of a v × b almost-bi-regular matrix, each containing, say, k
ones. In the next two theorems, we explore lower bound on number of such rows (columns).

Theorem 4.17. In a v × b almost-bi-regular matrix, if there are r rows (r ≤ v) each containing k ones, then the
number of columns needed to accommodate such r rows should be at least

max(⌈1 + √1 + 4rk(k − 1)
2 ⌉, ⌈ rk2

r + k − 1⌉).

Proof. Let the minimum number of columns required to accommodate such r rows be c. Consider the r × c
submatrix M where each row contains exactly k ones. Suppose that, in the matrix M, column Ci contains ki
ones. Then∑c−1

i=0 ki = rk. For M to be almost-bi-regular matrix, it is required that
(1) r(k2) ≤ (c2) (from Lemma 4.7),
(2) ∑c−1

i=0 (ki2) ≤ (r2) (from Lemma 4.6).
For (1) to hold, it is required that rk(k − 1) ≤ c(c − 1) which then implies c2 − c − rk(k − 1) ≥ 0. Thus,

c ≥ 1 + √1 + 4rk(k − 1)
2

and hence

c ≥ ⌈
1 + √1 + 4rk(k − 1)

2 ⌉. (a)

From Jensen’s inequality, when (2) holds, we get

rk(rk − c)
2c ≤

c−1
∑
i=0

(
ki
2) ≤ (

r
2).

From above inequality, we get c ≥ rk2
r+k−1 and hence

c ≥ ⌈
rk2

r + k − 1⌉. (b)

From (a) and (b), we conclude that

c ≥ max(⌈1 + √1 + 4rk(k − 1)
2 ⌉, ⌈ rk2

r + k − 1⌉),

as desired.

Similarly by interchanging rows and columns, we have the following theorem.

Theorem 4.18. In a v × b almost-bi-regular matrix, if there are c columns (c ≤ b) each containing k ones, then
the number of rows needed to accommodate such c columns should be at least

max(⌈1 + √1 + 4ck(k − 1)
2 ⌉, ⌈ ck2

c + k − 1⌉).
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4.3 Finding vd,d1 for d up to 21

For d = q2 + q + 1,where q is any prime power, vd,d1 can be computed using Corollary 3.9.With this technique
we handle the case when d = 32 + 3 + 1 = 13 and d = 42 + 4 + 1 = 21. For arbitrary d, let q be the lowest
prime power such that d < q2 + q + 1. To design the d × d almost-bi-regular matrices, one approach may be
to start by taking the derived-incidencematrix corresponding to the (q2+q+1, q2+q+1, q+1, q+1, 1)-BIBD
and then by reducing (q2 + q + 1 − d) rows and columns so that minimum number of ones are removed.
We show that using this technique, d × d almost-bi-regular matrices with vd,d1 ones can be constructed for
any value of d < 21 except for d = 14 and 15. The cases when d ∈ {14, 15} are dealt in Lemma 4.23 and
Lemma 4.25.

Lemma 4.19 (Alternative proof of some results of part (b) of Lemma 2.8). We have v2,21 = 3, v3,31 = 6, v4,41 = 9,
v5,51 = 12, v6,61 = 16 and v7,71 = 21.

Proof. Since (3, 3, 2, 2, 1)-BIBD exists, it follows from Theorem 3.8 that v3,31 = 6 and the corresponding
almost-bi-regular matrix is given in Figure 2. From Corollary 3.9, v7,71 = 7 × (2 + 1) = 21. The derived-
incidence matrix of (7, 7, 3, 3, 1)-BIBD given in Figure 3.

From Corollary 4.14,

v2,21 ≤ ⌊2 ×
1 + √4 × 2 − 3

2 ⌋ = 3,

v6,61 ≤ ⌊6 ×
1 + √4 × 6 − 3

2 ⌋ = 16,

v5,51 ≤ ⌊5 ×
1 + √4 × 5 − 3

2 ⌋ = 12,

v4,41 ≤ ⌊4 ×
1 + √4 × 4 − 3

2 ⌋ = 9.

To complete the proof, we provide the corresponding matrices in Figure 2 and Figure 3.

(
1 1
1 1

1 1
) , (

1 1
1

)

Figure 2. Examples of d × d almost-bi-regular matrices having maximum number of ones for d = 3, 2.

((((((

(

1 1 1
1 1 1
1 1 1

1 1 1
1 1 1

1 1 1
1 1 1

))))))

)

,
(((

(

1 1
1 1

1 1 1
1 1 1

1 1 1
1 1 1

)))

)

,

(

(

1 1
1 1

1 1 1
1 1 1

1 1

)

)

, (

1 1
1 1
1 1 1

1 1

)

Figure 3. Examples of d × d almost-bi-regular matrices having maximum number of ones for d = 7, 6, 5, 4.
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((((((((((((((((((((

(

1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

1 1 1 1
1 1 1 1
1 1 1 1

1 1 1 1
1 1 1 1
1 1 1 1

1 1 1 1
1 1 1 1
1 1 1 1

))))))))))))))))))))

)

,

((((((((

(

1 1 1
1 1

1 1 1
1 1 1
1 1 1
1 1 1

1 1 1 1
1 1 1

))))))))

)

Figure 4. Examples of 13 × 13 and 8 × 8 almost-bi-regular matrices having maximum number of ones.

Lemma 4.20 (Alternative proof of one result of part (b) of Lemma 2.8). We have v8,81 = 24.

Proof. If max(|C|) = 5, then from Theorem 4.16,

G8(5) = 5 + 7 + F7(3) = 12 + 10 = 22.

From Lemma 4.12, G8(j) ≤ G8(5) for j ≥ 5. Hence, any 8 × 8 almost-bi-regular matrix havingmax(|C|) ≥ 5 can
have at most 22 ones.

If max(|C|) = 4, then
G8(4) = 4 + 7 + F7(4) = 11 + 13 = 24.

If max(|C|) = 3, then
G8(3) = 3 + 7 + F7(5) = 10 + 15 = 25,

but in this case, the maximum number of ones cannot exceed 3 × 8 = 24. So, possible maximum value of
ones in almost-bi-regular matrix of size 8 is 24 and it can be achievedwhenmax(|C|) = 4 ormax(|C|) = 3. The
construction for such a matrix is shown in Figure 4.

Remark 4.21. Another form of 8 × 8 almost-bi-regular matrix with v8,81 ones is

((((((((

(

1 1 1
1 1 1

1 1 1
1 1 1

1 1 1
1 1 1

1 1 1
1 1 1

))))))))

)

.

This form corresponds to the circulant matrices and MDS matrices can be constructed from this almost-bi-
regular matrix (see [11]). In Section 5, we provide an alternative way to construct MDS matrices using Latin
squares, which resemble this form (see Figure 11 and Figure 12). Note that no 8 × 8 MDS matrix over F28 is
found which is of the form as given in Figure 4 (see Remark 6.1).

Lemma 4.22. We have
(a) v9,91 = 29,
(b) v10,101 = 34 and v12,121 = 45,
(c) v11,111 = 39,
(d) v13,131 = 52.
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Proof. (a) If max(|C|) = 5, then

G9(5) = 5 + 8 + F8(4) = 13 + 14 = 27

(Theorem 4.16). From Lemma 4.12, G9(j) ≤ G9(5) for j ≥ 5. Hence, any 9 × 9 almost-bi-regular matrix having
max(|C|) ≥ 5 can have at most 27 ones. If max(|C|) = 4, then

G9(4) = 4 + 8 + F8(5) = 12 + 17 = 29.

If max(|C|) = 3, then
G9(3) = 3 + 8 + F8(6) = 11 + 20 = 31,

but in this case, the maximum number of ones cannot exceed 3 × 9 = 27. So, the possible maximum value of
ones in almost-bi-regular matrix of size 9 is 29 and it can be achieved when max(|C|) = 4. The construction
for such matrix is shown in appendix. Such a construction is given in Figure 14 of Appendix A.2.

(b) It can be proved similarly as it was proved for v8,81 and v9,91 . The constructions for such 10 × 10 and
12 × 12 almost-bi-regular matrices with 34 and 45 ones have been shown in Figure 14 of Appendix A.2.

(c) If max(|C|) = 5, then
G11(5) = 5 + 10 + F10(6) = 15 + 23 = 38.

If max(|C|) = 4, then
G11(4) = 4 + 10 + F10(7) = 14 + 26 = 40.

Ifmax(|C|) = 3, then themaximumnumber of ones cannot exceed 3 × 11 = 33. So, v11,111 ≤ 40.Now,we show
that v11,111 ̸= 40. If possible, then there will be at least seven rows (or columns) which contain four ones each.
If so, then from Theorem 4.17 (or Theorem 4.18), the minimum number of columns (or rows) required to
accommodate such rows (or columns) is 12 which is not possible. Hence v11,111 ≤ 39. The construction for an
11 × 11 almost-bi-regular matrix with 39 ones is shown in Figure 14 of Appendix A.2.

(d) See Remark 3.10.

We observe that for d up to 20, d × d almost-bi-regular matrices with maximum number of ones can be con-
structed starting from a projective plane of order q, where q is the smallest prime such that d < q2 + q + 1
except for d = 14 and 15. These two special cases are dealt with in the following lemma. It may be noted that
15 × 15 and 14 × 14 matrices formed from the 16 × 16 matrix of Figure 17 of Appendix A.3 will contain 60
and 53 ones. In Figure 5, we present 15 × 15 and 14 × 14 matrices containing 61 and 56 ones, respectively.

Lemma 4.23. We have v14,141 = 56.

Proof. If max(|C|) = 5, then
G14(5) = 5 + 13 + F13(9) = 18 + 37 = 55.

If max(|C|) = 4, then the maximum number of ones cannot exceed 56. If max(|C|) = 3, then the maximum
number of ones cannot exceed 3 × 14 = 42. So, v14,141 ≤ 56. The construction for a 14 × 14 almost-bi-regular
matrix with 56 ones is shown in Figure 5.

Remark 4.24. It may be noted that if a 14 × 14 matrix contains 56 ones, then from Lemma 4.23, all its rows
and columns should contain exactly four ones. Also each row (column) makes twelve pairs with twelve other
rows (columns) (from Lemma 4.4 or Lemma 4.5).

Lemma 4.25. We have v15,151 = 61.

Proof. If max(|C|) = 6, then
G15(6) = 6 + 14 + F14(9) = 20 + 39 = 59.

If max(|C|) = 5, then
G15(5) = 5 + 14 + F14(10) = 19 + 43 = 62.

Ifmax(|C|) = 4, then themaximumnumber of ones cannot exceed 4 × 15 = 60. So, v15,151 ≤ 62.Now,we show
that v15,151 ̸= 62.
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If possible, then there exists a 15 × 15 almost-bi-regular matrix M which contains 62 ones. Since
max(|C|) = 5, there exists a column, say Ci, such that |Ci| = 5. If min(|R|) ≥ 4, then, from Lemma 4.5, the
column Ci makes at least 5 × (4 − 1) = 15 pairs with other columns. Since there are fifteen columns, each col-
umn can have at most fourteen pairs with other columns. Thus, a contradiction. So, min(|R|) ≤ 3. Similarly,
we can show that max(|R|) = 5 and min(|C|) ≤ 3.

Let min(|C|) ≤ 2. Suppose that the column Ck contains exactly two ones, i.e. |Ck| = 2. Let Rl be the row
which contains minimum number of ones. Since min(|R|) ≤ 3, we have |Rl| ≤ 3. Consider the 14 × 14 almost-
bi-regular matrix M� obtained by removing the row Rl and the column Ck from M. It is easy to check that M�

contains at least 62 − (2 + 3) = 57 ones, a contradiction (because v14,141 = 56). Hence, min(|C|) ≥ 3, which
then implies min(|C|) = 3. Similarly, it can be shown that min(|R|) = 3.

Let the column Cm and the row Rn contain three ones, i.e. |Cm| = |Rn| = 3. If |Cm ∧ Rn| = 1, then removing
Cm and Rn from the matrix M yields a 14 × 14 almost-bi-regular matrix M� which has 62 − (3 + 3 − 1) = 57
ones, a contradiction. Hence, |Cm ∧ Rn| = 0.

Now, construct a matrix M̂ after rearranging the columns and rows of the matrix M such that C14 and
R14 in the matrix M̂ are Cm and Rn, respectively, of the matrix M. Consider the matrix A constructed by
taking the first fourteen rows and the first fourteen columns of the matrix M̂. It is easy to check that A is
a 14 × 14 almost-bi-regular matrix having 62 − (3 + 3) = 56 ones. In A, each column makes pair with twelve
other columns and similarly, each row makes pair with twelve other rows (see Remark 4.24). By the con-
struction of M̂, the column C14 and the row R14 contain three ones with the condition that |C14 ∧ R14| = 0.
Let C14 ∧ C14 = {j1, j2, j3}, where 0 ≤ j1 < j2 < j3 ≤ 13. In the matrix A, consider the rows Rj1 , Rj2 and Rj3 .
From the previous discussion, in the matrix A, either |Rj1 ∧ Rj2 | = 0 or |Rj1 ∧ Rj3 | = 0 but not both (because
Rj1 makes pair with twelve other rows). Without loss of generality, assume that |Rj1 ∧ Rj2 | = 1. But, in the
matrix M̂, both |Rj1 ∧ C14| = 1 and |Rj2 ∧ C14| = 1. Therefore in the matrix M̂, |Rj1 ∧ Rj2 | = 2, a contradiction.

Hencewe have v15,151 ̸= 62. The construction of a 15 × 15 almost-bi-regularmatrix with 61 ones is shown
in Figure 5.

Lemma 4.26. We have v16,161 = 67.

Proof. If max(|C|) = 6, then G16(6) = 6+15+F15(10) = 66. If max(|C|) = 5, then G16(5) = 68. If max(|C|) = 4,
then the maximum number of ones cannot exceed 64. Now, we prove that v16,161 ̸= 68.

If possible, then there exists a 16 × 16 almost-bi-regular matrix M with 68 ones. It is easy to see that
max(|C|) = max(|R|) = 5, min(|C|) ̸= 5 and min(|R|) ̸= 5 (otherwise M will contain 80 ones). So, min(|C|) ≤ 4
and min(|R|) ≤ 4.

Let min(|C|) ≤ 3 and min(|R|) ≤ 3. Suppose that the column Cj and the row Rk has three ones. Construct
a matrix M� after removing Cj and Rk from M. It is easy to check that M� is a 15 × 15 almost-bi-regular
matrix with at least 68 − (3 + 3) = 62 ones, a contradiction (since v15,151 = 61). Hence, either min(|C|) ≥ 4
or min(|R|) ≥ 4 which then implies either min(|C|) = 4 or min(|R|) = 4.

Without loss of generality, assume that min(|C|) = 4. Then there will be exactly four columns containing
five ones and twelve columns containing four ones. Moreover, there will be at least four rows containing
five ones.

Consider the rows which contain five ones. Let these rows be Rk1 , Rk2 , Rk3 , Rk4 . The number of columns
required to accommodate these rows is at least max(10, 13) = 13 (see Theorem 4.17). Let Cj1 , Cj2 , . . . , Cj13
be the columns which accommodate these rows.

Let |Cji | = 5 for some i ∈ {1, . . . , 13}. Then consider the row Rkl ∈ {Rk1 , Rk2 , Rk3 , Rk4 } which satisfies
|Cji ∧ Rkl | = 1. Since min(|C|) = 4, the row Rkl in the matrix M then makes pairs with at least 4 + 3 × 4 = 16
other rows (Lemma 4.4), a contradiction (a row can make pair with at most fifteen other rows). Hence none
of Cj1 , Cj2 , . . . , Cj13 can contain five ones. So, there will be at least thirteen columns which contain four ones,
but from the above discussion (fourth paragraph of this proof), there are exactly twelve columns containing
four ones, a contradiction.

Hence, v16,161 ̸= 68. The construction of a 16 × 16 almost-bi-regular matrix with 67 ones is shown in
Figure 17 of Appendix A.3.
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M15 =

(((((((((((((((((((((((((

(

1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

1 1 1 1
1 1 1 1
1 1 1 1 1

1 1 1 1
1 1 1 1 1
1 1 1 1

1 1 1 1
1 1 1 1
1 1 1 1

1 1 1 1
1 1 1

)))))))))))))))))))))))))

)

,

M14 =

(((((((((((((((((((((((

(

1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

1 1 1 1
1 1 1 1
1 1 1 1

1 1 1 1
1 1 1 1
1 1 1 1

1 1 1 1
1 1 1 1
1 1 1 1

1 1 1 1

)))))))))))))))))))))))

)

Figure 5. Examples of d × d almost-bi-regular matrices Md, d = 15, 14, with v1(M15) = v15,151 = 61 and v1(M14) = v14,141 = 56.

Lemma 4.27. We have v17,171 = 74.

Proof. If max(|C|) = 6, then
G17(6) = 6 + 16 + F16(11) = 22 + 50 = 72.

If max(|C|) = 5, then
G17(5) = 5 + 16 + F16(12) = 21 + 54 = 75.

Ifmax(|C|) = 4, then themaximumnumber of ones cannot exceed4×17 = 68.Now,we show that v17,171 ̸= 75.
If possible, then there exists a 17 × 17 almost-bi-regular matrix M having 75 ones. It is easy to see that

max(|C|) = max(|R|) = 5, min(|C|) ̸= 5 and min(|R|) ̸= 5 (otherwise M will contain 85 ones). So, min(|C|) ≤ 4
and min(|R|) ≤ 4.

Suppose that min(|C|) ≤ 3 or min(|R|) ≤ 3. Without loss of generality, assume that min(|C|) = 3. Sup-
pose that the column Cj contains three ones and the row Rk has four ones. Construct a matrix M� after
removing Cj and Rk from M. It is easy to check that M� is a 16 × 16 almost-bi-regular matrix with at least
75 − (4 + 3) = 68 ones, a contradiction (since v16,161 = 67). Hence, min(|C|) ≥ 4 and min(|R|) ≥ 4 which then
implies min(|C|) = 4 and min(|R|) = 4.

Sincemin(|C|) = min(|R|) = 4, there will be exactly seven columns and rows containing five ones and the
remaining ten columns and rows containing four ones.
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Let Rk1 , Rk2 , . . . , Rk10 be rows which contain four ones. Let Cj1 , Cj2 , . . . , Cj10 be columns which contain
four ones. If |Cji ∧ Rkl | = 1 for some 1 ≤ i, l ≤ 10, then construct a 16 × 16matrixM� by removing Cji and Rkl .
It is easy to observe that M� is an almost-bi-regular matrix with 75 − (4 + 4 − 1) = 68 ones, a contradiction
(since v16,161 = 67). Hence |Cji ∧ Rkl | = 0 for all 1 ≤ i, l ≤ 10.

Now, consider a 10 × 7matrix M̂ formed by rows Rk1 , . . . , Rk10 and columns different from Cj1 , . . . , Cj10 .
Since |Cji ∧ Rkl | = 0, each row in M̂ will contain four ones. Hence M̂ contains 4 × 10 = 40 ones, but from
Theorem 4.13, v10,71 ≤ 26, a contradiction.

Hencewe have v17,171 ̸= 75. The construction of a 17 × 17 almost-bi-regularmatrix with 74 ones is shown
in Figure 17 of Appendix A.3.

Lemma 4.28. We have
(a) v18,181 = 81,
(b) v19,191 = 88,
(c) v21,211 = 105.

Proof. (a) By using a similar argument as used for the case v17,171 ̸= 75, it can be shown that v18,181 ̸= 82. The
construction of a 18 × 18 almost-bi-regular matrix with 81 ones is shown in Figure 16 of Appendix A.3.

(b) If max(|C|) = 6, then
G19(6) = 6 + 18 + F18(13) = 24 + 62 = 86.

If max(|C|) = 5, then
G19(5) = 5 + 18 + F18(14) = 23 + 66 = 89.

Ifmax(|C|) = 4, then themaximumnumber of ones cannot exceed4×19 = 76.Now,we show that v19,191 ̸= 89.
If possible, then there exists a 19 × 19 almost-bi-regular matrix M with 89 ones. It can be easily shown

that thenmax(|C|) = max(|R|) = 5 andmin(|C|) = min(|R|) = 4. In the matrixM, there will be exactly thirteen
rows and thirteen columns which contain five ones and remaining 6 rows and columns containing four ones.
To accommodate thirteen rows having five ones each, at least max(17, 20) = 20 columns (Theorem 4.17) are
required, a contradiction.

Hencewe have v19,191 ̸= 89. The construction of a 19 × 19 almost-bi-regularmatrix with 88 ones is shown
in Figure 16 of Appendix A.3.

(c) See Remark 3.10.

Let q = 1 or q be a power of a prime number. Now, we calculate vd,d1 when d = q2 + q. Note than when
d = q2 + q + 1, we get a BIBD structure such that vd,d1 = (q + 1)d.

Theorem 4.29. Let d = q2 + q, where q = 1 or q is a prime power. Then

vd,d1 = (q2 + q + 1)(q + 1) − 2(q + 1) + 1 = q2(q + 2).

Proof. Let q = 1. Then v2,21 = 3.
Suppose that q is a prime power. If max(|C|) = q + 2, then by elementary arithmetic, it can be proved that

Gq2+q(q + 2) < (q2 + q + 1)(q + 1) − 2(q + 1) + 1. If max(|C|) = q, then the maximum number of ones cannot
exceed q2(q + 1). Hence, to get vd,d1 ≥ q2(q + 2), both max(|C|) and max(|R|) should be equal to q + 1. Now,
we show that if max(|C|) = q + 1, then vd,d1 ≯ q2(q + 2).

If possible, then there exists a d × d almost-bi-regular matrixM which contains q2(q + 2) + 1 ones. Since
max(|R|) = q + 1, there will be at least q2 + 1 rows containing q + 1 ones. Then by Theorem 4.17, the number
of columns required to accommodate such rows will be at least q2 + q + 1, a contradiction.

Hencewehave vd,d1 ≤ q2(q + 2). Now,we show that vd,d1 = q2(q + 2). Since d + 1 = q2 + q + 1, there exists
a (d + 1) × (d + 1) almost-bi-regular matrix M̂ containing q + 1 ones in each row and in each column. So,
M̂ contains (q + 1)(d + 1) ones. Remove a column Cj and a row Rk from M̂ such that |Cj ∧ Rk| = 1 (such
a column and row will definitely exist). The remaining matrix will be a d × d almost-bi-regular matrix with
(d + 1)(q + 1) − (2(q + 1) − 1) = (q2 + q + 1)(q + 1) − 2(q + 1) + 1 ones.

Corollary 4.30. We have v20,201 = 96.
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Dimension d × d vd,d1 Upper bound of vd,d1 , i.e.
⌊d × 1

2 (1 + √4 × d − 3)⌋
(see Corollary 4.14)

Number of ones in the
construction using

[12, Lemmas 1 and 3]

For illustrations see

3 × 3 6 6 6 Figure 2
4 × 4 9 9 9 Figure 3
5 × 5 12 12 12 Figure 3
6 × 6 16 16 15 Figure 3
7 × 7 21 21 21 Figure 3
8 × 8 24 24 24 Figure 4
9 × 9 29 30 24 Figure 14

10 × 10 34 35 27 Figure 14
11 × 11 39 40 30 Figure 14
12 × 12 45 46 33 Figure 14
13 × 13 52 52 36 Figure 4
14 × 14 56 57 39 Figure 5
15 × 15 61 64 42 Figure 5
16 × 16 67 70 45 Figure 17
17 × 17 74 77 48 Figure 17
18 × 18 81 83 51 Figure 16
19 × 19 88 90 54 Figure 16
20 × 20 96 97 57 Figure 15
21 × 21 105 105 60 Figure 15

Table 1. Efficient d × d almost-bi-regular matrices for d up to 21.

Proof. From Theorem 4.29, taking q = 22 = 4, we get v20,201 = 96. The construction of a 20 × 20 almost-bi-
regular matrix with 96 ones is shown in Figure 15 of Appendix A.3.

Here, we close this section by summarizing the results of this section in Table 1 for d × d almost-bi-regular
matrices where d ≤ 21. For 8 < d < 13, the values of vd,d1 are computed and the corresponding d × d almost-
bi-regularmatrices are given in Appendix A.2. For 13 < d ≤ 21, the d × d almost-bi-regularmatrices are given
in Appendix A.3. For d ≤ 8 and d = 13 the almost-bi-regular matrices are given in Figure 2, Figure 3 and
Figure 4.

5 Some results on c1(M) where M is a bi-regular matrix having
maximum number of ones

In Section 4, we have constructed d × d almost-bi-regular matricesM with vd,d1 ones. So, next we try to fill the
remaining blank positions of these almost-bi-regular matricesM with minimum number of distinct elements
other than 1 and 0 (i.e. with minimum c1(M)) in such a way that the bi-regular property is maintained. We
denote these d × d bi-regular matrices by Md. In Lemma 5.1, we provide a tight lower bound of c1(Md) for
d × d bi-regular matrices Md, where v1(Md) = vd,d1 and d = q2 + q + 1, where q is any prime power.

Lemma 5.1. Let d = q2 + q + 1, where q is any prime power. Also, let Md be a d × d bi-regular matrix having
vd,d1 ones. Then c1(Md) ≥ q2.

Proof. Let Md = ((mi,j)) be the d × d almost-bi-regular matrix having vd,d1 = (q + 1) × (q2 + q + 1) ones and
also let the corresponding design be (X,A), where X = {x0, . . . , xq2+q} andA = {A0, . . . , Aq2+q}. So, (X,A) is
a (q2 + q + 1, q2 + q + 1, q + 1, q + 1, 1)-BIBD and let Md be its derived-incidence matrix.

Each row and column of the matrix Md contains (q + 1) ones. So in each row and column there are
(q2 + q + 1) − (q + 1) = q2 blank positions. Let, if possible, c1(Md) < q2. So, in all rows and columns, some
element (apart from 1) will occur more than once.
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Let in the j-th column, the i1-th and i2-th blank positions be filled by some element a. Let the i1-th and
i2-th rows correspond to the elements xi1 and xi2 , respectively. Since (X,A) is a BIBD, it follows that xi1 and xi2
must occur simultaneously in any one of the blocks, say Ak. So mi1 ,k = mi2 ,k = 1. Thus the 2 × 2 submatrix
formed by the i1-th and i2-th rows and j-th and k-th columns will be of the form ( 1 a1 a ) (up to the permutations
of columns) which is singular.

Similarly, let in the i-th row, twoblankpositions, say j1 and j2, be filledwith a. FromLemma2.15, anypair
of blocks contain exactly one element. So,Aj1 andAj2 must contain some element, say xl. So,ml,j1 = ml,j2 = 1.
Thus the 2 × 2 submatrix formedby the i-th and l-th rows and j1-th and j2-th columnswill be of the form ( 1 1

a a )
(up to the permutations of rows) which is singular. Thus, the minimum number of distinct elements cannot
be less than q2.

In the next lemma,we propose good upper bounds of c1(Md) for d × dmatricesMd for d = 3, 4, 5, 6, 7, 8, 13,
where v1(Md) = vd,d1 , andusing thesematrices,we construct d × dMDSmatricesMd in Section 6 for d up to 7.

For d = 8, 8 × 8 almost-bi-regular matrices with v8,81 ones can be constructed starting from a derived-
incidence matrix of (13, 13, 4, 4, 1)-BIBD as discussed in Lemma 4.20, but bi-regular matrices formed from
these almost-bi-regularmatricesmay not finally becomeMDS.We tried to construct MDSmatrix starting from
such amatrixM8(e0, e1, e2, e3, e4) as given in Figure 8, but no suchMDSmatriceswere found for any choices
of elements ei (also see Remark 6.1). At the end of this section, we construct 8 × 8 MDS matrices with v8,81
ones using Latin squares.

Lemma 5.2. For d × d bi-regularmatrices Md, d = 2, 3, 4, 5, 6, 7, 8, 13, having vd,d1 ones, we have c1(M2) = 1,
c1(M3) = 1, c1(M4) ≤ 2, c1(M5) ≤ 3, c1(M6) ≤ 4, c1(M7) = 4, c1(M8) ≤ 5 and c1(M13) = 9.

Proof. The matrix M3 is constructed from the derived-incidence matrix of (3, 3, 2, 2, 1)-BIBD, and note that
c1(M3) = 1 and c1(M2) = 1 is evident from Figure 6. The matrix M7 corresponds to the derived-incidence
matrix of (7, 7, 3, 3, 1)-BIBD and from Lemma 5.1, c1(M7) ≥ 4. From the 7 × 7 bi-regular matrix of Figure 7,
it is evident that c1(M7) = 4. That c1(M6) ≤ 4, c1(M5) ≤ 3 and c1(M4) ≤ 2 is evident fromFigure 7. Thematrix
M13 corresponds to the derived-incidencematrix of (13, 13, 4, 4, 1)-BIBD and from Lemma 5.1, c1(M13) ≥ 9.
From the 13 × 13 bi-regular matrix of Figure 8, it is evident that c1(M13) = 9. From Figure 8, it is clear that
c1(M8) ≤ 5.

M3 = (
1 1 e0
1 e0 1
e0 1 1

) , M2 = (
1 1
1 e0

)

Figure 6. Examples of d × d bi-regular matrices Md, d = 3, 2, having maximum number of ones with c1(M2) = 1, c1(M3) = 1.

Construction of bi-regular matrices from Latin squares. We observe an interesting connection between Latin
squares and bi-regular matrices, which may give an easy method to construct efficient d × d MDS matrices
whenever vd,d1 is a multiple of d. We construct such efficient MDS matrices for d = 3 and 8. It may be noted
that in both the cases vd,d1 is multiple of d.

A Latin square of order d with entries from a d-set X is a d × d matrix Ld in which every cell contains an
element of X such that every row of Ld is a permutation of X and every column of Ld is a permutation of X.
In our construction, X is a subset of F2n . In the following lemma, we study an important property of Latin
square which is crucial in the construction of bi-regular matrix.

Lemma 5.3. All Latin squares of order d with entries from a d-set X ⊂ F2n will be bi-regular matrices if and only
if a2 ̸= bc and ab ̸= cd for any a, b, c, d ∈ X.

Proof. Let Ld be a d × dmatrixwhich is some Latin squarewith entries from a d-set X ⊂ F2n such that a2 ̸= bc
and ab ̸= cd for all a, b, c, d ∈ X. It may be noted that for any such matrix Ld, the determinants of all 2 × 2
submatrices are of the form (a2 + b2), (a2 + bc) and (ab + cd), where a, b, c, d ∈ X. Since all elements of X are
distinct, a2 ̸= b2 and in characteristic 2, a2 + b2 ̸= 0 for any two a, b ∈ X. Similarly from the given conditions,
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M7(e0, e1, e2, e3) =
((((((

(

1 1 1 e0 e1 e2 e3
1 e3 e0 e1 1 1 e2
1 e2 e3 1 e0 e1 1
e2 e0 1 1 1 e3 e1
e0 e1 1 e2 e3 1 1
e1 1 e2 e3 1 e0 1
e3 1 e1 1 e2 1 e0

))))))

)

,

M6(e0, e1, e2, e3) =
(((

(

e3 e0 e1 1 1 e2
e2 e3 1 e0 e1 1
e0 1 1 1 e3 e1
e1 1 e2 e3 1 1
1 e2 e3 1 e0 1
1 e1 1 e2 1 e0

)))

)

,

M5(e0, e1, e2) = (

(

e0 e1 1 1 e2
e2 1 e0 e1 1
1 1 1 e0 e1
1 e0 e2 1 1
e1 e2 1 e2 1

)

)

,

M4(e0, e1) = (

e0 1 1 e1
1 1 e1 e0
1 e0 1 1
e1 1 e0 1

)

Figure 7. Examples of d × d bi-regular matrices having maximum number of ones for d = 7, 6, 5, 4 with c1(M4) = 2, c1(M5) = 3,
c1(M6) = 4 and c1(M7) = 4.

M13(e0, e1, e2, e3, e4, e5, e6, e7, e8) =

((((((((((((((((((((

(

1 1 1 1 e0 e1 e2 e3 e4 e5 e6 e7 e8
1 e6 e7 e8 1 1 1 e0 e1 e2 e3 e4 e5
1 e3 e4 e5 e6 e7 e8 1 1 1 e0 e1 e2
1 e0 e1 e2 e3 e4 e5 e6 e7 e8 1 1 1
e2 1 e3 e4 1 e5 e6 1 e8 e7 1 e0 e1
e0 1 e5 e6 e8 1 e7 e4 1 e3 e1 e2 1
e1 1 e0 e3 e2 e8 1 e7 e5 1 e4 1 e6
e7 e1 1 e0 1 e2 e3 e8 1 e6 e5 1 e4
e8 e4 1 e7 e1 1 e0 e5 e2 1 1 e6 e3
e5 e2 1 e1 e4 e6 1 1 e3 e0 e7 e8 1
e3 e5 e2 1 e7 1 e1 1 e6 e4 e8 1 e0
e6 e7 e8 1 1 e3 e4 e1 e0 1 e2 e5 1
e4 e8 e6 1 e5 e0 1 e2 1 e1 1 e3 e7

))))))))))))))))))))

)

,

M8(e0, e1, e2, e3, e4) =

((((((((

(

e0 e1 e2 e3 1 1 1 e4
e4 e4 1 e2 e3 1 e0 e1
e3 e4 e1 1 e0 e2 1 1
1 e0 e4 e1 e2 1 e3 1
1 e3 1 e0 e1 e4 1 e2
1 e2 e0 1 1 e1 e4 e3
e2 1 1 e4 1 e3 e1 1
e1 1 e3 1 e4 1 e2 e0

))))))))

)

Figure 8. Examples of d × d bi-regular matrices having maximum number of ones for d = 13 and 8 with c1(M13) = 9 and
c1(M8) ≤ 5.
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we have a2 + bc ̸= 0 and ab + cd ̸= 0 for a, b, c, d ∈ X. Thus all 2 × 2 submatrices are nonsingular. So Ld is
bi-regular. The reverse direction of the proof is immediate.

Let Ld be a Latin square of order dwith elements from a d-set X ⊂ F2n satisfying the conditions of Lemma 5.3.
So, Ld is a bi-regular matrix. Note that if 1 ∈ X, then v1(Ld) = d. Our target is to increase the number of ones
and reduce the number of other distinct elements in Ld without disturbing the bi-regular property of Ld.
It may be noted that if for some a, b ∈ X, there exists no 2 × 2 submatrix of Ld having determinant a2 + b2,
then wemay replace both a and b by 1 provided determinants of these 2 × 2 submatrices of Ld involving a or
b or both remains nonzero after these replacements. It is easy to observe that if ⌊vd,d1 /d⌋ = t, then by replacing
t� ≤ t suitable elements of Ld by 1, we may construct a bi-regular matrix Ld such that v1(Ld) = t� × d ≤ t × d
provided the determinants of 2 × 2 submatrices of Ld involving these t� elements remains nonzero after these
replacements.

Note that if vd,d1 is not a multiple of d, then the bi-regular matrix with vd,d1 ones cannot be constructed
using some Latin square Ld as described above, but in such cases c1(Ld) may be reduced to the minimum
value. For example, let us consider the 4 × 4 Latin square L4 of Figure 9.

Also t = ⌊v4,41 /4⌋ = ⌊9/4⌋ = 2. Now by setting c = d = 1 in Figure 9, we construct a 4 × 4 bi-regular
matrix L4 with v1(L4) = 2 × 4 = 8 (see Figure 10). In this case c1(L4) = 2 which is minimum.

(

a b c d
d a b c
c d a b
b c d a

)

Figure 9. A 4 × 4 Latin square.

(

a b 1 1
1 a b 1
1 1 a b
b 1 1 a

)

Figure 10. A 4 × 4 bi-regular matrix with eight ones but minimum number of other distinct elements.

Remark 5.4. In the diffusion layer of AES [5], i.e. in the mixcolumn operation, a 4 × 4 circulant MDS matrix
Circ(02x , 03x , 01x , 01x) over F28 is used. This matrix can be constructed from Figure 10 by setting a = 02x
and b = 03x.

If vd,d1 is a multiple of d, say t × d, then a d × d bi-regular matrix with vd,d1 ones may be designed by setting t
out of d elements to 1. Let us consider the 3 × 3 and 8 × 8 Latin squares of Figure 11.

We know that v3,31 = 6 = 2 × 3. Nowby setting a = b = 1,we construct a 3 × 3 bi-regularmatrixwithmax-
imum number of ones and minimum number of other elements (see Figure 12) and we denote this matrix

(
a b c
b c a
c a b

) ,

((((((((

(

a b c d e f g h
h a b c d e f g
g h a b c d e f
f g h a b c d e
e f g h a b c d
d e f g h a b c
c d e f g h a b
b c d e f g h a

))))))))

)

Figure 11. A 3 × 3 and an 8 × 8 Latin square.
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L3(c) = (
1 1 c
1 c 1
c 1 1

) , L8(c, e, f, g, h) =

((((((((

(

1 1 c 1 e f g h
h 1 1 c 1 e f g
g h 1 1 c 1 e f
f g h 1 1 c 1 e
e f g h 1 1 c 1
1 e f g h 1 1 c
c 1 e f g h 1 1
1 c 1 e f g h 1

))))))))

)

Figure 12. A 3 × 3 and an 8 × 8 bi-regular matrix with maximum number of ones.

((((((((

(

a b c d e f g h
e c b f a d h g
g d f b h c a e
c e a h b g f d
h f d c g b e a
d g h a f e b c
b a e g c h d f
f h g e d a c b

))))))))

)

Figure 13. An 8 × 8 Latin square where one element can be set to be 1 without disturbing the bi-regular property.

by L3(c). It is easy to verify that in F2n (n > 2), the matrix L3(c) of Figure 12 becomes MDS for all values of c
other that 0 and 1.

Similarly by setting a = b = d = 1 in the 8 × 8 matrix, we can construct an 8 × 8 bi-regular matrix with
v8,81 = 3 × 8 = 24 ones and five other elements (see Figure 12) and we denote this matrix by L8(c, e, f, g, h).
In F28 , represented by the irreducible polynomial x8 + x4 + x3 + x2 + 1, if we take c = 02x, e = 04x, f = 06x
and g = h = 03x, then the 8 × 8 matrix L8(02x , 04x , 06x , 03x , 03x) of Figure 12 becomes MDS.

Remark 5.5. The 8 × 8 matrix of Figure 12 is a circulant matrix. With judicious choices of elements, the
8 × 8 bi-regular matrix of Figure 12 can be converted to a circulant MDS matrix. Note that, using techniques
of [3, 11, 21], a similar kind of circulant MDS matrices can be constructed.

Note that, using this technique, it may not be possible to convert any d × d Latin square into a d × d bi-regular
matrix with maximum number of ones (see Figure 13). It is easy to observe that in the 8 × 8 Latin square of
Figure 13, if more than one element is set to 1, then the bi-regular property will be disturbed. So, in this case,
this Latin square can be converted into a bi-regular matrix with maximum eight number of ones.

6 Efficient MDS matrices
In this section, we propose d × d MDS matrices for d up to 8 from bi-regular matrices designed in Section 5.
In Table 2, we present some d × d MDS matrices over F28 for d up to 8 having vd,d1 ones. Also, any matrix
of Table 2 can be implemented with less number of multiplication tables which may be advantageous for
a system where constraints on processor are more than that on memory. Although all matricesMd of Table 2
are efficient, their inverses may not be efficient. So implementing these matrices for Lai–Massey networks or
hash functions may be suitable.

Remark 6.1. We exhaustively searched for 8 × 8 MDS matrices of the form M8(e0, e1, e2, e3, e4) (see Fig-
ure 8) over F28 , but no MDS matrix of this form is found. It may be noted that in [12], an 8 × 8 almost-bi-
regular matrix with maximum number of ones similar to the 8 × 8 matrix of Figure 4 was proposed, but no
MDSmatrix based on that form was reported. In Figure 12 of Section 5, we have constructed 8 × 8 bi-regular
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Dimension d × d MDS matrices Cost of implementations For illustrations see

3 × 3 M3(02x) 6 XORs, 3 table lookups and 4 temp Figure 6
4 × 4 M4(03x , 04x) 12 XORs, 7 table lookups and 4 temps Figure 7

M4(02x , 05x) 12 XORs, 7 table lookups and 6 temps Figure 7
5 × 5 M5(02x , 03x , 09x) 20 XORs, 13 table lookups and 8 temps Figure 7

M5(02x , 03x , 08x) 20 XORs, 13 table lookups and 8 temps Figure 7
6 × 6 M6(03x , 09x , 0ax , 0ex) 30 XORs, 20 table lookups and 10 temps Figure 7

M6(05x , 06x , 0ex , 0fx) 30 XORs, 20 table lookups and 10 temps Figure 7
7 × 7 M7(03x , 09x , 0ax , 0ex) 42 XORs, 28 table lookups and 11 temps Figure 7

M7(05x , 06x , 0ex , 0fx) 42 XORs, 28 table lookups and 11 temps Figure 7
8 × 8 L8(02x , 04x , 06x , 03x , 03x) 56 XORs, 40 table lookups and 11 temps Figure 12

Table 2. The d × d circulant MDS matrices over F28 with generating polynomial x8 + x7 + x6 + x5 + x4 + x3 + 1 for
d = 3, 4, 5, 6, 7 and with generating polynomial x8 + x4 + x3 + x2 + 1 for d = 8.

matrices with maximum number of ones and five distinct elements from the 8 × 8 Latin square of Figure 11.
With this construction, MDSmatrices can be formed (see Remark 5.5). For similar kind of constructions also,
see [11].

Remark 6.2. The matrix M7(03x , 09x , 0ax , 0ex) of Table 2 is implemented in Appendix A.1. The idea of this
implementation is taken from [5]. The other matrices of Table 2 and Table 3 can be implemented similarly.

6.1 Comparison with other existing matrices

In the following table (Table 3), we compare the cost of implementations of few of our proposedmatrices and
some existing matrices which are used in several ciphers and hash functions.

Cost of implementation

Dimension Type Matrix #XOR #table #table-lookup #temp Comments

4 × 4 M4 M4(03x , 04x) 12 2 7 6 Table 2
circulant Circ(02x , 03x , 01x , 01x) 12 2 8 6 see [5]
recursive Serial(1, α, 1, α2)4 12 2 8 6 see [8]
companion Serial(1, α, 1, 1 + α)4 12 2 8 6 see [10, 18]

Serial(α, 1, 1, α2)4 12 2 8 6 see [10, 25]
5 × 5 M5 M5(02x , 03x , 09x) 20 3 13 8 Table 2

circulant Circ(01x , 01x , 02x , 03x , 02x) 20 2 15 8 see [11]
6 × 6 M6 M6(03x , 09x , 0ax , 0ex) 30 4 20 10 Table 2

circulant Circ(01x , 01x , 02x , 03x , 05x , 07x) 30 4 24 10 see [11]
7 × 7 M7 M7(03x , 09x , 0ax , 0ex) 42 4 28 11 Table 2

circulant Circ(01x , 01x , 02x , 01x , 05x , 04x , 06x) 42 4 28 11 see [11]
8 × 8 L8 L8(02x , 04x , 06x , 03x , 03x) 56 4 40 11 Figure 12

circulant Circ(01x , 01x , 02−1x , 01x , 04−1x , 06−1x , 03−1x , 03−1x ) 56 4 40 11 see [11]

Table 3. Comparison between some good matrices of this paper and some other matrices.

7 Conclusion
MDS matrices provide optimal diffusion components which can be used as building blocks of cryptographic
primitives, like block ciphers and hash functions. Multiplication by 1 over the finite field is trivial and so
matrices with more occurrences of ones may have more compact and improved footprint which is desir-
able for lightweight applications. Also, matrices with less number of other distinct elements may be imple-



K. C. Gupta, S. K. Pandey and I. G. Ray, MDS and BIBD | 111

mented efficiently using table lookup. Towards this, two combinatorial problems were studied by Junod and
Vaudenay in [12], namely, how tomaximize the number of ones and how tominimize other distinct elements
in a bi-regular matrix. They calculated the maximum number of ones that can occur in d × d MDS matrices
for d up to 8. They also computed some important bounds on the number of distinct elements in d × d MDS
matrices. But for higher values of d, using their techniques seems difficult.

We have observed simple yet subtle interconnections between the number of ones in MDS matrices and
the incidencematrices of Balanced Incomplete Block Design (BIBD). This observation gives a generalize tech-
nique to solve these combinatorial problems for any values of d for all practical purpose. We have exactly
computed the maximum number of ones in a v × b MDS matrix whenever there exists (v, b, r, k, 1)-BIBD.
We have computed the upper bound of vv,b1 for any value of v and b. Using these results, in this paper we
have provided d × d almost-bi-regular matrices M for d up to 21 having maximum number of ones. Tech-
niques used in this paper can be extended for higher values of d. We also compute the minimum number
of distinct elements for these d × d bi-regular matrices having vd,d1 ones, where d = q2 + q + 1 and q is any
prime power.

We have proposed another technique to construct bi-regular matrices and MDS matrices using Latin
squares. We have shown that using the structure of Latin squares, bi-regular matrices and MDSmatrices can
be constructed by judicial selection of elements. Although this is a very easy method, yet this method does
not guarantee the maximum occurrences of ones in all cases. We have shown that if vd,d1 is a multiple of d,
then our method may be useful to construct d × d bi-regular matrices with maximum number of ones. From
bi-regular matrices, finally we have constructed efficient d × d MDS matrices for d up to 8.

A Apendix
A.1. We provide an implementation of the matrix M7(03x , 09x , 0ax , 0ex) proposed in Table 2. This imple-
mentation requires 42 XORs, 11 temporary variables and 28 table lookups in four multiplication tables, say,
tab_03, tab_09, tab_0a, and tab_0e corresponding to the multiplication by 03x, 09x, 0ax and 0ex, respec-
tively.

u0 = a[0]; u1 = a[1]; u2 = a[2]; u3 = a[3]; u4 = a[4]; u5 = a[5]; u6 = a[6];
/* a is the input vector */
u = tab_03[a[3]]; v = tab_09[a[4]], w = tab_0a[a[5]]; x = tab_0e[a[6]];
a[0] = u0 ⊕ u1 ⊕ u2 ⊕ u ⊕ v ⊕ w ⊕ x;
u = tab_03[a[2]]; v = tab_09[a[3]], w = tab_0a[a[6]]; x = tab_0e[a[1]];
a[1] = u0 ⊕ u4 ⊕ u5 ⊕ u ⊕ v ⊕ w ⊕ x;
u = tab_03[a[4]]; v = tab_09[a[5]], w = tab_0a[a[1]]; x = tab_0e[a[2]];
a[2] = u0 ⊕ u3 ⊕ u6 ⊕ u ⊕ v ⊕ w ⊕ x;
u = tab_03[a[1]]; v = tab_09[a[6]], w = tab_0a[a[0]]; x = tab_0e[a[5]];
a[3] = u2 ⊕ u3 ⊕ u4 ⊕ u ⊕ v ⊕ w ⊕ x;
u = tab_03[a[0]]; v = tab_09[a[1]], w = tab_0a[a[3]]; x = tab_0e[a[4]];
a[4] = u2 ⊕ u5 ⊕ u6 ⊕ u ⊕ v ⊕ w ⊕ x;
u = tab_03[a[5]]; v = tab_09[a[0]], w = tab_0a[a[2]]; x = tab_0e[a[3]];
a[5] = u1 ⊕ u4 ⊕ u6 ⊕ u ⊕ v ⊕ w ⊕ x;
u = tab_03[a[6]]; v = tab_09[a[2]], w = tab_0a[a[4]]; x = tab_0e[a[0]];
a[6] = u1 ⊕ u3 ⊕ u5 ⊕ u ⊕ v ⊕ w ⊕ x;

A.2. FromCorollary 3.9, v13,131 = 52. Let us consider the derived-incidencematrix of (13, 13, 4, 4, 1)-BIBD in
Figure 4 having v13,131 ones. By elimination of suitable rows and columns from this matrix so that the mini-
mum number of occurrences of 1 is canceled, we form d × d matrices for d = 12, 11, 10 and 9. For d = 8 the
corresponding matrix is given in Figure 4.
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M12 =

((((((((((((((((((

(

1 1 1
1 1 1

1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

1 1 1 1
1 1 1 1
1 1 1 1

1 1 1 1
1 1 1 1
1 1 1 1

))))))))))))))))))

)

,

M11 =

(((((((((((((((

(

1 1 1
1 1 1

1 1 1
1 1 1 1
1 1 1 1

1 1 1
1 1 1 1
1 1 1 1

1 1 1 1
1 1 1
1 1 1 1

)))))))))))))))

)

,

M10 =

(((((((((((((

(

1 1 1
1 1 1

1 1 1
1 1 1

1 1 1
1 1 1 1
1 1 1 1

1 1 1 1
1 1 1
1 1 1 1

)))))))))))))

)

,

M9 =

(((((((((((

(

1 1 1
1 1 1

1 1 1
1 1 1
1 1 1
1 1 1 1

1 1 1 1
1 1 1
1 1 1

)))))))))))

)

Figure 14. Examples of d × d almost-bi-regular matrices Md, d = 12, 11, 10, 9, with v1(Md) = vd,d1 = ⌊d ×
1+√4d−3

2 ⌋ − 1.
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A.3. From Corollary 3.9, we have v21,211 = 105. Let us consider the derived-incidence matrix of projective
plane (222 + 22 + 1, 22 + 1, 1) i.e. (21, 21, 5, 5, 1)-BIBD in Figure 15 having v21,211 ones. By elimination of
suitable rows and columns from this matrix so that the minimum number of occurrences of 1 is cancelled,
we form d × d matrices for d = 20, 19, 18, 17, 16.

M21 =

((((((((((((((((((((((((((((((((((((((((

(

1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1

1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1

1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1

1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1

1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1

))))))))))))))))))))))))))))))))))))))))

)

,

M20 =

(((((((((((((((((((((((((((((((((((((

(

1 1 1 1
1 1 1 1

1 1 1 1
1 1 1 1

1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1

1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1

1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1

1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1

)))))))))))))))))))))))))))))))))))))

)

Figure 15. Examples of d × d almost-bi-regular matrices Md, d = 21, 20, with v1(M21) = v21,211 = 105 and
v1(M20) = v20,201 = 96.
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M19 =

(((((((((((((((((((((((((((((((((((

(

1 1 1 1
1 1 1 1

1 1 1 1
1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1

1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1

1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1

1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1

)))))))))))))))))))))))))))))))))))

)

,

M18 =

((((((((((((((((((((((((((((((((

(

1 1 1 1
1 1 1 1

1 1 1 1
1 1 1 1

1 1 1 1
1 1 1 1

1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1

1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1

1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1

))))))))))))))))))))))))))))))))

)

Figure 16. Examples of d × d almost-bi-regular matrices Md, d = 19, 18, with v1(M19) = v19,191 = 88 and v1(M18) = v18,181 = 81.
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M17 =

((((((((((((((((((((((((((((((

(

1 1 1 1
1 1 1 1

1 1 1 1
1 1 1 1

1 1 1 1
1 1 1 1

1 1 1 1
1 1 1 1

1 1 1 1
1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1

1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1

))))))))))))))))))))))))))))))

)

,

M16 =

((((((((((((((((((((((((((((

(

1 1 1 1
1 1 1 1

1 1 1 1
1 1 1 1

1 1 1 1
1 1 1 1

1 1 1 1
1 1 1 1

1 1 1 1
1 1 1 1

1 1 1 1
1 1 1 1

1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1

))))))))))))))))))))))))))))

)

Figure 17. Examples of d × d almost-bi-regular matrices Md, d = 17, 16, with v1(M17) = v17,171 = 74 and v1(M16) = v16,161 = 67.
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