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Abstract: In this paper, we observe simple yet subtle interconnections among design theory, coding theory
and cryptography. Maximum distance separable (MDS) matrices have applications not only in coding theory
but are also of great importance in the design of block ciphers and hash functions. It is nontrivial to find MDS
matrices which could be used in lightweight cryptography. In the SAC 2004 paper [12], Junod and Vaudenay
considered bi-regular matrices which are useful objects to build MDS matrices. Bi-regular matrices are those
matrices all of whose entries are nonzero and all of whose 2 x 2 submatrices are nonsingular. Therefore MDS
matrices are bi-regular matrices, but the converse is not true. They proposed the constructions of efficient MDS
matrices by studying the two major aspects of a d x d bi-regular matrix M, namely v, (M), i.e. the number of
occurrences of 1 in M, and c; (M), i.e. the number of distinct elements in M other than 1. They calculated
the maximum number of ones that can occur in a d x d bi-regular matrices, i.e. v‘f’d for d up to 8, but with
their approach, finding v‘li’d for d > 9 seems difficult. In this paper, we explore the connection between the
maximum number of ones in bi-regular matrices and the incidence matrices of Balanced Incomplete Block
Design (BIBD). In this paper, tools are developed to compute vf’d for arbitrary d. Using these results, we
construct a restrictive version of d x d bi-regular matrices, introducing by calling almost-bi-regular matrices,
having v‘f’d ones for d < 21. Since, the number of ones in any d x d MDS matrix cannot exceed the maximum
number of ones in a d x d bi-regular matrix, our results provide an upper bound on the number of ones in
any d x d MDS matrix. We observe an interesting connection between Latin squares and bi-regular matrices
and study the conditions under which a Latin square becomes a bi-regular matrix and finally construct MDS
matrices from Latin squares. Also a lower bound of ¢, (M) is computed for d x d bi-regular matrices M such
that v{(M) = v‘f’d, where d = g° + ¢ + 1 and q is any prime power. Finally, d x d efficient MDS matrices are
constructed for d up to 8 from bi-regular matrices having maximum number of ones and minimum number
of other distinct elements for lightweight applications.
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1 Introduction

Maximum distance separable (MDS) matrices incorporate diffusion layers in block ciphers and hash functions
and are one of the vital constituents of modern age ciphers like Advanced Encryption Standard (AES) [5],
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Twofish [19, 20], SHARK [16], Square [4], Khazad [2], Clefia [27] and MDS-AES [15]. The stream cipher
MUGI [24] uses MDS matrix in its linear transformations. MDS matrices are also used in the design of hash
functions. Hash functions like Maelstrom [6], Grgstl [7] and PHOTON family of light weight hash functions [8]
use MDS matrices as main part of their diffusion layers. MDS matrices, in general, have a large description
and thus induces costly implementations both in hardware and software. It is nontrivial to find MDS matrices
which could be used in lightweight cryptography.

It is difficult to define what an optimal matrix is in terms of implementation. In the SAC 2004 paper [12],
Junod and Vaudenay studied MDS matrices M under the angle of efficiency and defined two mathematical
criteria namely vq (M), i.e. the number of occurrences of ones and c; (M), i.e. the number of other distinct
elements in the matrix. These lead to two very interesting combinatorial problems:

(1) how to increase the number of occurrences of ones,
(2) how to minimize the number of occurrences of other distinct elements.
They proved some optimality results relative to these two criteria.

Our contribution. The techniques used in [12] to solve these above mentioned combinatorial problems for
the construction of d x d MDS matrices were very specific to the dimension d for d up to 8 and it seems
difficult to extend their techniques to solve the same combinatorial problems for higher values of d. In this
paper, we further investigate these combinatorial problems in the light of design theory and propose more
generalized results. In [12], the authors mentioned that maximum number of ones in d x d MDS matrices is
close to dVd but no generalized method is yet known to construct d x d bi-regular matrices having almost
d+/d ones. A bi-regular matrix is a matrix all of whose entries are nonzero and all of whose 2 x 2 submatrices
are nonsingular. It is evident from the definition that an MDS matrix is a bi-regular matrix, but the converse is
not true. For higher values of d, the authors of [12] proposed a construction that can guarantee 3d — 3 ones
(see [12, Lemma 3]) in a d x d bi-regular matrix.

In a bi-regular matrix, there does not exist any 2 x 2 submatrix all of whose four entries are the same
(otherwise this submatrix would be a singular matrix). If we replace all non-one entries with blank in
a bi-regular matrix, we get another matrix, which we call almost-bi-regular matrix. An almost-bi-regular
matrix is a matrix all of whose entries are either 1 or blank and all of whose 2 x 2 submatrices contain at
most three ones. To get an MDS matrix with maximum possible number of ones, one approach would be
to start with an almost-bi-regular matrix with maximum possible number of ones and then replace blanks
with suitable non-one values so that the resulting matrix would become MDS. This approach requires two
important steps:

(a) the construction of an almost-bi-regular matrix with maximum possible number of ones,

(b) fill the blank entries with non-one entries so that the resulting matrix would become MDS.

To make the resulting MDS matrix an efficient one, we require that the description of the matrix should be
very low, i.e.

(i) the number of distinct entries should be as low as possible,

(ii) the number of low hamming weight entries should be as high as possible.

These two criteria were mentioned in [12] by introducing two mathematical notations, v, (M) which indicates
number of ones and c; (M) which indicates number of distinct entries, for a bi-regular matrix M.

In this paper, we observe an interesting connection between the number of ones in almost-bi-regular
matrices and incidence matrices of Balanced Incomplete Block Design (BIBD). Using results on BIBD, we
exactly compute the maximum number of ones in v x b almost-bi-regular matrix whenever there exists
(v, b, 1, k, 1)-BIBD. For arbitrary v and b also, we compute an upper bound on the maximum number of
ones in any v x b almost-bi-regular matrix. Since the number of ones in a v x b MDS matrix cannot exceed
the maximum number of ones in a v x b almost bi-regular matrix, our result gives an upper bound on the
number of ones in any v x b MDS matrix. Moreover, this paper provides exact upper bounds on the number
of ones for d x d almost-bi-regular matrix for d < 21.

We propose another simple technique of construction of bi-regular matrices and MDS matrices using
Latin squares. Using the structure of Latin squares, it is shown that bi-regular matrices and MDS matrices
can be constructed by judicious selection of elements. This paper shows that if vf’d is multiple of d, then
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construction of d x d bi-regular matrices with maximum number of ones starting from Latin squares may be
more useful. When d = g% + q + 1, where g is any prime power, we compute tight lower bound of ¢; (M) for
d x dbi-regular matrices M having v‘f’d ones. Finally, d x d bi-regular matrices are proposed which are having
maximum number of ones and minimum number of other elements. Moreover, efficient d x d MDS matrices
are constructed from these bi-regular matrices for d up to 8.

Previous work. Nearly all the ciphers use predefined MDS matrices to incorporate the diffusion property. In
some ciphers, however, the possibility of random selection of MDS matrices with some constraints is pro-
vided [26]. In this context, we would like to mention that in the papers [1, 8—13, 17, 26], different construc-
tions of MDS matrices are provided. In [8], the authors constructed lightweight MDS matrices from compan-
ion matrices by exhaustive search. In [9], new involutory MDS matrices were constructed using properties of
Cauchy matrices over additive subgroup of FF»» and its equivalence with Vandermonde matrices based con-
struction under some constraints was proved. In [10], the authors provably constructed new MDS matrices
from companion matrices over IF»». In [11], the authors constructed new MDS matrices from circulant matrices
over IF,». Efficient 4 x 4 and 8 x 8 MDS matrices to be used in block ciphers were constructed in [12]. Involu-
tory MDS matrices using Vandermonde matrices were constructed in [13, 17]. New involutory MDS matrices
using properties of Cauchy matrices were constructed in [26]. Recently in [1], the authors have constructed
MDS matrices based on shortened BCH codes.

The organization of the paper is as follows: In Section 2, we provide definitions and preliminaries. In
Section 3, we study the construction of almost-bi-regular matrices with maximum number of ones using
properties of BIBDs. In Section 4, we study v‘{’b for arbitrary v and b and construct d x d almost-bi-regular
matrices having maximum number of ones for d up to 21. In Section 5, we study the d x d bi-regular matrix M
having maximum number of ones and propose the minimum value of c; (M), where d = g2 + ¢ + 1 and q is
any prime power. In that section, we also study the construction of bi-regular matrices from Latin squares. In
Section 6, we propose new and efficient d x d MDS matrices for d up to 8 having maximum number of ones
and minimum number of other distinct elements. We conclude the paper in Section 7.

2 Definition and preliminaries

2.1 MDS code and MDS matrices

An MDS matrix provides diffusion properties that have useful applications in cryptography. The idea comes
from coding theory, in particular from maximum distance separable (MDS) code. Let C be an [n, k, d] code.
Then n -k >d - 1. Codes with n— k = d - 1 are called maximum distance separable code, or MDS code
for short.

Definition 2.1. Let IF be a finite field and let p and g be two integers. Let x — M x x be a mapping from F? to
IF? defined by the g x p matrix M. We say that it is an MDS matrix if the set of all pairs (x, M x x) is an MDS
code, i.e. a linear code of dimension p, length p + g and minimal distance g + 1.

The following theorem characterizes MDS matrices.

Theorem 2.2 ([14, p.321]). An [n, k, d] code C with generator matrix G = [I|A], where A is a k x (n - k)
matrix, is MDS if and only if every square submatrix (formed from any i rows and any i columns, for any
i=1,2,...,min{k, n - k}) of A is nonsingular.

From the above theorem, it is evident that a square matrix A is an MDS matrix if and only if every square
submatrices of A is nonsingular. It is easy to check that the MDS property remains invariant under the two
elementary row (or column) operations, namely permutations of rows (or columns) and multiplying a row (or
column) of a matrix by a scalar except zero. Also the MDS property is invariant under transpose operation.
So we provide the following lemma without proof.
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Lemma 2.3. IfA is an MDS matrix over I, then A, obtained by multiplying a row (or column) of A by any ¢ € F*
(nonzero elements of algebraic closure of TF) or by permutations of rows (or columns) is MDS. Also if A is MDS,
sois AT.

2.2 Bi-regular matrices

In [12], the authors used bi-regular arrays to build MDS matrices. We call it as bi-regular matrix and define it
slightly differently but equivalently.

Definition 2.4 (Bi-regular matrix). A matrix is called bi-regular if all entries of the matrix are nonzero and all
of its 2 x 2 submatrices are nonsingular.

Our target is to maximize the number of occurrences of ones in an MDS matrix. One approach may be to
construct the bi-regular matrix with maximum number of ones and then to check its MDS property. So, we
first take a matrix M = ((m; ;)), where m; j is kept blank for all values of i and j. Next, we put the maximum
number of ones in this matrix such that in any 2 x 2 submatrix, not all positions are assigned to 1. We refer
to such matrices as almost-bi-regular matrices. It may be noted that with judicious choices of other elements
in the blank positions of almost-bi-regular matrices, bi-regular matrices may be constructed.

Definition 2.5 (Almost-bi-regular matrix). A matrix with entries either 1 or blank is almost-bi-regular if in any
of its 2 x 2 submatrices, there are at most three ones.

The significance of putting the maximum possible number of ones while constructing almost-bi-regular
matrix is that no more 1 can be put in the matrix without violating the almost-bi-regular property. But, it
has to be noted that an almost-bi-regular matrix saturated with ones may not guarantee that it contains
maximum number of ones (see Remark 3.3). In Section 3 and Section 4, we will develop techniques to
construct an almost-bi-regular matrix with maximum number of ones. Next, we replace all blank entries of
the almost-bi-regular matrix by judicious choices of elements from IF* other than 1 to make it a bi-regular
matrix and then check its MDS property. No algorithm is known to select elements except exhaustive search.
It may be noted that, as we construct d x d MDS matrices M with maximum number (i.e. v‘f’d) of ones with
low value of c; (M), search space gets reduced drastically. For example, to construct a 4 x 4 MDS matrix
over IF,s, the size of search space is 28%16 = 2128 but for the 4 x 4 matrix of Figure 7, the size of search space
becomes 28%2 = 216,

For an efficient implementation of perfect diffusion layer, it is desirable to have the maximum number of
ones and the minimum number of different entries in the MDS matrix. In [12], the authors studied these two
properties on bi-regular matrices and proposed some bounds.

Definition 2.6 ([12]). Let M = ((m; j)) be a g x p bi-regular matrix over the field FF.

«  Letv{(M)denote the number of pairs (i, j) such that m; j is equal to 1. We call it the number of occurrences
of 1. Also, let v'l“’ be the maximum value of v; (M) over all g x p bi-regular matrices M.

e Let c(M) be the cardinality of {m;;:i=1,...,q, j=1,...,p}. This is called the number of distinct
entries. Also let ¢?? be the minimum value of c(M) over all g x p bi-regular matrices M.

o If vi(M) >0, let c1(M) = c(M) — 1; otherwise c1(M) = c(M). This is called the number of nontrivial
entries.

For example, for the matrix

a a+1 1 1
1

M= a a+1 1 ’
1 1 a a+1
a+1 1 1 o

where a is the root of the generating polynomial x® + x* + x3 + x + 1 of IF;s, which is used in the mixColumn
operation in AES [5], we have v{(M) = 8 and c1(M) = 2.



DE GRUYTER K.C. Gupta, S. K. Pandey and I. G. Ray, MDS and BIBD =—— 89

Remark 2.7. The high value of v; and the low value of ¢ and c; are desirable for constructing efficient
MDS matrices.

From [12], we have the following fact.

Fact 1. [12] The following hold:
(@) Vi1 =vTP,

(b) V&% increases with p and g.
In the next lemma, we state some results from [12, Lemma 1].

Lemma 2.8 ([12, Lemma 1]). The following hold:
@) v’ =p+3forallp > 3.
(b) vit=9,v7° =12,v®¢ = 16,v]7 = 21 and v3® = 24.

2.3 Balanced Incomplete Block Design (BIBD)

In this paper, we show an interesting connection between almost-bi-regular matrices and incidence matrices
of BIBDs. Although the notations v (M) and v'{’p were used for bi-regular matrices in [12], we use them
(abuse of notations!), from here onwards, for almost-bi-regular matrices also for the same purpose. Thus,
in the context of bi-regular matrices, v, (M) represents the number of ones in the bi-regular matrix M and
v‘f’p represents the maximum value of v; (M) over all g x p bi-regular matrices M. Similarly, in the context of
almost-bi-regular matrices, v, (M) represents the number of ones in the almost-bi-regular matrix M and v‘f’p
represents the maximum value of v, (M) over all g x p almost-bi-regular matrices M. It is proved in this paper
that for v x b almost-bi-regular matrices, v{’b = bk whenever there exists (v, b, r, k, A)-BIBD where A = 1. We
also provide a tight upper bound of v‘f’d for any value of d. Using these techniques, we provide very simple
and alternative proof of optimality results of [12] which are given in Lemma 2.8. We propose techniques to
construct any d x d matrix M where v; (M) is either vf’d or very close to it.

Remark 2.9. The existence of an almost-bi-regular matrix with [ ones may not guarantee the existence of a
bi-regular matrix with the same number of ones, i.e. l ones. But the converse is always true; the existence of
a bi-regular matrix with [ ones always guarantees the existence of an almost-bi-regular matrix with the same
number of ones. Constructing almost-bi-regular matrix from bi-regular matrix is straightforward - replace all
non-one elements from the bi-regular matrix with the blank symbol. The new matrix will be almost-bi-regular
matrix.

Definition 2.10 ([23]). A design is a pair (X, .A) such that the following properties are satisfied:
o Xisaset of elements called points,
o Aisacollection (i.e. multiset) of nonempty subsets of X called blocks.

If two blocks in a design are identical, they are said to be repeated blocks. This is why A is referred to as
a multiset of blocks rather than a set.

Definition 2.11 ([23]). Let v, k and A be positive integers such that v > k > 2. A (v, k, A)- balanced incomplete
block design (which we abbreviate (v, k, 1)-BIBD) is a design such that the following properties are satisfied:
(1) Xl =v,

(2) each block contains exactly k points,

(3) every pair of distinct points is contained in exactly A blocks.

In the following two lemmas, we record two important properties of a BIBD.

Alv—-1)
(k-1)

Lemma 2.12 ([23]). In a (v, k, A)-BIBD, every element occurs in exactly r =
called the replication number of the BIBD.

blocks. The value r is often

Lemma 2.13 ([23]). A (v, k, A)-BIBD has exactly b blocks, where b = ¥ = ’}3{"22:](")).
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Definition 2.14 ([23]). A BIBD in which b = v (or, equivalently, r = k or A(v — 1) = k? — k) is called a symmet-
ric BIBD.

For example, ina (7, 3, 1)-BIBD, X = {1, 2, 3, 4,5, 6, 7} and
‘A‘ = {{1’ 2’ 3}’ {1’ 4’ 5}’ {1’ 6’ 7}’ {2’ 4’ 6}’ {2’ 5’ 7}’ {3! 4’ 7}! {3’ 5! 6}}'
Herev = |X|=7and b = |A| = 7.Itis a symmetric BIBD asv = b. Alsor = k = 3.

Lemma 2.15 ([23]). Suppose that (X, A) is a symmetric (v, k, A)-BIBD and denote A = {Ao, ..., Ay_1}. Suppose
thatO0 <i,j<v-1,i#j. Then|A;nAj| = A

In this paper, a special kind of symmetric BIBDs, called projective planes, will be used for constructions of
almost-bi-regular matrices.

Definition 2.16 (Projective plane, [23]). A (d*> +d +1,d + 1, 1)-BIBD with d > 2 is called a projective plane
of order d.

It may be noted that although a (3, 2, 1)-BIBD exists, this is not regarded as a projective plane of order 1 (also
see [23]). Here we mention one very important result on projective plane which is crucial in our work.

Theorem 2.17 ([23]). For every prime power q > 2, there exists a (symmetric) (q*> + q + 1, q + 1, 1)-BIBD (i.e.
a projective plane of order q).

In this paper, we will use the notation (v, b, r, k, A)-BIBD to record the values of all five parameters. Note that
for a projective plane, i.e.a (d* +d + 1,d + 1, 1)-BIBD,

v-1 d?+d+1-1
r_k—l_ P =d+1

and
_H_(d2+d+1)x(d+1)_

k (d+1)
Sowecallit (A2 +d+1,d?+d+1,d+1,d+ 1, 1)-BIBD.
It is often convenient to represent a BIBD by means of an incidence matrix.

b d*+d+1.

Definition 2.18 (Incidence matrix, [23]). Let (X, A) be a design with X = {xq, ..., xy_1}, A ={40, ..., Ap_1}.
The incidence matrix of (X, A) is the v x b matrix M = ((m; j)) defined by the rule

1, ifx;e Aj,
mij =

foranyie{0,1,...,v—1}andje{0,1,...,b - 1}.
0, ifx;¢A;j,

For constructions of MDS matrices, we use a slightly modified version of incidence matrix, which we call
derived-incidence matrix.

Definition 2.19 (Derived-incidence matrix). If all zeros of an incidence matrix are replaced by a special sym-
bol blank, the derived matrix is called derived-incidence matrix.

Fact 2 ([23]). The incidence matrix M of a (v, b, r, k, A)-BIBD (or the derived-incidence matrix M’ obtained
from M) satisfies the following properties:

(1) Every column of M (or M') contains exactly k ones.

(2) Every row of M (or M') contains exactly r ones;

(3) Two distinct rows of M (or M') both contain ones in exactly A columns.

2.4 Jensen’s inequality

Theorem 2.20 ([22]). Suppose that f is a continuous and strictly convex function on the interval I. Suppose
further that Zf’z"ol ti=1,0<tiand 0<i< b - 1. Then f(Zf’gol tiki) < 25’;01 tif(k;), where ki e I, 0 <i< b - 1.
Further, equality occurs if and only if ko = k1 = -+ = kp-1.
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If we take the convex function f(x) = X1 and use Jensen’s inequality, Lemma 2.21 can be verified easily.

Lemma 2.21. Let Z L ki = n, where all k; are positive integers. Then
% _ -
ez (h)

b-1

(3)=2,(5)

1

i~0
Proof. Let f(x) = @ Alsolett; = 4 foralli € {0,...,b-1}.S

o\ 4n _%X(%—l)
f(Znh)—f(E)——z .

Also Y2 tif (ki) = £ Y273 (%). Thus from Theorem 2.20,

E‘I:

bx 22~

If § = kis an integer, then

x(3-1) 152 ki

Hence we have proved the result. O

==
N [>=

3 Finding v:’b where (v, b, k, r, 1) is a BIBD

One approach for constructing an MDS matrix is to construct first an almost-bi-regular matrix with [ ones
and then assign nonzero field elements other than 1 to the rest of the positions of the matrix. If the resultant
matrix is MDS, return that MDS matrix, else return failure. The above mentioned process can be repeated
iteratively

(a) by trying all possible nonzero elements other than 1 for fixed I,

(b) through all choices of I starting from maximum number of ones that matrix can accommodate till 0.

For efficiency, in the resultant MDS matrix M, it is desired to have a high value of v; and a low value of c¢; as
much as possible. In [12], the authors computed the maximum number of occurrences of 1 in a d x d matrix,

ie vy dd for g up to 8 and also determlned the position of ones in the corresponding bi-regular matrices. With
their approach, determining v7’ 4.4 seems difficult for higher values of d.

In this section, we study the connection between the incidence matrix of BIBD and the almost-bi-regular
matrix and propose techniques to compute the value of v'{’b whenever there exists a (v, b, r, k, 1)-BIBD. In
the following lemma, we show that the derived-incidence matrix of (v, b, r, k, 1)-BIBD is an almost-bi-regular
matrix whenever A = 1. Not only that, this section furthermore shows that the maximum number of ones
which can be put in a v x b almost-bi-regular matrix is equal to the number of ones in the derived-incidence
matrix of (v, b, r, k, 1)-BIBD. The equality in the number of ones in both the almost-bi-regular matrix and the
derived-incidence matrix of (v, b, r, k, 1)-BIBD seems obvious considering the fact that the derived-incidence
matrix of (v, b, r, k, A)-BIBD is an almost-bi-regular matrix whenever A = 1. But, this section presents some-
thing more: the maximality of ones. To the best of our knowledge, the literature on BIBDs deals only with the
existence and constructions, while this section provides a result which proves that those constructions, in
fact, yield the maximum number of ones as well.

Lemma 3.1. The derived-incidence matrix of (v, b, r, k, A)-BIBD is an almost-bi-regular matrix if and only
ifA=1.

Proof. Let us consider the (v, b, r, k, A)-BIBD, where A = 1. Let the set of elements and the set of blocks of
this BIBD be X = {x¢, ..., xy-1} and A = {Ao, ..., Ap_1}, respectively. Let the corresponding v x b derived-
incidence matrix be M = ((m;;)). So, from the definition of the derived-incidence matrix, m;; = 1 if x; € 4;
foranyie{0,1,...,v-1}andj € {0,1,..., b - 1}; otherwise m; j is blank.
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Let us consider any arbitrary 2 x 2 submatrix

M = (m51,t1 mS1,tz>
Ms,,t;  Msy,ty
of M. Note that not all elements of the submatrix are 1 because then we will get ms, ¢, = 1 for i,j € {1, 2}.
This implies that the elements x;, and xs, are contained simultaneously in two blocks A;, and A¢,, which is
a contradiction to the fact that A = 1, i.e. a pair of elements can be contained in only one block. So all four
elements of any 2 x 2 submatrix of M are not 1. Thus M is almost-bi-regular.

If A > 1, then some pair of elements, say xs, and xs,, will occur in at least two blocks, say, A, and A, .
Thus in the 2 x 2 submatrix M all four entries are 1. So M is not almost-bi-regular. O

Remark 3.2. Let M be the derived-incidence matrix of a BIBD with A = 1. We cannot add any more 1 in the
matrix M without disturbing the almost-bi-regular property. For example, suppose that the (i, j)-th entry is
blank and let us fill the (i, j)-th entry by 1. Also, let us consider any other element of the block A;, say, xi. The
elements x; and x; must be contained in some block, say, A;. So, my,; = my,j = m;; = m; j = 1. So clearly the
2 x 2 submatrix formed by taking the k-th row, the i-th row, the I-th column and the j-th column of the matrix
M is not almost-bi-regular.

Remark 3.3. Let M be any almost-bi-regular matrix such that no more 1 can be added in the matrix without
disturbing the almost-bi-regular property. Note that this condition does not always guarantee that an almost-
bi-regular matrix has maximum number of ones.

11111

=Y

no more 1 can be placed without disturbing the bi-regular property. Here the number of occurrences of 1 is
7, but we know vll"4 = 9 and the corresponding matrix may be

1711
11
1 1
1 1

Remark 3.4. Let M = ((m;;)) be any v x b almost-bi-regular matrix. Let us associate the element x; corre-
sponding to the i-th row and the block A; corresponding to the j-th column, where i € {0,...,v -1} and
je€{0,...,b—-1}. Let us consider the design (X, A), where X = {xg, ..., xy-1} and A = {Ao, ..., Ap-1} such
that m; j = 1 if and only if x; € A;. So M is the derived-incidence matrix of the design (X, A). Note that, since
M is almost-bi-regular, any pair of elements will occur in at most one of the blocks of A, i.e. |A; N 4j| < 1 for
alli,je{0,...,b—-1}andi #j.

In Theorem 3.8, we will show that the derived-incidence matrices of BIBDs with A = 1 contain the maximum
number of ones maintaining the almost-bi-regular property. But before that, we study some crucial properties
of almost-bi-regular matrices and derived-incidence matrices of BIBDs with A = 1 in Lemma 3.5, Lemma 3.6
and Lemma 3.7.

Lemma 3.5. Let M be the derived-incidence matrix of a design (X, A), where |X| = v and |A| = b. Also for an
element x € X, let us define the set Sy as follows: 8y = {(x,y,A) : x,y € Aand A € A, y € X}. If M is almost-bi-
regular matrix, then |Sy| < v - 1.

Proof. An element x can form maximum v — 1 pairs (x, y) with all different v — 1 elements. More than v — 1
pairs involving x amounts to repetition of some pair in more than one blocks, but since M is almost-bi-regular
matrix, any pair of elements (x, y) occurs at most once. Hence we have proved the result. O

Lemma 3.6. Let M be the derived-incidence matrix of a design (X, A), where |X| = v and |A| = b. Also let us
define the set 8 as follows: 8 = {(x, y, A) : x,y € Aand A € A}.If Mis an almost-bi-regular matrix, then |8| < (3).
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Proof. Since M is an almost-bi-regular matrix, any pair of elements (x, y) occurs at most in one of the blocks
of A.Soif (x, y, A;) € 8, then (x, y) will not be contained in any blocks of A except A;. Since there are (}) pairs
that can be formed from the elements of X, we have |§| < (3). a

Lemma 3.7. Let the design (X, A) be a (v, b, r, k, 1)-BIBD and define S by 8 = {(x, y,A) : x,y € Aand A € A}.
Then || = (3).

Proof. Note thatina (v, b, r, k, 1)-BIBD, every pair of elements of X occurs exactly in one block. So, [8] = (3).
Alternatively, each block has k elements. Hence, each block contributes ( ) elements in 8. Since there are b
blocks, we have

|5|:(k)xb:k(k—1) vr k(k-1) (v-1)  v(v-1) <v)

2 2 K- 2 XV k-Dxk 2 2 ) =

Theorem 3.8. Let there exist some (v, b, 1, k, 1)-BIBD whose derived-incidence matrix is M. Then M has the
maximum number of ones, i.e. v‘{’b is the number of ones and v‘{’b = bk.

Proof. Let (X, A) be the (v, b, 1, k, 1)-BIBD. From Lemma 3.1 and Fact 2, M is almost-bi-regular matrix with
bk ones. From Lemma 3.7, |8| = (3), where 8 = {(x, y, A) : X,y € A for some A € A}.

Let, if possible, there be a v x b almost-bi-regular matrix M’ having (bk + 1) ones. For the matrix M’,
let the corresponding design be (X, A’), where A’ = {4, ..., A} ,}. Similar to 8, let us define the set 8’ as
follows:

8" ={(x,y,A): x,y e Aforsome A € A'}.

Let M" be the matrix obtained by replacing one occurrence of 1 by blank from, say, the p-th column of
M’ which has at least two elements. Now M" has b x k ones. For the matrix M"', let the corresponding design
be (X, A"), where A" = {Af, ..., A} ,}. Let us define the set 8" as follows:

"= {(x,y,A): x,y € Aforsome A ¢ A"}.

So, |A}| = |A'| fori=0,...,p-1,p+1,...,b—-1and |A)| = |A]]| + 1. LetlA”I—k”forl— ..., b-1.
Hence, the number of elements inM" is b x k Y2 k! Also, the block A’ contributes (k ) elements in8".

So,
18" = 2 (k”>

5 ()= ) (3)-"

So, [8"] = |8]. Also, |8'| = [8"| +|A,|. So, [8'| > |8 = (3), a contradiction to Lemma 3.6. O

From Lemma 2.21,

Corollary 3.9. Letd = q? + q + 1, where q is any prime power. Then v‘f’d =(@2+q+1)x(g+1).

Proof. Letus consider the (v, b, 1, k, A)-BIBD, wherev=b=g?> +q+1,r=k=g+1and A = 1, and let M be
its derived-incidence matrix. From Theorem 2.17, such a BIBD exists for any prime power q. From Lemma 3.1,
M is almost-bi-regular and from Theorem 3.8, the number of ones in M is v%4 = (@ +q+1)x(g+1). O

Remark 3.10. From Corollary 3.9, if g = 3, then d = 32 + 3 + 1 = 13 and thus v13 B_13x (3+1)=52and

the corresponding matrix is given in Figure 4. Similarly, when q = 22 = 4, then d = 4% + 4 + 1 = 21 and thus

vil 21221 x (4 + 1) = 105 and the corresponding matrix is given in Figure 15 of Appendix A.3.

Let M be an almost-bi-regular matrix having maximum number of ones and also let the corresponding design
be (X, A). If (X, A) is a BIBD, then for any two elements of X, say x5 and x;, there always exists a block A of
A such that xg, x¢ € A. If (X, A) is not a BIBD, then such a block may not exist. For example, let us consider
the 6 x 6 matrix of Figure 1. This matrix is an almost-bi-regular matrix with maximum number of ones, but
the pair (xg, x1) does not occur in any block. Note that Theorem 3.8 can compute the value v{’b if there exists
a(v, b, r, k,A)-BIBD, where A = 1.
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1)1
1 1
1)1
11
1 1 1
1 1 1

Figure 1. Example of 6 x 6 almost-bi-regular matrices having sixteend ones which is maximum.

4 Some results on v}"° for arbitrary v and b

In this section, we study some upper bounds of v‘l”b for arbitrary v and b. We also determine vf’d for d up to
21. In doing so, we first develop tools which are useful. For simplicity and compactness of expression, here
we first introduce some notations, definitions and discuss few crucial properties, some of which resemble
properties of previous section.

4.1 Afew more definitions and notations

Let M = (m;;) be a v x b matrix. Let R; = (mjo, mj1, . .., Mjp-1)) and Cj = (mgj, myj, ..., My-1yj), i.e. the i-th
row and the j-th column, respectively. We assume that0 <i<v-landO0O<j<b-1.

We define R; A Cj = mjj = C;AR;. If mjjis 1, wesay RiACj=CjAR;=1,else 0.If R ACj = C;AR; =1,
we say that the row R; makes an intersection with the column C; and vice versa.

Wedefine Ri ARk ={j:0<j<b-1andR;ACj=RiACj=1},ie. theindex set corresponding to these
blocks containing both the elements corresponding to R; and Ry. Similarly, we define

CinCr=1{j:0<j<v-1landCiARj=CixARj =1},

i.e. the set of elements that are contained in both the blocks corresponding to C; and Ck.

Leti # j.If|R; A Rj| > 1, then we say that the row R; makes pair with the row R;. Similarly, if |C; A Cj| > 1,
then we say that the column C; makes pair with the column C;. It may be noted that for almost-bi-regular
matrices |R; A R;j| < 1and |C; A Cj| < 1 for all distinct indices i, j, which directly follows from the definition of
almost-bi-regular matrices. So we have the following lemma.

Lemma 4.1. Let M be a v x b matrix. Then M is an almost-bi-regular matrix if and only if |R; A Ri| < 1 for all
O<i<k<v-1land|CinCil<1forallO<i<k<b-1.

Set |R;| = |R; A Rjl, i.e. the number of columns which intersect with the row R;, and similarly |C;| = |C; A Cj]

which denotes the number of rows which intersect with the column C;. Let max(|C|) = max{lCil}f’:‘o1 and

max(|R|) = max{|R;|}!-}. In a similar manner, we define min(|C|) = min{|C;|}?"} and min(|R|) = min{|R;[}\].

The following two lemmas give interpretations of |R;| and |Cj|, respectively.

Lemma 4.2. Let M be a v x b almost-bi-regular matrix. Then the row R; contains l ones if and only if |R;| = L.

Proof. Let] ={0,1,..., b — 1}. Suppose that |R;| = |R; A R;| = l. By definition,
RiARi={j:0<j<b-1and|R;AC(j| =1}

LetJ1 = Ri AR; = {j1,j2,...,ji} <J.Thenwe have R; A Cj = m;; = 1ifand only if j € J;. Hence we obtain that

R; = (mjo, mj1, ..., mijp-1)) contains |J1| = l ones. Conversely, suppose that R; = (mjo, mj1, . . . , Mj(p-1)) CON-
tains [ ones. Let J1 = {j1, ..., jn} € J be the set of indices such that m;; = 1 if and only if j € J;. So, |J1] = L.
Moreovet, |R; A Cj| = 1ifand only ifj € J1. Therefore, R; AR; = J1 and thus |R;| = |[R; AR;| = |J1] = L. O

Similarly, we have the following lemma.
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Lemma 4.3. Let M be a v x b almost-bi-regular matrix. Then the column C; contains l ones if and only if | C;| = L.

In the following lemma, we study the correlation between the number of intersections and the number of
pairs that the row R; makes with different columns and rows, respectively, in an almost-bi-regular matrix.

Lemma 4.4. Let M be av x b almost-bi-regular matrix. Suppose that the row R; makes intersections with exactly
lcolumns, C;,, Cj,, ..., C;,.IfICj,| = ck, for 1 < k < I, then the row R; makes pair with exactly Ziﬂ(ck - 1) rows.

Proof. Let ]1.“ = Cj, A Cj,. Since |Cj,| = cy, it follows that |](1jk)| = cy. Since R; intersects with column Cj,,
we obtain i € ]&’k). Let .

7109 = J99\ (i
So, 19| = cx - 1.

Now, we show that J;Um) nJ;0n) =g for all 1 <m < n < L If not, there exists t # i for some r, s such
that 1<r<s<l,O0<t<v-1andte];U) nJ;0s). Therefore, |[R; A Cj| = IR A Cj,| = 1 which then implies
myj, = my, = 1. Since R; makes pair with columns C;, and Cj,, we have |R; A Cj,| = |[R; A Cj,| = 1 which then
implies m;;, = m;j; = 1. Considera 2 x 2 submatrix formed by the rows R;, R and columns C;j,, Cj,. The entries
of this submatrix will be mj;,, mjj,, msj,, myj, and all are 1, a contradiction. Hence,

foralll<m<n<l

Choose any t € J;U¥. Since t € J;U%, we have |R; A Cj,| = 1. Moreover, |R; A Cj,| = 1 and thus jx € R; A Ry.
Therefore, |R; A R¢| > 1, but from Lemma 4.1, |R; A R¢| < 1 which then implies |R; A R¢| = 1. Hence, the row
R; makes pair with the row R;. Conversely, suppose that R; makes pair with some row R;. Then |R; A R¢| = 1.
Letz € R; AR¢. Then |[R; A C,| = |R¢ A C,| = 1 and therefore t € C, A C,. Since R; makes pair with C, it follows
that z € {j1,j2,...,ji}. Thus t € 7190 for some 1 < k < I. Therefore the row R; makes pair with the row Ry if
and onlyif t € J;0¥ for some 1 < k < .

Let J3 = Uk, J199). As J,0m) n J10») = g forall 1 < m < n < I, we have

1 1
Uil =Y L1 =Y (cx-1).
k=1 k=1

Therefore, the row R; makes pair with Zf(zl(ck —1) rows. O
Similarly, by interchanging rows and columns, we have the following lemma.

Lemma 4.5. Let M be a v x b almost-bi-regular matrix. Suppose that the column C; makes intersections with
exactly | rows, say Rj,,Rj,, ..., R;j. If |Rj,| = rx, then the column C; makes pair with exactly Zizl(rk -1)
columns.

In a v x b almost-bi-regular matrix, any row can make pair with at most v — 1 rows and similarly any col-
umn can make pair with at most b — 1 columns. So we have the following two lemmas which are similar to
Lemma 3.6 but in a different setting.

Lemma 4.6. Let M be a v x b almost-bi-regular matrix. Suppose that |Ci| = k; forO <i < b — 1. Then

5(3):C)

Proof. Let C;i ACi =1j1,j2,...,jk} and J; = {(jr, js) : 1 < r < s < k;}. We now show that I, NnJ, = 0 for all
0<m<n<b-1.If not, then for some 0 <m<n<b-1and for some 0 <p < g <v-1, the tuple (p, q)
is an element of J,, N J,. So, p, g € C;y A Cy and p, q € Cy A Cy. Thus

IRy A il = [Rg A Cml = [Rp A Cal = [Ry A Cnl = 1

which then implies there exists a 2 x 2 submatrix all of whose entries are 1, a contradiction. Hence J,, N J, = 0
forallO<m<n<bhb-1.
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LetJ={(p,q): 0<p < q<v-1}.Itis easy to check that Uf’:‘ol J; ¢ J and therefore IUf’:"O1 Jil <191 = (5).
Since I, NIy = 0, we have

b-1 b-1 b-1 k; v
Y| =Y wi=% (2>s|ﬂ|=<2).
i=0 i=0 i=0
Hence the lemma. O

Similarly, by interchanging rows and columns, we have the following lemma.

Lemma 4.7. Let M be a v x b almost-bi-regular matrix. Suppose that |R;| = ki for 0 <i <v - 1. Then

2(5)=(2)

D < )

\2 2
Now we define 5 (v), which is crucial for determining the upper bound of v‘{’b .
Definition 4.8. Let b and v be two non-negative integers. We define F3(v) = [b’“— Vbz*gl"’(""l)].

In Theorem 4.13, we study the upper bound of v‘l"b. Before that, we study two important properties of F3(v)
in Lemma 4.9 and Lemma 4.10, which can be verified by elementary arithmetic.

Lemma 4.9. If1 <v < b, then min(F,(b), Fp(v)) = Fp(v).
Lemma 4.10. If1 <vand1 < b, then F(v + 1) - Fp(v) > 1.

Now we introduce another term, G4(d), which helps in determining maximum number of ones in a matrix
where some row or column previously contains a fixed number of ones.

Definition 4.11. Letd > 1. We define G4(d) =2d - 1and G4(k) =k+d-1+F41(d-k)forO<k<d-1.
In the next lemma, we show that §4(k) is monotone decreasing.
Lemma 4.12. We have G4(k + 1) < Ga(k) ford >2and0 <k <d - 1.
Proof. If0 <k <d-2,then
Galk+1)-G4(k)=1+F4.1(d-k-1) - F4_1(d - k).

Letd-1=bandd-k-1=a.Sinced >2and0<k<d-2,wehaveb>1landl<d-k-1=a<d-1.
Therefore,
Galk +1) = Ga(k) = 1+ Fp(a) - Fp(a +1).

From Lemma 4.10, G4(k+ 1) - Ga(k) <1 -1=0.
If k=d- 1, then

Galk+1)-G4(k)=2d-1-(d-1)-d+1-F41(1)=1-(d-1)=2-d<0. O

4.2 Some important bounds

In Theorem 4.13 and its corollary, we provide a tight upper bound of v‘l"b and v‘li’d for all values of v, b and d.
Theorem 4.13. We have v‘{’b < min(F,(b), Fp(v)).

Proof. Let v{’b = n. Also let |R;| = r; and |C;| = ¢;. Then

v-1 v-1 ri b
Y rien (2)(2) M

b-1 b-1/ ..
izzo ci=n, 2 (;1) < (;) )

from Lemma 4.7, and
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from Lemma 4.6. From Jensen’s inequality, when (1) holds, we get

+(2)-5(2)-()

Solving the above inequality, we get n?> — nv — bv(b — 1) < 0 which then implies

v+ Vv2+4vb(b-1)
n< .

N 2
So,
\/ﬁ
< {v+ 1% +24vb(b 1)J - 5,(b).
Similarly, when (2) holds, we get n < F3(v). Thus, n < min(F,(b), Fp(v)). O

Corollary 4.14. We have
d.d 1+V4d-3
Vi | ax LS |
2
Proof. Putting v = b = d in Corollary 4.13, we get

1+V4d-3
L) g

Vi< T = |d .

Remark 4.15. For any prime power g, there exists a projective plane which is a symmetric (q> + g + 1, ¢* +
q+1,q+1,q+1,1)-BIBD. From Corollary 4.14,

1++4(g2+q+1)-3

2
Also, note that, from Theorem 3.8, V(1q2+q+1,q2+q+1) =(g2+g+1)x(q+1).So, whend = g2 + q + 1 for some

prime power g,

A A [(q2 +q+1)x J =(@*+q+1)x(g+1).

V‘li’d = \‘d X #J_
Similarly, when (v, b, r, k, 1)-BIBD exists, v‘{’b =Fp(v).

In the next theorem, we study the upper bound of v, (M) for a d x d matrix M where one of its columns contains
k ones.

Theorem 4.16. Let M be a d x d almost-bi-regular matrix with one column having k occurrences of 1. Then
vi(M) < Ga(k).

Proof. We consider two cases.
Cased = 1. Ifk = 0, then
Gak)=k+d-1+F4.1(d-k)=0+1-1+F(1)=0.

If k =1, then
Ga(k)=2d-1=1.

Cased > 2. If k = 0, then the maximum number of ones in M can be at most F4(d — 1). From Lemma 4.9,
Fald-1) <TFa.1(d) <k+d-1+TF4.1(d - k) = Ga(k).

If k = d, then the maximum number of ones in M canbeatmostd +d — 1 = 2d - 1 = G4(k).

Let1 < k < d — 1. Without loss of generality, assume that the matrix M contains exactly k ones in column
Co. We further assume that [R; A Co| =1 forall 0 <i < k-1and |RjACo| =0 forall k <j<d-1. Consider
a submatrix of M, say My, formed by rows Ry, Ry, ..., Rx-1 and columns Cy, C1, Ca, ..., C4-1. Consider
another submatrix of M, say M,, formed by rows Rj, Ri41, ..., Rg-1 and columns Cop, C1, ..., Cq-1. Since
any submatrix of an almost-bi-regular matrix is almost-bi-regular, therefore M; and M, also will be almost-
bi-regular.
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In the matrix My, the column Cy, makes pair with the rows Rg, Ry, ..., Ri_1, i.e. |[R; A Co| = 1 for all
0 <i< k- 1. Therefore, |Cj| <1 forall 1 <j <d - 1. If not, then say |C¢| > 2 for some 1 <t < d - 1. Since
|C¢| = 2, there exists at least two rows R;,, Rj, forsome O < j; < j, < k- 1suchthat|Rj, A C¢| = [Rj, AC¢| = 1.
So,t € Rj, ARj,.ButO € Rj, ARj, (as|Rj, A Col = |Rj, A Co| = 1). Thus we have {0, t} € R}, A Rj, whichimplies
IRj, ARj,| > 2,acontradiction (by Lemma 4.1). Hence |C;| < 1forall1 < j < d - 1. So the total number of ones
in the matrix My will be at most Z?:_Ol |Cil=k+d-1.

In the matrix M, the column Cq contains no ones, i.e. |Co| = 0. Consider the d — k x d — 1 submatrix
M, of the matrix M, formed by rows Ry, ..., R4_1 and columns Cy, ..., C4_1. Since M, is almost-bi-regular,
therefore M, also is almost-bi-regular. Hence, the maximum number of ones in M, can be v‘f‘k’d_l.
Thus, the total number of ones in matrix M can be at most

k+d-1+v304 N ckrd—1+F41(d-k) = Ga(k)
(from Theorem 4.13). O

In analyzing v‘f’d, we often encounter situations where we need to determine the number of columns (rows)
needed to accommodate some r rows (columns) of a v x b almost-bi-regular matrix, each containing, say, k
ones. In the next two theorems, we explore lower bound on number of such rows (columns).

Theorem 4.17. In a v x b almost-bi-regular matrix, if there are r rows (r < v) each containing k ones, then the
number of columns needed to accommodate such r rows should be at least

([1 + /1 + 4rk(k - 1)] [ rk? ])
max , .
2 r+k-1
Proof. Let the minimum number of columns required to accommodate such r rows be c. Consider the r x ¢
submatrix M where each row contains exactly k ones. Suppose that, in the matrix M, column C; contains k;
ones. Then Zf;ol k; = rk. For M to be almost-bi-regular matrix, it is required that
@ (%) < () (from Lemma 4.7),
) Y53 (%) < (5) (from Lemma 4.6).
For (1) to hold, it is required that rk(k — 1) < c(c — 1) which then implies c? — ¢ — rk(k - 1) > 0. Thus,

1+ 1 +4rk(k-1)
>

N 2
and hence
\/7_
c2[1+ 1+ 4rk(k 1)]. @
2
From Jensen’s inequality, when (2) holds, we get
c-1 .
rk(rk - c) s (kl) § (r)
2¢ Z\2)7\2
From above inequality, we get ¢ > ; :’,ﬁl and hence
rk?
Cz[r+k—1]' (b)
From (a) and (b), we conclude that
([1 + /1 + 4rk(k - 1)] [ rk? D
¢ > max , ,
2 r+k-1
as desired. O

Similarly by interchanging rows and columns, we have the following theorem.

Theorem 4.18. In a v x b almost-bi-regular matrix, if there are c columns (c < b) each containing k ones, then
the number of rows needed to accommodate such c columns should be at least

e[ LT HED )

2 c+k-1
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4.3 Finding v:"’ for d up to 21

Ford = g + q + 1, where g is any prime power, v‘li’d can be computed using Corollary 3.9. With this technique
we handle the case when d =32 +3 +1 =13 and d = 42 + 4 + 1 = 21. For arbitrary d, let g be the lowest
prime power such that d < g2 + g + 1. To design the d x d almost-bi-regular matrices, one approach may be
to start by taking the derived-incidence matrix corresponding to the (g2 +q+1, g> +q+1,q+1, g+1, 1)-BIBD
and then by reducing (g% + ¢ + 1 — d) rows and columns so that minimum number of ones are removed.
We show that using this technique, d x d almost-bi-regular matrices with v‘f’d ones can be constructed for
any value of d < 21 except for d = 14 and 15. The cases when d € {14, 15} are dealt in Lemma 4.23 and
Lemma 4.25.

Lemma 4.19 (Alternative proof of some results of part (b) of Lemma 2.8). We have vf’z =3, vi’3 =6, vll"4 =9,
v?® =12, v?’G =16andv]’ = 21.

Proof. Since (3, 3, 2, 2, 1)-BIBD exists, it follows from Theorem 3.8 that vi’B =6 and the corresponding
almost-bi-regular matrix is given in Figure 2. From Corollary 3.9, vi’7 =7x(2+1)=21. The derived-
incidence matrix of (7, 7, 3, 3, 1)-BIBD given in Figure 3.

From Corollary 4.14,

2.2 1+vV4x2-3
vt <2x — = 3,
1 4%x6-3
o< ox LG5y
1++V4x5-3
vi’ss SX% =12,
1+ V4 -
Vll"4 < 4 x +—X43 = 9‘
L 2 ]
To complete the proof, we provide the corresponding matrices in Figure 2 and Figure 3. O

1)1
1 1 ,
1
1

1

Figure 2. Examples of d x d almost-bi-regular matrices having maximum number of ones for d = 3, 2.

1|1
1)1
11
1 1
1
1 1
1 ’ ’
1 1
1)1
1 1
1 1
1 1 1
1 1 1
1)1
1
1
1
1 ’
1 1)1
11
1 1
1 1

Figure 3. Examples of d x d almost-bi-regular matrices having maximum number of ones ford =7, 6, 5, 4.
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11111
1 1111
1 1711
1111
1 1)1
1 1
1 1
1 1)1
1 1 1
1 1 1
1 1 1 ,
1 1 1
1 1 1 1
1 1
1 11
1 1
1 1
1 1 1
1 1
1 1 1
1 1 1 1

Figure 4. Examples of 13 x 13 and 8 x 8 almost-bi-regular matrices having maximum number of ones.

Lemma 4.20 (Alternative proof of one result of part (b) of Lemma 2.8). We have fo,s = 24,
Proof. If max(|C|) = 5, then from Theorem 4.16,
G8(5)=5+7+3F7(3) =12+ 10 = 22.

From Lemma 4.12, G5(j) < 9g(5) forj > 5. Hence, any 8 x 8 almost-bi-regular matrix having max(|C|) > 5 can
have at most 22 ones.
If max(|C|) = 4, then
Ge(4) =4+ 7 +F7(4) =11 + 13 = 24.

If max(|C]) = 3, then
G98(3)=3+7+3F7(5) =10+ 15 = 25,

but in this case, the maximum number of ones cannot exceed 3 x 8 = 24. So, possible maximum value of
ones in almost-bi-regular matrix of size 8 is 24 and it can be achieved when max(|C|) = 4 or max(|C|) = 3. The
construction for such a matrix is shown in Figure 4. O

Remark 4.21. Another form of 8 x 8 almost-bi-regular matrix with v3*® ones is

1)1 1

1|1 1

1
1
1

1

1 11
1 1 1

This form corresponds to the circulant matrices and MDS matrices can be constructed from this almost-bi-
regular matrix (see [11]). In Section 5, we provide an alternative way to construct MDS matrices using Latin
squares, which resemble this form (see Figure 11 and Figure 12). Note that no 8 x 8 MDS matrix over IF,s is
found which is of the form as given in Figure 4 (see Remark 6.1).

Lemma 4.22. We have

@@ vy’ =29,

(b) v =34 andvi>"? = 45,
(c) v}l’ll =39,

@) vi>" =52.



DE GRUYTER K.C. Gupta, S. K. Pandey and I. G. Ray, MDS and BIBD — 101

Proof. (a) If max(|C|) = 5, then
G9(5) =5+8+TFg(4) =13+ 14 =27

(Theorem 4.16). From Lemma 4.12, G9(j) < S9(5) for j > 5. Hence, any 9 x 9 almost-bi-regular matrix having
max(|C|) > 5 can have at most 27 ones. If max(|C|) = 4, then

G9(4) =4+8+TFg(5)=12+17 = 29.

If max(|C|) = 3, then
G9(3) =3 +8+Fg(6)=11+20 =31,

but in this case, the maximum number of ones cannot exceed 3 x 9 = 27. So, the possible maximum value of
ones in almost-bi-regular matrix of size 9 is 29 and it can be achieved when max(|C|) = 4. The construction
for such matrix is shown in appendix. Such a construction is given in Figure 14 of Appendix A.2.
(b) It can be proved similarly as it was proved for v?’s and v2’9. The constructions for such 10 x 10 and
12 x 12 almost-bi-regular matrices with 34 and 45 ones have been shown in Figure 14 of Appendix A.2.
(c) If max(|C]) = 5, then
G11(5) =5+10+ F10(6) = 15 + 23 = 38.

If max(|C|) = 4, then

911(4) =4+10+ 3:10(7) =14+ 26 = 40.
If max(|C|) = 3, then the maximum number of ones cannot exceed 3 x 11 = 33. So, vil’” < 40. Now, we show
that vil’ 4 40.1¢ possible, then there will be at least seven rows (or columns) which contain four ones each.
If so, then from Theorem 4.17 (or Theorem 4.18), the minimum number of columns (or rows) required to
accommodate such rows (or columns) is 12 which is not possible. Hence v}l’ll < 39. The construction for an
11 x 11 almost-bi-regular matrix with 39 ones is shown in Figure 14 of Appendix A.2.

(d) See Remark 3.10. O

We observe that for d up to 20, d x d almost-bi-regular matrices with maximum number of ones can be con-
structed starting from a projective plane of order g, where g is the smallest prime such that d < g% + g + 1
except for d = 14 and 15. These two special cases are dealt with in the following lemma. It may be noted that
15 x 15 and 14 x 14 matrices formed from the 16 x 16 matrix of Figure 17 of Appendix A.3 will contain 60
and 53 ones. In Figure 5, we present 15 x 15 and 14 x 14 matrices containing 61 and 56 ones, respectively.

Lemma 4.23. We have v;"* = 56.

Proof. If max(|C|) = 5, then

914(5) =5+13 +3'13(9) =18 +37 =55.
If max(|C|) = 4, then the maximum number of ones cannot exceed 56. If max(|C|) = 3, then the maximum
number of ones cannot exceed 3 x 14 = 42. So, v}l"“‘ < 56. The construction for a 14 x 14 almost-bi-regular

matrix with 56 ones is shown in Figure 5. O

Remark 4.24. It may be noted that if a 14 x 14 matrix contains 56 ones, then from Lemma 4.23, all its rows
and columns should contain exactly four ones. Also each row (column) makes twelve pairs with twelve other
rows (columns) (from Lemma 4.4 or Lemma 4.5).

Lemma 4.25. We havev;>" = 61.

Proof. If max(|C|) = 6, then
G15(6) = 6 + 14 + F14(9) = 20 + 39 = 59.

If max(|C|) = 5, then
G15(5) =5+ 14+ F14(10) =19 + 43 = 62.

If max(|C|) = 4, then the maximum number of ones cannot exceed 4 x 15 = 60. So, V}S 15 < 62. Now, we show
that vy>'> # 62.
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If possible, then there exists a 15 x 15 almost-bi-regular matrix M which contains 62 ones. Since
max(|C|) = 5, there exists a column, say C;, such that |C;| = 5. If min(|R|) > 4, then, from Lemma 4.5, the
column C; makes at least 5 x (4 — 1) = 15 pairs with other columns. Since there are fifteen columns, each col-
umn can have at most fourteen pairs with other columns. Thus, a contradiction. So, min(|R|) < 3. Similarly,
we can show that max(|R|) = 5 and min(|C|) < 3.

Let min(|C|) < 2. Suppose that the column Cj contains exactly two ones, i.e. |Ck| = 2. Let R; be the row
which contains minimum number of ones. Since min(|R|) < 3, we have |R;| < 3. Consider the 14 x 14 almost-
bi-regular matrix M’ obtained by removing the row R; and the column Cy from M. It is easy to check that M’
contains at least 62 — (2 + 3) = 57 ones, a contradiction (because vi[*’u‘ = 56). Hence, min(|C|) > 3, which
then implies min(|C|) = 3. Similarly, it can be shown that min(|R]|) = 3.

Let the column C,, and the row R,, contain three ones, i.e. |C,y| = |[Ry| = 3.If|C;y A Ry| = 1, then removing
Cm and R, from the matrix M yields a 14 x 14 almost-bi-regular matrix M’ which has 62 - (3 +3 - 1) =57
ones, a contradiction. Hence, |Cy, A Ry| = O.

Now, construct a matrix M after rearranging the columns and rows of the matrix M such that C;4 and
Ry, in the matrix M are C,, and R,, respectively, of the matrix M. Consider the matrix A constructed by
taking the first fourteen rows and the first fourteen columns of the matrix M. It is easy to check that A is
a 14 x 14 almost-bi-regular matrix having 62 — (3 + 3) = 56 ones. In A, each column makes pair with twelve
other columns and similarly, each row makes pair with twelve other rows (see Remark 4.24). By the con-
struction of M, the column C;4 and the row Ry, contain three ones with the condition that |C14 A R14] = O.
Let C14 A C14 = {j1, j2,j3}, where 0 < j; < j, <j3 < 13. In the matrix A, consider the rows Rj,, R;, and Rj,.
From the previous discussion, in the matrix 4, either |R;, ARj,| = 0 or |Rj, A Rj,| = 0 but not both (because
Rj, makes pair with twelve other rows). Without loss of generality, assume that |Rj, A Rj,| = 1. But, in the
matrix M, both IRj, A C14] = 1 and |Rj, A C14] = 1. Therefore in the matrix M, [Rj, ARj,| = 2, a contradiction.

Hence we have v;>** # 62. The construction of a 15 x 15 almost-bi-regular matrix with 61 ones is shown
in Figure 5. O

Lemma 4.26. We have v}6’16 =67.

Proof. If max(|C|) = 6, then G1¢(6) = 6+15+F15(10) = 66.If max(|C|) = 5, then G14(5) = 68. If max(|C|) = 4,
then the maximum number of ones cannot exceed 64. Now, we prove that v}6’16 + 68.

If possible, then there exists a 16 x 16 almost-bi-regular matrix M with 68 ones. It is easy to see that
max(|C|) = max(|R|) = 5, min(|C|) # 5 and min(|R|) # 5 (otherwise M will contain 80 ones). So, min(|C|) < 4
and min(|R]) < 4.

Let min(|C|) < 3 and min(|R|) < 3. Suppose that the column C; and the row Ry has three ones. Construct
a matrix M’ after removing C; and Ry from M. It is easy to check that M’ is a 15 x 15 almost-bi-regular
matrix with at least 68 — (3 + 3) = 62 ones, a contradiction (since v}s A5 61). Hence, either min(|C|) > 4
or min(|R|) > 4 which then implies either min(|C|) = 4 or min(|R]|) = 4.

Without loss of generality, assume that min(|C|) = 4. Then there will be exactly four columns containing
five ones and twelve columns containing four ones. Moreover, there will be at least four rows containing
five ones.

Consider the rows which contain five ones. Let these rows be Ry, , Ri,, Rk, , Rk,. The number of columns

required to accommodate these rows is at least max(10, 13) = 13 (see Theorem 4.17). Let Ci,» Cjyy ..., Cjyy
be the columns which accommodate these rows.
Let |Cj,| =5 for some i € {1, ..., 13}. Then consider the row Ry, € {Ry,, Ri,, Ri,;, Rk,} which satisfies

|Cj; A Ri,| = 1. Since min(|C|) = 4, the row Ry, in the matrix M then makes pairs with at least 4 + 3 x 4 = 16
other rows (Lemma 4.4), a contradiction (a row can make pair with at most fifteen other rows). Hence none
of C;,, Cj,, . . ., Cj,, can contain five ones. So, there will be at least thirteen columns which contain four ones,
but from the above discussion (fourth paragraph of this proof), there are exactly twelve columns containing
four ones, a contradiction.

Hence, vi(”w # 68. The construction of a 16 x 16 almost-bi-regular matrix with 67 ones is shown in

Figure 17 of Appendix A.3. O
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1(1]1]1
1 111
1 111
1 11
1 1
1 1 1
1 1 1 1
Mqs = 1 1 1 1 y
1 1 1 1
1 1
1 1
1 1 1
1 1 1
11
1 1
1(1]1]1
1 111
1 1111
1 11
1 1 1
1 1 1
1 1
My, = 1 1
1 1 1
1 1 1
1 1
1 1 1
1 1
1 1 11

Figure 5. Examples of d x d almost-bi-regular matrices Mg, d = 15, 14, with v4(M15) = v}s‘“ =61and vi(Myy) = vil"“ = 56.

Lemma 4.27. We havev;”"’ = 74

Proof. If max(|C|) = 6, then
G17(6) =6+ 16 + F14(11) =22 + 50 = 72.

If max(|C|) = 5, then
G17(5) =5+16 +F14(12) =21 + 54 = 75.

If max(|C|) = 4, then the maximum number of ones cannot exceed 4x17 = 68. Now, we show that v}7’17 +75.

If possible, then there exists a 17 x 17 almost-bi-regular matrix M having 75 ones. It is easy to see that
max(|C|) = max(|R|) = 5, min(|C|) # 5 and min(|R|) # 5 (otherwise M will contain 85 ones). So, min(|C|) < 4
and min(|R]) < 4.

Suppose that min(|C|) < 3 or min(|R|) < 3. Without loss of generality, assume that min(|C|) = 3. Sup-
pose that the column C; contains three ones and the row Ry has four ones. Construct a matrix M’ after
removing C; and Ry from M. It is easy to check that M’ is a 16 x 16 almost-bi-regular matrix with at least
75 — (4 + 3) = 68 ones, a contradiction (since vié’w = 67). Hence, min(|C|) > 4 and min(|R|) > 4 which then
implies min(|C|) = 4 and min(|R|) = 4.

Since min(|C|) = min(|R|) = 4, there will be exactly seven columns and rows containing five ones and the
remaining ten columns and rows containing four ones.
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Let R, , R, - . - » Ry, be rows which contain four ones. Let Cj,, Cj,, . . ., Cj,, be columns which contain
four ones. If |Cj, A Ry,| = 1 for some 1 < i, < 10, then constructa 16 x 16 matrix M’ by removing Cj, and Ry,.
It is easy to observe that M’ is an almost-bi-regular matrix with 75 — (4 + 4 — 1) = 68 ones, a contradiction
(since vi6’16 = 67). Hence [C;; ARyl =0forall1 <i,1<10.

Now, consider a 10 x 7 matrix M formed by rows Ry, , . . . , R, and columns different from Cj,, .. ., Cj,,.
Since |Cj; A Ry,| = 0, each row in M will contain four ones. Hence M contains 4 x 10 = 40 ones, but from

Theorem 4.13, vio’7 < 26, a contradiction.

Hence we have v}7’17 # 75.The construction of a 17 x 17 almost-bi-regular matrix with 74 ones is shown
in Figure 17 of Appendix A.3. O

Lemma 4.28. We have
(a) v}s’ls = 81,

(b) vi>" = 88,

(¢ vib?' =105.

Proof. (a) By using a similar argument as used for the case v}7’17 # 75, it can be shown that vis’lg + 82.The

construction of a 18 x 18 almost-bi-regular matrix with 81 ones is shown in Figure 16 of Appendix A.3.
(b) If max(|C|) = 6, then
G19(6) =6+ 18 + F15(13) = 24 + 62 = 86.

If max(|C|) = 5, then
G19(5) =5+ 18 + F18(14) = 23 + 66 = 89.

If max(|C|) = 4, then the maximum number of ones cannot exceed 4x19 = 76. Now, we show that v}9’19 + 89.

If possible, then there exists a 19 x 19 almost-bi-regular matrix M with 89 ones. It can be easily shown
that then max(|C|) = max(|R|) = 5 and min(|C|) = min(|R|) = 4. In the matrix M, there will be exactly thirteen
rows and thirteen columns which contain five ones and remaining 6 rows and columns containing four ones.
To accommodate thirteen rows having five ones each, at least max(17, 20) = 20 columns (Theorem 4.17) are
required, a contradiction.

Hence we have v}9’19 # 89. The construction of a 19 x 19 almost-bi-regular matrix with 88 ones is shown
in Figure 16 of Appendix A.3.

(c) See Remark 3.10. O

Let g =1 or g be a power of a prime number. Now, we calculate v‘f’d when d = ¢? + g. Note than when
d = g% + q + 1, we get a BIBD structure such that vf’d =(q+1)d.

Theorem 4.29. Let d = q> + q, where q = 1 or q is a prime power. Then
v‘f’d =(@>+q+1D(@+1)-2(q+1)+1=qg%*g+2).

Proof. Let g = 1. Then vf’z =3.

Suppose that g is a prime power. If max(|C|) = g + 2, then by elementary arithmetic, it can be proved that
Ggr+q(q +2) < (¢>+g+1)(g+1)-2(qg+1)+ 1. If max(|/C|) = g, then the maximum number of ones cannot
exceed g?(q + 1). Hence, to get v'lj’d > q%(q + 2), both max(|C|) and max(|R|) should be equal to g + 1. Now,
we show that if max(|C|) = g + 1, then v‘lj’d ¥ q%(q +2).

If possible, then there exists a d x d almost-bi-regular matrix M which contains g?(g + 2) + 1 ones. Since
max(|R|) = q + 1, there will be at least g> + 1 rows containing g + 1 ones. Then by Theorem 4.17, the number
of columns required to accommodate such rows will be at least g2 + g + 1, a contradiction.

Hence we have vf’d < q*(q + 2). Now, we show that v‘f’d =q*(q +2).Sinced + 1 = g% + q + 1, there exists
a (d+ 1) x (d + 1) almost-bi-regular matrix M containing g + 1 ones in each row and in each column. So,
M contains (g + 1)(d + 1) ones. Remove a column C; and a row Ry from M such that |C; ARkl =1 (such
a column and row will definitely exist). The remaining matrix will be a d x d almost-bi-regular matrix with
d+1)(@+1)-Q2(g+1)-1)=(qg>+qg+1)(g+1)-2(qg+1) + 1 ones. O

Corollary 4.30. We have v;>*° = 96.



DE GRUYTER K.C. Gupta, S. K. Pandey and I. G. Ray, MDS and BIBD =— 105

Dimension d x d vf’d Upper bound of Vf’d, i.e. Number of ones in the  For illustrations see
ldx 3(1+Vaxd-3)] construction using
(see Corollary 4.14) [12, Lemmas 1 and 3]
3x3 6 6 6  Figure2
4x 4 9 9 9  Figure 3
5x5 12 12 12  Figure3
6x6 16 16 15 Figure 3
7%x7 21 21 21  Figure3
8x8 24 24 24 Figure 4
9x%x9 29 30 24 Figure 14
10x 10 34 35 27  Figure 14
11x11 39 40 30 Figure 14
12x12 45 46 33  Figure 14
13x13 52 52 36 Figure 4
14 x 14 56 57 39 Figure 5
15x 15 61 64 42 Figure 5
16 x 16 67 70 45  Figure 17
17 x 17 74 77 48  Figure 17
18 x 18 81 83 51 Figure 16
19 x 19 88 90 54  Figure 16
20 x 20 96 97 57  Figure 15
21x21 105 105 60  Figure 15

Table 1. Efficient d x d almost-bi-regular matrices for d up to 21.

Proof. From Theorem 4.29, taking q = 22 = 4, we get vio,zo = 96. The construction of a 20 x 20 almost-bi-
regular matrix with 96 ones is shown in Figure 15 of Appendix A.3. O

Here, we close this section by summarizing the results of this section in Table 1 for d x d almost-bi-regular
matrices where d < 21. For 8 < d < 13, the values of v‘f’d are computed and the corresponding d x d almost-
bi-regular matrices are given in Appendix A.2.For 13 < d < 21, the d x d almost-bi-regular matrices are given
in Appendix A.3. For d < 8 and d = 13 the almost-bi-regular matrices are given in Figure 2, Figure 3 and
Figure 4.

5 Some results on ¢; (M) where M is a bi-regular matrix having
maximum number of ones

In Section 4, we have constructed d x d almost-bi-regular matrices M with v‘f’d ones. So, next we try to fill the
remaining blank positions of these almost-bi-regular matrices M with minimum number of distinct elements
other than 1 and O (i.e. with minimum ¢ (M)) in such a way that the bi-regular property is maintained. We
denote these d x d bi-regular matrices by My. In Lemma 5.1, we provide a tight lower bound of ¢, (M) for

d x d bi-regular matrices My, where v1(My) = vf’d and d = ¢ + q + 1, where q is any prime power.

Lemma 5.1. Let d = g% + q + 1, where q is any prime power. Also, let M4 be a d x d bi-regular matrix having

v‘f’d ones. Then c1(My) > g2

Proof. Let M4 = ((m; j)) be the d x d almost-bi-regular matrix having v‘f’d =(q+1)x(g?+q+1) ones and
also let the corresponding design be (X, A), where X = {xo, ..., Xg2.g} and A = {Ao, ..., Ag14}. S0, (X, A) is
a(g>+q+1,q°+q+1,q+1,q+1,1)-BIBD and let My be its derived-incidence matrix.

Each row and column of the matrix M4 contains (g + 1) ones. So in each row and column there are
(g> +q+1) - (g +1) = g% blank positions. Let, if possible, c1(Mg) < g2. So, in all rows and columns, some
element (apart from 1) will occur more than once.
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Let in the j-th column, the i;-th and i,-th blank positions be filled by some element a. Let the i;-th and
i,-th rows correspond to the elements x;, and x;,, respectively. Since (X, A) is a BIBD, it follows that x;, and x;,
must occur simultaneously in any one of the blocks, say Ax. So m;, x = my, x = 1. Thus the 2 x 2 submatrix
formed by the i;-th and i,-th rows and j-th and k-th columns will be of the form ( % ) (up to the permutations
of columns) which is singular.

Similarly, let in the i-th row, two blank positions, say j; and j,, be filled with a. From Lemma 2.15, any pair
of blocks contain exactly one element. So, A;, and A;, must contain some element, say x;. So, my;, = myj, = 1.
Thus the 2 x 2 submatrix formed by the i-th and I-th rows and j; -th and j,-th columns will be of the form (} }
(up to the permutations of rows) which is singular. Thus, the minimum number of distinct elements cannot
be less than ¢>. O

In the next lemma, we propose good upper bounds of ¢, (M) for d x d matrices M, ford = 3, 4,5,6,7,8,13,
where vi(My) = v‘f’d, and using these matrices, we construct d x d MDS matrices M in Section 6 fordupto 7.

For d = 8, 8 x 8 almost-bi-regular matrices with v3"® ones can be constructed starting from a derived-
incidence matrix of (13, 13, 4, 4, 1)-BIBD as discussed in Lemma 4.20, but bi-regular matrices formed from
these almost-bi-regular matrices may not finally become MDS. We tried to construct MDS matrix starting from
such a matrix Mg(eg, €1, €2, e3, e4) as given in Figure 8, but no such MDS matrices were found for any choices
of elements e; (also see Remark 6.1). At the end of this section, we construct 8 x 8 MDS matrices with v?’g
ones using Latin squares.

Lemma 5.2. Ford x d bi-regular matrices My4,d = 2,3,4,5,6,7, 8, 13,havingv‘f’d ones, we have c1(M;) = 1,
c1(M3) =1, c1(My) <2, c1(Ms) < 3, c1(Mg) < 4, c1(M7) = 4, c1(Mg) < 5 and c¢1(M13) = 9.

Proof. The matrix M3 is constructed from the derived-incidence matrix of (3, 3, 2, 2, 1)-BIBD, and note that
c1(M3) =1 and c¢1(M;) = 1 is evident from Figure 6. The matrix M7 corresponds to the derived-incidence
matrix of (7, 7, 3, 3, 1)-BIBD and from Lemma 5.1, c1(M7) > 4. From the 7 x 7 bi-regular matrix of Figure 7,
itis evident that c;(M7) = 4. That ¢1(Mg) < 4, ¢1(Ms) < 3 and ¢1(M,) < 2 is evident from Figure 7. The matrix
M3 corresponds to the derived-incidence matrix of (13, 13, 4, 4, 1)-BIBD and from Lemma 5.1, ¢;(M13) > 9.
From the 13 x 13 bi-regular matrix of Figure 8, it is evident that c;(M;3) = 9. From Figure 8, it is clear that

Cl(Mg) <5. O
1 1 |e
0 1)1
M3 = 1 eo 1 > M2 =
1| eo
ep | 1

Figure 6. Examples of d x d bi-regular matrices My, d = 3, 2, having maximum number of ones with c;(M3) = 1, ¢c;(M3) = 1.

Construction of bi-regular matrices from Latin squares. We observe an interesting connection between Latin
squares and bi-regular matrices, which may give an easy method to construct efficient d x d MDS matrices
whenever v‘f’d is a multiple of d. We construct such efficient MDS matrices for d = 3 and 8. It may be noted
that in both the cases v‘f’d is multiple of d.

A Latin square of order d with entries from a d-set X is a d x d matrix Ly in which every cell contains an
element of X such that every row of L, is a permutation of X and every column of L4 is a permutation of X.
In our construction, X is a subset of F,x. In the following lemma, we study an important property of Latin
square which is crucial in the construction of bi-regular matrix.

Lemma 5.3. All Latin squares of order d with entries from a d-set X c F» will be bi-regular matrices if and only
ifa’? #+ bcand ab + cd forany a, b, c,d € X.

Proof. Let Ly bead x d matrix which is some Latin square with entries from a d-set X c Fo» such that a® + bc
and ab + cd for all a, b, c, d € X. It may be noted that for any such matrix L4, the determinants of all 2 x 2
submatrices are of the form (a? + b?), (a® + bc)and (ab + cd), wherea, b, c, d € X. Since all elements of X are
distinct, a®> # b? and in characteristic 2, a® + b? # 0 for any two a, b € X. Similarly from the given conditions,
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es3 | e | e1 1 1 [25)
ey | e3 1 €o | e1 1
er | ey | 1 1 1 |e3| e s
eoler | 1 |e|e3| 1

M;7(eo, e1, e2,e3) =

e1 1 e | e3 1 €o

es 1 €1 1 [=5) 1 €o
es3 | ey | e1 1 1 %)
er | es3 1 €o | e1 1
€eo 1 1 1 es3 | e1
epr| 1 |e|es| 1

Me(eo, e1,e2,€3) =

e | e3 1 €o
e1 1 e 1 €o

eo | e1 1 1 e
e 1 €o | e1 1
1 1 1 |ey| e ,

Ms(eo, e1,e;) =

S~ =

€o | €2 1
e | e 1 e
€o 1 1 e1
1 €1 | €eo
My(eo, e1) = T e 1
0
e1 1 €o

Figure 7. Examples of d x d bi-regular matrices having maximum number of ones for d = 7, 6, 5, 4 with ¢c;(My) = 2, c1(Ms) = 3,
C1(M6) =4 and C1(M7) = 4.

1| 1|1 egler|ex|es|esles|eq|er|es

eslezleg| 1|1 |1 |epg|er|ex|es|es|es
eslesleslegler|leg| 1|11 |ey|er|er
epler|exles|es|es|eglerleg| 1 1 1
er| 1 |es|les| 1 |es|eg| 1 |egler| 1 |eg]|er
eo| 1 |es|egles| 1 |esles| 1 |es|er|er| 1

IS

Mis(eo, e1, e, e3, ey, €5, e, €7, €3) = er| 1 ]eo|es|exleg| 1 |er|es| 1 |es| 1 es ,

ezler| 1 |eg| 1 |ex|es|es| 1 |eg|es| 1 |ey
egsles| 1 |es|ler| 1]egles|ex| 1|1 |eg|es
es|ey| 1 |ej|les|leg| 1|1 es|leg|er|es]| 1
esles|exy| 1 |e;| 1]er| 1 |egles|es| 1 |eo
eslerles| 1 |1 |es|esler|eg| 1|exles| 1

e,legleg| 1 |es|ep| 1 jex|1|er| 1 ]|es]|ey

epler|lerles| 1 1 1 |ey4
esles| 1 lexles| 1 |eg]er
e3 | ey | e1 1|egler| 1
eolesler|ex| 1 |es
es| 1 legler|es| 1 |en

Mg(eo, e1, ez, €3, €4) =

erlep| 1 1|e|ey es
(5] 1 1 ey 1 e3 | e1 1
e1| 1les| 1 |es| 1 |ex]eo

Figure 8. Examples of d x d bi-regular matrices having maximum number of ones for d = 13 and 8 with ¢;(M13) = 9 and
c1(Mg) < 5.
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we have a2 + bc £ 0and ab + cd # O for a, b, c, d € X. Thus all 2 x 2 submatrices are nonsingular. So Lg is
bi-regular. The reverse direction of the proof is immediate. O

Let L4 be a Latin square of order d with elements from a d-set X ¢ IF,» satisfying the conditions of Lemma 5.3.
So, L, is a bi-regular matrix. Note that if 1 € X, then v,(L4) = d. Our target is to increase the number of ones
and reduce the number of other distinct elements in Ly without disturbing the bi-regular property of Lg.
It may be noted that if for some a, b € X, there exists no 2 x 2 submatrix of L having determinant a? + b?,
then we may replace both a and b by 1 provided determinants of these 2 x 2 submatrices of L4 involving a or
b or both remains nonzero after these replacements. It is easy to observe that if [v‘f’d /d] = t, then by replacing
t' < t suitable elements of Ly by 1, we may construct a bi-regular matrix Ly such that vi(Lg) =t/ xd < t x d
provided the determinants of 2 x 2 submatrices of L, involving these t' elements remains nonzero after these
replacements.

Note that if v‘f’d is not a multiple of d, then the bi-regular matrix with vf’d ones cannot be constructed
using some Latin square Ly as described above, but in such cases c1(Lg) may be reduced to the minimum
value. For example, let us consider the 4 x 4 Latin square L4 of Figure 9.

Also t = [v?’4/4j =19/4] = 2. Now by setting c =d =1 in Figure 9, we construct a 4 x 4 bi-regular
matrix L, with vi(L4) = 2 x 4 = 8 (see Figure 10). In this case c¢1(L4) = 2 which is minimum.

(Sl N ISV IS
O[T
Q|0
QT 0| X

Figure 9. A 4 x 4 Latin square.

SR~
==
R
QIS ==

Figure 10. A 4 x 4 bi-regular matrix with eight ones but minimum number of other distinct elements.

Remark 5.4. In the diffusion layer of AES [5], i.e. in the mixcolumn operation, a 4 x 4 circulant MDS matrix
Circ(02y4, 03y, 01y, 01,) over IFs is used. This matrix can be constructed from Figure 10 by setting a = 024
and b = 03,.

If v‘f’d is a multiple of d, say t x d, then a d x d bi-regular matrix with v‘f’d ones may be designed by setting ¢
out of d elements to 1. Let us consider the 3 x 3 and 8 x 8 Latin squares of Figure 11.

We know that vi’3 =6 =2 x 3. Now by settinga = b = 1, we construct a 3 x 3 bi-regular matrix with max-
imum number of ones and minimum number of other elements (see Figure 12) and we denote this matrix

alb|cl|d|e|f|gl|h
hla|b|c|d|e|f|g
gl h|la|b|c|d|e|f
a?; flglh|la|b|c|d]|e
cab, e|flg|h|la|b|c|da
die|flg|h|la|b|c
cld|le|fl|lg|lh|al|b
bicl|d|e|f|g|h|a

Figure 11. A 3 x 3 and an 8 x 8 Latin square.
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1|1|c|1l]e|f|gl|h

hi1|1|c|1|e|f|g

1 glh|1l|1|c|1|e]|f

L= TTcl1 |, Lecefam=| LL18Ih[1[1]cll]e
B e|flg|lh|1l|1]|c|1
l1|le|flg|lh|1]|1l]|cC

cll|e|flg|lh|1]|1

l|c|1|e|f|g|h|1

Figure 12. A 3 x 3 and an 8 x 8 bi-regular matrix with maximum number of ones.

[ IV~ I oW [V, 0 I Y Y
Q||| ol
[ I = I~V IR R IR ) o
Q|0 | SN
QAo [N |0
Q=0 || ol
Ol o |||
S0 | Q|||

f

Figure 13. An 8 x 8 Latin square where one element can be set to be 1 without disturbing the bi-regular property.

by L3(c). It is easy to verify that in Fo» (n > 2), the matrix L3(c) of Figure 12 becomes MDS for all values of ¢
other that O and 1.

Similarly by setting a = b = d = 1 in the 8 x 8 matrix, we can construct an 8 x 8 bi-regular matrix with
vf’g = 3 x 8 = 24 ones and five other elements (see Figure 12) and we denote this matrix by Lg(c, e, f, g, h).
In IF,s, represented by the irreducible polynomial x® + x* + x3 + x? + 1, if we take ¢ = 02y, e = O4y, f = 06,

and g = h = 03y, then the 8 x 8 matrix Lg(02y, 044, 064, 03y, 03,) of Figure 12 becomes MDS.

Remark 5.5. The 8 x 8 matrix of Figure 12 is a circulant matrix. With judicious choices of elements, the
8 x 8 bi-regular matrix of Figure 12 can be converted to a circulant MDS matrix. Note that, using techniques
of [3, 11, 21], a similar kind of circulant MDS matrices can be constructed.

Note that, using this technique, it may not be possible to convert any d x d Latin square into a d x d bi-regular
matrix with maximum number of ones (see Figure 13). It is easy to observe that in the 8 x 8 Latin square of
Figure 13, if more than one element is set to 1, then the bi-regular property will be disturbed. So, in this case,
this Latin square can be converted into a bi-regular matrix with maximum eight number of ones.

6 Efficient MDS matrices

In this section, we propose d x d MDS matrices for d up to 8 from bi-regular matrices designed in Section 5.
In Table 2, we present some d x d MDS matrices over IF,s for d up to 8 having v‘f’d ones. Also, any matrix
of Table 2 can be implemented with less number of multiplication tables which may be advantageous for
a system where constraints on processor are more than that on memory. Although all matrices M, of Table 2
are efficient, their inverses may not be efficient. So implementing these matrices for Lai-Massey networks or
hash functions may be suitable.

Remark 6.1. We exhaustively searched for 8 x 8 MDS matrices of the form Mg(eg, e1, €2, e3, e4) (see Fig-
ure 8) over IF,s, but no MDS matrix of this form is found. It may be noted that in [12], an 8 x 8 almost-bi-
regular matrix with maximum number of ones similar to the 8 x 8 matrix of Figure 4 was proposed, but no
MDS matrix based on that form was reported. In Figure 12 of Section 5, we have constructed 8 x 8 bi-regular
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Dimensiond xd  MDS matrices Cost of implementations For illustrations see
3x3 M3(02) 6 XORs, 3 table lookups and 4 temp Figure 6
44 M4 (034, 04y) 12 XORs, 7 table lookups and 4 temps Figure 7
M4(024, 05x) 12 XORs, 7 table lookups and 6 temps Figure 7
5x5 Ms5(02y, 034, 09y) 20 XORs, 13 table lookups and 8 temps Figure 7
Ms5(02,, 03, 08y) 20 XORs, 13 table lookups and 8 temps Figure 7
6x6 Mg (034, 094, 0ay, Oey) 30 XORs, 20 table lookups and 10 temps  Figure 7
Mg (054, 064, Oex, Ofx) 30 XORs, 20 table lookups and 10 temps  Figure 7
7%x7 M7(03x, 094, Oay, Oey) 42 XORs, 28 table lookups and 11 temps ~ Figure 7
M7 (054, 064, 0ex, Ofx) 42 XORs, 28 table lookups and 11 temps ~ Figure 7
8x8 Lg(024, 044, 064,034,03x) 56 XORs, 40 table lookups and 11 temps  Figure 12

Table 2. The d x d circulant MDS matrices over IF,s with generating polynomial x® + x” + x® + x> + x* + x> + 1 for
d =3,4,5, 6,7 and with generating polynomial x® + x* + x3 + x> + 1 for d = 8.

matrices with maximum number of ones and five distinct elements from the 8 x 8 Latin square of Figure 11.
With this construction, MDS matrices can be formed (see Remark 5.5). For similar kind of constructions also,
see [11].

Remark 6.2. The matrix M;(03y, 09y, Oay, Oey) of Table 2 is implemented in Appendix A.1. The idea of this
implementation is taken from [5]. The other matrices of Table 2 and Table 3 can be implemented similarly.
6.1 Comparison with other existing matrices

In the following table (Table 3), we compare the cost of implementations of few of our proposed matrices and
some existing matrices which are used in several ciphers and hash functions.

Cost of implementation

Dimension Type Matrix #XOR #table #table-lookup #temp Comments
bx4 My M4 (03, 0by) 12 2 7 6 Table 2
circulant Circ(024, 034, 01, 01y) 12 2 8 6 see[5]
recursive  Serial(1, a, 1, a?)% 12 2 8 6 see 8]
companion Serial(1,a,1,1 + a)* 12 2 8 6 see10, 18]
Serial(a, 1,1, a?)* 12 2 8 6 see[10,25]
5x5 Ms Ms(024, 034, 09) 20 3 13 8 Table 2
circulant Circ(01y, 01y, 024, 03, 02,) 20 2 15 8 see[11]
6%x6 Mg Mg(03x, 094, Oay, Oey) 30 4 20 10 Table 2
circulant Circ(01, 01, 024, 034, 054, 07) 30 4 24 10 see[11]
7x7 M7 M7(03x, 094, Oay, Oex) 42 4 28 11 Table2
circulant Circ(01x, 01, 024, 01, 054, 044, 06x) 42 4 28 11 see[11]
8x8 Lg Lg(02, 044, 064, 03, 03) 56 4 40 11 Figure 12
circulant  Circ(01y, 014, 0251, 01y, 0451, 0651, 035%,0351) 56 4 40 11 see[11]

Table 3. Comparison between some good matrices of this paper and some other matrices.

7 Conclusion

MDS matrices provide optimal diffusion components which can be used as building blocks of cryptographic
primitives, like block ciphers and hash functions. Multiplication by 1 over the finite field is trivial and so
matrices with more occurrences of ones may have more compact and improved footprint which is desir-
able for lightweight applications. Also, matrices with less number of other distinct elements may be imple-
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mented efficiently using table lookup. Towards this, two combinatorial problems were studied by Junod and
Vaudenay in [12], namely, how to maximize the number of ones and how to minimize other distinct elements
in a bi-regular matrix. They calculated the maximum number of ones that can occur in d x d MDS matrices
for d up to 8. They also computed some important bounds on the number of distinct elements in d x d MDS
matrices. But for higher values of d, using their techniques seems difficult.

We have observed simple yet subtle interconnections between the number of ones in MDS matrices and
the incidence matrices of Balanced Incomplete Block Design (BIBD). This observation gives a generalize tech-
nique to solve these combinatorial problems for any values of d for all practical purpose. We have exactly
computed the maximum number of ones in a v x b MDS matrix whenever there exists (v, b, r, k, 1)-BIBD.
We have computed the upper bound of v‘{’b for any value of v and b. Using these results, in this paper we
have provided d x d almost-bi-regular matrices M for d up to 21 having maximum number of ones. Tech-
niques used in this paper can be extended for higher values of d. We also compute the minimum number
of distinct elements for these d x d bi-regular matrices having v‘f’d ones, where d = ¢? + ¢ + 1 and q is any
prime power.

We have proposed another technique to construct bi-regular matrices and MDS matrices using Latin
squares. We have shown that using the structure of Latin squares, bi-regular matrices and MDS matrices can
be constructed by judicial selection of elements. Although this is a very easy method, yet this method does
not guarantee the maximum occurrences of ones in all cases. We have shown that if v‘f’d is a multiple of 4,
then our method may be useful to construct d x d bi-regular matrices with maximum number of ones. From
bi-regular matrices, finally we have constructed efficient d x d MDS matrices for d up to 8.

A Apendix

A.1. We provide an implementation of the matrix M7(03y, 09y, Oay, Oey) proposed in Table 2. This imple-
mentation requires 42 XORs, 11 temporary variables and 28 table lookups in four multiplication tables, say,
tab_03, tab_09, tab_0a, and tab_0e corresponding to the multiplication by 03, 09y, Oa, and Oey, respec-
tively.

u0 =al0]; ul = a[1]; u2 = al2]; u3 = a[3]; u4 = al4]; us = a[5]; ué = a[6];

/* ais the input vector */

u = tab_03[a[3]]; v = tab_09[a[4]], w = tab_0ala[5]]; x = tab_0e[a[6]];

al0]=u0euleu2eusevewesx;

u = tab_03[a[2]]; v = tab_09[a[3]], w = tab_0a[a[6]]; x = tab_0e[a[1]];

a[l]=u0eousouseuevewex;

u = tab_03[a[4]]; v = tab_09[a[5]], w = tab_0Oa[a[1]]; x = tab_0e[a[2]];

a2]=u0ouldeubeueovewex;

u = tab_03[a[1]]; v = tab_09[a[6]], w = tab_0a[a[0]]; x = tab_0e[a[5]];

a3l=u2euloubeoueveowex;

u = tab_03[a[0]]; v = tab_09[a[1]], w = tab_0a[a[3]]; x = tab_0e[a[4]];

al4l=u2eusoubouevewex;

u = tab_03[a[5]]; v = tab_09[a[0]], w = tab_0a[a[2]]; x = tab_0e[a[3]];

a5]=uleou4soubouevewex;

u = tab_03[a[6]]; v = tab_09[a[2]], w = tab_0ala[4]]; x = tab_0e[a[0]];

al6]=uleuldeouseuevewex;

A.2. From Corollary 3.9, V}B ‘13~ 52. Let us consider the derived-incidence matrix of (13,13, 4, 4,1)-BIBDin
Figure 4 having v}3 13 ones. By elimination of suitable rows and columns from this matrix so that the mini-
mum number of occurrences of 1 is canceled, we form d x d matrices ford = 12,11, 10 and 9. For d = 8 the
corresponding matrix is given in Figure 4.
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1
My, = 1 ,

My = 1 1 1 ,

1 1
Mo = ,
10 1

1 1

Figure 14. Examples of d x d almost-bi-regular matrices My, d = 12,11, 10, 9, with v;(My) = vf‘d = |d x 1x4d=3 *2“””3J -1.
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A.3. From Corollary 3.9, we have vil’n = 105. Let us consider the derived-incidence matrix of projective

plane (222 422 41,22+1,1) ie. (21,21,5,5, 1)-BIBD in Figure 15 having vful ones. By elimination of
suitable rows and columns from this matrix so that the minimum number of occurrences of 1 is cancelled,
we form d x d matrices for d = 20, 19, 18,17, 16.

111111
1 11111
1 1 1|1 1
1 1 1|1 1
1 1|1 1
1 1 1|1
1 1 1 1 1
1 1 1|1 1
1 1 1 1
1 1 1 1 1
My = 1 1 1 1|1 ,
1 1 1 1 1
1 1 1 1
1 1 1|1
1 1 1 1 1
1 1 1 1|1
1 1 1 1
1|1 1 1
1 1 1 1 1
1 1 11 1
1 1|1 1 1
11111
1 11 1
1 1|1 1
11 1
1 1 1|1
1 1 1 1 1
1 1 1|1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1|1
Mzo = 1 1 1 1 1
1 1 1 1 1
1 1 1 111
1 1 1 1 1
1 1 1 1|1
1 1 1 1
1|1 1 1
1 1 1 1 1
1 1 11 1
1 11 1 1
Figure 15. Examples of d x d almost-bi-regular matrices My, d = 21, 20, with v;(M2q) = vfl‘n =105 and

vi(Mag) = v2%%° = 96.



114 — K.C.Gupta, S.K.Pandey and I. G. Ray, MDS and BIBD DE GRUYTER

Mo =

[ S S SN

=R ==
—_
=y
[
—_

S N =
—_
—_
[uny
(=Y

Mg =

[ S NS

1
1
1
1 11 1 1

18,18 _ 81.

v}g’lg =88and vi(Myg) = v;

Figure 16. Examples of d x d almost-bi-regular matrices My, d = 19, 18, with v4(M19) =
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1 1
1)1 1
1 1
1
1 1)1 1
1 1 1
1
1 1 1
M7 = 1 1 >
1 1)1
1 1 1
1 1 11
1 1
1 1 1
1 1 1
1 1 1
1 1 1 1
1 1
1)1 1
1 1
1 1
1 1
1 1 1 1
1 1 1)1
1 1
M = 1 1
1 1 1
1 1)1
1
1 1 1
11 1
1 1
1 1)1 1 1

Figure 17. Examples of d x d almost-bi-regular matrices My, d = 17, 16, with v;(M17) = vi7‘17 =74and vi(Mqg) = v}6’16 = 67.
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