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Abstract: A family of ring-based cryptosystems, including the multilinear maps of Garg, Gentry and Halevi
[Candidatemultilinearmaps from ideal lattices, in:Advances inCryptology—EUROCRYPT2013, LectureNotes
in Comput. Sci. 7881, Springer, Heidelberg (2013), 1–17] and the fully homomorphic encryption scheme of
Smart and Vercauteren [Fully homomorphic encryption with relatively small key and ciphertext sizes, in:
Public Key Cryptography—PKC 2010, Lecture Notes in Comput. Sci. 6056, Springer, Berlin (2010), 420–443],
are based on the hardness of finding a short generator of a principal ideal (short-PIP) in a number field
typically in ℚ(ζ2s ). In this paper, we present a polynomial-time quantum algorithm for recovering a gen-
erator of a principal ideal in ℚ(ζ2s ), and we recall how this can be used to attack the schemes relying on
the short-PIP in ℚ(ζ2s ) by using the work of Cramer et al. [R. Cramer, L. Ducas, C. Peikert and O. Regev,
Recovering short generators of principal ideals in cyclotomic rings, IACR Cryptology ePrint Archive (2015),
https://eprint.iacr.org/2015/313], which is derived from observations of Campbell, Groves and Shepherd
[SOLILOQUY, a cautionary tale]. We put this attack into perspective by reviewing earlier attempts at pro-
viding an efficient quantum algorithm for solving the PIP in ℚ(ζ2s ). The assumption that short-PIP is hard
was challenged by Campbell, Groves and Shepherd. They proposed an approach for solving short-PIP that
proceeds in two steps: first they sketched a quantum algorithm for finding an arbitrary generator (not neces-
sarily short) of the input principal ideal. Then they suggested that it is feasible to compute a short generator
efficiently from the generator in step 1. Cramer et al. validated step 2 of the approach by giving a detailed
analysis. In this paper, we focus on step 1, and we show that step 1 can run in quantum polynomial time if
we use an algorithm for the continuous hidden subgroup problem (HSP) due to Eisenträger et al. [K. Eisen-
träger, S. Hallgren, A. Kitaev and F. Song, A quantum algorithm for computing the unit group of an arbitrary
degree number field, in: Proceedings of the 2014 ACM Symposium on Theory of Computing—STOC’14, ACM,
New York (2014), 293–302].
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1 Introduction

A series of works describes cryptosystems relying on the hardness of finding a small generator of a princi-
pal ideal in the ring of integers of ℚ(ζ2s ). In particular, this problem allows to describe fully homomorphic
schemes, such as that of Smart and Vercauteren [18], or the multilinear maps of Garg, Gentry and Halevi [8].
Moreover, these schemes have been described as quantum safe in the absence of quantum attacks against
them. This potential for quantum safety was the main appeal to scientists from the Communications Elec-
tronics Security Group (CESG) for the development of SOLILOQUY, a cryptosystem relying on the hardness of
finding a short generator of a principal ideal.

Since then, the CESG has interrupted the SOLILOQUY program because there were indications that it
was not as quantum safe as they originally thought. Campbell, Groves and Shepherd [4] (referred to as CGS
hereafter) released an online draft explaining the design of SOLILOQUY and its apparent weaknesses. Most
notably, they observed experimentally that finding a short generator of an ideal in the ring of integers of
ℚ(ζ2s ) polynomially reduced to finding an arbitrary generator (which relates to the principal ideal problem).
This fact was rigorously proved by Cramer et al. [6] shortly thereafter.

The bottleneck of a key-recovery attack against schemes relying on the hardness of finding a short gen-
erator of a principal ideal is the resolution of the PIP. A classical subexponential algorithm was described by
Biasse and Fieker for this task [1, 2]. A quantum polynomial-time algorithm for solving the principal ideal
problem (PIP) in classes of number fields of fixed constant degree was described by Hallgren [11]. It consists
in reducing this problem to an instance of the hidden subgroup problem (HSP) inℝO(n), where n is the degree
of the field, and an efficient quantum algorithm solving the HSP instance. However, the complexity of both
computing the reduction and the quantumHSP algorithmdecay exponentiallywith the degree. These twodif-
ficultiesmake it challenging to extendHallgren’s algorithm to solvehigh-degreePIP. Thedraft of CGS sketches
a quantum algorithm for the PIP in high-degree number fields. As usual, it consists of two components:
(i) they reduce PIP to an instance of the HSP onℝO(n) that is different than the one in [11];
(ii) they outline a quantum algorithm for solving this HSP.
However, the draft contains no detailed analysis to justify either step, leaving the correctness and complexity
of their algorithm difficult to verify. The new reduction, component (i), does appear to be efficiently com-
putable, and hence resolves one of the difficulties. Nonetheless, their HSP algorithm, component (ii), does
not seem to supersede the quantum HSP algorithm by Hallgren in [11], and many experts suspect that it
would work efficiently for arbitrary (i.e., non-constant) n.

Contribution. In this paper, we give a closer look at the quantum PIP algorithm proposed by CGS. We intend
to distill the justified and valuable pieces out of it and try to extend them to obtain an algorithm that provably
works.

Indeed, we show that, combining a valid piece of the reduction, component (i), in CGS with techniques
and results from a recent work of Eisenträger et al. [7] (call it EHKS hereafter), one can compute a generator
of a principal ideal in ℚ(ζ2s ) in quantum polynomial time. Together with the reduction from short-PIP to
PIP of Cramer et al. [6], this yields a quantum polynomial-time attack against the FHE scheme of Smart and
Vercauteren [18] and the multilinear maps of Garg, Gentry and Halevi [8].

In the appendix, we also point out some potential obstructions of component (ii) (quantum HSP algo-
rithm) of CGS that renders it unlikely to be efficient, based on the state of the art in [11].

In a subsequentwork [3], an efficient quantumalgorithm is proposed that solves the general S-unit group
problem in arbitrary-degree number fields. The PIP problem in general fields is thus solved as well due to
simple reduction of computing PIP to finding a proper S-unit group problem.

Overview. Here we give an overview of what the CGS algorithm may fall short of and how to use the recent
work EHKS to extend some piece of the CGS algorithm into a correct algorithm for finding a generator of an
input ideal.

As is the case in both the constant-degree PIP algorithm by Hallgren [11] and the CGS algorithm, one
first reduces the PIP problem to an HSP instance and then uses a quantum algorithm to solve the HSP prob-
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lem efficiently. Roughly speaking, the HSP instance describes a function f : G → S for some group G (here
G = ℝO(n)) and set S such that there is a hidden discrete subgroup H ≤ G for which f is periodic over G and f
is injective on G/H (i.e., f(x) = f(y) if and only if x ∈ y + H).

We then need to find H with access to f , which would further allow us to find a generator of the input
ideal from H. At the heart of the existing quantum HSP algorithm (e.g., [11]) is a quantum Fourier sampling
procedure, which essentially generates uniform samples from the Fourier transform of f . In the ideal case,
the Fourier transform of f will be peaked at elements of the dual group of H, from which we can recover H
efficiently.

However, in reality, one thing inevitable is to discretize the function on ℝO(n) (and truncate it within
a finite window) because computers (classical or quantum) are digital and have finite precision and memory
only. In effect, we end up with a discrete function ̃f : ℤO(n) → S, and its Fourier transform will become noisy.
Namely, a random sample there, by applying the quantum Fourier sampling procedure, is less likely to hit an
element in the dual of H. Therefore, to get enough clean samples, one has to repeat many times. By the best
known analysis [11], the number of repetitions grows exponentially in the dimension n. The quantum HSP
algorithm outlined in CGS does not go beyond Hallgren’s algorithm, and hence is unlikely to succeed within
polynomial time in n unless with improved analysis.

Instead, the recent work of EHKS proposes a conceptually new notion for HSP over continuous groups
such as ℝn (call it continuous HSP). The key distinction is enforcing a stringent continuity condition on the
function f . Specifically, they require f to be Lipschitz so that the change between f(x) and f(y) is bounded by
some constant factor of the change between inputs x and y. This additional property ensures that, once we
discretize it, its Fourier transform is still concentrated on the dual of H. EHKS then gives a modified quantum
Fourier sampling procedure to generate samples from the dual ofH (with good approximation) and recoverH
efficiently. There is also a conceptually novel ingredient in their modified quantum Fourier sampling, which,
informally speaking, enables sampling the discrete-time Fourier transform (i.e., over ℤ) of the discretized
function rather than its discrete Fourier transform (i.e., overℤN). This facilitates the analysis and makes the
HSP solvable in polynomial time. In the EHKS paper, they showcase the power of this new framework by
reducing the problem of computing the unit group of a number field to this continuous HSP on ℝO(n), and
hence solve the unit group problem efficiently. The reduction generates a function f = fq ∘ fc that hides the
unit group. The function f first computes a basis for a lattice fc(x), and then encodes the lattice into a quantum
state by a straddle encoding procedure fq.

A natural idea arises as whether we can recast the CGS reduction, component (i), in the continuous HSP
framework and solve it consequently. TheCGS reduction is actually similar to the one above for theunit group.
They propose a function fCGS = fq󸀠 ∘ F, where the classical part F computes a lattice from an input x ∈ ℝO(n),
and fq󸀠 outputs what they call a “quantum fingerprint” of the lattice F(x). While fCGS does hide a generator
of the input ideal as a subgroup in ℝO(n), the Lipschitz condition is not clear. Luckily, we notice that, by
composing F in CGS with the straddle encoding function fq in EHKS, it can be shown to be a valid instance of
the continuous HSP. This is possible by observing a nice connection between F and the fc function in EHKS,
and reusing many results in EHKS. Details are given in Section 5.

2 An (over-)simplified presentation of quantum computing

In this section,we try to convey the aspects of quantumcomputing that are relevant to the quantumalgorithm
described in [4] as well as to other quantum cryptanalysis algorithms without getting too technical. This is
achieved at the price of some simplifications. First of all, quantum computations occur on quantum states,
which are vectors of the form

|x⟩ = α0|0⟩ + α2|1⟩ + ⋅ ⋅ ⋅ + α2k−1|2k − 1⟩,

where values involved in this definitions are
∙ complex numbers αi such that∑i|αi|2 = 1,
∙ vectors |i⟩ of (ℂ2)⊗k, where |i⟩ is the i-th element of an orthonormal basis.
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The notation |x⟩|y⟩ denotes the tensor product of |x⟩ and |y⟩. A quantum algorithm can be viewed as a unitary
matrix U inℂ2k×2k acting on a state via |x⟩ 󳨃→ U|x⟩ (matrix-vector multiplication). A quantum state only gives
away information once it ismeasured (according to the chosen basis). This process returns the answer i with
probability |αi|2 and leaves the system in the state |i⟩. Therefore, whatever happens to the original state (for
example, |0⟩⊗k) has to lead to a state whose measurement yields the result of the algorithmwith good proba-
bility (typically a constant probability). More generally, when a state has the form |ψ⟩ = ∑i|ϕi⟩ ⊗ |γi⟩, where
the |ϕi⟩ are vectors of (ℂ2)⊗k1 such that∑i⟨ϕi , ϕi⟩ = 1 and the |γi⟩ are an orthonormal basis of (ℂ2)⊗k2 , then
measuring the second register yields the answer γi with probability ⟨ϕi , ϕi⟩ and leaves the system in the state

1
|⟨ϕi |ϕi⟩|ϕi ⊗ |γi⟩.

3 Mathematical background

Lattices. A lattice is a discrete additive subgroup of ℝm for some integer m. The first minimum of a lattice L
is defined by

λ1 := min
v⃗∈L\{0}
‖v⃗‖, where ‖v⃗‖ = √∑

i≤k
v2i is the Euclidean norm.

A basis of L is a set of linearly independent vectors b⃗1, . . . , b⃗k such that L = ℤb⃗1 + ⋅ ⋅ ⋅ + ℤb⃗k. The determi-
nant of L is det(L) = √det(B ⋅ BT), where B = (b⃗i)i≤k ∈ ℝk×m is the matrix of a basis of L. For a full dimen-
sional latticeL, the best upper bound we know on λ1(L) is in O(√k det(L)1/k). The dualL∗ of the latticeL is
the lattice of vectors v⃗ ofℝm such that u⃗ ⋅ v⃗ ∈ ℤ for all u⃗ ∈ L.

Number fields. A number field K is a finite extension of ℚ. Its ring of integers O has the structure of
aℤ-lattice of degree n = [K : ℚ]. A number field has r1 ≤ n real embeddings (σi)i≤r1 and 2r2 complex embed-
dings (σi)r1<i≤2r2 (coming as r2 pairs of conjugates). The field K is isomorphic to O ⊗ ℚ. We can embed
K in Kℝ := K ⊗ ℝ ≃ ℝr1 × ℂr2 and extend the σi’s to Kℝ. Let T2 be the Hermitian form on Kℝ defined by
T2(x, x󸀠) := ∑i σi(x)σi(x󸀠), and let ‖x‖ := √T2(x, x) be the corresponding L2-norm. The (algebraic) norm of
an element x ∈ K is defined byN(x) = ∏i σi(x). Let (αi)i≤d such that O = ⨁i ℤωi; then the discriminant of K
is given by ∆ = det2(T2(αi , αj)). The volume of the fundamental domain is √|∆|, and the size of the input of
algorithms working on an integral basis of O is in O(log(|∆|)).

Cyclotomic fields. A cyclotomic field is an extension ofℚ of the form K = ℚ(ζN), where ζN = e2iπ/N is a prim-
itive N-th root of unity. The ring of integersO of K isℤ[X]/(ΦN(X)) = ℤ[ζN], where ΦN is the N-th cyclotomic
polynomial. When N is a power of two, ΦN(X) = XN/2 + 1, and when N = ps is a power of p > 2, we have
ΦN(X) = Xp

e−1(p−1) + Xpe−1(p−2) + ⋅ ⋅ ⋅ + 1 (which generalizes the case p = 2). Elements a ∈ ℤ[ζN] are residues
of polynomials in ℤ[X] modulo ΦN(X) and can be identified with their coefficient vectors a⃗ ∈ ℤϕ(N), where
ϕ(N) is the Euler totient of N (and the degree of ΦN(X)). When N = ps for p a prime, the degree of K satisfies
[K : ℚ] = (p − 1)ps−1 and ∆ = ±pps−1(ps−s−1); therefore log(|∆|) ∼ n log(n), and we can express the complexity
of our algorithms in terms of n (a choice we made in this paper).

Fractional ideals in K . Elements of the form I
d , where I ⊆ O is an (integral) ideal of the ring of integers of K

and d > 0, are called fractional ideals. They have the structure of a ℤ-lattice of degree n = [K;ℚ], and they
form amultiplicative group I. Elements of I admit a unique decomposition as a power product of prime ideals
ofO (with possibly negative exponents). The normof integral ideals is given byN(I) := [O : I], which extends
to fractional ideals by N(I/J) := N(I)/N(J). The norm of a principal (fractional) ideal agrees with the norm
of its generatorN(xO) = |N(x)|.

Units ofO. Elements u ∈ O that are invertible inO are called units. Equivalently, they are the elements u ∈ O
such that (u)O = O and also such that N(u) = ±1. The unit group of O, where K is a cyclotomic field, has
rank r = n2 − 1 and has the form O∗ = μ × ⟨ϵ1⟩ × ⋅ ⋅ ⋅ × ⟨ϵr⟩, where μ are roots of unity (torsion units) and the
ϵi are non-torsion units. Such (ϵi)i≤r are called a system of fundamental units of O. Units generate a lat-
tice L of rank r in ℝr+1 via the embedding x ∈ K 󳨃→ Log(x) := (ln(|σ1(x)|), . . . , ln(|σr+1(x)|)), where the com-
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plex embeddings (σi)i≤n are ordered such that the first r = n2 ones are not conjugates of each other. When
K = ℚ(ζps ), logarithm vectors of units of the form

uj =
ζ jps − 1
ζps − 1

for j ∈ ℤ∗ps

(the cyclotomic units) generate a sublattice of L of index h+(ps), where h+(Nps) is the class number of the
maximal real subfield ofℚ(ζps ) [19, Lemma 8.1].

Conjecture 3.1 (Weber class number problem). For all s ∈ ℤ>0, we have h+(2s) = 1.

The hidden subgroup problem. The problem of factoring an RSA integer reduces to an instance of the so-
called hidden subgroup problem (HSP).

Definition 3.2 (Hidden subgroup problem overℤ). Given f : ℤ 󳨃→ X for a finite set X such that there exists
a subgroup H ≤ ℤ with

f(x + g) = f(x) for all x ∈ ℤ if and only if g ∈ H,

the hidden subgroup problem is the task of finding H given oracle access to f . This means finding r such that
H = rℤ.

Wewant to factor an RSA integerN = pq. Let a be coprimewithN (if a | N, the factorization problem is solved)
and

ℤ
f
→ ℤ/Nℤ,

x → ax mod N.

A solution to the HSP with f yields r, the order of a mod N, and if a is a square, we get

(ar/2 − 1)(ar/2 + 1) = 0 mod N.

This means that N | (ar/2 − 1)(ar/2 + 1), and gcd(N, ar/2 − 1)may yield a non-trivial factor of N. A generaliza-
tion of the HSP to ℤm allows us to solve the discrete logarithm problem in a finite group, and we can even
discretize ℝ to generalize the algorithms for efficiently solving the HSP to ℝm, where m is fixed. This allows
the computation of the class group, the unit group and the resolution of the PIP in classes of number fields
of fixed degree [11]. More details about these methods are given in the appendix.

4 The PIP quantum algorithm proposed by CGS

CGS proposed a quantum algorithm for solving the PIP in ℚ(ζ2s )+. They suggested to combine it with the
Gentry–Szydlo (classical) attack [9] to solve the PIP in ℚ(ζ2s ). They sketched this method in [4, Section 5],
but they did not provide any complexity analysis.

In this section, we review the PIP algorithm proposed in [4], and we illustrate the challenges that would
need to be overcome to turn this approach into a quantum polynomial-time algorithm. There are two main
steps to the approach of [4]:
(i) A reduction of the PIP in ℚ(ζ2s )+ to the search of the periods of a function from ℝn × ℤ to the lattices

inℝn, where n = deg(ℚ(ζ2s )+) (an analogue of the HSP).
(ii) The search for the periods of a function ℝn × ℤ with an algorithm similar to the HSP algorithm of Hall-

gren [11].
This means that CGS exhibited a function

f : G ⊆ ℝm → {lattices overℝn} → {quantum states}

for some subgroup G and m ∈ ℤ>0 such that f(x) = f(y) if and only if x = y mod Λ for a lattice Λ ⊆ ℝm whose
knowledge answers the original problem (the PIP in this case). Step (ii) consists in finding the periods of f in
a fashion similar to the resolution of the HSP.
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Reduction to the search for the periods of a function. Let K = ℚ(ζ2s ), n = deg(K+) and r = n − 1. Let α󸀠 ∈ K
be a totally positive generator (not necessarily small) of the input fractional ideal a in the totally real number
field K. In the context of the attacks against the short-PIP in K, we know that one of the generators of a arises
as the relative normNK/K+ (g) = gg of the secret key g. This relative norm is necessarily totally positive.

Let u1, . . . , ur be a generating set ofU+ ≃ ℤr, the totally positive units of the ring of integersO of K+. Then
every totally positive generator of the principal ideal a of K+ (includingNK/K+ (g)) is of the form α󸀠 ⋅ ux11 ⋅ ⋅ ⋅ u

xr
r .

Let β ∈ K; then β ⋅ O = a−k for some k ∈ ℤ if and only if Log(β) = ∑i xi Log(ui) − k Log(α󸀠) for some (xi)i≤r ∈ ℤr.
This means that the lattice Λα󸀠 ⊆ ℝn × ℤ defined by

Λα󸀠 := ℤ(Log(α󸀠), −1) + ℤ(Log(u1), 0) + ⋅ ⋅ ⋅ + ℤ(Log(ur), 0)

consists of all the pairs (Log(β), k), where k ∈ ℤ, β ∈ K and β ⋅ O = a−k. This includes elements of the form
(Log(a), −1), where a ∈ K+ is a totally positive generator of a. This means that a basis for Λα󸀠 yields a totally
positive generator of a.

We now describe a function on ℝn × ℤ whose periods are precisely Λα󸀠 . For k ∈ ℤ and v ∈ ℝn (not
necessarily corresponding to the valuations of an element in K+), let us denote by ev ⋅ ak the Euclid-
ean lattice generated by the elements of the form ev ⋅ a for a ∈ ak. Elements in K+ such as a ∈ ak corre-
spond to real vectors (σ1(a), . . . , σn(a)), and an element of the form ev ⋅ a is represented by the vector
(ev1σ1(a), . . . , evnσn(a)) ∈ ℝn. We define the function F : G → {lattices overℝn} by F(v, k) := evak. Then
F(v, k) = O if and only if ev is a generator of a−k, which is equivalent to (v, k) ∈ Λα󸀠 . Therefore, by linearity
of F, the periods of F are exactly Λα󸀠 .

As each element (v, k) of Λα󸀠 satisfies ∑i vi = −k log(N(a)), the search of the corresponding hidden sub-
group can be restricted to the control space

G = {(v, k) ∈ ℝn × ℤ such that ∑
i
vi = −k log(N(a))}.

The function F used by CGS is different from the one used by Hallgren in [11] to solve the PIP. In particular,
F can be evaluated in polynomial time even when the degree of K grows to infinity. This comes from the fact
that it is very similar to the function defined by EHKS to hide the unit group of a number field of arbitrary
degree, and the techniques they used to evaluate it in polynomial time readily apply.

Proposition 4.1. The function F can be evaluated in classical polynomial time.

Proof. This is immediate by application of the techniques of [7, Section 4]. The key observation is that we
can perform a square-and-multiply exponentiation on the ideal with LLL-reductions at each step.

The function F is then composed by a quantum encoding to identify the lattice evak. This task is non-trivial
since lattices are over ℝn where, unlike in ℤn, there is no canonical form such as the Hermite normal form.
This encoding of lattices is called the “quantum fingerprint”, and it gives the map

f : (v, k) ∈ G F
→ F(v, k)

fingerprint
󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀→ |ψv,k⟩.

The details of the procedure to create |ψv,k⟩ from (v, k) are given in [4, Sections 3.4 and 3.5]. It creates a state
of the form 1

Γ ∑x∈Cn∩L|x⟩, where
∙ x ∈ ℤn is the scaling of a rational approximation of a vector inℝn,
∙ L is the lattice F(v, k),
∙ Γ > 0 is a normalization factor,
∙ Cn is a bounded set such that En(ρ − ε) ∩ ℤn ⊆ Cn ⊆ En(ρ + ε) ∩ ℤn, where En(ρ) is an ellipsoid of

radius ρ.
CGS conjectured that the quantum encodings of almost identical lattices have inner product close to 1,
while the quantum encodings of essentially different lattices have inner product close to 0. The function f
“hides” Λα󸀠 in the sense that

f(v1, k1) = f(v2, k2) ⇐⇒ u := (v1, k1) − (v2, k2) ∈ Λα󸀠 .

Identifying Λα󸀠 from the periods of this map is an analogue of the HSP.
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Property Status

The function F hides a lattices that reveals a generator of the ideal. Proved
The function F can be evaluated in classical polynomial time. Proved
The quantum fingerprint satisfied the “fidelity” property. Open question
Assuming |ψx⟩ satisfies the “fidelity” property, step (iii) outputs good approximations of vectors in Λ∗α󸀠 . Open question

Table 1: Steps towards a proof of a polynomial run time of the PIP algorithm of [4].

Computing the periods of f . The method proposed by CGS for computing the periods of f relies on a similar
strategy as the HSP resolution algorithm used by Hallgren in [11] to solve the PIP in classes of number field
of fixed degree.
(i) Discretize and bound G, and then create the state

|ψ⟩ := 1
√M
∑
(v,k)∈G󸀠

|ψv,k⟩|(v, k)⟩.

(ii) Apply the quantum Fourier transform over G to the second register.
(iii) Measure (v, k), and check if we obtain a good approximation of an element in Λ∗α󸀠 .
(iv) Repeat steps (ii) and (iii) until a basis of good approximations of Λ∗α󸀠 is found.
(v) Find an approximation of a basis of Λα󸀠 from Λ∗α󸀠 with classical methods.
In step (i),M is the normalization factor depending on the radius and the precision of the bounded discretized
version G󸀠 of G. Table 1 highlights the main steps of the quantum algorithm of CGS and specifies those on
which we can rely to prove that there is a quantum attack against schemes relying on the short-PIP. In the
appendix, we use a method similar to [11] to analyze the behavior of CGS’s algorithm. This analysis implies
choices of parameters that were not specified by CGS. Therefore, we cannot formally establish the complexity
of the algorithm sketched in [4].

In the rest of the paper, we show how to use the quantum encoding proposed by EHKS to solve the HSP in
ℝO(m) instead of the quantum fingerprint of CGS. EHKS proved that their quantum encoding enjoyed certain
properties (one of them being similar to the “fidelity”) which allow us to solve the HSP in polynomial time.

5 A method based on the HSP algorithm of EHKS

In this section, we show how to find the periods of the function F defined in the previous section by using
the lattice encoding and the corresponding HSP quantum algorithm of EHKS. This allows us to compute in
quantum polynomial time a totally positive generator of an ideal a in a totally real number field K. Recent
work from EHKS developed a new framework for HSP in ℝm, which admits an efficient quantum algorithm
even for large values of m. They illustrated this by computing the unit group of a number field of arbitrary
degree in polynomial time. In this section, we show how to adapt it to calculate a totally positive generator
of a principal ideal given by itsℤ-basis. The algorithm described in [7] returns generators of a secret discrete
subgroup H of ℝm for an arbitrary m > 0 hidden in the periods of a function f : ℝm → {quantum states}.
Let G be a subgroup ofℝm containing H. EHKSshowed in [7, Theorem 6.1] how to recover generators of H in
polynomial time in the input if there is an efficiently computable function f satisfying the following properties
for G = ℝm:
(i) f is periodic on H, that is, f(x + u) = f(x) for all x ∈ G, u ∈ H;
(ii) f is Lipschitz for some constant a: ‖|f(x)⟩ − |f(y)⟩‖ ≤ a ⋅ dG(x, y) for all x, y ∈ G;
(iii) there are r, ε > 0 such that, for all x, y ∈ G, if dG/H(x, y) ≥ r, then |⟨f(x)|f(y)⟩| ≤ ε,
where dG(x, y) = ‖x − y‖ and dG/H(x, y) = infu∈H‖x − y − u‖ for the Euclidean norm ‖x‖.

To construct such a function, it is possible to start from a function defined on a subgroup G of ℝm.
As shown in [7, Section 6.1], if a function defined on G ⊆ ℝm hides H and satisfies conditions (ii) and (iii)
on all x, y ∈ G, it can be used to define a function on ℝm hiding (the embedding of) H and satisfying (ii)
and (iii). For simplicity, we use the following notation.
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Definition 5.1 ((a, r, ε)-oracle). Let G be a subgroup ofℝm and f a map G → {quantum states}. We say that f
is an (a, r, ε)-oracle on G if it satisfies conditions (ii) and (iii) for some (a, r, ε).

Our goal is to find an efficiently computable (a, r, ε)-oracle on G = ℝm that hides a subgroup H of ℝm which
reveals a generator of the input principal ideal. Then it can be used with the HSP algorithm of [7] to find
a totally positive generator of a principal ideal in a totally real field in polynomial time in n, log(|∆|), log(a),
log(1ε ) and r, where ∆ is the discriminant of the field.

5.1 Review of the HSP algorithm of EHKS

To compute the unit group, EHKS used a function of the form f(x) = |ex ⋅ O⟩, where ex ⋅ O is the lattice gener-
ated by the elements of the form ex ⋅ ωi for O = ∑i ℤωi. Such a function hides the unit group of the order O
because f(x + u) = f(x) if and only if eu ⋅ O = O, whichmeans that eu is a unit inO. It is derived from a function
fG : G ⊆ ℝm → {quantum states}, where G is a hyperplane containing H. They show that if fG is an (a, r, ε)-
oracle on G that hides H, then it can be extended to f : ℝm → {quantum states} satisfying (i), (ii) and (iii).
The first step of the description of a function hiding the unit group is to find a classical function fc on a cer-
tain hyperplane G; then we compose it with a quantum encoding fq, and finally, we extend fG = fq ∘ fc to
a function f onℝm that satisfies (i), (ii) and (iii).

Classical function The function F used by CGS is very similar to the classical oracle fc used in [7]. The latter
is defined by

G ⊆ ℝm
fc
󳨀→ {lattices inℝk},

v 󳨀→ ev ⋅ O.

Here G ⊆ ℝr1+r2 × (ℤ/2ℤ)r1 × (ℝ/ℤ)r2 is the hyperplane such that∑i≤r1+r2 vi = 0. In particular, it contains the
elements x of the number field K such thatN(x) = ±1 via the correspondence

x ↔ (log|σ1(x)|, . . . , log|σr1+r2 (x)|, sign(σ1(x)), . . . , sign(σr1 (x)), θ1, . . . , θr2),

where the θj are the phases of the complex embeddings σj(x). Then, for

v = (v1, . . . , vr1+r2 , δ1, . . . , δr1 , θ1, . . . , θr2 ),

we define the exponentiation

ev = ((−1)δ1ev1 , . . . , (−1)δr1 evr1 , e2iπθ1evr1+1 , . . . , e2iπθr2 evr1+r2 ) ∈ ℝr1 × ℂr2 .

This can be naturally embedded into ℝk for k = r1 + 2r2, and in the case of v corresponding to an x ∈ K,
we have ev = x. Multiplication in ℝk being considered component-wise, we have ev ⋅ O = O if and only if v
corresponds to a unit of O. This also implies that fc(v1) = fc(v2) if and only if v1 − v2 = u, where eu is a unit
of O.

The quantum encoding. The properties that fG = fq ∘ fc has to satisfy also depend on the quantum encoding
that was chosen, which is one of the important contributions of EHKS. Let gs( ⋅ ) be the Gaussian function
gs(x) := e−π‖x‖

2/s2 , x ∈ ℝk. For any set S ⊂ ℝk, denote gs(S) := ∑x∈S gs(x). Given a lattice L, the quantum
encoding fq maps L to the lattice Gaussian state via

{lattices overℝk}
fq
󳨀→ S (unit vectors in a Hilbert space),

L 󳨀→ |L⟩ := γ ∑
v∈L

gs(v)|strν,k(v)⟩,

where γ is a normalization factor. Here |strν,k(v)⟩ is the straddle encoding of a real-valued vector v ∈ ℝk, as
defined in [7]. Intuitively, we discretize the space ℝk by a grid νℤk, and we encode the information about v
by a superposition over all grid nodes surrounding v. Specifically, for the one-dimensional case, the straddle
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encoding of a real number is

x ∈ ℝ 󳨃→ |strν(x)⟩ := cos(
π
2 t) |j⟩ + sin(

π
2 t) |j + 1⟩,

where j := ⌊ xν ⌋ denotes the nearest grid point no bigger than x, and t := xν − j denotes the (scaled) offset.
Repeating this for each coordinate of v = (v1, . . . , vn), we get |strν,k(v)⟩ := ⨂n

i=1|strν(vi)⟩. To analyze our func-
tionhiding generators of a principal ideal a, we rely on the properties of the quantumencoding of the function
hiding the unit group of O.

An (a, r, ε)-oracle onℝn. Wewill only be concernedwith totally real fields, where r1 = n and r2 = 0, and only
positive units will be relevant for our purpose. We later restrict our discussion to this special case, which is
much simpler since we do not need to consider the complex coordinates. We use fℝ,c to denote the classical
part (instead of fc) to indicate this special case. Let fℝ,c be the classical oracle defined by

G
fℝ,c
󳨀→ {lattices inℝn},

v 󳨀→ ev ⋅ O.

Here G ⊆ ℝn is the hyperplane such that ∑i≤n vi = 0. In particular, an element x of the number field K such
thatN(x) = 1 leads to

x 󳨃→ (log|σ1(x)|, . . . , log|σn(x)|).

Then, for v = (v1, . . . , vn), we define the exponentiation ev = (ev1 , . . . , evn ) ∈ ℝn. Multiplication inℝn being
considered component-wise, we have ev ⋅ O = O if and only if v corresponds to a unit of O. This also implies
that fℝ,c(v1) = fℝ,c(v2) if and only if v1 − v2 = u, where u is a totally positive unit of O.

Proposition 5.2 ([7, Theorem 5.7]). fℝ := fq ∘ fℝ,c is an (a, r, ε)-oracle onℝn with

a =
√πns
4ν + 1, ε = 34 , r = log(1 + (s√n)n−12ν√n)

and grid parameters s = 22n√n|∆|, ν = 1
4n(s√n)2n , where ∆ is the discriminant of the field.

5.2 Computing a generator of a principal ideal in a totally real field

In this section, we assume that we are given the ℤ-basis of a principal ideal a of an order O in a totally real
field K of degree n. Moreover,we assume that ahas a totally positive generator.We show that there is a polyno-
mial time algorithm to compute (log|g|1, . . . , log|g|n), where g is a totally positive generator of a, n = deg(K)
and |g|i = |σi(g)| = σi(g) is the i-th Archimedean valuation of g. We reduce this problem to an instance of the
HSP, and we use the framework of EHKS. We start from the same classical oracle as the function F defined
by CGS which we compose with fq and extend to ℝn. The main observation that allows us to reuse the anal-
ysis of the oracle fℝ,c hiding the (totally positive) unit group in [7] is that F(v, j) = fℝ,c(v − jg), where eg is an
arbitrary (totally positive) generator of a. The classical function we use is the same as the one of CGS

G ⊆ ℝn × ℤ F
→ {lattices inℝn},

(v, j) → ev ⋅ O ⋅ a−j .

The function fq ∘ F can be then extended from G to ℝm while preserving the essential continuity properties
that allow us to reuse the framework of EHKSfor the resolution of the continuous HSP. The careful analysis
of the properties of fq ∘ F and that of its extension to ℝn lead to Proposition 5.5 which shows that there is
a polynomial-time algorithm to find the generator of a principal ideal in a number field.

A function hiding generators of a. The rest of the section is devoted to analyzing and extending fq ∘ F to
a function fa defined on ℝm that hides the lattice of the totally positive generators of a and satisfies the
HSP conditions (i), (ii) and (iii). The formal statement appears in Proposition 5.5, which is proven based on
a few intermediate steps (Propositions 5.3 and 5.4). Given fa, the quantumHSP algorithm of EHKS computes
a totally positive generator efficiently.
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We start off analyzing the properties of fq ∘ F.

Proposition 5.3. With the F and fq defined above, s = 22n√n|∆| and ν = 1
4n(s√n)2n , we have that fG := fq ∘ F is

an (a, r, ε)-oracle on G for

a =
√πns
4ν + 2, ε = 34 , r = log(1 + (s√n)n−12ν√n).

Proof. Let us fix a generator g of a and its corresponding (vg , 1) ∈ G ⊆ ℝn × ℤ. The main observation leading
to the result is that F(v, j) = fc(v − jvg), and therefore |fG(v, j)⟩ = |fG(v − jvg)⟩.

(a) Lipschitz condition. If j1 ̸= j2, then dG((v1, j1), (v2, j2)) ≥ 1, while, at the same time,

‖|fG(v1, j1)⟩ − |fG(v2, j2)⟩‖ ≤ 2.

So, in this case,
‖|fG(v1, j1)⟩ − |fG(v2, j2)⟩‖ ≤ 2dG((v1, j1), (v2, j2)).

On the other hand, if j1 = j2 = j, then

dG((v1, j1), (v2, j2)) = dℝn (v1, v2)
= dℝn (v1 − jvg , v2 − jvg)
= dℝn (v1 − j1vg , v2 − j1vg)
≥ a‖|fG(v1 − j1vg)⟩ − |fG(v2 − j2vg)⟩‖
= a‖|fG(v1, j1)⟩ − |fG(v2, j2)⟩‖

for a = √πns4ν + 1. Therefore, the Lipschitz condition is always satisfied for a =
√πns
4ν + 2.

(b) The (r, ε) condition. We simply need to notice that dG/Λα󸀠 ((v1, j1), (v2, j2)) ≤ dℝn/U+ (v1 − j1vg , v2 − j2vg),
where U+ ⊆ ℝn denotes the vectors u ∈ ℝn such that eu is a totally positive unit of K. It is immediate that
the periods of fℝ are U+, and according to Proposition 5.2, fℝ is an (a, r, ε)-oracle for a = √πns4ν , ε = 3

4 , and
r = log(1 + (s√n)n−12ν√n). We use the properties of fℝ to analyze the behavior of fa.

dG/Λα󸀠 ((v1, j1), (v2, j2)) = inf
u∈U+

j∈ℤ

‖(v1, j1) − (v2, j2) − (jvg , j) − (u, 0)‖

≤ inf
u∈U+
‖(v1 − j1vg , 0) − (v2 − j2vg , 0) − (u, 0)‖ (by choosing j = j1 + j2)

= dℝn/U+ (v1 − i1vg , v2 − i2vg).

This means that, for r = log(1 + (s√n)n−12ν√n) and ε = 3
4 , if

dG/Λα󸀠 ((v1, j1), (v2, j2)) ≥ r,

then dℝn/U+ (v1 − i1vg , v2 − i2vg) ≥ r as well, and then, necessarily,

⟨fG(v1, j1)|fG(v2, j2)⟩ = ⟨fℝ(v1 − j1vg)|fℝ(v2 − j2vg)⟩ ≤ ε.

Reduction to the case G = ℝm. We described an (a, r, ε)-oracle fG on a hyperplane G of ℝn × ℤ hiding the
lattice Λα󸀠 for a = √πns4ν + 2, ε =

3
4 , and r = log(1 + (s√n)

n−12ν√n). To apply [7, Theorem6.1], we need a func-
tion fa onℝm for some m that hides the lattice Λα󸀠 and which is an (a, r, ε)-oracle inℝm for some a, r, ε, not
necessarily equal to a, r, ε. A general guideline for performing such a task is given in [7, Section 6.1]. By
following it, we find such a function fa, and we can apply the quantum algorithm of [7] to derive Λα󸀠 , thus
obtaining a totally positive generator for a.

First of all, we can easily turn fG defined on the hyperplane G into a function defined overℝn−1 × ℤwith
the intermediate operation

ℝn × ℤ
ϕ
→ G,

(v, j) → (v1, . . . , vr1+r2−1, −∑
i
vi + j log|N(a)|, j).
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Proposition 5.4. Assume fG is an (a, r, ε)-oracle hiding Λα󸀠 on G; then the function defined by fG1 := fG ∘ ϕ is
an (a1, r, ε)-oracle hiding Λα󸀠 on G1 := ℝn−1 × ℤ, where a1 = a√6(r1 + r2 − 1) log|N(a)|.

Proof. The fact that the (r, ε)-condition is preserved is obvious because we are dropping one coordinate. This
means that if the distance in G1 = ℝn−1 × ℤ (modulo Λα󸀠 ) is greater than r, then so is the distance in G (mod-
ulo Λα󸀠 ), and therefore the inner product of the two states has to be less than ε. The Lipschitz condition comes
from the fact that ‖|fG1 (x)⟩ − |fG1 (y)⟩‖2 = ‖|fG(ϕ(x))⟩ − |fG(ϕ(y))⟩‖2 ≤ a2d2(ϕ(x), ϕ(y)) and that

a2d2(ϕ(x), ϕ(y)) = a2( ∑
k≤r1+r2−1

v2k + (j log |N(a)| − ∑
k
vk)

2
+ j2) (where (v, j) := x − y)

= a2( ∑
k≤r1+r2−1

v2k + j
2 log2|N(a)| + ∑

k≤r1+r2−1
v2k

− 2j log|N(a)|( ∑
k≤r1+r2−1

vk) + 2 ∑
k ̸=l≤r1+r2−1

vkvl + j2)

≤ 6a2(r1 + r2 − 1) log2|N(a)|( ∑
k≤r1+r2−1

v2k + j
2)

= (6a2(r1 + r2 − 1) log2|N(a)|)d2G1
(x, y).

We have now a function on ℝk × ℤl for k = n − 1 and l = 1 that hides Λα󸀠 and that is an (a1, r, ε)-oracle on
ℝk × ℤl. Following the guidelines of [7, Section 6.1], we can turn it into an (a, r, ε)-oracle fa on ℝk+l that
hides Λα󸀠 . To do so, we define

|fa(x, x1, . . . , xl)⟩ := ∑
z1 ,...,zl∈{0,1}

(
l
⨂
j=1
|ψ(xj , zj)⟩) ⊗ |fG1 (x, s(x1, z1), . . . , s(xl , zl))⟩,

where s(x, z) = ⌊ xλ ⌋ + z, |ψ(x, z)⟩ = cos(
π
2 )strν(t)with t =

x
λ − s(x, z) for a lower bound λ on the shortest vector

of Λα󸀠 .

Proposition 5.5. The function fa hides the lattice Λα󸀠 and satisfies conditions (i), (ii) and (iii) for G = ℝn and
the parameters a, r, ε defined by

a2 = a21 + l(
π
2νλ (1 + ν))

2

= 6(r1 + r2 − 1) log2|N(a)|(
√πns
4ν + 2)

2
+ l( π2νλ (1 + ν))

2
,

r2 = (log(1 + (s√n)n−12ν√n))2 + l(2νλ)2,

ε = 34 .

Proof. See [7, Section 6.1]. It shows that, by the transformation above, the new function is a valid HSP
instance with

a2 = a2 + l( π2νλ (1 + ν))
2
, r2 = r2 + l(2νλ)2, ε = ε.

6 Computing a short generator of a principal ideal inℚ(ζ2s)
In this section, we show how to reduce the search for a small generator of an input ideal I in K = ℚ(ζ2s ) to the
computation of a totally positive generator of a principal ideal a (which depends on I) in K+ = ℚ(ζ2s + ζ−12s ).
The main ingredient of this reduction is the norm equation resolution of the Howgrave-Graham–Szydlo algo-
rithm [13]. This reduction seemsnatural, but no formal procedure (and analysis)was available [16]. Themain
steps of the whole attack are:
(i) Create the ideal a = (NK/K+ (g)) ⊆ K+, where g is a short generator of I.
(ii) Find a generator α󸀠 of a with the quantum algorithm of Section 5.2.
(iii) Find a short generator g󸀠 of I by using α󸀠 and aℤ-basis of I.
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Input: K = ℚ(ζ2s ) and an ideal I ⊆ ℤ[ζ2s ].
Output: a = II ∩ K+.
1: I+ ← II.
2: Compute the intersection a of I+ andℤ[ζ2n + ζ−12n ] with [5, Algorithm 1.4.5].
3: return a.

Algorithm 1: Creation of a = II ∩ K+.

The first step consists in finding a ℤ-basis of the ideal II ∩ K+. We can easily find a basis of the ideal II of K,
and we intersect it with the ring of integers of the subfield K+ of K by using [5, Algorithm 1.4.5]. When I is
principal and generated by g, then a is principal as well and generated byNK/K+ (g) = gg.

The ideal a of the totally real field K+ is principal and generated by a totally positive generator gg. There-
fore, it satisfies the conditions of the quantum polynomial-time algorithm for computing a totally positive
generator of an ideal in a totally real field described in Section 5.2. The output of this procedure is a ratio-
nal approximation of the real vector Log(α󸀠), where α󸀠 is a totally positive generator of a. We want to lift this
generator to obtain a generator of I. We need to assert two important properties:
∙ α󸀠 is of the formNK/K+ (g󸀠), where g󸀠 is a generator of I.
∙ α󸀠 is short enough to be written on the integral basis of K+ in polynomial time.
The surjectivity of the relative normmap does not necessarily hold true. As amatter of fact, we can only prove
it under Conjecture 3.1 (Weber conjecture) which states that the class number of K+ is 1.

Proposition 6.1 (under Conjecture 3.1). Let K = ℚ(ζ2s ), I = (g) be an ideal of ℤ[ζ2s ] and a = II ∩ K+. Then
every totally positive generator of a is of the formNK/K+ (g󸀠) for g󸀠 a generator of I.

Proof. The ideal a is generated by at least one totally positive number (i.e., the image NK/K+ (g) of a gener-
ator g of I by the relative norm map). Then, from [20], we know that the totally positive units are exactly
the squares of units (see also [14, Intro]), which are also the norms of the units of ℤ[ζ2s ] that are in K+.
Let α󸀠 be a totally positive generator of a. Then the two totally positive generators α󸀠,NK/K+ (g) of a differ by
a totally positive unit, hence a square, and hence the image of a unit u of ℤ[ζ2s ] ∩ K+ by the norm map, i.e.,
α󸀠 = NK/K+ (u)NK/K+ (g) = NK/K+ (ug), which is the image of a generator ug of I by the relative norm map.

The vector Log(α󸀠) returned by the quantum algorithm of Section 5.2 has polynomial size, but the represen-
tation of α󸀠 over an integral basis of K+ may have exponential size. Therefore, the resolution of the norm
equation by the method of Howgrave-Graham and Szydlo [13] with input α󸀠 may take exponential time.
We need to find another totally positive generator α of a with reasonable size. We know that α := NK/K+ (g)
where g is the secret short generator of I has a poly-size representation on the integral basis of K+. There-
fore, we use the method of Cramer et al. [6] to derive a short generator of a before applying the algorithm of
Howgrave-Graham and Szydlo [13].

Proposition 6.2 (under Conjecture 3.1). The element α computed in step 7 of Algorithm 2 has a poly-size rep-
resentation on the integral basis of K+.

Proof. This directly follows from the analysis of Babai’s round-off method (used in steps 3–4) by Cramer
et al. [6]. The only difference is that we work with the lattice of the Log(NK/K+ (ui)) instead of that of Log(ui).
Let g󸀠 be the generator of I such that NK/K+ (g󸀠) = α󸀠. According to the analysis of [6], we know that if we
find (xi)i≤n/2 ∈ ℝn/2 such that Log(g󸀠) = ∑i xi Log(ui) and then perform the operation xi ← −⌊xi⌉, then
g = g󸀠∏i u

xi
i is a generator of I that satisfies ‖g‖ = en1/2+o(1)N(I). In particular, its representation on an integral

basis has polynomial size. The (xi)i≤n/2 calculated in step 3 are such Log(α󸀠) = 2Log(g󸀠) = ∑i≤n/2 2xi Log(ui).
These ensure that g = g󸀠∏i u

xi
i is a short generator of I, and

α = α󸀠∏
i
NK/K+ (ui)xi = NK/K+(g󸀠∏

i
uxii ) = NK/K+ (g)

is the relative norm of the small generator g of I. It is therefore a short generator of a.



J.-F. Biasse and F. Song, On the quantum attack against the short-PIP inℚ(ζ2s ) | 163

Input: K = ℚ(ζ2s ), an ideal I ⊆ ℤ[ζ2s ], a = II ∩ K+ and Log(α󸀠) for a totally positive generator α󸀠 of a.
Output: A short generator g of I.
1: Compute α0, . . . , αl, where l is polynomial and each αi has a polynomial size representation on

the integral basis of K+ such that α󸀠 = α0α21 . . . α
2k
k by using the compact representation algorithm

of [2, Section 5].
2: ui ← (

ζ i2s−1
ζ2s−1 ) for i ∈ ℤ

∗
n .

3: Find (xi)i≤n/2 ∈ ℝn/2 such that Log(α󸀠) = ∑i≤n/2 2xi Log(ui).
4: xi ← −⌊xi⌉ for i ≤ n2 .
5: Compute primes p1, . . . , pm prime ideals such that log(pi) ∈ Poly(n) and∏j pj > N(I).
6: Compute α0α21 . . . α

2k
k ∏i NK/K+ (ui)xi mod (pj) for all j ≤ m.

7: Reconstruct α := α󸀠∏i NK/K+ (ui) on the integral basis of K+ by the Chinese remainder theorem.
8: Compute g such thatNK/K+ (g) = α with the algorithm of Howgrave-Graham and Szydlo [13].
9: return g.

Algorithm 2: Lift of the solution in K+.

Corollary 6.3. Algorithm 2 runs in polynomial time and returns a generator g of I such that ‖g‖ = en1/2+o(1)N(I).

Proof. All steps run in polynomial time. In addition, according to the proof of Proposition 6.2, we have the
guarantee that step 7 produces the relative norm α of a small generator g of I. Then the solution to the relative
norm equation in step 8 yields the desired short element.

7 Conclusion and significance

We described a quantum polynomial time algorithm to recover a short generator of an ideal in ℚ(ζ2s ). We
showed that it derives from the results of [7] in a rather straightforward way. It is a significant result for post-
quantum cryptography. Indeed, together with the reduction from the short-PIP to the PIP originally observed
by CGS and later proved by Cramer et al. [6], it is enough to attack cryptosystems based on the hardness
of finding a short generator of a principal ideal in ℚ(ζ2s ) in quantum polynomial time. These include the
multilinear maps of Garg, Gentry and Halevi [8] and the fully homomorphic encryption scheme of Smart and
Vercauteren [18].

Strictly speaking, the algorithm we discussed in Section 5 does not solve the standard principal ideal
problem with absolute certainty since the algorithm cannot decide if an input ideal is principal (it rather
takes as promise that it is principal). Further generalizations of the methods of [7] will lead to the resolution
of related problems in number theory in arbitrary fields including the PIP, the computation of the ideal class
group, the computation of S-units, or the resolution of norm equations.

A Previous algorithms for solving the HSP

A.1 Shor’s factoring algorithm

Post-quantum cryptography really became a concern when Shor proposed a quantum algorithm to factor
integers [17]. Moreover (as we see in the next section), this algorithm extends to the discrete logarithm
problem in any group. An RSA integer N is an integer satisfying N = pq where p, q are distinct prime num-
bers. The problem of factoring an RSA integer reduces to an instance of the so-called hidden subgroup
problem (HSP).
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Definition A.1 (Hidden subgroup problem overℤ). Given f : ℤ 󳨃→ X for a finite set X such that there exists
a subgroup H ≤ ℤ with

f(x + g) = f(x) for all x ∈ ℤ if and only if g ∈ H,

the hidden subgroup problem is the task of finding H given oracle access to f . This means finding r such that
H = rℤ.

Wewant to factor an RSA integerN = pq. Let a be coprimewithN (if a | N, the factorization problem is solved)
and

ℤ
f
→ ℤ/Nℤ,

x → ax mod N.

A solution to the HSP with f yields r, the order of a mod N, and if a is a square, we get

(ar/2 − 1)(ar/2 + 1) = 0 mod N.

This means that N | (ar/2 − 1)(ar/2 + 1), and gcd(N, ar/2 − 1)may yield a non-trivial factor of N.
Let us sketch the resolution of this instance of the HSP. The first step relies on the fact that if f is efficiently

computable classically, one can create an efficient quantum algorithm to evaluate f in superposition. This
yields a circuit for

1
√M
∑
x∈ℤM
|0⟩|x⟩

f
→

1
√M
∑
x∈ℤM
|f(x)⟩|x⟩.

The other main ingredient we need to use in Shor’s algorithm is the so-called quantum Fourier transform
(QFT) overℤM (for a large enough M). Let ωM = e2πi/M, the QFT is the quantum algorithm realizing

QFTM : |x⟩ 󳨃→
1
√M
∑
y∈ℤM

ωx⋅yM |y⟩.

If we apply the QFT to the second register of the previous state, we obtain

1
√M
∑
x∈ℤM
|f(x)⟩|x⟩

QFTN󳨀󳨀󳨀󳨀→
1
√M
∑
x∈ℤM
|f(x)⟩( 1
√M
∑
y∈ℤM

ωx⋅yM |y⟩)

=
1
M ∑y∈ℤM
( ∑
x∈ℤM

ωx⋅yM |f(x)⟩) |y⟩ :=
1
M ∑y∈ℤM
|ϕy⟩ ⊗ |y⟩.

We can easily verify that the |ϕy⟩ are orthogonal vectors satisfying 1
M ∑y⟨ϕy|ϕy⟩ = 1. We perform ameasure-

ment on the second register, which yields the value y with probability 1
M2 ⟨ϕy , ϕy⟩ ≈ 1

M ∑k≤M/r(ω
y⋅r
M )

k.

Pr[measure y] = 1
M2 ( ∑

x1∈ℤM
⟨f(x1)|ω

−x1⋅y
M )( ∑

x2∈ℤM
ωx2⋅yM |f(x2)⟩)

=
1
M2 ∑

x1 ,x2∈ℤM
ωy(x2−x1)M ⟨f(x1)|f(x2)⟩

=
1
M2 ∑

x1 ,x2∈ℤM ,f(x1)=f(x2)
ωy(x2−x1)M

≈
1
M ∑k≤M/r

(ωy⋅rM )
k .

Then if yM is close to an element of the form l
r , then the above probability is high, and if not, then the probabil-

ity of measuring y is low. If y
M is a good enough approximation of an element of the form l

r , then
l
r belongs to

the list of convergents of the continued fraction expansion of y
M , which is computed in classical polynomial

time. Then we recover the period r and thus solve the problem. The probability of successfully recovering r
is in 1

Ω(log(log(N))) (there is a constant probability variant consisting in repeating this procedure twice). This
is not the only variant of Shor’s algorithm for factoring algorithms. Alternatively, a partial measurement is
performed on the f(x) register before applying the quantum Fourier transform. The quantum algorithm for
solving the PIP sketched by CGS follows closely the HSP variant that we described.
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A.2 The hidden subgroup problem in higher dimension

The hidden subgroup problem has a straightforward generalization in higher dimension. Many problems in
algebraic number theory can be reduced to an instance of the HSP.

Definition A.2 (Hidden subgroup problem overℤm). Given f : ℤm 󳨃→ X for a set X such that there exists a sub-
group H ≤ ℤn with

f(x + g) = f(x) if and only if g ∈ H,

the hidden subgroup problem is the task of finding H given oracle access to f .

The discrete logarithm problem is the search for h ∈ ℤ such that b = ah, where a, b are given elements of
a finite group G. This can be reduced to an instance of the hidden subgroup problem in ℤ2. We define the
function

ℤ × ℤ
f
→ G,

(x, y) → axb−y .

The periods of this function are the subgroup G = ℤ(1, h) + ℤ(r, 0), where r is the order of a. Finding the
subgroup G hidden by f solves our problem. The analysis we carried on to solve the HSP in ℤ generalizes in
higher dimension by using the tensor product of the QFT

QFT⊗mM : |x⟩ 󳨃→ 1
√Mm
∑

y∈ℤmM

ωx⋅y
M |y⟩,

wherex, y ∈ ℤmM, and |x⟩ is an encoding of the vectorx. Note that, here again,M has to be chosen large enough
with respect to the typical values we are calculating. As for factoring, applying the QFT yields a state of the
form 1

Mm ∑y∈ℤmM |ϕy⟩ ⊗ |y⟩, and we measure the vector y ∈ ℤmM with probability

1
M2m ∑

x1 ,x2∈ℤmM ,f(x1)=f(x2)
ωy⋅(x2−x1)
M =

1
Mm ∑

u∈L∩ℤmM

ωy⋅u
M ,

where L ⊆ ℤm is the hidden subgroup (a lattice) we are looking for. This sum is larger when y ⋅ x is an inte-
ger, that is, when y

M ∈ L
∗. It can be shown that, when y

M is close enough to a point in the dual of L, then
it has a high probability of being sampled. This generalizes the factoring algorithm presented in the previ-
ous section which relies on the sampling of elements in the dual of the lattice L = rℤ. After finding a good
approximation of the dual lattice L∗, we use classical linear algebra methods to compute L.

To solve other number theoretic problems, we need to work with approximations of real numbers.
This occurs for example in Hallgren’s method [12] to solve the Pell equation in quantum polynomial
time. The discretization method used by Hallgren was generalized by Hales [10] to derive a solution to
the hidden subgroup problem over (approximations of) the reals. To compute the ideal class group, the
unit group and to solve instances of the principal ideal problem in number fields of higher degree, the
usual approach is to first reduce the problem to the task of finding the periods of a function f defined
over ℝm for some m, and then find these periods with an algorithm for solving the HSP. For example, Hall-
gren [11, Section 3.1] described a unit group algorithm in a field K consisting of finding the periods of
the function

ℝr
f
→ I × ℝr ,

x → (1μO, x − Log(μ)), where μ ∈ Ominimizes ‖Log(μ) − x‖.

Here r is the rank of the unit group and Log(μ) = (log|σ1(μ)|, . . . , log|σr(μ)|) is the vector of the first r
logarithms of the Archimedean embeddings of μ. Since this function relies on the search for a minimum
in O, its evaluation costs exponential time in the degree, thus restricting its use for classes of number
field with fixed degree. In the same paper, Hallgren [11] described quantum polynomial-time algorithms
for the unit group, the class group and the principal ideal problem in classes of fixed-degree number
fields.
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A necessary condition to ensure that these problems can be solved in polynomial time is that they reduce
to the search for the periods of a function that is efficiently computable. The evaluation of the function
described above is not polynomial in the degree of the extension, which is one reason why the overall algo-
rithm does not run in polynomial time in k. The other obstruction lies within the resolution of the subsequent
instance of the HSP. Indeed, the method used in [11] to solve the hidden subgroup problem in ℝm does not
seem to run in polynomial time with respect to m. It relies on the creation and the measurement of the state

|ψ⟩ = 1

√|Lq|

1
√M
∑

x∈ℤmM

∑
u∈Lq

ωx⋅⌈Nu⌋
M |x⟩, where Lq = L ∩ [0, q]m .

Hallgren showed that the probability of measuring x such that x
q was

1
q -close to L

∗ was at least 1
8 log(disc(O))m

(a term corresponding to the zero-filling was omitted, i.e., an artificial enlargement of the size of the bounded
region where we perform the QFT to facilitate the analysis). In classes of fixed degree (i.e., when m is fixed),
this gives apolynomial time algorithm to solve theHSP. The case ofm →∞was solved10years later byEHKS.

B Towards an analysis of the algorithm of CGS

In this section, we show that if we discretize G at a precision 1
N as it is done in [11], then the quantum algo-

rithm of CGS cannot return, in better complexity than 2n, a vector that is ε-close to Λα󸀠 for ε = 1
q and q ≥ n

2λ,
where λ is a bound on the size of the vectors in a reduced basis of Λα󸀠 .

Proposition B.1 (Sampling probability). Let N > 0 be the precision of the discretization of G. We assume that
the fingerprint encoding behaves as conjectured in [4, Section 3.6], that is,
∙ ⟨ψx1 |ψx2⟩ = 1 if x2 − x1 is ε-close to L for some ε < 1

N ,
∙ ⟨ψx1 |ψx2⟩ = 0 otherwise.
The probability of drawing a rational approximation that is 1

q -close to a vector in Λ∗α󸀠 for q ≥ (n)
2λ, where

n = deg(K+), ∆ = disc(K+) and where λ is a bound on the size of the vectors in a reduced basis of Λα󸀠 , is at least

P ≥ 1
8(log(|∆|)t)n for any t ≥ 8n.

Proof. To bound and discretize G, we need three parameters that were not explicitly given in [4]. The grid
has precision 1

N for some N > 0, and we choose to restrict the QFT to G ∩ [0, q]n for a large enough integer q.
We also enlarge the grid by a factor t that will be used to analyze the complexity (this is the so-called zero-
filling technique). Let the normalization factor be M = qtN. We can identify the discretized and bounded G󸀠

withℤnM. Then the algorithm is the same as for factoring,

1
√Mn
∑

x∈ℤnM

|0⟩|x⟩ F→ 1
√Mn
∑

x∈ℤM
|ψx⟩|x⟩

QFT⊗nM󳨀󳨀󳨀󳨀󳨀→
1
Mn ∑

y∈ℤnM

|ϕy⟩ ⊗ |y⟩.

We measure y and hope that it is close enough to a vector in Λα󸀠 . To analyze this technique, we use the same
approach as Hallgren’s 2005 paper [11]. As for Shor’s factoring algorithm, the probability of drawing y ∈ G󸀠

(regardless of its properties) is
1
M2n ⟨ϕy, ϕy⟩ =

1
M2n ∑

x1 ,x2∈ℤnM

ωy⋅(x2−x1)
M ⟨ψx1 |ψx2⟩.

Unlike in the exact case where ⟨ψx1 |ψx2⟩ is either 1 when x2 − x1 ∈ L and 0 otherwise (hereL = Λα󸀠 ), we are
dealing with approximations. We assume that the fingerprint behaves as conjectured in [4, Section 3.6]. We
formalize this by ⟨ψx1 |ψx2⟩ = 1 if x2 − x1 is ε-close toL for some ε < 1

N and ⟨ψx1 |ψx2⟩ = 0 otherwise. For each
lattice vector u ∈ L, we have ⟨ψx1 |ψx2⟩ = 1 for all the x1, x2 such that x2 − x1 is in a ball of radius ε centered
around u. So the probability of measuring y is

1
M2n ∑

x1 ,x2∈ℤnM

ωy⋅(x2−x1)
M ⟨ψx1 |ψx2⟩ =

1
M2n ∑

x1∈ℤnM

∑
x2∈ℤnM

x1−x2∈L+(0,ε)n

ωy⋅(x2−x1)
M .
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To bound this probability from below, we show that the phases corresponding to an element y close to a dual
lattice vector are small. Each term x2 − x1 is of the form Nv + εv, where v ∈ L and |εv| < 1. The y that we hope
tomeasure are of the form ⌊tqw⌉ forw ∈ L∗. Moreover, tomake sure that the phase terms remain bounded,we
restrict ourselves to vectors with entries satisfying |yi| ≤ qNt

log|∆| . This means that we are measuring approxima-
tions ofw ∈ L∗with |wi| ≤ qNt

log|∆| + 1 and thatN has to be chosen large enough so thatwemeasure a significant
portion of L∗. So y = qtw + δw for ‖δw‖ < 1

2 , and

y ⋅ (x2 − x1) = (qtw + δw) ⋅ (Nv + εv) = qNt(w ⋅ v) + qt(w ⋅ εv) + δw ⋅ (Nv + εv).

The first term of the sum vanishes from the phase because it equals zero modulo qtN. Indeed, v ⋅ w ∈ ℤ. The
second term satisfies 󵄨󵄨󵄨󵄨󵄨󵄨󵄨

qt(w ⋅ εv)
qtN
󵄨󵄨󵄨󵄨󵄨󵄨󵄨
≤
nmaxi|wi|

N ≤
n

log|∆| ≈
1

log(n) .

Finally, the third term of the phase satisfies
󵄨󵄨󵄨󵄨󵄨󵄨󵄨
δw ⋅ (Nv + εv)

qtN
󵄨󵄨󵄨󵄨󵄨󵄨󵄨
≤
|δw ⋅ v|
qt +
|δw ⋅ εv|
qtN ≤

nmax|vi|
qt ≤

1
8

if we choose t ≥ 8n. So, for large enough n, we have 󵄨󵄨󵄨󵄨
y⋅(x2−x1)
qtN
󵄨󵄨󵄨󵄨 <

1
6 , and the probability Pz of measuring z

satisfies

Pz =
1
M2n ∑

x1∈ℤnM

∑
x2∈ℤnM

x1−x2∈L+(0,ε)n

ωy⋅(x2−x1)
M =

1
Mn ∑

u∈L∩[0,q]n
ωy⋅[Nu]
M

≥
1

2Mn ∑
u∈L∩[0,q]n

(e2iπ/3 + e−2iπ/3) = |L ∩ [0, q]
n|

2Mn .

The above probability holds for all z ∈ L∗ with entries bounded by N
log|∆| . As in [11], we need to relate the

number of points in Lq = L ∩ [0, q]n to the number of points of L∗N/log|∆| = L
∗ ∩ [0, N

log|∆| ]
n. Let λ be a bound

on the length of the vectors in a reduced basis ofL; by [15, Proposition 8.7], we have |Lq| ≥ qn
2det(L) if q ≥ n

2λ
and |L∗N/log|∆|| ≥

(N/log|∆|)n
2det(L∗) if N ≥ log|∆|

nn2λ. Therefore,

|Lq||L∗N/log|∆|| ≥
qn( N

log|∆| )
n

4det(L)det(L∗) =
qn( N

log|∆| )
n

4 ,

and the probability of drawing z such that qtz is 1
q -close to w ∈ L

∗
N/log|∆| satisfies

Pz ≥
|Lq|
2Mn ≥

1
8(log|∆|t)n

1
|L∗N/log|∆||

.

As pointed out in [11], such z are the points of our grid such that y
qt is

1
q -close to a w ∈ L

∗
N/log|∆|. As there are

|L∗N/log|∆|| vectors y associated to such a w, the probability of measuring one is at least 1
8(log|∆|t)n .

The above statement gives a lower bound on the probability of drawing points that are approximations of
elements in Λ∗α󸀠 . This, in turn, gives an upper bound on the run time to obtain enough approximations of
lattice points before being able to find a basis of Λα󸀠 . Still assuming that the same techniques are used, we
can also derive an upper bound on the probability of sampling an approximation of a dual lattice point,
which, in turn, gives a lower bound on the run time of the algorithm.

Proposition B.2 (Exponential run time). Under the same assumptions as Proposition B.1, the run time of the
overall algorithm is at least 2n.

Proof. With the same choice of parameters as in the proof of the previous proposition, the probability of
drawing z satisfies

Pz =
1
Mn ∑

u∈L∩[0,q]n
ωy⋅[Nu]
M ≤

|L ∩ [0, q]n|
Mn ≈

qn

Mn det(L) .

There are |L∗N/log|∆|| ≈
(N/log|∆|)n
det(L∗) such points, which means that the probability of drawing a rational approxi-
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mation that is 1
q -close to a point in L∗N/log|∆| is no more than

P ≤
( N
log|∆| )

n

det(L∗)
qn

Mn det(L) =
1

(log|∆|t)n ≤
1
2n .

The total run time is at least as much as the time taken to draw a single approximation of a dual lattice point,
which is at least 2n.

Remark. The above analysis shows that if we only assume that the quantum fingerprint has the property
(called “fidelity”) that
∙ ⟨ψx1 |ψx2⟩ = 1 if x2 − x1 is ε-close to L for some ε < 1

N ,
∙ ⟨ψx1 |ψx2⟩ = 0 otherwise,
then the techniques mentioned by CGS relying on the discretization ofℝm and the QFT do not allow to prove
that the procedure has a polynomial run time.

Funding: This work was supported by the U.S. National Science Foundation under grants 1839805 and
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