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1 Introduction
The present paper continues to study the quadratic residuosity problem. Given a composite integer N, and a

positive integer a relative prime toN, the quadratic residuosity problem is to decide whether a is a quadratic

residue or a quadratic non-residue moduloN (i.e. whether or not x2 = amodN has a solution). The question

we investigate in the present article is:

∙ Are there any statistical laws that govern thedistributionof quadratic residues andnon-residues inℤ/Nℤ
whereN is a large RSA modulus?

We are here of course not completely aimless in posing such a question. Indeed one is motivated to study

the problem by facts already known in the case of �nite �elds Fp = ℤ/pℤ. When the base �eld is Fp, the
quadratic character associated with Fp is the Legendre symbol ö = ( ⋅

p ). In such a case, ö can be viewed as a

pseudo-quadratic residue characteristic functionbecauseö(n) takes on the values 1,−1 fornbeingaquadratic
residue or non-residue, respectively. The values of the character sum

S(ö;H, x) := ∑
x<n≤x+H

ö(n)

thus encode information about how the quadratic residues and non-residues are distributed in Fp. Concern-
ing the distribution of S(ö;H, x) when ö is quadratic, Davenport and Erdös [3] �rst proved the following in-

teresting result:

1
p

!!!!!!!
{0 ≤ x ≤ p − 1 :

S(ö;H, x)
√H

≤ ë}
!!!!!!!
→

1
2ð

ë

∫
−∞

exp(−
x2

2
)dx

provided logH = o(log p) and p,H → ∞. This result can be interpreted as follows: as x runs over elements

of Fp, the values of the character sum S(ö;H, x) tend to a Gaussian distribution of mean 0 and varianceH.

As ö(n) takes on the values 1, −1more or less randomly with equal probability 1/2, one may suspect that

Gaussian distribution behaviors exist for sums involving a much larger class of functions. Indeed, let f be a

random multiplicative function whose values at prime arguments are independent random variables taking

on the values 1, −1with equal probability 1/2. Extend the domain of f to the square-free integers by the mul-

tiplicative property of f. It is recently established that values of such sums∑f(n) have Gaussian distribution

behaviors under suitable conditions [1, 5]. The result of Davenport and Erdös can also be generalized to in-

clude non-real character sums and exponential sums involving multiplicative as well as additive characters

[10, 12].
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The aim of the present paper is to establish an analogous distribution law in the setting ℤ/Nℤ whereN
is a large RSAmodulus.¹ It turns out that an extension to the settingℤ/Nℤ is not as obvious as it seems. First,

unlike theFp case, one does not have in the ringℤ/Nℤ a Dirichlet character öwhich is capable of discerning

whether a positive integer is a quadratic residue or non-residue modulo N. In the present paper, following

the work of [9], we rely on the following quadratic residue characteristic functionΦ:

Φ(n) :=
1
4
(1 + öp(n))(1 + öq(n)).

Here p, q are the prime factors of N, and öp and öq are the quadratic characters modulo p, q, respectively. If
gcd(n,N) = 1, thenΦ(n) = 1 if n is a quadratic residue andΦ(n) = 0 if n is a non-residue moduloN. Similarly

to short sums in Fp, de�ne
S(Φ;H, x) := ∑

x<n≤x+H
Φ(n).

In order to study the distribution properties of S(Φ;H, x), we are led to consider the probabilistic model

X1 + ⋅ ⋅ ⋅ + XH where the random variables X1, . . . , XH take on the values 1, 0 with the corresponding proba-

bility ä, 1 − ä, respectively, where 0 < ä < 1. This probabilistic model closely adheres to the reality: Inℤ/Nℤ,
approximately ä = 1/4 of the ring elements are quadratic residues, and 1 − ä = 3/4 of them are quadratic non-

residues. Our analysis shows that such a probabilistic model X1 + ⋅ ⋅ ⋅ + XH gives rise to a Gaussian distribu-

tion of meanHä and varianceHä(1 − ä), see Lemma 5.2.

Our study for the distribution of S(Φ;H, x) relies on a strategy of Lamzouri [10], as his method is quite

e�ective in producing the main term of the distribution as well as the rate of convergence. The method is

based on drawing connection between the probabilistic model and the moments de�ned as

M(r) :=
1
N

N
∑
x=1

S(Φ;H, x)r.

Consequently, we are able to establish that S(Φ;H, x) has a Gaussian distribution of mean ì = H/4 and vari-

ance ò2 = 3H/16 providedH logH = o(logN) andH,N → ∞.

Theorem 1.1. Let N be a large RSA modulus. Let two real numbers a ≤ b be given. If both logNH logH → ∞ and
H → ∞, then

1
N

!!!!!!!
{1 ≤ x ≤ N : a ≤

S(Φ;H, x)
√3H/16

≤ b}
!!!!!!!

=
1

√2ð

b

∫
a

exp(−
(x − √H/3)2

2
)dx + O((b − a + 1)(H−1/6 + √

H logH
logN

)).

Remark 1.2. The term ̃ì = √H/3 inside the Gaussian kernel is the normalized mean (i.e. ̃ì = ì/ò). Properly
speaking, Theorem 1.1 says the normalized sum S(Φ;H, x)/√3H/16 behaves Gaussian with mean √H/3 and

variance 1.

Remark 1.3. The valid range forH in Theorem 1.1 isH logH = o(logN), this is slightly weaker than the range

obtained by Davenport and Erdös in the setting ℤ/pℤ, i.e. logH = o(log p). The slight loss of range is due

to an asymmetry inherent in the probabilistic model. The same calculation would produce an error term in

Theorem 1.1 without√H in the symmetric setting, see Proposition 7.2 for details.

The second question we investigate in this paper has to do with how the quadratic residues and non-residues

moduloN are distributed inℤ/mℤ, whenm is small compared toN. There are two interesting aspects of this

problem. We �rst introduce some notations. De�ne

Q(R; a, m) := {n = a + rm : 1 ≤ r ≤ R, and n is a quadratic residuemodN},

NQ(R; a, m) := {n = a + rm : 1 ≤ r ≤ R, and n is a quadratic non-residuemodN}.

1 RSA modulus:N = pq with 1 < p ̸= q ≤ cN1/2
where c > 0.
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Thus |Q| (resp. |NQ|) counts the number of quadratic residues (resp. non-residues) in an arithmetic pro-

gression, say a (modm), where 1 ≤ a ≤ m, andm is amodulus lying in a suitable range. Since the residues and

non-residues are uniformly distributed in the interval [1, N], onemay suspect that the quadratic residues and

non-residues should distribute uniformly over the residue classes modulom. This indeed turns out to be the

case, see Corollary 1.5.

Theorem 1.4. Let N be a large RSA modulus. Suppose ë > 0 is a real number such that min(p, q) > ëN1/2. Let
r, m, A, R be positive integers such that A ≤ m,m ≤ ëN1/2, mA(R + 1) < ëN1+1/(2r). Then we have

∑
a≤A

|Q(R; a, m)| =
1
4
AR + O(E), ∑

a≤A
|NQ(R; a, m)| =

3
4
AR + O(E),

where the error terms satisfy
E ≪r A

1− 1
r R1− 1

2rN
r+1
4r2 (logN)1+

1
2r

if the following conditions hold:

A ≪ N1/(2r) logN, (1A)

R ≫ N
r−1

2r(2r−1) (logN)−
1

2r−1 , (1B)

AR1/2

N
r+1
4r (logN)r+

1
2

→ ∞ asN → ∞. (1C)

Moreover, we have
E ≪r A

1− 1
2rR1− 1

2rN
1
4r (logN)1+

1
2r

if the following condition holds:
AR

N1/2(logN)2r+1
→ ∞ asN → ∞. (2A)

The proof of Theorem 1.4 uses Fourier analysis tools among other things. This method turns out to be quite

e�ective in dealing with bounding character sums on arithmetic progressions, and was introduced by Fried-

lander and Iwaniec [4]. Theorem 1.4 shows that, for example in the range A ≪ N1/(2r) logN, the asymptotic

formula holds in the range AR1/2 ≫ N1/4+å
(when r is large in condition (1C)). This is essentially the non-

trivial bound range from the Burgess method. We should also remark that one could obtain a comparable

result using a mean value Burgess estimate recently obtained by Heath-Brown [6] and Shao [15]. However

these results do not provide the logarithm factor for the error terms in Theorem 1.4. And Heath-Brown’s mean

value estimate gives rise to a slightly weaker asymptotic range AR1/3 ≫ N1/4+å
.

By lettingA = 1, 2, . . . , m successively in Theorem 1.4, we immediately deduce that the quadratic residues

(resp. non-residues) are uniformly distributed in the residues classes modulom.

Corollary 1.5. Let r, m, R be positive integers and N a large RSA modulus such that m ≪ N1/(2r) logN and
m2(R + 1) < ëN1+1/(2r), and

R

N
r+1
2r (logN)2r+1

→ ∞ asN → ∞.

Then, we have uniformly for 1 ≤ a ≤ m,

lim
N→∞

|Q(R; a, m)|
∑a≤m|Q(R; a, m)|

=
1
m
.

The same estimate also holds for |NQ(R; a, m)|.

One may also ask how the cardinalities of the quadratic residues and non-residues are distributed inℤ/mℤ.
This line of question was investigated by Lamzouri and Zaharescu [11] in the setting of Fp. Let 1 ≤ k ≤ N.

De�ne

R(k) := {1 ≤ n ≤ k : n is a quadratic residuemodN},

N(k) := {1 ≤ n ≤ k : n is a quadratic non-residuemodN},
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and

ΨR(N;m, a) :=
1
N
!!!!{1 ≤ k ≤ N : |R(k)| ≡ amodm}!!!!,

ΨN(N;m, a) :=
1
N
!!!!{1 ≤ k ≤ N : |N(k)| ≡ amodm}!!!!.

Theorem 1.6. LetN be a large RSA modulus. Then for any integerm ≥ 2 withm = o(N1/2), we have

m−1
∑
a=0

(ΨQ,(NQ)(N;m, a) −
1
m
)
2
≪

m
logN

.

Consequently, if 2 ≤ m ≪ (logN)1/3, we have uniformly for all 0 ≤ a ≤ m − 1,

Ψ(N;m, a)Q,(NQ) =
1
m

+ O(√
m
logN

).

Theorem 1.6 shows that in the rangem ≪ (logN)1/3, the quantities |R(k)|, |N(k)| are uniformly distributed in

ℤ/mℤ. During the proof of Theorem 1.6, we are led to consider a slightly di�erent probabilistic model than

the one used by Lamzouri and Zaharescu, namely:X1 + ⋅ ⋅ ⋅ + XH (modm)whereX1, . . . , XH are independent

random variables taking on the values 1 and 0 with the corresponding probability ä and 1 − ä, respectively,
where 0 < ä < 1. The lack of symmetry in themodel creates anumber of technical di�culties including several

weighted arithmetic sums which do not exist in the symmetric setting. Otherwise, we are more or less able to

follow the method of [11] in deducing Theorem 1.6.

The rest of the paper is organized as follows. Section 2 contains several technical lemmas that are used

throughout the paper. Theorem 1.4 is proved in Section 3. Section 4 provides bounds involving the quadratic

residue characteristic function. Section 5 studies the probabilistic modelX1 + ⋅ ⋅ ⋅ + XH. Section 6 studies the

probabilistic model X1 + ⋅ ⋅ ⋅ + XH (modm). Sections 7 and 9 provide links for the probabilistic models intro-

duced earlier and the main theorems. Theorems 1.1 and 1.6 are proved in Sections 8 and 10, respectively.

Convention. The phrase “large RSA modulus” precisely means N = pq with 1 < p ̸= q ≤ cN1/2
where c > 0,

and furthermoreN → ∞.

2 Technical lemmas
The notation em(x) = exp(

2ðix
m ) is used throughout the paper. We also use (í1, . . . , ík) ∈ {0, 1}k to indicate that

a binary vector í = (í1, . . . , ík) is sampled from {0, 1}k.

Lemma 2.1. Let k, rbe positive integers such that 1 ≤ k ≤ r. The number of positive integer solutions of the linear
equation x1 + x2 + ⋅ ⋅ ⋅ + xk = r is (r−1k−1).

Proof. We proceed by induction on k. The case k = 1 is clear. Let k ≤ r� + 1. Assume now the linear equation

x1 + x2 + ⋅ ⋅ ⋅ + xk−1 = r� has (r
�−1
k−2) positive integer solutions. Applying the induction hypothesis, we get

∑
x1+⋅⋅⋅+xk=r

1 =
r−k+1
∑
xk=1

∑
x1+⋅⋅⋅+xk−1=r−xk

1 =
r−k+1
∑
xk=1

(
r − xk − 1

k − 2
) =

r−2
∑

d=k−2
(

d
k − 2

) = (
r − 1
k − 1

).

Lemma 2.2. Let x > 0 be a real number, and r a positive integer. Then

r
∑
k=1

(
r
k
)(

r − 1
k − 1

)xk = xr + O(4r).
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Proof. Using the identity (rk) =
r
k (

r−1
k−1), we have

r
∑
k=1

(
r
k
)(

r − 1
k − 1

)xk =
r
∑
k=1

k
r
(
r
k
)
2
xk =

r−1
∑
k=0

r − k
r

(
r

r − k
)
2
xr−k

= xr
r−1
∑
k=0

(1 −
k
r
)(

r
k
)
2
x−k = xr(1 +

r−1
∑
k=1

(1 −
k
r
)(

r
k
)
2
x−k).

The sum over k can be bounded as follows:

r−1
∑
k=1

(1 −
k
r
)(

r
k
)
2
x−k <

r
∑
k=1

(
r
k
)
2
x−k ≪ x−r(

2r
r
) ≤ x−r4r.

Lemma 2.3. Let real numbers t, ë ̸= 0 be given. Then we have

∑
(í1 ,...,ík)∈{0,1}k

ëí1+⋅⋅⋅+íkem(t(í1 + ⋅ ⋅ ⋅ + ík)) = (1 + ëem(t))
k.

Proof. We split the sum into residue classes modulom according to the values í1 + ⋅ ⋅ ⋅ + íkmodm. Thus

∑
(í1 ,...,ík)∈{0,1}k

ëí1+⋅⋅⋅+íkem(t(í1 + ⋅ ⋅ ⋅ + ík)) =
m−1
∑
b=0

em(tb) ∑
(í1 ,...,ík)∈{0,1}

k

í1+⋅⋅⋅+ík≡bmodm

ëí1+⋅⋅⋅+ík .

Note that for k ≥ n, we have í1 + ⋅ ⋅ ⋅ + ík = n if and only if among í1, . . . , ík, n of them have the value 1 and

the rest (k − n) variables have the value 0. Furthermore, the number of binary vectors (í1, . . . , ík) which have

n “1” coordinates is (kn). Hence, the sum becomes

m−1
∑
b=0

em(tb)∑
l≥0

(
k

b + lm
)ëb+lm =

m−1
∑
b=0

∑
l≥0

(
k

b + lm
)em(t(b + lm))ëb+lm = (1 + ëem(t))

k.

Lemma 2.4. Let positive integers k, a, m be given such that 0 ≤ a < m ≤ k. Let x be a real number. De�ne

S(x; a, m, k) := ∑
n≡amodm

n≤k

(
k
n
)xn = ∑

l≥0
(

k
lm + a

)xlm+a.

Then we have

S(x; a, m, k) =
{
{
{

1
m ∑m−1

l=0 em(−al)(1 + xem(l))
k, if x ̸= 0,

0, if x = 0.

Proof. The evaluation of S(1; a, m, k) is a classical identity due to Ramus [13]. The general case is treated in

[8, Theorem 1].

Lemma 2.5. Let real number ë ≥ 0, and positive integersm ≥ 3, k, t be given. Then

(1 + ëem(t))
k
{{{
{{{
{

= 1, if ë = 0,

= (1 + ë)k, if t ≡ 0modm,

≪ (1 + ë)k exp(− 2ð2ëk
3(ë+1)m2 ), if ë, t ̸= 0.

Proof. The cases ë = 0 and t ≡ 0 are trivial. In the remaining case, wemake a change of variable ë Ü→ ä
1−ä with

0 < ä < 1. This is permissible because the functionf(x) = x
1−x is strictly increasing andmaps the interval (0, 1)

onto (0,∞). Therefore for t ≡ 1, 2, . . . , m − 1,
!!!!!!!
1 +

ä
1 − ä

em(t)
!!!!!!!
= (1 − ä)−1!!!!1 − ä + äem(t)

!!!! = (1 − ä)−1!!!!1 − 2ä + ä(1 + em(t)
!!!!

= (1 − ä)−1
!!!!!!!
1 − 2ä + äem(

t
2
)(em(

−t
2
) + em(

t
2
))

!!!!!!!

≤ (1 − ä)−1(1 − 2ä + 2ä cos(
ð
m
))

≤ (1 − ä)−1(1 − 2ä + 2ä(1 −
ð2

3m2 )) = (1 − ä)−1(1 −
2ð2ä
3m2 ),
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where we have used in the second last step the inequality cos(x) ≤ 1 − x2/3 for 0 ≤ x ≤ ð/2. Thus for m ≥ 3,
we have

!!!!!!!
1 +

ä
1 − ä

em(t)
!!!!!!!

k
≤ (1 − ä)−k(1 −

2ð2ä
3m2 )

k

= (1 − ä)−k exp(k log(1 −
2ð2ä
3m2 )) ≤ (1 − ä)−k exp(−

2ð2kä
3m2 ).

Changing ä back to ë via the transformation ä Ü→ ë
1+ë proves the lemma.

Lemma 2.6. Letm,N be positive integers such thatm = o(N1/2). Let 0 < ä < 6/ð2 ≈ 0.6079. Given any å > 0, we
have for largeN

m−1
∑
t=1

N−1
∑
n=1

(N − n)(1 − ä + äem(t))
n ≪ä,å N

2−åm2å.

Proof. We have

m−1
∑
t=1

N−1
∑
n=1

(N − n)(1 − ä + äem(t))
n =

m−1
∑
t=1

N−1
∑
n=1

(N − n)(1 − 2ä + äem(
t
2
)(em(

−t
2
) + em(

t
2
)))

n

≪ ∑
1≤t≤m/2

N−1
∑
n=1

(N − n)(1 − 2ä + 2ä
!!!!!!!
cos(

ðt
m

)
!!!!!!!
)
n
.

Now using the inequality cos(x) ≤ 1 − x2/3, 0 ≤ x ≤ ð/2 gives the upper bound

∑
1≤t≤m/2

N−1
∑
n=1

(N − n)(1 − 2ä + 2ä(1 −
ð2t2

3m2 ))
n
≤ N ∑

1≤t≤m/2

N−1
∑
n=1

(1 −
2äð2t2

3m2 )
n

= N ∑
1≤t≤m/2

N−1
∑
n=1
exp(n log(1 −

2äð2t2

3m2 ))

≤ N ∑
1≤t≤m/2

N−1
∑
n=1
exp(−

2näð2t2

3m2 )

≪ N
N−1
∑
n=1

m/2

∫
1

exp(−
2näð2t2

3m2 )dt

≪ä N
N−1
∑
n=1

m2

n
exp(−

2näð2

3m2 )

≪å N
N−1
∑
n=1

(
m2

n
)
å
exp(−

nä
m2 ) ≪å N

2−åm2å.

Lemma 2.7. Let b, A ≥ 2 be positive integers. Let f be the cut-o� function de�ned as

f(x) =
{
{
{

min(x, 1, A + 1 − x), if 0 ≤ x ≤ A + 1,

0, otherwise.

Denote the Fourier transform of f by ̂f. Then we have
∞

∫
−∞

| ̂f(t)|dt =
4
ð2 log A + O(1),

∞

∫
−∞

| ̂f(t/b)|
dt
b

=
4
ð2 log A + O(1).

Proof. We shall prove only the �rst estimate. The proof of the second estimate is similar. It is known that

| ̂f(t)| = (ðt)−2|sin(ðt) sin(ðAt)|, which gives

∞

∫
−∞

| ̂f(t)|dt =
∞

∫
−∞

|sin(ðt) sin(ðAt)|
(ðt)2

dt = 2
∞

∫
0

|sin(ðt) sin(ðAt)|
(ðt)2

dt.
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We next break the integral into two sub-intervals [0, 1] and [1,∞]. Thus,

∞

∫
0

|sin(ðt) sin(ðAt)|
(ðt)2

dt =
1

∫
0

|sin(ðt) sin(ðAt)|
(ðt)2

dt + O(1) =
1

∫
0

|sin(ðAt)|
ðt

dt + O(1)

after replacing sin(ðt)/(ðt) = 1 + O(t2) in the integrand above. The last integral is

1

∫
0

|sin(ðAt)|
t

dt ∼
2
ð
log A.

To see this, wemake a change of variable and break the new range into subintervals of the type [(k − 1)ð, kð].
We get

I(A) :=
1

∫
0

|sin(ðAt)|
t

dt =
ðA

∫
0

|sin(t)|
t

dt =
A
∑
k=1

kð

∫
(k−1)ð

|sin(t)|
t

dt.

The upper-bound can be achieved as follows:

I(A) =
ð

∫
0

|sin(t)|
t

dt +
A
∑
k=2

kð

∫
(k−1)ð

|sin(t)|
t

dt

≤ C +
A
∑
k=2

1
(k − 1)ð

kð

∫
(k−1)ð

|sin(t)|dt = C +
2
ð

A−1
∑
k=1

1
k
≤

2
ð
log A + O(1).

For the lower bound we have

I(A) ≥
A
∑
k=1

1
kð

kð

∫
(k−1)ð

|sin(t)|dt =
2
ð

A
∑
k=1

1
k
=

2
ð
log A + O(1).

Lemma 2.8. Let p a large prime number. Let a, m, R be positive integers such that gcd(p, am) = 1. De�ne the set

S := {1 ≤ r ≤ R : a + rm ≡ 0 (mod p)}.

Then we have
|S| =

R
p

+ O(log p).

Proof. Recall the orthogonal relation

1
p

p−1

∑
t=0

ep(tn) =
{
{
{

1, if n ≡ 0mod p,

0, otherwise.

Thus, we have

|S| =
1
p

∑
r≤R

p−1

∑
l=0

ep(l(a + rm)) =
1
p

∑
r≤R

p−1

∑
l=0

ep(lrm).

The double sum above has a contribution R/p when l = 0. In the remaining range 1 ≤ l ≤ p − 1, we have

∑
r≤R

p−1

∑
l=1

ep(lrm) =
p−1

∑
l=1

ep(lm(R + 1))

(1 − ep(lm))
≪

p−1

∑
l=1

1
!!!!sin

ðlm
p
!!!!
.

Now {lm}, l = 1, . . . , p − 1, runs through the non-zero residue classes ofℤ/pℤ because gcd(p, m) = 1. We thus

have

|S| ≪
1
p

p−1

∑
l=1

1
!!!!sin

ðl
p
!!!!
≪ log p.

The second bound is well known, see for instance the chapter on the Pólya–Vinogradov inequality in [2].
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Lemma 2.9. Let N be a large RSA modulus. Suppose ë > 0 is a real number such that min(p, q) > ëN1/2. Let
A, R,m be positive integers such that A ≤ m ≤ ëN1/2. De�ne the set E

E := {(a, r) : 1 ≤ a ≤ A, 1 ≤ r ≤ R, gcd(N, a + rm) > 1}.

Then we have
|E| ≤

AR
p

+
AR
q

+ O(A logN).

Proof. Notice that gcd(N, a + rm) > 1 if and only if p|(a + rm) or q|(a + rm). Consider the sets

Ea,l := {1 ≤ r ≤ R : a + rm ≡ 0 (mod l)}

with 1 ≤ a ≤ A and l ∈ {p, q}. In view of Lemma 2.8, we have |Ea,l| = R/l + O(log l), and

E =
A
⋃
a=1

⋃
l=p,q

Ea,l.

Since A ≤ m ≤ ëN1/2
, we have Ea1 , l ∩ Ea2 , l = ⌀ for a1 ̸= a2. Consequently, any intersection of more than two

distinct of these sets is empty. Furthermore, since

Ea1 ,p ∩ Ea2 ,q = {r : r ≡ −a1/m (mod p) and r ≡ −a2/m (mod q)},

we have |Ea1 ,p ∩ Ea2 ,q| ≤ 1 for 1 ≤ a1, a2 ≤ A. By the inclusion-exclusion principle, it follows that

|E| =
A
∑
a=1

∑
l∈{p,q}

|Ea,l| −
A
∑
a1=1

A
∑
a2=1

|Ea1 ,p ∩ Ea2 ,q| ≤
A
∑
a=1

∑
l∈{p,q}

|Ea,l| =
AR
p

+
AR
q

+ O(A logN).

Lemma 2.10. LetM,T ≥ 1, L ≥ 1 be integers. Suppose LT ≪ N for largeN. Then the cardinality of the set

{(a1, a2, ë1, ë2) : a1ë2 ≡ a2ë1 (modN), M < a1, a2 ≤ M + T, 1 ≤ ë1, ë2 ≤ L}

has a bound≪ LT log L.

Proof. See [7, Lemma 12.7].

Lemma 2.11. Let A, R,m,N be positive integers such that A ≤ m andm(R + 1) < N. De�ne the set

S := {(a1, a2, r1, r2) : a1 + r1m ≡ a2 + r2m (modN), −A < a1, a2 ≤ A, 1 ≤ r1, r2 ≤ R}.

Then we have

|S| =
{
{
{

2RA, if 1 ≤ A ≤ m
2 ,

2RA + 2(R − 1)(2A − m), if m
2 < A ≤ m.

Proof. Since 1 ≤ ai + rim ≤ (R + 1)m < N, the congruence a1 + r1m ≡ a2 + r2m (modN) is equivalent to the

equality

a1 − a2 = (r2 − r1)m. (2.1)

If r1 = r2, the equality (2.1) implies a1 = a2. Thus there are 2RA solutions satisfying (2.1) in this case. On the

other hand, if |r1 − r2| ≥ 2, then (2.1) has no solutions because |a1 − a2| < 2m in the range −A < a1, a2 ≤ A. In

the last case, when |r1 − r2| = 1, we have

!!!!{(a1, a2) : |a1 − a2| = m, −A < a1, a2 ≤ A}!!!! =
{
{
{

0, if 1 ≤ A ≤ m
2 ,

2(2A − m), if

m
2 < A ≤ m.

Furthermore, there are 2(R − 1) pairs (r1, r2) such that |r1 − r2| = 1.
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Lemma 2.12. Let N be a large RSA modulus. Suppose ë > 0 is a real number such that min(p, q) > ëN1/2. Let
A, B, R, m be positive integers such that A ≤ m, B ≤ ëN1/2, andm(R + 1)B < N. De�ne the set

T := {(a1, a2, b1, b2, r1, r2) :
a1 + r1m

b1
≡

a2 + r2m
b2

(modN),

− A < a1, a2 ≤ A, 1 ≤ b1, b2 ≤ B, 1 ≤ r1, r2 ≤ R}.

Then we have |T| ≪ min(ARB logN + ARB2, mRB logN).

Proof. First, notice that the elements of B are invertible because of the condition B ≤ ëN1/2
. Furthermore, we

have 1 ≤ ai + rim ≤ (R + 1)m < N. Hence given any pair of (ë1, ë2) with 1 ≤ ë1, ë2 ≤ (R + 1)m, the system of

equations ai + rim = ëi with i = 1, 2 has at most one solution in (a1, a2, r1, r2). Therefore in view of Lemma 2.10,

|T| is at most

!!!!{(ë1, ë2, b1, b2) : ë1b2 ≡ ë2b1 (modN), 1 ≤ ë1, ë2 ≤ m(R + 1), 1 ≤ b1, b2 ≤ B}!!!! ≪ mRB logN.

On the other hand, the relation (a1 + r1m)b2 ≡ (a2 + r2m)b1 implies that a1 + r1m ≡ a2 + r2m if and only

if b1 ≡ b2. Therefore in view of Lemma 2.11, we have |T| ≪ ARB in the case a1 + r1m ≡ a2 + r2m. In the

case a1 + r1m ̸≡ a2 + r2m and r1 = r2 = r, we have that both a1 + r1m and a2 + r2m belong to the interval

(−A+rm, A+rm]. Thus for a �xed r, the number of quadruples (a1, a2, b1, b2) such that (a1 +rm)b2 ≡ (a2 +rm)b1
is bounded by

!!!!{(ë1, ë2, b1, b2) : b2ë1 ≡ b1ë2 (modN), −A + rm < ë1, ë2 ≤ A + rm, 1 ≤ b1, b2 ≤ B}!!!! ≪ AB logN.

Therefore, |T| ≪ ARB logN in this case. The last scenario when a1 + r1m ̸≡ a2 + r2m and r1 ̸≡ r2. For a �xed

triple (a1, r1, b1), the number of triples (a2, r2, b2) such that (a1 + r1m)b2 ≡ (a2 + r2m)b1 is at most B. To see this,

notice that the set

{a2 + r2m : −A < a2 ≤ A, 1 ≤ r2 ≤ R, r2 ̸= r1} = ⋃
r ̸=r1

(−A + rm, A + rm]

has at most one intersection with the singleton element (a1 + r1m)b2/b1. This means for a �xed b2, the number

of pairs (a2, r2) such that (a1 + r1m)b2/b1 = a2 + r2m is at most one. Finally, |T| ≪ ARB2
in this case.

Lemma 2.13. Let ö (modN) be a primitive character of conductorN of order ℎ. Letf(x) ∈ ℤ[x] be a polynomial
written as

f(x) =
s
∏
k=1

(x + ak)
dk ,

where dk are positive integers and ak are any integers. De�ne

Δ = ∏∏
i ̸=j

(ai − aj).

Suppose the condition
(d1, . . . , ds, ℎ) = 1

is satis�ed, then we have
!!!!!!!

∑
x (modN)

ö(f(x))
!!!!!!!
≤ (s − 1)ø(N)(Δ,N)1/2N1/2.

where ø(N) is the number of divisors ofN.

Proof. See [7, Corollary 12.12].

Lemma 2.14. Let N be a large RSA modulus, öN the associated quadratic character (Jacobi symbol). Suppose
ë > 0 is a real number such that min(p, q) > ëN1/2. Let r be a positive integer and t ∈ ℝ. Then we have for
C ≤ ëN1/2,

∑
umodN

!!!!!!!
∑
c≤C

e(ct)öN(u + c)
!!!!!!!

2r
≤ NCr + (2r − 1)2N1/2C2r.
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Proof. We have

∑
umodN

!!!!!!!
∑
c≤C

e(ct)öN(u + c)
!!!!!!!

2r
= ∑

umodN
( ∑

1≤c1 ,c2≤C
e((c1 − c2)t)öN(u + c1)öN(u + c2))

r
.

Clearly, if c1 = c2, the contribution of the above sum isNCr
. When c1 ̸= c2, the above sum is at most

∑
1≤c11 ,...,c

r
1≤C

∑
1≤c12 ,...,c

r
2≤C

(c11 ,...,c
r
1 ) ̸=(c12 ,...,c

r
2 )

!!!!!!!
∑

umodN
öN(

r
∏
i=1

(u + ci1)(u + ci2))
!!!!!!!
≤ (2r − 1)2N1/2C2r

by the virtue of Lemma 2.13. Notice that (Δ,N) = 1 because |ci{1,2} − cj{1,2}| < min(p, q). Moreover, the condition

(d1, . . . , ds, 2) = 1 in Lemma 2.13 is satis�ed because there exists at least one di = 1.

3 Proof of Theorem 1.4
Let nbe apositive integer such that (n,N) = 1, whereN = pq is anRSAmodulus. Recall n is a quadratic residue
moduloN if and only if öp(n) = öq(n) = 1. Thus

(1 + öp(n))(1 + öq(n))

4
=
{
{
{

1, if n is a quadratic residue moduloN,

0, if n is a quadratic non-residue moduloN.

Therefore, we have in view of Lemma 2.9

∑
a≤A

|Q(R; a, m)| =
1
4
∑
a≤A

∑
r≤R

(1 + öp(a + rm))(1 + öq(a + rm)) + O(
AR
min(p, q)

+ A logN)

=
1
4
RA +

1
4
(Sp(A, R) + Sq(A, R) + SN(A, R)) + O(ARN

−1/2 + A logN), (3.1)

where the error term comes from counting those terms {a + rm}a,r such that gcd(a + rm,N) > 1. The character

sums

S{p,q,N}(A, R) = ∑
a≤A

∑
r≤R

ö{p,q,N}(a + rm)

require a non-trivial bound. We bound below only SN(A, R), the treatments for S{p,q}(A, R) are similar. Using

the cut-o� function introduced in Lemma 2.7, we have

SN(A, R) =
1
A

∑
−A<a≤A

∑
r≤R

∑
d≤A

f(a + d)öN(a + d + rm). (3.2)

Let A = BC, with B ≪ N1/2−1/(4r)
and C ≤ ëN1/(2r)

where ë is as de�ned in Lemma 2.14. The precise values of

the parameters B, C will be chosen later. We use shifts of the type d = bc with 1 ≤ b ≤ B, 1 ≤ c ≤ C. Averaging
(3.1) over b, c gives

SN(A, R) =
1
A

∑
−A<a≤A

∑
r≤R

∑
b≤B

∑
c≤C

f(a + bc)öN(a + bc + rm)

≤
1
A

∑
−A<a≤A

∑
r≤R

∑
b≤B

∞

∫
−∞

| ̂f(y/b)|
dy
b

!!!!!!!
∑
c≤C

e(ct)öN(a + bc + rm)
!!!!!!!

for some t ∈ ℝ. We may bound the Fourier integral by Lemma 2.7, and then use Hölder’s inequality to obtain

SN(A, R) ≪
logN
A

∑
−A<a≤A

∑
r≤R

∑
b≤B

!!!!!!!
∑
c≤C

e(ct)öN(a/b + c + rm/b)
!!!!!!!

=
logN
A

∑
umodN

ë(u)
!!!!!!!
∑
c≤C

e(ct)öN(u + c)
!!!!!!!

≤
logN
A

(∑
u
ë(u))

1−1/r
(∑

u
ë(u)2)

1/(2r)
(∑

u

!!!!!!!
∑
c≤C

e(ct)öN(u + c)
!!!!!!!

2r
)
1/(2r)

,
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where ë(u) counts the frequency of values in arithmetic progressions which is represented by a residue class

moduloN, i.e.

ë(u) = #{(a, b, r) : (a + rm)/b ≡ u (modN), −A < a ≤ A, 1 ≤ b ≤ B, 1 ≤ r ≤ R}.

Clearly,

∑
umodN

ë(u) ≤ 2ABR and ∑
u
ë(u)2 = |T|,

where the set T is as de�ned in Lemma 2.12. Therefore in view of Lemma 2.12 and Lemma 2.14, we have that

SN(A, R) ≪r
{
{
{

logN
A (ABR)1−1/r(ARB logN)1/(2r)(NCr + N1/2C2r)1/(2r), if B ≪ logN,
logN
A (ABR)1−1/r(ARB2 logN)1/(2r)(NCr + N1/2C2r)1/(2r), otherwise.

Choose B = ë−1AN−1/(2r)
and C = ëN1/(2r)

giving the error terms as purported in Theorem 1.4.

Finally, notice that in the range B ≪ logN (i.e. A ≪ N1/(2r) logN)

ARN−1/2 ≪ A1− 1
r R1− 1

2rN
r+1
4r2 (logN)1+

1
2r

is equivalent to the statement

A2R ≪ Nr+ 1
2+

1
2r (logN)2r+1.

Now, the conditionsmA(R + 1) < ëN1+1/(2r)
and A ≤ m ≤ ëN1/2

imply that

A2R ≤ mAR ≪ N
1
2N1+ 1

2r ≪ N
3
2+

1
2r ≪ Nr+ 1

2+
1
2r (logN)2r+1.

Furthermore, the conditions

R ≫ N
r−1

2r(2r−1) (logN)−
1

2r−1
and A ≤ m ≪ N

1
2

imply that

A logN ≪ A1− 1
r R1− 1

2rN
r+1
4r2 (logN)1+

1
2r .

This proves the theorem in view of (3.1) for ∑|Q| in the range A ≪ N1/(2r) logN. In the remaining range, a

similar argument gives

ARN−1/2 + A logN ≪ A1− 1
2rR1− 1

2rN
1
4r (logN)1+

1
2r .

We omit the details here. Finally, notice that∑|NQ| follows because of the relation

∑
a≤A

|Q(R; a, m)| + ∑
a≤A

|NQ(R; a, m)| + O(ARN−1/2 + A logN) = AR.

4 A character sum involving öp and öq
Recall the quadratic residue characteristic function

Φ(n) :=
1
4
(1 + öp(n))(1 + öq(n)).

Proposition 4.1. Let N = pq be a large RSA modulus. Let T be a non-empty subset of the set {0, 1, . . . , N} such
that

gcd(∏∏
i,j∈T
i ̸=j

(i − j), N) = 1.

Then in the range 1 ≤ |T| < 1
4 log2 N, we have

N
∑
n=1

∏
i∈T

Φ(n + i)di =
N
4|T|

+ O(
|T|N3/4

2|T|
), (4.1)

where di, i ∈ T are any positive integer weights.
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Proof. Assumewithout loss of generality di = 1 sinceΦ(n + i)di = Φ(n + i) as long as gcd(n + i, N) = 1, and the

number n ≤ N such that the sequence {Φ(n + i)}i∈T contains a term that is not co-primewithN being bounded

by |T|N1/2
(see [9, Lemma 3.2]). Therefore,

N
∑
n=1

∏
i∈T

Φ(n + i) =
1
4|T|

N
∑
n=1

∏
i∈T

(1 + öp(n + i))(1 + öq(n + i))

=
1
4|T|

N
∑
n=1

(1 + ∑
Δ⊂T
Δ ̸=⌀

öp(∏
i∈Δ

(n + i)))(1 + ∑
Δ⊂T
Δ ̸=⌀

öq(∏
i∈Δ

(n + i)))

=
1
4|T|

(N + ∑
Δ⊂T
Δ ̸=⌀

N
∑
n=1

ö{p,q,N}(∏
i∈Δ

(n + i)) + ∑
Δ⊂T
Δ ̸=⌀

∑
Δ�⊂T
Δ� ̸=⌀

Δ ̸=Δ�

S(Δ, Δ�)), (4.2)

where

S(Δ, Δ�) :=
N
∑
n=1

öp(∏
i∈Δ

(n + i))öq(∏
i∈Δ�

(n + i)).

In (4.2), the character sums involving öp, öq can be bounded using the Weil bound and the sum involving öN
bounded by Lemma 2.13. We have

∑
Δ⊂T
Δ ̸=⌀

N
∑
n=1

öp(∏
i∈Δ

(n + i)) ≤ qp1/2|Δ|2|T| ≪ N3/4|T|2|T|, (4.3)

∑
Δ⊂T
Δ ̸=⌀

N
∑
n=1

öq(∏
i∈Δ

(n + i)) ≤ pq1/2|Δ�|2|T| ≪ N3/4|T|2|T|, (4.4)

∑
Δ⊂T
Δ ̸=⌀

N
∑
n=1

öN(∏
i∈Δ

(n + i)) ≤ N1/2|Δ|22|T| ≤ N1/2|T|22|T|. (4.5)

To bound S(Δ, Δ�), we write n = n1q + n2pwhere n1 runs over a complete set of residues modulo p and n2 runs
over a complete set of residues modulo q. Therefore, using the notations

f1(x) = ∏
i∈Δ

(x + i), f2(x) = ∏
i∈Δ�

(x + i),

we have

S(Δ, Δ�) = ∑
n1 modp
n2 mod q

öp(f1(n1q + n2p))öq(f2(n1q + n2p))

= ∑
n1 modp
n2 mod q

öp(f1(n1q))öq(f2(n2p)) = ∑
n1 modp

öp(f1(n1)) ∑
n2 mod q

öq(f2(n2)) ≤ |Δ||Δ�|p1/2q1/2

after applying the Weil bound to the factored complete character sums above. Finally,

∑
Δ⊂T
Δ ̸=⌀

∑
Δ�⊂T
Δ� ̸=⌀

Δ ̸=Δ�

S(Δ, Δ�) ≪ N1/24|T||T|2. (4.6)

The proposition is proved in view of (4.2)–(4.6).

Proposition 4.1 has a few nice consequences. In particular, it implies that in the range |T| ≪ logN, the pat-

tern of (0, 1) derived from the quadratic residue characteristic function Φ(⋅) of length |T| tends to a uniform

distribution. The following corollary answers a question previously raised in [9].
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Corollary 4.2. Let N be a large RSA modulus. Let s be a positive integer satisfying 1 ≤ s < 1
4 log4 N. For any

binary vector (í0, . . . , ís−1) ∈ {0, 1}s, de�ne the set

D := {1 ≤ n ≤ N : Φ(n + i) = íi for all 0 ≤ i ≤ s − 1}.

Then we have
|D| =

N
4s

+ O(N3/4 logN).

Proof. Similarly to the proof of [9, Theorem 1.1], we have

|D| =
N
∑
n=1

∏
i∈T

Φ(n + i) + O(N1/2 logN),

where the error term comes from counting the number 1 ≤ n ≤ N such that {Φ(n + i)}, 0 ≤ i ≤ s − 1, contains
a term that is not co-prime withN. The main term above can be estimated by Proposition 4.1.

5 Probabilistic model
In this section, X1, . . . , XH are independent random variables taking on the values 1 and 0 with the corre-

sponding probability ä and 1 − ä, respectively, where 0 < ä < 1. De�ne ZH as sum of the random variables:

ZH := X1 + ⋅ ⋅ ⋅ + XH.

To ease notations, we denote the normalized random variables as

̃t, (X̃, Z̃H) :=
t, (X, ZH)
√Hä(1 − ä)

.

Lemma 5.1. Let r be a non-negative integer. Then we have E(Zr
H) = (äH)r.

Proof. We have

E(Zr
H) = E((X1 + ⋅ ⋅ ⋅ + XH)

r)

= E( ∑
1≤n1 ,...,nr≤H

Xn1 ⋅ ⋅ ⋅ Xnr) = ∑
1≤n1 ,...,nr≤H

E(Xn1 ⋅ ⋅ ⋅ Xnr )

= ∑
1≤n1 ,...,nr≤H

E(Xn1 ) ⋅ ⋅ ⋅ E(Xnr ) = är ∑
1≤n1 ,...,nr≤H

1 = (äH)r.

We next compute the characteristic function of the normalized random variable Z̃H. The following lemma

says that Z̃H has the mean √Hä/(1 − ä) and variance 1. Without normalization, ZH has the mean Hä and

varianceHä(1 − ä).

Lemma 5.2. LetH be large. Then uniformly for u ≤ |F(ä)|−1/3H1/6, we have

E(exp(iuZ̃H)) := E(exp(
iuZH

√Hä(1 − ä)
)) = exp(−

u2

2
)(1 + O(|F(ä)|

u3

√H
)) ⋅ exp(iu√

Hä
1 − ä

),

where
F(ä) =

1
(ä(1 − ä))3/2

(
ä2

2
−
ä
6
−
ä3

3
).

Proof. First, for a random variable X taking on the values 1 and 0 with the corresponding probability ä and

1 − ä, respectively, we have

E(exp(iuX̃)) = ä exp(iũ) + (1 − ä) = ä cos(ũ) + (1 − ä) + iä sin(ũ)

= 1 −
u2

2H(1 − ä)
+ iä sin(ũ) + Oä(

u4

H2 ), (5.1)
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wherewe have expanded cos(ũ) in power series in the last line. On the other hand, since the randomvariables

Xi are independent, we have, using (5.1),

E(exp(iuZ̃H)) = E(exp(iuX̃))H = exp(H log(1 + z)),

where

z = −
u2

2H(1 − ä)
+ iä sin(ũ) + Oä(

u4

H2 ).

Next using the series expansion log(1 + z) = z − z2/2 + z3/3 + O(z4) for |z| < 1 and sin(ũ) = ũ + O(ũ3/6) gives

E(exp(iuZ̃H)) = exp(H(−
u2

2H
+ i

äu
√Hä(1 − ä)

+ O(|F(ä)|
u3

H3/2 )))

= exp(−
u2

2
)(1 + O(|F(ä)|

u3

√H
)) ⋅ exp(iu√

Hä
1 − ä

).

6 Probabilistic model modulom
In this section, we study the probabilistic model ZH modulo m. Let X1, . . . , XH be independent random

variables taking on the values 1 and 0 with the corresponding probability ä and 1 − ä, respectively, where

0 < ä < 1. The �rst lemma shows that ZH is uniformly distributed inℤ/mℤ for large enoughH.

Lemma 6.1. Let positive integers a, m ≥ 3 be given such that 0 ≤ a < m. Then ZHmodm approaches uniform
distribution onℤ/mℤ after an expected running timeH with the conditionHä/m2 → ∞.

Proof. This is proved in [8, Theorem 2].

In order to prove Theorem 1.6, we also need to know quantitatively the probability when ZH is equal to

a (modm). To this end, de�ne

Φrand(N;m, a) :=
1
N
!!!!{1 ≤ k ≤ N : Zk ≡ amodm}!!!!.

We next study the variance ofΦrand(N;m, a) − 1/m. The following proposition generalizes [11, Proposition 1],

which has a symmetric setting (i.e. ä = 1/2).

Proposition 6.2. Letm ≥ 2 be a positive integer. Then form = o(N1/2) we have
m−1
∑
a=0
E((Φrand(N;m, a) −

1
m
)
2
) ≪ä

m
N
.

Proof. Similarly to the proof of [11, Proposition 1], we have

m−1
∑
a=0
E((Φrand(N;m, a) −

1
m
)
2
) =

m−1
∑
a=0

∑
(í1 ,...,íN)∈{0,1}N

äí1+⋅⋅⋅+íN (1 − ä)N−(í1+⋅⋅⋅+íN)(
1
N

∑
1≤j≤N

í1+⋅⋅⋅+íj≡amodm

1 −
1
m
)
2

=
(1 − ä)N

(mN)2

m−1
∑
a=0

∑
(í1 ,...,íN)∈{0,1}N

(
ä

1 − ä
)
í1+⋅⋅⋅+íN

(m ∑
1≤j≤N

í1+⋅⋅⋅+íj≡amodm

1 − N)
2
.

Using the orthogonal relation, the inner sum can be rewritten and gives

(1 − ä)N

(mN)2

m−1
∑
a=0

∑
(í1 ,...,íN)∈{0,1}N

(
ä

1 − ä
)
í1+⋅⋅⋅+íN

(
N
∑
j=1

m−1
∑
t=0

em(t(í1 + ⋅ ⋅ ⋅ + íj − a)) − N)
2

=
(1 − ä)N

(mN)2
∑

(í1 ,...,íN)∈{0,1}N
(

ä
1 − ä

)
í1+⋅⋅⋅+íN m−1

∑
a=0

A(N,m, a), (6.1)
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where

m−1
∑
a=0

A(N,m, a) =
m−1
∑
a=0

(
N
∑
j=1

m−1
∑
t=0

em(t(í1 + ⋅ ⋅ ⋅ + íj − a)) − N)
2

=
m−1
∑
a=0

(
N
∑
j=1

m−1
∑
t=1

em(t(í1 + ⋅ ⋅ ⋅ + íj − a)))
2

=
m−1
∑
a=0

∑
1≤r,s≤m−1

em(a(s − r)) ∑
1≤j,k≤N

em(r(í1 + ⋅ ⋅ ⋅ + íj) − s(í1 + ⋅ ⋅ ⋅ + ík))

= m
m−1
∑
t=1

∑
1≤j,k≤N

em(t(í1 + ⋅ ⋅ ⋅ + íj) − t(í1 + ⋅ ⋅ ⋅ + ík))

= m(m − 1)N + m
m−1
∑
t=1

∑
1≤j ̸=k≤N

em(t(í1 + ⋅ ⋅ ⋅ + íj) − t(í1 + ⋅ ⋅ ⋅ + ík))

= m(m − 1)N + m
m−1
∑
t=1

∑
1<j<k≤N

em(t(íj + íj+1 + ⋅ ⋅ ⋅ + ík)) + em(−t(íj + íj+1 + ⋅ ⋅ ⋅ + ík)). (6.2)

Thus in view of (6.1) and (6.2), we have

m−1
∑
a=0
E((Φrand(N;m, a) −

1
m
)
2
) = I + II. (6.3)

Using Lemma 2.3, the �rst term I is

I =
m(m − 1)N(1 − ä)N

(mN)2
∑

(í1 ,...,íN)∈{0,1}N
(

ä
1 − ä

)
í1+⋅⋅⋅+íN

=
(m − 1)(1 − ä)N

mN
(1 +

ä
1 − ä

)
N
=

m − 1
mN

<
1
N
. (6.4)

And the second term II is

II =
(1 − ä)N

mN2 ∑
(í1 ,...,íN)∈{0,1}N

(
ä

1 − ä
)
í1+⋅⋅⋅+íN

⋅
m−1
∑
t=1

∑
1<j<k≤N

em(t(íj + íj+1 + ⋅ ⋅ ⋅ + ík)) + em(−t(íj + íj+1 + ⋅ ⋅ ⋅ + ík)).

In order to evaluate II, we are going to group the inner sum into residue classes modulo m according

to the values íj + ⋅ ⋅ ⋅ + íkmodm, and then change the order of summation. We �rst make the following

observation. Let 1 ≤ n < N. Given an N-tuple (í1, . . . , íN) ∈ {0, 1}N, there are exactly (N − n) sub-blocks

of length n of the form (íj, íj+1, . . . , íj+n−1). Furthermore, given an n-tuple (íj, íj+1, . . . , íj+n−1) such that

íj +íj+1 + ⋅ ⋅ ⋅ + íj+n−1 ≡ amodm, the number of vectors (ì1, . . . , ìN) ∈ {0, 1}N such that ìj +ìj+1 + ⋅ ⋅ ⋅ + ìj+n−1 ≡
amodm is

∑
l≥0

(
n

a + lm
) ∑

(í1 ,...,íN−n)∈{0,1}N−n

1 = 2N−n ∑
l≥0

(
n

a + lm
).

Therefore,

II =
(1 − ä)N

mN2

m−1
∑
t=1

m−1
∑
a=0

(em(ta) + em(−ta))

⋅
N−1
∑
n=1

(N − n)∑
l≥0

(
n

a + lm
)(

ä
1 − ä

)
a+lm

∑
(í1 ,...,íN−n)∈{0,1}N−n

(
ä

1 − ä
)
í1+⋅⋅⋅+íN−n

=
(1 − ä)N

mN2

m−1
∑
t=1

m−1
∑
a=0

(em(ta) + em(−ta))
N−1
∑
n=1

(N − n)S(
ä

1 − ä
; a, m, n)(1 +

ä
1 − ä

)
N−n

.
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Expanding S( ä
1−ä ; a, m, n) using Lemma 2.4 leads to

(1 − ä)N

mN2

m−1
∑
t=1

m−1
∑
a=0

(em(ta) + em(−ta))
N−1
∑
n=1

N − n
m

(1 +
ä

1 − ä
)
N−n m−1

∑
l=0

em(−al)(1 +
ä

1 − ä
em(l))

n

=
(1 − ä)N

mN2

m−1
∑
t=1

N−1
∑
n=1

m−1
∑
l=0

N − n
m

(1 +
ä

1 − ä
)
N−n

(1 +
ä

1 − ä
em(l))

n m−1
∑
a=0

(em(a(t − l)) + em(−a(t + l)))

=
(1 − ä)N

mN2

m−1
∑
t=1

N−1
∑
n=1

(N − n)(1 +
ä

1 − ä
)
N−n

{(1 +
ä

1 − ä
em(t))

n
+ (1 +

ä
1 − ä

em(−t))
n
}

=
1

mN2

m−1
∑
t=1

N−1
∑
n=1

(N − n){(1 − ä + äem(t))
n + (1 − ä + äem(−t))

n}.

Finally, we apply Lemma 2.6 (with the choice å = 1) to bound the double sum above. This gives

II ≪ä
m
N
. (6.5)

The proposition is proved in view of (6.3), (6.4) and (6.5).

7 Link for Theorem 1.1
This section provides links between the probabilistic model introduced in Section 5 and the moment of the

short sum S(Φ;H, x). De�ne the moment function

M(r) :=
1
N

N
∑
x=1

S(Φ;H, x)r.

Lemma 7.1. LetN be a large RSAmodulus. Suppose ë > 0 is a real number such thatmin(p, q) > ëN1/2. Let r,H
be positive integers such thatH ≤ ëN1/2 and 1 ≤ r < 1/4 log4 N. Then asH → ∞,

M(r) = (
H
4
)
r
(1 + O((16/H)r + 4rN−1/4)).

Proof. We have

M(r) =
1
N

N
∑
x=1

( ∑
x<n≤x+H

Φ(n))
r
=

1
N

N
∑
x=1

∑
x<n1 ,...,nr≤x+H

Φ(n1) ⋅ ⋅ ⋅ Φ(nr)

=
1
N

∑
1≤y1 ,...,yr≤H

N
∑
x=1

r
∏
i=1

Φ(x + yi).

Given any r-tuple (y1, . . . , yr) ∈ [1,H]r, we can write

r
∏
i=1

Φ(x + yi) = Φ(x + yi1 )
di1Φ(x + yi2 )

di2 ⋅ ⋅ ⋅ Φ(x + yik )
dik ,

where the elements of k-tuple (yi1 , . . . , yik ) are pair-wise distinct, and di are positive integers such that

di1 + ⋅ ⋅ ⋅ + dik = r. Therefore,M(r) becomes

1
N

r
∑
k=1

∑∑
{i1 ,...,ik}⊂{1,...,r}
1≤yi1 ,...,yik≤H

∑
di1+⋅⋅⋅+dik=r

N
∑
x=1

Φ(x + yi1 )
di1 ⋅ ⋅ ⋅ Φ(x + yik )

dik . (7.1)
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The sum over x in (7.1) can be bounded using Proposition 4.1, and the sum over di can be bounded using

Lemma 2.1. Thus,

M(r) =
1
N

r
∑
k=1

(
r
k
)(

r − 1
k − 1

)Hk(N/4k + O(kN3/4/2k))

=
r
∑
k=1

(
r
k
)(

r − 1
k − 1

)(H/4)k + O(N−1/4
r
∑
k=1

(
r
k
)(

r − 1
k − 1

)Hk)

= (H/4)r + O(4r + N−1/4Hr),

where we have used Lemma 2.2 for bounding the binomial sum above.

We next compute the characteristic function of the distribution of the normalized sum which is de�ned as

÷(u) :=
1
N

N
∑
x=1
exp(iu ̃S(Φ;H, x)) =

1
N

N
∑
x=1
exp(iu

S(Φ;H, x)
√Hä(1 − ä)

).

Proposition 7.2. Fix ä = 1/4. Let N be a large RSA modulus. Let H,T be positive integers such that H≤ëN1/2

and T < 1/4 log4 N. Then we have uniformly for u ≤ |F(1/4)|−1/3H1/6 ≈ 1.732H1/6,

÷(u) = exp(−
u2

2
)(1 + O(

u3

√H
)) ⋅ exp(iu√

H
3
)

+ O((1 + 16u/√3H)T + N−1/4(1 + 4u√H/3)T +
(u√H/3)T

T!
).

Proof. Truncating the exponential series up to the T-th term gives

1
N

N
∑
x=1
exp(iu ̃S(Φ;H, x)) =

1
N

N
∑
x=1

(
T−1
∑
r=0

(iu ̃S(Φ;H, x))r

r!
+ O(

uT ̃S(Φ;H, x)
T

T!
))

=
T−1
∑
r=0

(iu)rM(r)
r!(Hä(1 − ä))r/2

+ O(
uTM(T)

T!(Hä(1 − ä))T/2
). (7.2)

Using Lemma 7.1, the error is bounded by

uTM(T)
T!(Hä(1 − ä))T/2

≪
uT(Hä)T

T!(Hä(1 − ä))T/2
=

(u√H/3)T

T!
. (7.3)

In view of Lemma 7.1 and Lemma 5.1, the main term in (7.2) becomes

T−1
∑
r=0

(iu)rM(r)
r!(Hä(1 − ä))r/2

=
T−1
∑
r=0

(iu)rE(Zr
H)

r!(Hä(1 − ä))r/2
(1 + O((16/H)r + 4rN−1/4))

= E(
T−1
∑
r=0

(iuZ̃H)
r

r!
) + O(

T−1
∑
r=0

(16u/H)rE(Zr
H)

r!(Hä(1 − ä))r/2
+ N−1/4

T−1
∑
r=0

ur4rE(Zr
H)

r!(Hä(1 − ä))r/2
). (7.4)

Using the power series expansion for exp(ix), we see that the �rst term in (7.4) is

E(exp(iuZ̃H)) + O(
uTE(ZT

H)
T!(Hä(1 − ä))T/2

) = E(exp(iuZ̃H)) + O(
(u√H/3)T

T!
)

because by Lemma 5.1

uTE(ZT
H)

T!(Hä(1 − ä))T/2
≪

uT(Hä)T

T!(Hä(1 − ä))T/2
=

(u√H/3)T

T!
.

The �rst error term in (7.4) is

T−1
∑
r=0

(16u/H)rE(Zr
H)

r!(Hä(1 − ä))r/2
=

T−1
∑
r=0

(16u/√3H)r

r!
≤ (1 +

16u
√3H

)
T
.

The second error term in (7.4) is

N−1/4
T−1
∑
r=0

ur4rE(Zr
H)

r!(Hä(1 − ä))r/2
≪ N−1/4

T−1
∑
r=0

(4u√H/3)r

r!
≪ N−1/4(1 + 4u√H/3)T.

The proposition is proved in view of (7.4) and Lemma 5.2.
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8 Proof of Theorem 1.1
A key element in the proof of Theorem 1.1 is a smooth approximation for the signum function. The origi-

nal idea is due to Selberg [14], and the method is applied e�ectively by Lamzouri [10] in establishing a two-

dimensional Gaussian distribution for short complex character sums. In deriving Theorem 1.1, the arguments

are essentially those of Lamzouri’s adapted to our situation.

Let 1a,b be the characteristic function of the interval [a, b].

Lemma 8.1. Let real numbers t > 0, a, b be given such that a ≤ b. Then

1a,b(x) = Im
t

∫
0

G(
u
t
) exp(2ðiux)fa,b(u)

du
u

+ O(
sin2(ðt(x − a))
(ðt(x − a))2

+
sin2(ðt(x − b))
(ðt(x − b))2

),

where the functions G, fa,b are de�ned as

G(u) =
2u
ð

+ 2(1 − u)u cot(ðu) for u ∈ [0, 1],

fa,b(u) =
exp(−2ðiau) − exp(−2ðibu)

2
.

Furthermore, G(u) is di�erentiable and 0 ≤ G(u) ≤ 2/ð for 0 ≤ u ≤ 1. The function fa,b satis�es the bound

|fa,b(u)| ≤ ðu|b − a|.

Proof. See [10, Lemma 4.1 and the subsequent discussion].

The following lemma generalizes [10, Lemma 4.2].

Lemma 8.2. Let ä be real number such that 0 < ä < 1. Let t be a large positive number. Then, uniformly for all
real numbers a < b,

Im
t

∫
0

G(
u
t
) exp(−

(2ðu)2

2
) exp(2ðiu√

Hä
1 − ä

)fa,b(u)
du
u

=
1

√2ð

b

∫
a

exp(−
(x − √Hä/(1 − ä))2

2
)dx + O(

1
t
).

Proof. LetX be a Gaussian random variable with mean ì = √Hä/(1 − ä) and variance ò2 = 1. We have

1
√2ð

b

∫
a

exp(−
(x − √Hä/(1 − ä))2

2
)dx = P(X ∈ [a, b]) = E(1a,b(X)). (8.1)

Using Lemma 8.1, we have

E(1a,b(X)) = Im
t

∫
0

G(
u
t
)E(exp(2ðiuX))fa,b(u)

du
u

+ O(E(
sin2(ðt(X − a))
(ðt(X − a))2

+
sin2(ðt(X − b))
(ðt(X − b))2

)). (8.2)

The error terms in (8.2) are known to be≪ 1/t (see the proof of [10, Lemma 4.2]). Furthermore for the Gaussian

random variableX, we have

E(exp(2ðiuX)) = exp(2ðiìu) exp(−
(2ðòu)2

2
) = exp(2ðiu√

Hä
1 − ä

) exp(−
(2ðu)2

2
). (8.3)

This proves the lemma after putting (8.2) and (8.3) in (8.1).

Proof of Theorem 1.1. Let ä = 1/4 be �xed. Let T be a positive integer, and t ≥ 1 be a real number such that

t = min(
1
2ð

H1/6,
1
4
√
logN

H logH
) and T = [t2H].
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Using Lemma 8.1, we have

1
N

N
∑
x=1

1a,b( ̃S(Φ;H, x)) = Im
t

∫
0

G(
u
t
)÷(2ðu)fa,b(u)

du
u

+ O(I(t, a) + I(t, b)). (8.4)

The main term in (8.4) can be expanded using Proposition 7.2:

Im
t

∫
0

G(
u
t
)÷(2ðu)fa,b(u)

du
u

= Im
t

∫
0

G(
u
t
) exp(−

(2ðu)2

2
) exp(2ðiu√

H
3
)fa,b(u)

du
u

+ O(E),

where

E = (b − a)
t

∫
0

exp(−
(2ðu)2

2
)
(2ðu)3

√H
+ (1 + 32ðu/√3H)T + N−1/4(1 + 8ðu√H/3)T +

(2ðu√H/3)T

T!
du.

Thus in view of Lemma 8.2, we have

1
N

N
∑
x=1

1a,b( ̃S(Φ;H, x)) =
1

√2ð

b

∫
a

exp(−
(x − √H/3)2

2
)dx + O(

1
t
)

+ O((b − a + 1)(
1

√H
+ (

64t2

√H
)
T
+ N−1/4(16t√H)T+1 +

(4t√H)T+1

T!
)). (8.5)

The error terms I(t, a), I(t, b) in (8.4) can be bounded similarly as done in the proof of [10, Theorem 1]. For

l = a, b, we have

I(t, l) =
1
N

N
∑
x=1

sin2(ðt( ̃S(Φ;H, x) − l))
(ðt(x − l))2

=
1
N

N
∑
x=1

2
t2

t

∫
0

(t − v) cos(2ðv( ̃S(Φ;H, x) − l))dv

= Re
1
N

N
∑
x=1

2
t2

t

∫
0

(t − v) exp(−2ðilv) exp(2ðiv ̃S(Φ;H, x))dv

= Re
2
t2

t

∫
0

(t − v) exp(−2ðilv)÷(2ðv)dv

≪
1
t

t

∫
0

exp(−
(2ðu)2

2
) + (1 +

32ðu
√3H

)
T
+ N−1/4(1 + 8ðu√

H
3
)
T
+
(2ðu√H/3)T

T!
du

≪
1
t
(1 + (

64t2

√H
)
T
+ N−1/4(16t√H)T+1 +

(4t√H)T+1

T!
). (8.6)

In view of (8.4), (8.5) and (8.6), thus far we have obtained

1
N

N
∑
x=1

1a,b( ̃S(Φ;H, x)) =
1

√2ð

b

∫
a

exp(−
(x − √H/3)2

2
)dx + O(E1),

where the error term E1 is

E1 = (b − a + 1)(
1
t
+

1
√H

+ (
64t2

√H
)
T
+ N−1/4(16t√H)T+1 +

(4t√H)T+1

T!
). (8.7)

Now the Stirling approximation gives

(4t√H)T+1

T!
≪

4TT
T+1
2

T!
≪

1
√T

≪
1
t
.
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For largeH, we have

(
64t2

√H
)
T
≪ (

1
6√H

)
T
≪

1
6√H

.

Moreover,

N−1/4(16t√H)T+1 ≪ N−1/32

because for largeH,

16T+1 ≪ 16
logN

16 logH = exp(
log 16 logN
16 logH

) ≪ exp(
logN
32

) = N1/32,

and as logN/ logH becomes large,

tT+1 ≤ H
1
6 (T+1) ≤ H

1
6 (

logN
16 logH+1) ≪ N1/64, (√H)T+1 ≤ H

1
2 (

logN
16 logH+1) ≪ H

3 logN
64 logH = N3/64.

To conclude, we have the error term (8.7):

E ≪ (b − a + 1)(1/t + N−1/32) ≪ (b − a + 1)(H−1/6 + √
H logH
logN

).

9 Link for Theorem 1.6
This section provides links between the probabilistic model introduced in Section 6 and Theorem 1.6. The

goal of this section is the proof of Proposition 9.3. The result extends [11, Proposition 3.1] to the settingℤ/Nℤ.
Let ⃗v = (v1, . . . , vs) ∈ {0, 1}s. De�ne

Δ( ⃗v) := {1 ≤ i ≤ s : vi = 1, ⃗v = (v1, . . . , vs)},

Δ( ⃗v) := {1 ≤ i ≤ s : vi = 0, ⃗v = (v1, . . . , vs)}.

Basically, Δ( ⃗v) is the index set where the vector ⃗v has the 1 coordinates, and Δ( ⃗v) is the index set where the

vector ⃗v has the 0 coordinates. De�ne

D(N; ⃗v, s) := {1 ≤ n ≤ N : Φ(n + j) = vj for all 0 ≤ j ≤ s − 1},

whereΦ(⋅) is the quadratic residue characteristic function.

Lemma 9.1. Let n ≤ N and s be positive integers. Then the number n such that the sequence {Φ(n), Φ(n + 1),
. . . , Φ(n + s − 1)} contains a term not equal to 0 or 1 is≪ sN1/2.

Proof. Notice thatΦ(n) ̸= 0, 1 if p or q divides n. The bound for this exception set

D0 := {0 ≤ n < N : there exists i such that 0 ≤ i ≤ s − 1 and öN(n + i) = 0}

is known, see [9, Lemma 3.2] for a precise estimate.

Lemma 9.2. Let 1 ≤ s < 1
16 log2 N be a positive integer. Then we have

|D(N; ⃗v, s)| = N(
1
4
)
|Δ( ⃗v)|

(
3
4
)
|Δ( ⃗v)|

(1 + O(N−1/16)).

Proof. First, notice that ifΦ(n + j) ∈ {0, 1}, then

(1 − vj) + (2vj − 1)Φ(n + j) =
{
{
{

1, ifΦ(n + j) = vj,

0, ifΦ(n + j) ̸= vj.
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Thus (1 − vj) + (2vj − 1)Φ(n + j) is a characteristic function on the sequence vj, 0 ≤ j < s, provided there are

only 0, 1-terms in the sequence {Φ(n), . . . , Φ(n + s − 1)}. The number of exceptions (i.e. sequences {Φ(n), . . . ,
Φ(n + s − 1)} containing a non-0, 1-term) is bounded by sN1/2

by Lemma 9.1. Therefore,

|D(N; ⃗v, s)| =
N
∑
n=1

s−1
∏
j=0

(1 − vj + (2vj − 1)Φ(n + j)) + O(sN1/2)

=
N
∑
n=1

( ∏
j∈Δ( ⃗v)

Φ(n + j))( ∏
j∈Δ( ⃗v)

(1 − Φ(n + j))) + O(N1/2 logN)

=
N
∑
n=1

( ∏
j∈Δ( ⃗v)

Φ(n + j))(1 + ∑
T⊂Δ( ⃗v)
T ̸=⌀

(−1)|T| ∏
j∈T

Φ(n + j)) + O(N1/2 logN)

=
N
∑
n=1

( ∏
j∈Δ( ⃗v)

Φ(n + j)) + ∑
T⊂Δ( ⃗v)
T ̸=⌀

(−1)|T|
N
∑
n=1

( ∏
j∈Δ( ⃗v)∪T

Φ(n + j)) + O(N1/2 logN)

= I + II + O(N1/2 logN). (9.1)

The asymptotic evaluation of I, II can be derived based on Proposition 4.1:

I =
N
∑
n=1

∏
j∈Δ( ⃗v)

Φ(n + j) =
N

4|Δ( ⃗v)| + O(sN
3/4), (9.2)

II = ∑
T⊂Δ( ⃗v)
T ̸=⌀

(−1)|T|
N
∑
n=1

∏
j∈Δ( ⃗v)∪T

Φ(n + j) = ∑
T⊂Δ( ⃗v)
T ̸=⌀

(−1)|T|(
N

4|Δ( ⃗v)|+|T| + O(sN
3/4))

=
N

4|Δ( ⃗v)| ∑
T⊂Δ( ⃗v)
T ̸=⌀

(−1)|T|

4|T|
+ O(s2sN3/4) =

N
4|Δ( ⃗v)| ((1 −

1
4
)
|Δ( ⃗v)|

− 1) + O(s2sN3/4)

= N(
1
4
)
|Δ( ⃗v)|

(
3
4
)
|Δ( ⃗v)|

−
N

4|Δ( ⃗v)| + O(s2
sN3/4). (9.3)

Finally, in view of (9.1), (9.2), and (9.3), we have

|D(N; v⃗, s)| = N(
1
4
)
|Δ( ⃗v)|

(
3
4
)
|Δ( ⃗v)|

+ O(s2sN3/4) = N(
1
4
)
|Δ( ⃗v)|

(
3
4
)
|Δ( ⃗v)|

(1 + O(N−1/16)).

The error term above is obtained by observing that ( 14 )
|Δ( ⃗v)|( 34 )

|Δ( ⃗v)|
has the absolute minimum value 1/4s.

Proposition 9.3. Let N be a large RSA modulus. Let 1 ≤ s < 1
16 log2 N be a positive integer. Then for any non-

negative function ℎ : {0, 1}s → ℝ+, we have

1
N

N
∑
n=1

ℎ(Φ(n), . . . , Φ(n + s − 1)) = E(ℎ(X1, . . . , Xs))(1 + O(N
−1/16)),

whereX1, . . . , Xs are independent random variables taking the values 1, 0 with probability 1
4 ,

3
4 , respectively.

Proof. In view of Lemma 9.2, we have

1
N

N
∑
n=1

ℎ(Φ(n), . . . , Φ(n + s − 1)) =
1
N

∑
⃗v=(v1 ,...,vs)∈{0,1}s

ℎ(v1, . . . , vs)|D(N; ⃗v, s)|

= ∑
⃗v=(v1 ,...,vs)∈{0,1}s

ℎ(v1, . . . , vs)(
1
4
)
|Δ( ⃗v)|

(
3
4
)
|Δ( ⃗v)|

(1 + O(N−1/16))

= E(ℎ(X1, . . . , Xs))(1 + O(N
−1/16)).
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10 Proof of Theorem 1.6
We closely follow the proof of [11, Theorem 2]. Let

Y(k, a) =
{
{
{

1, if |Q(k)| ≡ amodm,

0, otherwise.

For any integer j ≥ 1, we have

Ψ(N;m, a) =
1
N

N
∑
n=1

Y(n, a) =
1
N

N
∑
n=1

Y(n + j, a) + O(
j
N
).

Therefore,

m−1
∑
a=0

(Ψ(N;m, a) −
1
m
)
2
=

m−1
∑
a=0

(
1
NL

L
∑
j=1

N
∑
n=1

Y(n + j, a) −
1
m

+ O(
L
N
))

2

=
m−1
∑
a=0

(
1
NL

L
∑
j=1

N
∑
n=1

Y(n + j, a) −
1
m
)
2
+ O(

mL
N

),

where L = [1/16 log2 N]. Applying the Cauchy–Schwarz inequality gives the upper bound

m−1
∑
a=0

1
N

N
∑
n=1

(
1
L

L
∑
j=1

Y(n + j, a) −
1
m
)
2
+ O(

mL
N

) =
N
∑
n=1

1
N
ℎ(Φ(n + 1), . . . , Φ(n + L)) + O(

mL
N

)

where the function ℎ : {0, 1}L → ℝ+ is de�ned as

ℎ(v1, . . . , vL) =
m−1
∑
b=0

(
1
L
!!!!1 ≤ j ≤ L : v1 + ⋅ ⋅ ⋅ + vj ≡ bmodm!!!!)

2
.

Finally, in view of Proposition 9.3 and Proposition 6.2, we have

m−1
∑
a=0

(Ψ(N;m, a) −
1
m
)
2
≤ E(ℎ(X1, . . . , Xs))(1 + O(N

−1/16)) + O(
mL
N

)

=
m−1
∑
a=0
E((Φrand(L; m, a) −

1
m
)
2
)(1 + O(N−1/16)) + O(

mL
N

)

≪
m
L

+
mL
N

≪
m
logN

.

Notations
N RSA modulus:N = pq with 1 < p, q ≤ cN1/2

where c > 0

õ(⋅) Euler’s totient function

em(x) exp( 2ðixm )

öp(⋅), öq(⋅) Legendre symbols: ( ⋅
p ), (

⋅
q )

Φ(⋅) Quadratic residue characteristic function:

1
4 (1 + öp(n))(1 + öq(n))

S(Φ;H, x) Short character sum:∑x<n≤x+H Φ(n)

M(r) r-th moment:

1
N ∑N

x=1 S(Φ;H, x)r

S(x; a, m, k) ∑n≡amodm, n≤k (
k
n)x

n

SN,p,q(T, T
�) ∑N

n=1 öp(∏i∈T(n + i))öq(∏i∈T� (n + i))
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Xi Random variable

E(X) expectation of the random variableX

ZH X1 + ⋅ ⋅ ⋅ + XH

Z̃H, X̃, ũ Normalized variables

Φrand(N;m, a) 1
N
!!!!{1 ≤ k ≤ N : Zk ≡ amodm}!!!!

v⃗ Binary vector: v⃗ = (v1, . . . , vk) ∈ {0, 1}k

Δ( ⃗v) {1 ≤ i ≤ s : vi = 1, ⃗v = (v1, . . . , vs)}

Δ( ⃗v) {1 ≤ i ≤ s : vi = 0, ⃗v = (v1, . . . , vs)}

D(N; ⃗v, s) {1 ≤ n ≤ N : Φ(n + j) = vj for all 0 ≤ j ≤ s − 1}

Q(R; a, q) !!!!{n = a + rq : 1 ≤ r ≤ R, and n is a quadratic residuemodN}!!!!
NQ(R; a, q) !!!!{n = a + rq : 1 ≤ r ≤ R, and n is a quadratic non-residuemodN}!!!!
R(k) {1 ≤ n ≤ k : n is a quadratic residuemodN}

N(k) {1 ≤ n ≤ k : n is a quadratic non-residuemodN}

ΨR(N;m, a) 1
N
!!!!{1 ≤ k ≤ N : |R(k)| ≡ amodm}!!!!

ΨN(N;m, a) 1
N
!!!!{1 ≤ k ≤ N : |N(k)| ≡ amodm}!!!!
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