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Abstract. Logarithmic signatures for finite groups are the essential constituent of public
key cryptosystems MST1 and MST3. Especially they form the main component of the
private key of MST3. Regarding the use of MST3, it has become a vital issue to con-
struct new classes of logarithmic signatures having features that do not share with the
well-known class of transversal or fused transversal logarithmic signatures. For this pur-
pose Baumeister and de Wiljes recently presented an interesting method of constructing
aperiodic logarithmic signatures for abelian groups. In this paper we introduce the con-
cept of strongly aperiodic logarithmic signatures and show their constructions for abelian
p-groups on the basis of the Baumeister–de Wiljes method.
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1 Introduction

The public key cryptosystems MST1 (see [8]) and MST3 (see [5,11]) are developed
on the basis of logarithmic signatures, a kind of factorization of finite groups. The
basic idea for building MST3 is to construct trapdoor one-way functions using
random covers for finite non-abelian groups having a large center. An integrated
trapdoor information, which forms the main part of the private key of the scheme,
employs logarithmic signatures of the center. The Suzuki 2-groups have been pro-
posed as the underlying groups for an instantiation of MST3. The first analysis of
the simple version of MST3 (see [5]) due to Magliveras, Svaba, Tran van Trung
and Zajac [9] shows that transversal logarithmic signatures are unfit for use in
the scheme. A further investigation of Blackburn, Cid and Mullan [2] proves that
the use of fused transversal logarithmic signatures also makes the simple version
of MST3 insecure. However, for the strengthened version of MST3 (see [11]), it
is shown that fused transversal logarithmic signatures still withstand the power-
ful matrix-permutation attack (see [11]). It is therefore essential to study further
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classes of logarithmic signatures having features that would be more suitable for
use in public key cryptosystems like MST3.

In a recent paper [1] Baumeister and de Wiljes propose an interesting method
for constructing aperiodic logarithmic signatures for abelian groups, in particular,
for abelian 2-groups, that thwart the Blackburn–Cid–Mullan attack. It is worth
mentioning that transversal or fused transversal logarithmic signatures have the
property of being periodic. In this paper we introduce the concept of strongly ape-
riodic logarithmic signatures and present their constructions for abelian p-groups
based on the Baumeister–de Wiljes method. Aperiodic and strongly aperiodic
logarithmic signatures provide classes of logarithmic signatures having features
befitting the use of MST3. Moreover, we are convinced that strongly aperiodic
logarithmic signatures for abelian groups are also of theoretical interest in their
own right.

2 Preliminaries

In this section we briefly present notation, definitions and some basic facts about
logarithmic signatures, covers for finite groups and their induced mappings. For
more details the reader is referred to [6, 8]. The group theoretic notation used is
standard and may be found in any textbook.

Let G be a finite abstract group, we define the width of G to be the positive
integer w D dlog jG je. Let � be a subset of G and let ˛ D ŒA1; A2; : : : ; As� be
an ordered collection of ordered subsets Ai D ¹ai;1; : : : ; ai;ri

º of G , such thatPs
iD1 jAi j is bounded by a polynomial in log j� j. Then we say that ˛ is a cover

for � , if every product a1;j1
� � � as;js

lies in � and if every g 2 � can be written as

g D a1;j1
� � � as;js

(2.1)

with ai;ji
2 Ai . If, moreover, the expression in (2.1) is unique for every g 2 � ,

then ˛ is called a logarithmic signature for � . We denote by C.� � G / and
ƒ.� � G / the respective collections of covers and logarithmic signatures for
� � G . When � D G , we simply write C.G / and ƒ.G / instead of C.G � G / and
ƒ.G � G /. A cover or a logarithmic signature ˛ D ŒA1; A2; : : : ; As� for a group
G is said to be proper if jAi j 6D 1 and Ai 6D G , for every i , 1 � i � s. We assume
that all covers and logarithmic signatures are proper. The product a1;j1

� � � as;js
in

(2.1) is called a factorization of g with respect to ˛.
Let ˛ D ŒA1; : : : ; As� be a cover for G with ri D jAi j, then the Ai are called

the blocks of ˛ and the vector .r1; : : : ; rs/ of block lengths ri the type of ˛. We
define the length of ˛ to be the integer `.˛/ D

Ps
iD1 ri .

Let � D ¹.G`; ˛`/º`2N be a family of pairs, indexed by the security parameter
`, where the G` are groups in a common representation, and where ˛` is a specific
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cover for G` of length polynomial in `. We say that � is tame if there exists a
probabilistic polynomial time algorithm A such that for each g 2 G`, A accepts
.˛`; g/ as input, and outputs a factorization of g with respect to ˛` (as in equation
(2.1)) with overwhelming probability of success. We say that � is wild if for
any probabilistic polynomial time algorithm A, the probability that A succeeds
in factorizing a random element g of G` is negligible. In other words � is tame
if there exists an algorithm by means of which the factorization in (2.1) for each
instance ¹.G ; ˛`/º can be achieved in time polynomial in dlog jG`je; and � is wild
if it is not tame. Often we simply say ˛` is tame or wild.

For finite groups there are instances ¹.G ; ˛`/º` where the factorization in (2.1)
is believed to be hard: For example, let q be a prime power for which the discrete
logarithm problem in the multiplicative group of a finite field Fq is believed to be
hard. Suppose that 2`�1 � q � 1 < 2`, and let G` be the multiplicative group
F�q just mentioned. Let f be a generator of G`. If ˛` D ŒA1; A2; : : : ; A`�, where
Ai D Œ1; f

2i�1

�, then ˛` is a cover of G`, and factorization with respect to ˛`
amounts to solving the discrete logarithm problem (DLP) in G`.

Let ˛ D ŒA1; A2; : : : ; As� be a cover of type .r1; r2; : : : ; rs/ for � � G with
Ai D Œai;1; ai;2; : : : ; ai;ri

� and let m D
Qs
iD1 ri . Let m1 D 1 and mi D

Qi�1
jD1 rj

for i D 2; : : : ; s. Let � denote the canonical bijection from Zr1
˚Zr2

˚� � �˚Zrs

on Zm; i.e.,

� W Zr1
˚ Zr2

˚ � � � ˚ Zrs
! Zm; �.j1; j2; : : : ; js/ WD

sX
iD1

jimi :

Using � we now define the surjective mapping M̨ induced by ˛.

M̨ W Zm ! � ; M̨ .x/ WD a1;j1
� a2;j2

� � � as;js
;

where .j1; j2; : : : ; js/ D ��1.x/. Since � and ��1 are efficiently computable, the
mapping M̨ .x/ is efficiently computable.

Conversely, given a cover ˛ and an element y 2 � , to determine any element
x 2 M̨�1.y/ it is necessary to obtain any one of the possible factorizations of type
(2.1) for y and determine indices j1; j2; : : : ; js such that y D a1;j1

�a2;j2
� � � as;js

.
This is possible if and only if ˛ is tame. Once a vector .j1; j2; : : : ; js/ has been
determined, M̨�1.y/ D �.j1; j2; : : : ; js/ can be computed efficiently.

Two covers (logarithmic signatures) ˛, ˇ are said to be equivalent if M̨ D M̌.
It is worth noting that random covers and logarithmic signatures have been

used to construct pseudorandom number generators which are suitable for crypto-
graphic applications [7, 10].
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3 The cryptosystem MST3

Let G be a finite non-abelian group with nontrivial center Z such that G does not
split over Z. Assume further that Z is sufficiently large so that exhaustive search
problems are computationally not feasible in Z. We describe the strengthened
version of MST3 (see [11]).

Alice chooses a large group G as described above and generates

(1) a tame logarithmic signature ˇ D ŒB1; B2; : : : ; Bs� WD .bij / of type
.r1; r2; : : : ; rs/ for Z;

(2) a random cover ˛ D ŒA1; A2; : : : ; As� WD .aij / of the same type as ˇ for a
certain subset J of G such that A1; : : : ; As � G nZ.

She further selects t0; t1; : : : ; ts 2 G n Z, a homomorphism f W G ! Z and
computes

(3) 
 D .hi;j /, hi;j D t�1i�1 � ai;j � f .ai;j / � bi;j � ti .

Alice publishes her public key .˛; 
/, keeping .ˇ; t0; t1; : : : ; ts; f / as her pri-
vate key.

To encrypt a message x 2 Z Bob chooses a random number R 2 ZjZj, R ¤ 0,
computes

y1 D M̨ .R/ � x; y2 D M
.R/ � x D t
�1
0 � M̨ .R/ � f . M̨ .R// �

M̌.R/ � ts � x;

and sends y D .y1; y2/ to Alice. To decrypt y D .y1; y2/ Alice computes

M̌.R/ D f . M̨ .R//�1 � y�11 � t0 � y2 � t
�1
s D f .y1/

�1
� y�11 � t0 � y2 � t

�1
s

by using the fact that f .y1/ D f . M̨ .R//, she then computesR from M̌.R/which is
efficiently computable as ˇ is tame. She computes M̨ .R/ and recovers x from y1.

In the description above if we choose f as the trivial homomorphism, i.e.,
f .g/ D 1G for all g 2 G , we obtain the simple version of the cryptosystem
MST3 (see [5]). The use of nontrivial homomorphism f considerably strengthens
the scheme as shown in [11]. The homomorphism f is used to mask the secret
logarithmic signature ˇ with information computed from cover ˛. We refer the
reader to [5, 11] for more detailed information about MST3.

As an instantiation of MST3 it has been suggested that the Suzuki 2-groups [3]
might be used for the underlying groups [5, 11]. Let q D 2m with 3 � m 2 N
such that the field Fq has a nontrivial automorphism � of odd order, i.e., m is not
a power of 2. Then a Suzuki 2-group G can be briefly described as follows:

G WD
®
.a; b/ 2 Fq � Fq j .a1; b1/ � .a2; b2/ D .a1 C a2; b1 C b2 C a

�
1a2/

¯
:

Thus G has order q2 and Z.G / D ˆ.G / D G 0 D �1.G / D ¹.0; b/ j b 2 Fqº. In
particular the center Z.G / is elementary abelian of order q.
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4 Classes and transformations of logarithmic signatures

In this section we briefly discuss classes of logarithmic signatures and basic trans-
formations on logarithmic signatures for a group G .

Let 
 W 1G D G0 < G1 < � � � < Gs D G be a chain of subgroups of G ,
and let Ai be an ordered, complete set of right (or left) coset representatives of
Gi�1 in Gi . Then ŒA1; : : : ; As� forms a logarithmic signature for G , called exact
transversal logarithmic signature. We denote the collection of all exact transversal
logarithmic signatures for a group G by ET .G /. A logarithmic signature ˛ for a
group G is called transversal if ˛ is equivalent to a ˇ 2 ET .G /, otherwise ˛ is
called non-transversal. Further, if none of the blocks of ˛ is a coset of a non-trivial
subgroup of G , then ˛ is called totally non-transversal. We will denote the class
of transversal, non-transversal, and totally non-transversal logarithmic signatures
for G by T .G /, NT .G /, and TNT .G / respectively.

We list some basic transformations on logarithmic signatures. By applying cer-
tain transformations on a logarithmic signature, new logarithmic signatures will
be derived. Let ˛ D ŒA1; : : : ; As� 2 ƒ.G /.

� Element shuffle: Permute the elements within each block of ˛.

� Block shuffle: If G is non-abelian, permuting two blocks of ˛ may result in
a cover for a certain subset of G . If G is abelian, then the result of a block
shuffle is indeed a logarithmic signature.

� Two sided transformation: Let g0; g1; : : : ; gs 2 G . Define a new logarithmic
signature ˇ D ŒB1; : : : ; Bs� by Bi D g�1i�1Aigi . Then ˇ is called a two sided
transform of ˛. When g0 D gs D 1, we say that ˇ is a sandwich of ˛. When
g0 D 1, ˇ is said to be a right translation of ˛ by gs . If gs D 1, then ˇ is
called a left translation of ˛ by g0.

� Fusion: If G is non-abelian, then replacing two consecutive blocks Ai and
AiC1, 1 � i � s � 1, by a single block B D AiAiC1 WD ¹xy j x 2 Ai ; y 2
AiC1º will result in a logarithmic signature. B is called a fused block. If G

is abelian, the fusion transformation can be done on any two blocks of ˛.

� Automorphism action: If ' is an automorphism of G , then ˇ D ŒB1; : : : ; Bs�
with Bi D '.Ai /, 1 � i � s, is a logarithmic signature for G .

5 Aperiodic logarithmic signatures and the Baumeister–de Wiljes
construction

Investigating tame aperiodic logarithmic signatures for abelian groups is a prob-
lem of theoretical interest and of practical importance. They present a new class



152 R. Staszewski and Tran van Trung

of logarithmic signatures beyond the well-known classes of transversal and their
fused logarithmic signatures which are all periodic. Regarding cryptosystem MST3
aperiodic logarithmic signatures appear to be especially significant.

Definition 5.1. A non-empty subset X of a group G is called periodic if there
exists an element g 2 G n ¹1G º such that gX D X . Such an element g is called a
period of X . The set of all periods of X will be denoted by P.X/, i.e., P.X/ D
¹g 2 G n ¹1G º W gX D Xº.

Definition 5.2. A logarithmic signature ˛ D ŒA1; : : : ; As� 2 ƒ.G / is called
aperiodic if none of the blocks Ai is periodic. The set of all aperiodic logarithmic
signatures for G is denoted by A.G /.

In [1], Baumeister and de Wiljes present an interesting method for constructing
aperiodic signatures for abelian groups. The method is based on the theory in the
book of Szabó [12], and it describes an approach to construct aperiodic logarithmic
signatures for abelian groups. The method is not an algorithm in the strict sense,
since the requirement posed by the method prohibits quickly its computational fea-
sibility even for groups of moderate order. However, the basic idea of the method
has proved to be useful, since it provides a technique for searching aperiodic loga-
rithmic signatures for abelian groups. We now describe the Baumeister–de Wiljes
construction.

Baumeister–de Wiljes construction. Let G be a finite abelian group. Let H be
a subgroup of G and let T be a transversal of H in G (i.e., T is a complete set of
coset representatives of H in G ).

(i) Let � D ŒT1; : : : ; Ts� be a logarithmic signature of type .r1; : : : ; rs/ for T ,
where Ti D ¹ti;1; : : : ; ti;ri

º.

(ii) Suppose that for each i with 1 � i � s there exists a collection

Li D ¹Ai;1; : : : ; Ai;ri
º

of subsets Ai;j of H such that any choice ŒA1;j1
; : : : ; As;js

� with Ai;ji
2 Li

forms a logarithmic signature for H .

(iii) Then ˇ WD ŒB1; : : : ; Bs� defined by Bi D ti;1Ai;1 [ : : : [ ti;ri
Ai;ri

for 1 �
i � s forms a logarithmic signature of type .`1; : : : ; `s/ for G , where `i DPri

jD1 jAi;j j.

For any subsets A;B of a group G we say that B is a translate of A if there is
an element g 2 G such that gA D B . The translate B is called proper if A 6D B .
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Baumeister and de Wiljes give the following characterization of aperiodicity for
the constructed logarithmic signature ˇ.

Proposition 5.3. Suppose that Ai;j is not a translate of Ai;k for any j; k 2
¹1; : : : ; riº. Then Bi is periodic if and only if

ri\
jD1

P.Ai;j / 6D ;:

The main idea of the Baumeister–de Wiljes construction of aperiodic logarith-
mic signatures is to find sets Li satisfying condition (ii).

Example 5.4. Let G be an elementary abelian 2-group of order 29 generated by
g1; g2; : : : ; g9. Let H WD hg1; g2; g3; g4; g5; g6i and T D hg7; g8; g9i. Set
� D ŒT1; T2; T3� with T1 D ¹1; g7º, T2 D ¹1; g8º, T3 D ¹1; g9º. Define

L1 D
®
A1;1 D ¹1; g1; g2; g1g2º; A1;2 D ¹1; g1g3; g2g4; g1g3g2g4º

¯
;

L2 D
®
A2;1 D ¹1; g3; g4; g3g4º; A2;2 D ¹1; g1g2g3; g1g4; g2g3g4º

¯
;

L3 D
®
A3;1 D ¹1; g5; g6; g5g6º; A3;2 D ¹1; g1g3g5; g2g4g6; g1g2g3g4g5g6º

¯
:

It can be checked that each of the eight combinations ŒA1;j1
; A2;j2

; A3;j3
� with

j1; j2; j3 2 ¹1; 2º forms a logarithmic signature for H . We thus obtain an aperi-
odic logarithmic signature ˇ D ŒB1; B2; B3� of type .8; 8; 8/ with

B1 D
®
1; g1; g2; g1g2; g7; g1g3g7; g2g4g7; g1g3g2g4g7

¯
;

B2 D
®
1; g3; g4; g3g4; g8; g1g2g3g8; g1g4g8; g2g3g4g8

¯
;

B3 D
®
1; g5; g6; g5g6; g9; g1g3g5g9; g2g4g6g9; g1g2g3g4g5g6g9

¯
:

The aperiodicity of ˇ follows from Proposition 5.3, since Ai;1\Ai;2 D ¹1º for
all i D 1; 2; 3.

An important property of logarithmic signatures constructed by the Baumeister–
de Wiljes method is that they are tame when certain conditions are satisfied (see
[1, 4]). The result is given by the following theorem.

Theorem 5.5. Let ˇ WD ŒB1; : : : ; Bs� be a logarithmic signature constructed by
the Baumeister–de Wiljes method. Assume that � and all logarithmic signatures
ŒA1;j1

; : : : ; As;js
�, 1 � ji � ri and 1 � i � s, are tame. If � and L1; : : : ;Ls are

known, then ˇ is tame.
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Proof. Let g 2 G be an element that we want to factorize with respect to ˇ. Then
there exist unique elements t 2 T and h 2 H such that g D ht . Since � is
tame, we can find a factorization of t D t1;j1

� � � ts;js
with respect to � in time

bounded by O.wc1/, where w D dlog jG je and c1 is a constant. Having obtained
.j1; : : : ; js/ we can determine the logarithmic signature ŒA1;j1

; : : : ; As;js
� which

is tame by the assumption. So, the complexity of factoring h D a1;k1
� � � as;ks

with
respect to ŒA1;j1

; : : : ; As;js
� is bounded by O.wc2/, where c2 is a constant. Thus

g D ht D a1;k1
� � � as;ks

t1;j1
� � � ts;js

D .a1;k1
t1;j1

/„ ƒ‚ …
2B1

� � � .as;ks
ts;js

/„ ƒ‚ …
2Bs

:

Finding ai;ki
ti;ji
2 Bi only requires a time ofO.log2.jBi j// when Bi is sorted. It

follows that ˇ is tame.

6 Strongly aperiodic logarithmic signatures for abelian groups

Within the class A.G / of aperiodic logarithmic signatures, we are interested in
a subclass called strongly aperiodic logarithmic signatures, which we denote by
�A.G /.

A simple observation shows that the aperiodicity property of a logarithmic sig-
nature is preserved under the transformations described above, except the fusion.
Fusing two or more blocks of an aperiodic logarithmic signature may result in a
periodic logarithmic signature. Observe that if we fuse all the blocks of a logarith-
mic signature ˇ, we obtain one block, namely the group G itself, which is in turn
a trivial periodic logarithmic signature. We will exclude this trivial case. Thus a
fusion can be done on any set of at most s � 1 blocks of ˇ. In general, we might
expect that any nontrivial fusion is permitted, however it is not always so as we
can see from the following results shown in the book of Szabó [12] for abelian
p-groups.

Theorem 6.1. Let p be a prime and let G be an abelian group of order pn. Further
let r1 � r2 � � � � � rs � p be powers of p such that

sY
iD1

ri D p
n:

(i) ([12, Theorem 7.3.1]) Suppose p D 2 and G is an elementary abelian 2-
group. A logarithmic signature ˛ of type .r1; : : : ; rs/ with r1 � � � � � rs � 2
can only be aperiodic if we have
� s D 2 and r2 � 8, or
� s � 3 and r1 � 8, r2 � � � � � rs � 4.
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˛ is always periodic for each of the following cases:

� rs D 2,

� s D 2 and r2j4,

� s � 3 and r1j4; : : : ; rsj4.

(ii) ([12, Theorem 2.3.2]) Suppose p D 3 and G is not cyclic or of type .3n�1; 3/.
Suppose further that .r1; : : : ; rs/ 62 ¹.3; : : : ; 3/; .32; 3; : : : ; 3/; .3n�1; 3/º.
Then there exist aperiodic logarithmic signatures of type .r1; : : : ; rs/ for G .

(iii) ([12, Theorem 2.3.1]) Suppose p � 5, G is not cyclic and .r1; : : : ; rs/ 6D
.p; : : : ; p/. Then there exist aperiodic logarithmic signatures of type
.r1; : : : ; rs/ for G .

Now suppose that we have an aperiodic logarithmic signature ˇ D ŒB1; : : : ; Bs�
with s � 3 for an elementary abelian 2-group G . Note that from Theorem 6.1 we
have jB1j � 8 and jBi j � 4 for 2 � i � s. If ˇ is of type jBi j � 8 for
1 � i � s, then we say that ˇ is strongly aperiodic when any fusion of at most
s � 1 blocks results in an aperiodic logarithmic signature. However, suppose, for
instance, jB1j D 8 and jB2j D � � � D jBsj D 4. Then ˇ is strongly aperiodic
if any fusion of its blocks results in an aperiodic logarithmic signature 
 , when
the type of 
 satisfies the conditions of aperiodicity of Theorem 6.1. This says, in
particular, that if block B1 would be fused with .s � 2/ other blocks, we would
obtain a logarithmic signature 
 of type .23C2.s�2/; 4/, which is periodic due to
Theorem 6.1. Hence, this type of fusion for ˇ is “non-admissible”. In other words,
block B1 can be fused with at most .s � 3/ other blocks. Moreover, fusing all
blocks B2; : : : ; Bs of ˇ together is admissible, as it will result in a logarithmic
signature of type .8; 22.s�1// that does not violate the aperiodicity condition of
Theorem 6.1.

Theorem 6.1 motivates the following definition.

Definition 6.2. Let G be an abelian group and let ˇ D ŒB1; : : : ; Bs� 2 A.G /.
A fusion of certain d blocks Bi1 ; : : : ; Bid is called admissible, if the type of the
resulting logarithmic signature 
 does not violate necessary conditions for being
aperiodic. Let ¹d1; : : : ; dtº be the set of positive integers whose di indicates the
largest possible number of blocks permitted by an admissible fusion of a certain
“type”. The values d1; : : : ; dt are called the admissible fusion degrees of ˇ. We
say that ˇ achieves the admissible fusion degrees, if for each di 2 ¹d1; : : : ; dtº,
any “admissible” fusion of di blocks of ˇ results in an aperiodic logarithmic sig-
nature.
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For example, let ˇ D ŒB1; B2; : : : ; Bs�, s � 3, be an aperiodic logarithmic
signature of type .8; 4; 4; : : : ; 4/ for an elementary abelian group G of order 22sC1.
Then from Theorem 6.1 and Definition 6.2, the admissible fusion degrees of ˇ are
¹s � 2; s � 1º.

Definition 6.3. Let G be an abelian group and let ˇ D ŒB1; : : : ; Bs� 2 A.G /. The
logarithmic signature ˇ is called strongly aperiodic if it achieves its admissible
fusion degrees.

Remark 6.4. It seems not meaningful to extend Definition 6.3 to non-abelian
groups. This is because a fusion of non-consecutive blocks is almost prohibited,
since the result is no longer a logarithmic signature in this case.

Example 6.5. We use the setup for G , H and T and � as in Example 5.4. Define

L1 D
®
A1;1 D ¹1; g1; g2; g1g2º; A1;2 D ¹1; g1g2g4g6; g2g3g5; g1g3g4g5g6º

¯
;

L2 D
®
A2;1 D ¹1; g3; g4; g3g4º; A2;2 D ¹1; g1g3; g2g4; g1g3g2g4º

¯
;

L3 D
®
A3;1 D ¹1; g5; g6; g5g6º; A3;2 D ¹1; g1g5; g2g6; g1g5g2g6º

¯
:

Then we obtain an aperiodic logarithmic signature ˇ D ŒB1; B2; B3� of type
.8; 8; 8/ for G with

B1 D
®
1; g1; g2; g1g2; g7; g1g2g4g6g7; g2g3g5g7; g1g3g4g5g6g7

¯
;

B2 D
®
1; g3; g4; g3g4; g8; g1g3g8; g2g4g8; g1g3g2g4g8

¯
;

B3 D
®
1; g5; g6; g5g6; g9; g1g5g9; g2g6g9; g1g5g2g6g9

¯
:

Now, it can be checked that the fusion of any two blocks of ˇ yields an aperiodic
block. Hence ˇ is strongly aperiodic.

Remark 6.6. We note that the logarithmic signature ˇ in Example 5.4 is aperiodic
but not strongly aperiodic. For, when fusing B1 with B2 we obtain a periodic
block. Even more, B1B2 is a subgroup of order 26 in G .

As we will use the Baumeister–de Wiljes construction (BW-construction for
short) to investigate strongly aperiodic logarithmic signatures, we make use of the
following simple observation about the fusion operation on a logarithmic signature
obtained from the BW-construction.

Lemma 6.7. We use the notation as described in the BW-construction above. The
fusion of blocks Bi and Bj , i 6D j , of ˇ results in a logarithmic signature, which
is again derived from the BW-construction, in which Li and Lj are replaced by
LiLj and Ti and Tj by TiTj .
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The next lemma is useful for the query about the strong aperiodicity of a loga-
rithmic signature.

Lemma 6.8. Let G be an abelian group. Let ˇ D ŒB1; : : : ; Bs� be a logarithmic
signature for G . Let I � ¹1; : : : ; sº. Suppose that the fused block

Q
i2I Bi is

aperiodic. Then
Q
j2J Bj is aperiodic for any non-empty subset J � I .

Proof. Recall that element shuffle does not effect periodicity. Assume, by contra-
diction, that BJ WD

Q
j2J Bj is periodic for a subset J � I . Let g 2 G n ¹1º

be a period for BJ . Set BI WD
Q
i2I Bi . We may write BI D BJ � C , where

C WD
Q
k2InJ Bk (note that BI on the left side of equality BI D BJ � C is

considered as an unordered set, since permuting the elements of BI does not
effect the property of aperiodicity). Now, since g is a period for BJ , we have
gBI D gBJ � C D BJ � C D BI . Thus g is a period for BI , a contradiction.

Lemma 6.8 is a crucial tool. Suppose we want to verify the strong aperiodicity
of a logarithmic signature ˇ having s blocks. Suppose further that we are allowed
to fuse up to any s � 1 blocks of ˇ. Without Lemma 6.8 we have to check all�
s
1

�
C
�
s
2

�
C � � � C

�
s
s�1

�
D 2s � 2 possible fusions of the blocks of ˇ. Whereas by

using Lemma 6.8 we only need to check
�
s
s�1

�
D s fusions of all combinations of

s � 1 blocks of ˇ.
In the remaining sections we present constructions of strongly aperiodic signa-

tures for elementary abelian p-groups. The basic tool we use is the BW-construc-
tion. We first construct certain types of aperiodic logarithmic signatures, and then
in a further more involved step we prove that they are strongly aperiodic.

From now on let G be an elementary abelian p-group. We use additive notation
for the group operation and 0 will denote the identity of G . In fact we identify
G with the additive group of the Galois field Fpn . In this way G is viewed as a
vector space of dimension n over Fp, and thus we may freely use the language of
linear algebra with respect to G . For example, a minimal generator set for G may
be called a basis for G .

7 Strongly aperiodic logarithmic signatures of type .p3; : : : ; p3/

In this section we first construct a strongly aperiodic logarithmic signature of type
.p3; : : : ; p3/ for an elementary abelian p-group G of order p3s , where p D 2 or
p is an odd prime and s � 2. Let v1; v2; : : : ; v2s; : : : ; v3s be a generator set of G .
Using the BW-construction, we define

(i) T D hv2sC1; : : : ; v3si and � D ŒT1; : : : ; Ts� with

Ti D ¹0; v2sCi ; 2v2sCi ; : : : ; .p � 1/v2sCiº; i D 1; : : : ; sI
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(ii) H D hv1; : : : ; v2si.

Let u 2 ¹1; : : : ; p � 1º D Fp n ¹0º be a chosen parameter. For i D 1; : : : ; s

define the collection

Li D ¹Ai;0; Ai;1; : : : ; Ai;.p�1/º

as follows:

A1;0 D hv1; v2i;

A1;j D
D
v1 C v2 C j �

sX
`D2

v2`; u � v2 C j �

sX
`D2

v2`�1

E
; j 2 ¹1; : : : ; p � 1º;

Ai;j D hv2i�1 C jv1; v2i C jv2i; i 2 ¹2; : : : ; sº; j 2 ¹0; : : : ; p � 1º:

Remark 7.1. Note that in (i) we may replace T by any transversal T R of H .
Here T R is not a subgroup in general. In fact, it is simple to create a loga-
rithmic signature for a transversal of H by passing to the quotient group NT D
G=H . Namely, let N� D Œ NT1; : : : ; NTs� be a logarithmic signature for NT , where
NTi D Œxi;0H ; : : : ; xi;.p�1/H �, 1 � i � s. Note that there are jH j possibilities for

choosing xi;j as coset representative. By lifting N� to G we obtain a logarithmic
signature � D ŒT1; : : : ; Ts� with Ti D Œxi;0; : : : ; xi;.p�1/� for a certain transversal
T R of H .

We now prove that the subsets Ai;j of Li , 1 � i � s, satisfy condition (ii) of
the BW-construction. This means that for any .j1; j2; : : : ; js/ 2 ¹0; 1; : : : ; p�1ºs

the collection ŒA1;j1
; A2;j2

; : : : ; As;js
� forms a logarithmic signature for H . This

is equivalent to say that the basis elements of A1;j1
; A2;j2

; : : : ; As;js
are linearly

independent.
We first consider the case j1 D 0. We then have

A1;j1
D hv1; v2i;

A2;j2
D hj2 � v1 C v3; j2 � v2 C v4i;

A3;j3
D hj3 � v1 C v5; j3 � v2 C v6i;

:::

As;js
D hjs � v1 C v2s�1; js � v2 C v2si:

When forming a linear combination of the basis elements ofA1;0; A2;j2
; : : : ; As;js

for the zero element, we have

0 D �1;1:.v1/C �1;2:.v2/C �2;1:.v2i�1 C j2v1/C �2;2:.v2i C j2v2/

C � � � C �s;1:.v2s�1 C jsv1/C �s;2:.v2s C jsv2/ (7.1)
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with �i;j 2 Fp. The matrix form of equation (7.1) is given by

.�1;1; �1;2; : : : ; �s;1; �s;2/M D .0; 0; : : : ; 0/;

where M is the following .2s � 2s/-matrix over Fp:

M D

0BBBBBBBBBBBBBBBBB@

1 0 0 0 0 0 � � � 0 0 0

0 1 0 0 0 0 � � � 0 0 0

j2 0 1 0 0 0 � � � 0 0 0

0 j2 0 1 0 0 � � � 0 0 0

j3 0 0 0 1 0 � � � 0 0 0

0 j3 0 0 0 1 � � � 0 0 0
:::

:::
:::

:::
:::

::: � � �
:::

:::
:::

js 0 0 0 0 0 � � � 0 1 0

0 js 0 0 0 0 � � � 0 0 1

1CCCCCCCCCCCCCCCCCA

:

As M is a lower triangular matrix with all 1 on the main diagonal, M is invert-
ible and equation (7.1) has �i;j D 0 for all 1 � i � s and 1 � j � 2 as the unique
solution. Thus the basis elements of A1;0; A2;j2

; : : : ; As;js
are linearly indepen-

dent. This says, in particular, that ŒA1;0; A2;j2
; : : : ; As;js

� forms a logarithmic
signature for H .

We now consider the case j1 6D 0. We then have

A1;j1
D

D
v1 C v2 C j1

sX
`D2

v2`; u � v2 C j1

sX
`D2

v2`�1

E
;

A2;j2
D hj2 � v1 C v3; j2 � v2 C v4i;

A3;j3
D hj3 � v1 C v5; j3 � v2 C v6i;

:::

As;js
D hjs � v1 C v2s�1; js � v2 C v2si;

and we obtain a linear combination of the zero element as follows:

0 D �1;1:
�
v1 C v2 C j1 �

sX
`D2

v2`

�
C �1;2:

�
u � v2 C j1 �

sX
`D2

v2`�1

�
C �2;1:.v2i�1 C j2v1/C �2;2:.v2i C j2v2/

C � � � C �s;1:.v2s�1 C jsv1/C �s;2:.v2s C jsv2/: (7.2)
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The coefficient matrix M of equation (7.2) has the form

M D

0BBBBBBBBBBBBBBBBB@

1 1 0 j1 0 j1 � � � j1 0 j1

0 u j1 0 j1 0 � � � 0 j1 0

j2 0 1 0 0 0 � � � 0 0 0

0 j2 0 1 0 0 � � � 0 0 0

j3 0 0 0 1 0 � � � 0 0 0

0 j3 0 0 0 1 � � � 0 0 0
:::

:::
:::

:::
:::

::: � � �
:::

:::
:::

js 0 0 0 0 0 � � � 0 1 0

0 js 0 0 0 0 � � � 0 0 1

1CCCCCCCCCCCCCCCCCA

:

By subtracting j1 times the rows 4; 6; : : : ; 2s from the first row, and j1 times
the rows 3; 5; : : : ; 2s � 1 from the second row of M we obtain the matrix0BBBBBBBBBBBBBBBBB@

1 1 � j1 �
Ps
lD2 jl 0 0 0 0 � � � 0 0 0

�j1 �
Ps
lD2 jl u 0 0 0 0 � � � 0 0 0

j2 0 1 0 0 0 � � � 0 0 0

0 j2 0 1 0 0 � � � 0 0 0

j3 0 0 0 1 0 � � � 0 0 0

0 j3 0 0 0 1 � � � 0 0 0
:::

:::
:::

:::
:::

::: � � �
:::

:::
:::

js 0 0 0 0 0 � � � 0 1 0

0 js 0 0 0 0 � � � 0 0 1

1CCCCCCCCCCCCCCCCCA
with determinant u C .1 � J /J D �.J 2 � J � u/ where J WD j1 �

Ps
`D2 j`.

Since for each given p we can choose a u 2 Fp n ¹0º such that the polynomial
X2�X�u 2 FpŒX� has no root in Fp, we can conclude that matrixM is invertible
and therefore equation (7.2) has a unique solution with �i;j D 0 for all 1 � i � s
and 1 � j � 2. So the basis elements of A1;j1

; A2;j2
; : : : ; As;js

are linearly
independent. Hence ŒA1;j1

; A2;j2
; : : : ; As;js

� forms a logarithmic signature for
H .

Thus we have constructed a logarithmic signature ˇ of type .p3; : : : ; p3/ for G

by the method of Baumeister and de Wiljes. By using Proposition 5.3 and the fact
that Ai;j \ Ai;k D ¹0º for any Ai;j ; Ai;k 2 Li with j 6D k and for all 1 � i � s,
we conclude that ˇ is aperiodic.

The strong aperiodicity of ˇ will be proved by the following theorem.
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Theorem 7.2. The above constructed logarithmic signature ˇ of type .p3; : : : ; p3/
is strongly aperiodic.

Proof. Recall that Lemma 6.7 says that fusing any two blocks of ˇ results in a
logarithmic signature, which is again obtained from the BW-construction. By us-
ing Lemma 6.8 we need only to consider the fusion of any .s � 1/ blocks of ˇ.
Finally, we use Proposition 5.3 to show that the resulting logarithmic signature de-
rived from each such fusion is aperiodic. This is done by showing that the fusion
of any .s�1/ collections Li yields a collection of subgroups of G having only the
identity element 0 of G in their intersection.

We consider three cases.

Case (a) Fusing L2; : : : ;Ls .
Let L2 C � � � C Ls denote the collection obtained by fusing L2; : : : ;Ls . The

subsets of L2 C � � � C Ls are of the form .A2;j2
C A3;j3

C � � � C As;js
/ with

.j2; j3; : : : ; js/ 2 ¹0; 1; : : : ; p � 1º
s�1.

We now prove that\
.j2;j3;:::;js/

2¹0;1;:::;p�1ºs�1

.A2;j2
C A3;j3

C � � � C As;js
/ D ¹0º:

Observe that

.A2;0 C A3;0 C � � � C As;0/ \ .A2;1 C A3;0 C � � � C As;0/

D hv3; v4; v5; v6; : : : ; v2s�1; v2si \ hv1 C v3; v2 C v4; v5; v6; : : : ; v2s�1; v2si

D hv5; v6; : : : ; v2s�1; v2si D A3;0 C A4;0 C � � � C As;0:

Similarly, we have

.A2;0 C A3;0 C A4;0 C � � � C As;0/ \ .A2;0 C A3;1 C A4;0 C � � � C As;0/

D A2;0 C A4;0 C � � � C As;0; : : : ;

.A2;0 C � � � C As�1;0 C As;0/ \ .A2;0 C � � � C As�2;0 C As�1;1 C As;0/

D A2;0 C A3;0 C � � � C As�2;0 C As;0;

.A2;0 C � � � C As�1;0 C As;0/ \ .A2;0 C A3;0 C � � � C As�1;0 C As;1/

D A2;0 C A3;0 C � � � C As�1;0:

Obviously, the intersection of the elements on the right-hand side of the equali-
ties is trivial.
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Case (b) Fusing L1;L2; : : : ;Ls�1.
We prove that \

.j1;j2;:::;js�1/

2¹0;1;:::;p�1ºs�1

.A1;j1
C A2;j2

C � � � C As�1;js�1
/ D ¹0º:

Recall that

A1;0 D hv1; v2i;

A1;j D
D
v1 C v2 C j �

sX
`D2

v2l ; u � v2 C j �

sX
`D2

v2`�1

E
; j 2 ¹1; : : : ; p � 1º;

Ai;j D hv2i�1 C jv1; v2i C jv2i; i 2 ¹2; : : : ; sº; j 2 ¹0; : : : ; p � 1º:

So we have

.A1;0 C A2;0 C � � � C As�1;0/ \ .A1;1 C A2;0 C � � � C As�1;0/

D hv1; v2; v3; v4; : : : ; v2s�3; v2s�2i

\

D
v1 C v2 C

sX
`D2

v2`; u � v2 C

sX
`D2

v2`�1; v3; v4; : : : ; v2s�3; v2s�2

E
D hv3; v4; : : : ; v2s�3; v2s�2i D A2;0 C A3;0 C � � � C As�1;0:

Consider further the intersection

.A2;0 C A3;0 C � � � C As�1;0/ \ .A1;1 C A2;1 C A3;0 C � � � C As�1;0/

D .A2;0 C A3;0 C � � � C As�1;0/ \ .A2;1 C A3;0 C � � � C As�1;0/

D hv3; v4; v5; : : : ; v2s�3; v2s�2i \ hv3 C v1; v4 C v2; v5; : : : ; v2s�3; v2s�2i

D hv5; v6; : : : ; v2s�3; v2s�2i D .A3;0 C � � � C As�1;0/:

Similarly,

.A3;0 C � � � C As�1;0/ \ .A1;1 C A2;0 C A3;1 C A4;0 C � � � C As�1;0/

D .A3;0 C � � � C As�1;0/ \ .A2;0 C A3;1 C A4;0 C � � � C As�1;0/

D hv5; v6; : : : ; v2s�3; v2s�2i \ hv3; v4; v5 C v1; v6 C v2; v7; : : : ; v2s�3; v2s�2i

D hv7; v8; : : : ; v2s�3; v2s�2i D A4;0 C � � � C As�1;0:

This process can be iterated until we get ¹0º as the intersection.
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Case (c) Fusing L1; : : : ;Lk�1;LkC1; : : : ;Ls�1;Ls for all k 2 ¹2; 3; : : : ;
s � 2; s � 1º.

We claim that\
.j1;:::;jk�1;
jkC1;:::;js/

2¹0;1;:::;p�1ºs�1

.A1;j1
C � � � C Ak�1;jk�1

C AkC1;jkC1
C � � � C As;js

/ D ¹0º:

We define an isomorphism ˆ of G as follows:

ˆ.vi / D

8̂̂̂̂
ˆ̂<̂
ˆ̂̂̂̂:

v2s�1 if i D 2k � 1,
v2k�1 if i D 2s � 1,
v2s if i D 2k,
v2k if i D 2s,
vi otherwise.

Thus ˆ interchanges v2k�1 with v2s�1 and v2k with v2s , and fixes the remaining
generators. Then we have

ˆ.A1;j1
/ D ˆ

�D
v1 C v2 C j1

sX
`D2

v2`; u � v2 C j1

sX
`D2

v2`�1

E�
D A1;j1

;

ˆ.A2;j2
/ D ˆ.hj2 � v1 C v3; j2 � v2 C v4i/ D A2;j2

;

:::

ˆ.Ak�1;jk�1
/ D ˆ.hjk�1 � v1 C v2.k�1/�1; j2 � v2 C v2.k�1/i/ D Ak�1;jk�1

;

ˆ.Ak;jk
/ D ˆ.hjk � v1 C v2k�1; jk � v2 C v2ki/

D hjk � v1 C v2s�1; jk � v2 C v2si D As;jk
;

ˆ.AkC1;jkC1
/ D ˆ.hjkC1 � v1 C v2.kC1/�1; j2 � v2 C v2.kC1/i/ D AkC1;jkC1

;

:::

ˆ.As�1;js�1
/ D ˆ.hjs�1 � v1 C v2.s�1/�1; j2 � v2 C v2.s�1/i/ D As�1;js�1

;

ˆ.As;js
/ D ˆ.hjs � v1 C v2s�1; js � v2 C v2si/

D hjs � v1 C v2k�1; js � v2 C v2ki D Ak;js
:

From \
.j1;j2;:::;js�1/

2¹0;1;:::;p�1ºs�1

.A1;j1
C A2;j2

C � � � C As�1;js�1
/ D ¹0º
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we conclude that\
.j1;j2;:::;js�1/

2¹0;1;:::;p�1ºs�1

.ˆ.A1;j1
/Cˆ.A2;j2

/C � � � Cˆ.As�1;js�1
// D ¹0º:

This implies that\
.j1;j2;:::;js�1/

2¹0;1;:::;p�1ºs�1

.A1;j1
C � � � C Ak�1;jk�1

Cˆ.Ak; jk/C AkC1;jkC1

C � � � C As�1;js�1
/ D ¹0º:

So we have\
.j1;j2;:::;js�1/

2¹0;1;:::;p�1ºs�1

.A1;j1
C � � � C Ak�1;jk�1

C As;jk
C AkC1;jkC1

C � � � C As�1;js�1
/ D ¹0º;

which shows the claim. This completes the proof.

Remark 7.3. The strongly aperiodic logarithmic signature ˇ of type .8; 8; 8/ in
Example 6.5 above is constructed by the method in this section.

8 Strongly aperiodic logarithmic signatures of type .23; 22; : : : ; 22/

In this section we will construct strongly aperiodic logarithmic signatures of type
.23; 22; : : : ; 22/ for an elementary abelian 2-group G of order 22s�1 with s �
4. Let v1; v2; : : : ; vs; vsC1; : : : ; v2s�1 be a generator set of G . Using the BW-
construction, we define

(i) T D hvsC1; : : : ; v2s�1i and � D ŒT1; T3; T4; : : : ; Ts� with T1 D ¹0; vsC1º
and Ti D ¹0; vsC.i�1/º for i D 3; 4; : : : ; 2s;

(ii) H D hv1; : : : ; vsi.

Note that for the reason of simplicity we have omitted i D 2 in indexing the
collections Li and also the blocks Ti so that we only have s � 1 blocks.

For i D 1; 3; 4; : : : ; s define the collection

Li D ¹Ai;0; Ai;1º

as follows:

A1;0 D hv1; v2i; A1;1 D
D
v1 C

ds=2eX
`D2

v2`�1; v2 C

bs=2cX
`D2

v2`

E
;
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and, for i D 3; : : : ; s,

Ai;0 D hvi i; Ai;1 D
D
vi C

bi=2cX
`D1

v2`

E
; if i is odd;

Ai;0 D hvi i; Ai;1 D
D
vi C

i=2X
`D1

v2`�1

E
; if i is even:

Remark 8.1. In the same manner as in Remark 7.1, we may choose � as a loga-
rithmic signature for a certain transversal T R of H in G .

At first we prove that for any choice of .j1; j3; j4; : : : ; js/ 2 ¹0; 1ºs�1 the
corresponding collection ŒA1;j1

; A3;j3
; : : : ; As;js

� forms a logarithmic signature
for H . This is equivalent to show that the linear combination of the zero element
of G with respect to the basis elements of A1;j1

; A3;j3
; A4;j4

; : : : ; As;js
, i.e.,

0 D �1:
�
v1 C j1

ds=2eX
`D2

v2`�1

�
C �2:

�
v2 C j1

bs=2cX
`D2

v2`

�

C

b.s�1/=2cX
iD1

�2iC1:
�
v2iC1 C j2iC1

iX
`D1

v2`

�

C

d.s�1/=2eX
iD2

�2i :
�
v2i C j2i

iX
`D1

v2`�1

�
(8.1)

only has the trivial solution �i D 0 for all i D 1; 3; : : : ; s. This means that
the .s � s/ coefficient matrix Ms.j1; j3; j4; : : : ; js/ for all �i of equation (8.1) is
invertible.
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If s is even, we have

Ms.j1; j3; j4; : : : ; js/

D

0BBBBBBBBBBBBBBBBBBBBBB@

1 0 j1 0 j1 0 � � � j1 0 j1 0

0 1 0 j1 0 j1 � � � 0 j1 0 j1

0 j3 1 0 0 0 � � � 0 0 0 0

j4 0 j4 1 0 0 � � � 0 0 0 0

0 j5 0 j5 1 0 � � � 0 0 0 0

j6 0 j6 0 j6 1 � � � 0 0 0 0
:::

:::
:::

:::
:::

:::
:::

:::
:::

:::

0 js�3 0 js�3 0 js�3 � � � 1 0 0 0

js�2 0 js�2 0 js�2 0 � � � js�2 1 0 0

0 js�1 0 js�1 0 js�1 � � � 0 js�1 1 0

js 0 js 0 js 0 � � � js 0 js 1

1CCCCCCCCCCCCCCCCCCCCCCA

:

If s is odd, we have

Ms.j1; j3; j4; : : : ; js/

D

0BBBBBBBBBBBBBBBBBBBBBB@

1 0 j1 0 j1 0 � � � 0 j1 0 j1

0 1 0 j1 0 j1 � � � j1 0 j1 0

0 j3 1 0 0 0 � � � 0 0 0 0

j4 0 j4 1 0 0 � � � 0 0 0 0

0 j5 0 j5 1 0 � � � 0 0 0 0

j6 0 j6 0 j6 1 � � � 0 0 0 0
:::

:::
:::

:::
:::

:::
:::

:::
:::

:::

js�3 0 js�3 0 js�3 0 � � � 1 0 0 0

0 js�2 0 js�2 0 js�2 � � � js�2 1 0 0

js�1 0 js�1 0 js�1 0 � � � 0 js�1 1 0

0 js 0 js 0 js � � � js 0 js 1

1CCCCCCCCCCCCCCCCCCCCCCA

:

In both cases the matrix is invertible if j1 D 0. Hence we assume that j1 D 1.
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We show by induction on s that the determinant of Ms.j1; j3; j4; : : : ; js/ is 1
in both cases.

To begin with, if s D 3, we have

det.M3.j1; j3// D det

0B@1 0 j1

0 1 0

0 j3 1

1CA D 1:
Now, let s > 3.
If s is even, we subtract js times the first row from the last row and obtain

det.Ms.j1; j3; j4; : : : ; js//

D det

0BBBBBBBBBBBBBBBBBBBBBB@

1 0 j1 0 j1 0 � � � j1 0 j1 0

0 1 0 j1 0 j1 � � � 0 j1 0 j1

0 j3 1 0 0 0 � � � 0 0 0 0

j4 0 j4 1 0 0 � � � 0 0 0 0

0 j5 0 j5 1 0 � � � 0 0 0 0

j6 0 j6 0 j6 1 � � � 0 0 0 0
:::

:::
:::

:::
:::

:::
:::

:::
:::

:::

0 js�3 0 js�3 0 js�3 � � � 1 0 0 0

js�2 0 js�2 0 js�2 0 � � � js�2 1 0 0

0 js�1 0 js�1 0 js�1 � � � 0 js�1 1 0

0 0 0 0 0 0 � � � 0 0 0 1

1CCCCCCCCCCCCCCCCCCCCCCA

D det

0BBBBBBBBBBBBBBBBBBB@

1 0 j1 0 j1 0 � � � j1 0 j1

0 1 0 j1 0 j1 � � � 0 j1 0

0 j3 1 0 0 0 � � � 0 0 0

j4 0 j4 1 0 0 � � � 0 0 0

0 j5 0 j5 1 0 � � � 0 0 0

j6 0 j6 0 j6 1 � � � 0 0 0
:::

:::
:::

:::
:::

:::
:::

:::
:::

0 js�3 0 js�3 0 js�3 � � � 1 0 0

js�2 0 js�2 0 js�2 0 � � � js�2 1 0

0 js�1 0 js�1 0 js�1 � � � 0 js�1 1

1CCCCCCCCCCCCCCCCCCCA
D det.Ms�1.j1; j3; j4; : : : ; js�1//:
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If s is odd, we subtract js times the second row from the last row and obtain

det.Ms.j1; j3; j4; : : : ; js//

D det

0BBBBBBBBBBBBBBBBBBBBBB@

1 0 j1 0 j1 0 � � � 0 j1 0 j1

0 1 0 j1 0 j1 � � � j1 0 j1 0

0 j3 1 0 0 0 � � � 0 0 0 0

j4 0 j4 1 0 0 � � � 0 0 0 0

0 j5 0 j5 1 0 � � � 0 0 0 0

j6 0 j6 0 j6 1 � � � 0 0 0 0
:::

:::
:::

:::
:::

:::
:::

:::
:::

:::

js�3 0 js�3 0 js�3 0 � � � 1 0 0 0

0 js�2 0 js�2 0 js�2 � � � js�2 1 0 0

js�1 0 js�1 0 js�1 0 � � � 0 js�1 1 0

0 0 0 0 0 0 � � � 0 0 0 1

1CCCCCCCCCCCCCCCCCCCCCCA

D det

0BBBBBBBBBBBBBBBBBBB@

1 0 j1 0 j1 0 � � � 0 j1 0

0 1 0 j1 0 j1 � � � j1 0 j1

0 j3 1 0 0 0 � � � 0 0 0

j4 0 j4 1 0 0 � � � 0 0 0

0 j5 0 j5 1 0 � � � 0 0 0

j6 0 j6 0 j6 1 � � � 0 0 0
:::

:::
:::

:::
:::

:::
:::

:::
:::

js�3 0 js�3 0 js�3 0 � � � 1 0 0

0 js�2 0 js�2 0 js�2 � � � js�2 1 0

js�1 0 js�1 0 js�1 0 � � � 0 js�1 1

1CCCCCCCCCCCCCCCCCCCA
D det.Ms�1.j1; j3; j4; : : : ; js�1//:

In both cases induction shows us that the determinant is 1. Hence

ŒA1;j1
; A3;j3

; : : : ; As;js
�

forms a logarithmic signature for H .
Thus we have constructed a logarithmic signature ˇ of type .23; 22; : : : ; 22/ for

G from the method of Baumeister and de Wiljes. By using Proposition 5.3 and
the fact that Ai;1 \ Ai;2 D ¹0º for any i D 1; 3; 4; : : : ; s, we conclude that ˇ is
aperiodic.

Next we prove the following theorem.
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Theorem 8.2. The above constructed logarithmic signature ˇ of type .23; 22; : : : ;
22/ is strongly aperiodic.

The proof of the strong aperiodicity for ˇ is given by a number of lemmas.
In view of Theorem 6.1, we have to consider two types of fusions for ˇ: (a)

fusing all .s � 1/ blocks of size 22 each; (b) fusing any .s � 2/ blocks, where one
block is of size 23. By Lemmas 6.7, 6.8 and Proposition 5.3 we have to show that
for type (a) the fusion of L3;L4; : : : ;Ls and for type (b) the fusion of L1 with
any .s � 3/ other collections Li each yields a collection of subgroups of G having
only the identity element 0 in their intersection.

Case (a) Fusing L3;L4; : : : ;Ls .

Lemma 8.3. \
.j3;j4;:::;js�1;js/

2¹0;1ºs�2

.A3;j3
C A4;j4

C � � � C As�1;js�1
C As;js

/ D ¹0º:

Proof. We consider the two sums

A3;0 C A4;0 C A5;0 C � � � C As�2;0 C As�1;0 C As;0 D hv3; v4; : : : ; vs�1; vsi;

A3;0 C A4;0 C A5;0 C � � � C As�2;0 C As�1;0 C As;1

D hv3; v4; : : : ; vs�2; vs�1; vs C vs�1 C vs�3 C � � � i:

Their intersection is
hv3; v4; : : : ; vs�2; vs�1i

because either v1 or v2 occurs as a summand in the last term of the second sum.
When intersecting hv3; v4; : : : ; vs�2; vs�1i further with the sum

A3;0 C A4;0 C A5;0 C � � � C As�3;0 C As�2;0 C As�1;1 C As;0

D hv3; v4; : : : ; vs�3; vs�2; vs; .vs�1 C vs�2 C vs�4 C � � � /i;

we obtain
hv3; v4; : : : ; vs�3; vs�2i

because either v1 or v2 occurs as a summand in the last two terms of the sum. By
doing further iterations, we eventually get ¹0º as intersection, as claimed.

Case (b) Fusing L1 with .s � 3/ other Li .
Now, let I D ¹i1; : : : ; is�3º � ¹3; 4; : : : ; sº be arbitrary with jI j D s � 3. Let

¹3; 4; : : : ; sº n I D ¹k1; k2º, where we assume that k1 < k2.
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We have to prove that \
.j1;j3;j4;:::;jk1�1;jk1C1;:::;

jk2�1;jk2C1;:::;js/2¹0;1º
s�3

� X
i2I[¹1º

Ai;ji

�
D ¹0º: (8.2)

Here we have

A1;0 C
X
i2I

Ai;0

D hv1; v2; vi1 ; vi2 ; : : : ; vk1�1; vk1C1; : : : ; vk2�1; vk2C1; : : : ; vis�3
i:

There are three subcases which we have to handle separately.

(i) k1 � k2 � 1 mod 2,

(ii) k1 � k2 � 0 mod 2,

(iii) k1 C k2 � 1 mod 2.

Lemma 8.4. Suppose that k1 � k2 � 1 mod 2. Then equation (8.2) is satisfied.

Proof. First consider

A1;1 C
X
i2I

Ai;0 D hv1 C v3 C v5 C � � � ; v2 C v4 C v6 C � � � ; vi1 ;

vi2 ; : : : ; vk1�1; vk1C1; : : : ; vk2�1; vk2C1; : : : ; vis�3
i:

Since v1 … A1;1 C
P
i2I Ai;0 and v2 2 A1;1 C

P
i2I Ai;0, we have

C WD
�
A1;0 C

X
i2I

Ai;0

�
\

�
A1;1 C

X
i2I

Ai;0

�
D h¹v2º [ ¹vi j i 2 I ºi:

To compute further intersections we need to introduce some notation.
For i 2 I let Ai be defined by

Ai WD Ai;1 C
X

j2I;j¤i

Aj;0:

Then
Ai D

˝
¹vj j j 2 I n ¹iºº [ ¹vi C vi�1 C vi�3 C � � � º

˛
:

For i; j 2 I let Ai;j be defined by

Ai;j WD Ai;1 C Aj;1 C
X

`2I;`¤i;j

A`;0:
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Then

Ai;j D
˝
¹v` j ` 2 I n¹i; j ºº[¹viCvi�1Cvi�3C� � � ; vj Cvj�1Cvj�3C� � � º

˛
:

To prove (8.2) we proceed with a number of steps.

Step 1. k even and k > k1.
We prove that

C \ .A1;0 CAk/ D
˝
¹v2º [ ¹vj j j 2 I n ¹kºº

˛
:

Since we have

A1;0 CAk D A1;0 C
˝
¹vj j j 2 I n ¹kºº [ ¹vk C vk�1 C vk�3 C � � � º

˛
D
˝
¹vj j j 2 I n ¹kºº [ ¹v1; v2; vk C vk�1 C vk�3 C � � � º

˛
;

it is obvious that˝
¹v2º [ ¹vj j j 2 I n ¹kºº

˛
� C \ .A1;0 CAk/:

Moreover, since h¹v2º [ ¹vj j j 2 I n ¹kººi has codimension 1 in C , it suffices
to show that vk … A1;0 CAk . Suppose, by contradiction, that vk 2 A1;0 CAk .
Then there exist �1; �2; : : : 2 ¹0; 1º with

vk D �1v1 C �2v2 C �k.vk C vk�1 C vk�3 C � � � /C
X

j2In¹kº

�j vj :

But vk1
occurs exactly once on the right-hand side of this equation (note that k is

even, k1 is odd and k > k1), and we conclude �k D 0. But then

vk D �1v1 C �2v2 C
X

j2In¹kº

�j vj ;

a contradiction. Hence, for all k > k1 with k even, we have

C \ .A1;0 CAk/ D
˝
¹v2º [ ¹vj j j 2 I n ¹kºº

˛
:

Let I 0 WD ¹k 2 I j k > k1; k evenº. We conclude

C 0 WD C \
�\
k2I 0

.A1;0 CAk/
�
D

\
k2I 0

.C \ .A1;0 CAk//

D

\
k2I 0

�˝
¹v2º [ ¹vj j j 2 I n ¹kºº

˛�
D
˝
¹v2º [ ¹vj j j 2 I n I

0
º
˛
:



172 R. Staszewski and Tran van Trung

Next, we prove that

C 00 WD C 0 \ .A1;1 CAk1C1/ D
˝
¹vj j j 2 InI

0
º
˛
:

We have

A1;1 CAk1C1

D A1;1 C
˝
¹vj j j 2 I n ¹k1 C 1ºº [ ¹vk1C1 C vk1

C vk1�2 C � � � º
˛

D
˝
¹vj j j 2 I n ¹k1 C 1ºº [ ¹v1 C v3 C v5 C � � � ; v2 C v4 C v6 C � � � ;

vk1C1 C vk1
C vk1�2 C � � � º

˛
:

Since k1 C 1 2 I 0, we clearly have h¹vj j j 2 I n I 0ºi � C 00.
Moreover, since h¹vj j j 2 I nI 0ºi has codimension 1 in C 0, it suffices to show

that v2 … A1;1 C Ak1C1. Suppose, by contradiction, that v2 2 A1;1 C Ak1C1.
Then there exist �1; �2; : : : 2 ¹0; 1º with

v2 D �1.v1 C v3 C v5 C � � � /C �2.v2 C v4 C v6 C � � � /

C �k1C1.vk1C1 C vk1
C vk1�2 C � � � /C

X
j2In¹k1C1º

�j vj :

But since vk2
occurs exactly once on the right-hand side of this equation, we

conclude that �1 D 0I also, since vk1
occurs only once on the right-hand side of

this equation, we conclude that �k1C1 D 0I further, since vk1C1 occurs only once,
we conclude that �2 D 0. But this is a contradiction.

Step 2. k even and k < k1.
We prove that

C 00 \ .A1;1 CAk;k1C1/ D
˝
¹vj j j 2 .I n I

0/ n ¹kºº
˛
:

We have

A1;1 CAk;k1C1

D A1;1 C
˝
¹vj j j 2 I n ¹k; k1 C 1ºº [ ¹vk C vk�1 C vk�3 C � � � ;

vk1C1 C vk1
C vk1�2 C � � � º

˛
D
˝
¹vj j j 2 I n ¹k; k1 C 1ºº [ ¹v1 C v3 C v5 C � � � ; v2 C v4 C v6 C � � � ;

vk C vk�1 C vk�3 C � � � ; vk1C1 C vk1
C vk1�2 C � � � º

˛
:

It is clear that˝
¹vj j j 2 .I n I

0/ n ¹kºº
˛
� C 00 \ .A1;1 CAk;k1C1/:
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Moreover, since h¹vj j j 2 .I n I 0/ n ¹kººi has codimension 1 in C 00, it suffices
to show that vk … A1;1 CAk;k1C1. Suppose, by contradiction, that vk 2 A1;1 C
Ak;k1C1. Then there exist �1; �2; : : : 2 ¹0; 1º with

vk D �1.v1 C v3 C v5 C � � � /C �2.v2 C v4 C v6 C � � � /

C �k.vk C vk�1 C vk�3 C � � � /

C �k1C1.vk1C1 C vk1
C vk1�2 C � � � /C

X
j2In¹k;k1C1º

�j vj :

This implies that on the right-hand side of this equation the coefficient of vk
is equal to 1 and all other coefficients of vj , j ¤ k, are equal to 0. The set of
respective coefficients of ¹vk1C1; vk1

; v1; v2º is®
�2 C �k1C1 D 0; �1 C �k1C1 D 0; �1 C �k C �k1C1 D 0; �2 D 0

¯
:

It follows that �2 D �1 D �k D �k1C1 D 0. So �2 C �k D 0, but this is a
contradiction because �2 C �k is the coefficient of vk and should be equal to 1.

Hence, for all k < k1 with k even, we have

C 00 \ .A1;1 CAk;k1C1/ D
˝
¹v2º [ ¹vj j j 2 .I n I

0/ n ¹kºº
˛
:

Let I 00 WD ¹k 2 I j k < k1; k evenº. We conclude

D WD C 00 \
� \
k2I 00

.A1;1 CAk;k1C1/
�
D

\
k2I 00

.C 00 \ .A1;1 CAk;k1C1//

D

\
k2I 00

�˝
¹vj j j 2 .I n I

0/ n ¹kºº
˛�

D
˝
¹vj j j 2 I n .I

0
[ I 00/º

˛
D
˝
¹vj j j 2 I; j oddº

˛
:

Step 3. k odd and k < k1.
Let us write I D Io [ Ie, where Io and Ie are the subsets of odd and even

numbers in I , respectively. We prove that

D \ .A1;1 CAk;kC1/ D
˝
¹vj j j 2 Io n ¹kºº

˛
:

We have

A1;1 CAk;kC1

D A1;1 C
˝
¹vj j j 2 I n ¹k; k C 1ºº [ ¹vk C vk�1 C vk�3 C � � � ;

vkC1 C vk C vk�2 C � � � º
˛
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D
˝
¹vj j j 2 I n ¹k; k C 1ºº [ ¹v1 C v3 C v5 C � � � ; v2 C v4 C v6 C � � � ;

vk C vk�1 C vk�3 C � � � ; vkC1 C vk C vk�2 C � � � º
˛
:

Observe that ˝
¹vj j j 2 Io n ¹kºº

˛
� D \ .A1;1 CAk;kC1/:

Moreover, since h¹vj j j 2 Io n ¹kººi has codimension 1 in D, it suffices to show
that vk … A1;1 CAk;kC1. Suppose, by contradiction, that vk 2 A1;1 CAk;kC1.
Then there exist �1; �2; : : : 2 ¹0; 1º with

vk D �1.v1 C v3 C v5 C � � � /C �2.v2 C v4 C v6 C � � � /

C �k.vk C vk�1 C vk�3 C � � � /C �kC1.vkC1 C vk C vk�2 C � � � /

C

X
j2In¹k;kC1º

�j vj :

This says that on the right-hand side of this equation the coefficient of vk is
equal to 1 and all other coefficients of vj , j ¤ k, are equal to 0. The set of
respective coefficients of ¹vkC1; v1; v2; vk1

º is®
�2 C �kC1 D 0; �1 C �kC1 D 0; �2 C �k D 0; �1 D 0

¯
:

It follows that �1 D �kC1 D �2 D �k D 0. So �1 C �k C �kC1 D 0, but this
is a contradiction because �1 C �k C �kC1 is the coefficient of vk and should be
equal to 1.

Hence, for all k < k1 with k odd, we have

D \ .A1;1 CAk;kC1/ D
˝
¹vj j j 2 Io n ¹kºº

˛
:

Let J WD ¹k 2 Io j k < k1; k oddº. We conclude

D0 WD D \
� \
k2J

.A1;1 CAk;kC1/
�
D

\
k2J

.D \ .A1;1 CAk;kC1//

D

\
k2J

�˝
¹vj j j 2 Io n ¹kºº

˛�
D
˝
¹vj j j 2 Io n J º

˛
:

Step 4. k odd and k > k1.
By considering further intersections of D0 with A1;0 CAk�1;k for all odd k >

k1 we show in this step that equation (8.2) is satisfied.
First we prove that

D0 \ .A1;0 CAk�1;k/ D
˝
¹vj j j 2 Io n .J [ ¹kº/º

˛
:
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We have

A1;0 CAk�1;k

D A1;0 C
˝
¹vj j j 2 I n ¹k � 1; kºº [ ¹vk�1 C vk�2 C vk�4 C � � � º;

¹vk C vk�1 C vk�3 C � � � º
˛

D
˝
¹vj j j 2 I n ¹k � 1; kºº [ ¹v1; v2; vk�1 C vk�2 C vk�4 C � � � ;

vk C vk�1 C vk�3 C � � � º
˛
:

Observe that˝
¹vj j j 2 Io n .J [ ¹kº/º

˛
� D0 \ .A1;0 CAk�1;k/:

Moreover, since h¹vj j j 2 Io n .J [ ¹kº/ºi has codimension 1 in D0, it suffices
to show that vk … A1;0 CAk�1;k . Suppose, by contradiction, that vk 2 A1;0 C
Ak�1;k . Then there exist �1; �2; : : : 2 ¹0; 1º with

vk D �1v1 C �2v2 C �k�1.vk�1 C vk�2 C vk�4 C � � � /

C �k.vk C vk�1 C vk�3 C � � � /C
X

j2In¹k�1;kº

�j vj :

On the right-hand side of this equation the coefficient of vk is equal to 1 and
all other coefficients of vj , j ¤ k, are equal to 0. Now the coefficient of vk�1
is �k�1 C �k D 0. Note that vk1

appears once in the summand vk�1 C vk�2 C
vk�4 C � � � . So the coefficient of vk1

is �k�1 D 0. This implies that �k D 0, a
contradiction to the fact that �k D 1, because the coefficient of vk is �k .

Hence for all k > k1 with k odd, we have

D0 \ .A1;0 CAk�1;k/ D
˝
¹vj j j 2 Io n .J [ ¹kº/º

˛
:

Let J 0 WD ¹k 2 Io j k > k1; k oddº. We conclude

D00 WD D0 \
� \
k2J 0

.A1;0 CAk�1;k/
�
D

\
k2J 0

.D0 \ .A1;0 CAk�1;k//

D

\
k2J 0

�˝
¹vj j j 2 Io n .J [ ¹kº/º

˛�
D
˝
¹vj j j 2 Io n .J [ J

0/º
˛
D ¹0º:

This completes the proof of Lemma 8.4.

Lemma 8.5. Suppose that k1 � k2 � 0 mod 2. Then equation (8.2) is satisfied.
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We omit the proof of Lemma 8.5 since it is similar to that of Lemma 8.4.
The next lemma deals with the last subcase.

Lemma 8.6. Suppose that k1 C k2 � 1 mod 2. Then equation (8.2) is satisfied.

Proof. Without loss of generality, we assume k1 � 1 mod 2 and k2 � 0 mod 2.
We give a brief description of the steps that need to be carried out to prove (8.2)

without showing the details.

Step 1. Prove that

C WD
�
A1;0 C

X
i2I

Ai;0

�
\

�
A1;1 C

X
i2I

Ai;0

�
D
˝
¹vj j j 2 I º

˛
:

Step 2. k odd and k < k2. Prove

C \ .A1;1 CAk/ D
˝
¹vj j j 2 I n ¹kºº

˛
by showing vk 62 .A1;1CAk/. Let I 0 WD ¹k 2 I j k < k2; k oddº. Then we have

C 0 WD C \
� \
k2I 0

.A1;0 CAk/
�
D

\
k2I 0

.C \ .A1;0 CAk//

D

\
k2I 0

�˝
¹vj j j 2 I n ¹kºº

˛�
D
˝
¹vj j j 2 I n I

0
º
˛
:

Step 3. k odd and k > k2. Prove

C \ .A1;0 CAk/ D
˝
¹vj j j 2 I n ¹kºº

˛
by showing vk 62 .A1;0 C Ak/. Let I 00 WD ¹k 2 I j k > k2; k oddº. Then we
have

C 00 WD C 0 \
� \
k2I 00

.A1;0 CAk/
�
D

\
k2I 00

.C 0 \ .A1;0 CAk//

D

\
k2I 00

�˝
¹vj j j 2 I n ¹I

0
[ kºº

˛�
D
˝
¹vj j j 2 I n .I

0
[ I 00/º

˛
D
˝
¹vj j j 2 Ieº

˛
;

where Ie is the subset of all even numbers in I .

Step 4. k even and k < k1. Prove

C 00 \ .A1;1 CAk/ D
˝
¹vj j j 2 Ie n ¹kºº

˛



Strongly aperiodic logarithmic signatures 177

by showing vk 62 .A1;1 C Ak/. Let J WD ¹k 2 Ie j k < k1; k evenº. Then we
have

D WD C 00 \
� \
k2J

.A1;1 CAk/
�
D

\
k2J

.C 00 \ .A1;1 CAk//

D

\
k2J

�˝
¹vj j j 2 Ie n ¹kºº

˛�
D
˝
¹vj j j 2 I n J º

˛
:

Step 5. k even and k > k1. Prove

D \ .A1;0 CAk/ D
˝
¹vj j j 2 Ie n ¹J [ kºº

˛
by showing vk 62 .A1;0 CAk/. Let J 0 WD ¹k 2 Ie j k > k1; k evenº. Then we
have

D0 WD D \
� \
k2J 0

.A1;0 CAk/
�
D

\
k2J 0

.D \ .A1;0 CAk//

D

\
k2J 0

�˝
¹vj j j 2 Ie n ¹J [ kºº

˛�
D
˝
¹vj j j 2 I n ¹J [ J

0
ºº D ¹0º

˛
;

which proves (8.2).

9 Some open questions

We have seen from Theorem 5.5 that the logarithmic signature ˇ constructed from
the Baumeister–de Wiljes method is tame provided the logarithmic signatures
ŒA1;j1

; : : : ; As;js
� and � are known and tame. Obviously, if � or/and ŒA1;j1

; : : : ;

As;js
� are not tame, even they are known, no efficient method is known regarding

the factorization with respect to ˇ. It is worth finding an answer to the following
interesting problem.

Question 9.1. Suppose ŒA1;j1
; : : : ; As;js

�, 1 � ji � ri , and � are tame but they
are not known. Suppose further that ˇ is strongly aperiodic. Can elements of G be
(efficiently) factorized with respect to ˇ?

The result of the cryptanalysis of the enhanced version of MST3 (see [11])
has shown that the scheme is secure when fused transversal logarithmic signa-
tures are used. More precisely, fused transversal logarithmic signatures withstand
the powerful matrix-permutation attack, a type of chosen plaintext attack, against
the scheme and moreover one can determine a bound on the complexity of the
attack for a given fused transversal logarithmic signature. It turns out that the
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complexity is less than the input length of the scheme (see [11]). By virtue of
the Baumeister–de Wiljes construction method we would conjecture that the com-
plexity of the matrix-permutation attack against MST3 is of size of the input length,
when strongly aperiodic logarithmic signatures constructed in this paper are used.
Hence we put the following challenging and important question.

Question 9.2. Determine the complexity of the matrix-permutation attack of the
enhanced version of MST3, when strongly aperiodic logarithmic signatures con-
structed in this paper are used.

Recall that fusing blocks of a strongly aperiodic logarithmic signature con-
structed in this paper remains a logarithmic signature of Baumeister–de Wiljes
type. Furthermore, a logarithmic signature ˇ D ŒB1; : : : ; Bs� used in MST3 of
Question 9.2 should have a reasonable block size, say, jBi j � 26 for 1 � i � s.
So, ˇ is obtained by fusing blocks of a logarithmic signature constructed in Sec-
tions 7 and 8.

10 Conclusion

We introduced the concept of strongly aperiodic logarithmic signatures, having
properties suitable for use in cryptosystem MST3. We developed an algebraic ap-
proach based on the Baumeister–de Wiljes method which enables the construction
of such logarithmic signatures for elementary abelian p-groups. The existence of
strongly aperiodic logarithmic signatures not only extends the private key space of
MST3 but would significantly contribute to its security. It is therefore worthwhile
to investigate further methods for constructing strongly aperiodic logarithmic sig-
natures for abelian groups.
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