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Abstract. Logarithmic signatures for finite groups are the essential constituent of public
key cryptosystems MST; and MST3. Especially they form the main component of the
private key of MST3. Regarding the use of MST3, it has become a vital issue to con-
struct new classes of logarithmic signatures having features that do not share with the
well-known class of transversal or fused transversal logarithmic signatures. For this pur-
pose Baumeister and de Wiljes recently presented an interesting method of constructing
aperiodic logarithmic signatures for abelian groups. In this paper we introduce the con-
cept of strongly aperiodic logarithmic signatures and show their constructions for abelian
p-groups on the basis of the Baumeister—de Wiljes method.
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1 Introduction

The public key cryptosystems MST; (see [8]) and MST3 (see [5,11]) are developed
on the basis of logarithmic signatures, a kind of factorization of finite groups. The
basic idea for building MST3 is to construct trapdoor one-way functions using
random covers for finite non-abelian groups having a large center. An integrated
trapdoor information, which forms the main part of the private key of the scheme,
employs logarithmic signatures of the center. The Suzuki 2-groups have been pro-
posed as the underlying groups for an instantiation of MST3. The first analysis of
the simple version of MST3 (see [5]) due to Magliveras, Svaba, Tran van Trung
and Zajac [9] shows that transversal logarithmic signatures are unfit for use in
the scheme. A further investigation of Blackburn, Cid and Mullan [2] proves that
the use of fused transversal logarithmic signatures also makes the simple version
of MST5 insecure. However, for the strengthened version of MST3 (see [11]), it
is shown that fused transversal logarithmic signatures still withstand the power-
ful matrix-permutation attack (see [11]). It is therefore essential to study further
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classes of logarithmic signatures having features that would be more suitable for
use in public key cryptosystems like MST3.

In a recent paper [1] Baumeister and de Wiljes propose an interesting method
for constructing aperiodic logarithmic signatures for abelian groups, in particular,
for abelian 2-groups, that thwart the Blackburn—Cid—Mullan attack. It is worth
mentioning that transversal or fused transversal logarithmic signatures have the
property of being periodic. In this paper we introduce the concept of strongly ape-
riodic logarithmic signatures and present their constructions for abelian p-groups
based on the Baumeister—de Wiljes method. Aperiodic and strongly aperiodic
logarithmic signatures provide classes of logarithmic signatures having features
befitting the use of MST3. Moreover, we are convinced that strongly aperiodic
logarithmic signatures for abelian groups are also of theoretical interest in their
own right.

2 Preliminaries

In this section we briefly present notation, definitions and some basic facts about
logarithmic signatures, covers for finite groups and their induced mappings. For
more details the reader is referred to [6, 8]. The group theoretic notation used is
standard and may be found in any textbook.

Let & be a finite abstract group, we define the width of § to be the positive
integer w = [log|g]|]. Let § be a subset of ¥ and let « = [A1, 42, ..., As] be
an ordered collection of ordered subsets A; = {a;,1,...,4a;r;} of §, such that
>-7_1|A;| is bounded by a polynomial in log |$|. Then we say that « is a cover
for §, if every product ay j, ---as, j, liesin § and if every g € § can be written as

g = ai,j, ++-ds,js (2.1)

with a; j, € A;. If, moreover, the expression in (2.1) is unique for every g € 3,
then « is called a logarithmic signature for §. We denote by €(§ C ¥§) and
A(S C ) the respective collections of covers and logarithmic signatures for
§ € §. When § = ¢, we simply write €(§) and A(¥) instead of €(§ € §) and
A(§ € §). A cover or a logarithmic signature o« = [A], A3, ..., Ag] for a group
¢ is said to be proper if |A;| # 1 and A; # §,foreveryi, 1 <i <s. We assume
that all covers and logarithmic signatures are proper. The product ay_j, ---as, j, in
(2.1) is called a factorization of g with respect to «.

Leta = [Aq,..., Ag] be a cover for § with r; = |A;|, then the A; are called
the blocks of a and the vector (rq,...,rs) of block lengths r; the type of o. We
define the length of « to be the integer £(at) = Y 7 _; ri.

Let I' = {(§¢, a¢) }een be a family of pairs, indexed by the security parameter
£, where the §; are groups in a common representation, and where oy is a specific
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cover for g, of length polynomial in £. We say that I" is tame if there exists a
probabilistic polynomial time algorithm + such that for each g € §;, A accepts
(g, g) as input, and outputs a factorization of g with respect to oy (as in equation
(2.1)) with overwhelming probability of success. We say that I' is wild if for
any probabilistic polynomial time algorithm A, the probability that + succeeds
in factorizing a random element g of §; is negligible. In other words T is tame
if there exists an algorithm by means of which the factorization in (2.1) for each
instance {(¥, ay)} can be achieved in time polynomial in [log |§;|]; and I" is wild
if it is not tame. Often we simply say oy is tame or wild.

For finite groups there are instances {(§, oy)}¢ where the factorization in (2.1)
is believed to be hard: For example, let ¢ be a prime power for which the discrete
logarithm problem in the multiplicative group of a finite field I, is believed to be
hard. Suppose that 2671 < q—1< 2%, and let G, be the multiplicative group
Fy just mentloned Let f be a generator of §;. If oy = [A1, A2, ..., Ag], where
A =1, f 2" ] then oy is a cover of gy, and factorization with respect to oy
amounts to solving the discrete logarithm problem (DLP) in ;.

Let o = [A1, A2, ..., Ag] be a cover of type (r1,72,...,rs5) for § € § with

Ai =lajr.ai2....,ai,]andletm = ]_[f=1 ri.Letm; = 1 and m; = ;-;11 T
fori = 2,...,s. Let t denote the canonical bijection from Z, @ Z, & --- D Zy,
on Zy; 1.€.,
N
Ci Ly @ Ly, @ ® Ly, = Ly T(1J2ee e Js) =) imi
i=1
Using t we now define the surjective mapping ¢ induced by «.
a:Zm—> S, a(x):=aij azj, - ds,js,

where (1, ja2,...,js) = v 1(x). Since v and ! are efficiently computable, the

mapping &(x) is efficiently computable.
Conversely, given a cover o and an element y € §, to determine any element
x € @ () it is necessary to obtain any one of the possible factorizations of type

(2.1) for y and determine indices ji, j2,..., jssuchthaty = ay j, a2, j, - - as,j,.
This is possible if and only if « is tame. Once a vector (1, ja, ..., js) has been
determined, &~ !(y) = t(j1. ja.. ... js) can be computed efficiently.

Two covers (logarithmic signatures) «, B are said to be equivalent if @ = ,5 .

It is worth noting that random covers and logarithmic signatures have been
used to construct pseudorandom number generators which are suitable for crypto-
graphic applications [7, 10].
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3 The cryptosystem MST5

Let § be a finite non-abelian group with nontrivial center Z such that § does not
split over Z. Assume further that Z is sufficiently large so that exhaustive search
problems are computationally not feasible in Z. We describe the strengthened
version of MST5 (see [11]).

Alice chooses a large group § as described above and generates

(1) a tame logarithmic signature f = [By,B2....,Bs] = (b;;) of type
(r1,r2,...,15) for Z;
(2) arandom cover ¢ = [A1, A2, ..., As] := (a;;) of the same type as 8 for a

certain subset § of & such that A,..., A4 C g\ Z.

She further selects f9,1,...,ts € § \ Z, a homomorphism f : § — Z and
computes

() y = (hij).hij =t ~aij - f(aij) bij-ti.
Alice publishes her public key («, y), keeping (B, to,t1,...,ts, ) as her pri-
vate key.

To encrypt a message x € Z Bob chooses a random number R € Zz|, R # 0,
computes

yi=G[R)-x, y2=V(R)-x=15"-&(R)- [@R))-B(R) s x,
and sends y = (y1, y2) to Alice. To decrypt y = (y1, y2) Alice computes

B(R) = f@R) ™ -y 1o y2-1; = fOo) oy to - y2 o]

by using the fact that f(y1) = f(&(R)), she then computes R from ,5 (R) which is
efficiently computable as f is tame. She computes @ (R) and recovers x from y.

In the description above if we choose f as the trivial homomorphism, i.e.,
f(g) = 1g for all g € §, we obtain the simple version of the cryptosystem
MST3 (see [5]). The use of nontrivial homomorphism f considerably strengthens
the scheme as shown in [11]. The homomorphism f is used to mask the secret
logarithmic signature B with information computed from cover «. We refer the
reader to [5, 11] for more detailed information about MST5.

As an instantiation of MST3 it has been suggested that the Suzuki 2-groups [3]
might be used for the underlying groups [5,11]. Letg = 2" with3 <m € N
such that the field IF; has a nontrivial automorphism 6 of odd order, i.e., m is not
a power of 2. Then a Suzuki 2-group § can be briefly described as follows:

9 :={(a.b) € Fy xFy | (a1.by) x (a2.b2) = (a1 + az.by + by + afar)}.

Thus ¢ has order g2 and Z(8) = ®(9) = §' = Q1(9) = {(0,b) | b € F4}. In
particular the center Z(¥§) is elementary abelian of order ¢.
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4 Classes and transformations of logarithmic signatures

In this section we briefly discuss classes of logarithmic signatures and basic trans-
formations on logarithmic signatures for a group §.

Lety : 1g = § < § < --- < § = § be a chain of subgroups of &,
and let A; be an ordered, complete set of right (or left) coset representatives of
gi—1ing;. Then [A1,..., As] forms a logarithmic signature for &, called exact
transversal logarithmic signature. We denote the collection of all exact transversal
logarithmic signatures for a group § by &7 (§). A logarithmic signature « for a
group § is called transversal if « is equivalent to a f € &7 (§), otherwise « is
called non-transversal. Further, if none of the blocks of « is a coset of a non-trivial
subgroup of &, then « is called totally non-transversal. We will denote the class
of transversal, non-transversal, and totally non-transversal logarithmic signatures
for & by 7(§), NT (), and TNT (§) respectively.

We list some basic transformations on logarithmic signatures. By applying cer-
tain transformations on a logarithmic signature, new logarithmic signatures will
be derived. Let @ = [41, ..., As] € A(§).

o Element shuffle: Permute the elements within each block of «.

* Block shuffle: If § is non-abelian, permuting two blocks of & may result in
a cover for a certain subset of §. If & is abelian, then the result of a block
shuffle is indeed a logarithmic signature.

* Two sided transformation: Let go, g1, ..., &s € §. Define a new logarithmic
signature 8 = [By,..., Bs]by B; = gl.__llAigl-. Then B is called a two sided
transform of . When go = gs = 1, we say that g is a sandwich of «. When
go = 1, B is said to be a right translation of a by gs. If g¢ = 1, then B is
called a left translation of a by go.

e Fusion: If § is non-abelian, then replacing two consecutive blocks A; and
Aiy1,1 <i <s—1,byasingleblock B = A;Aj+1:={xy | x € 4;, y €
Aj 1} will result in a logarithmic signature. B is called a fused block. If §
is abelian, the fusion transformation can be done on any two blocks of «.

o Automorphism action: If ¢ is an automorphism of &, then 8 = [By, ..., Bs]
with B; = ¢(4;), 1 <i <, is alogarithmic signature for §.

5 Aperiodic logarithmic signatures and the Baumeister—-de Wiljes
construction

Investigating tame aperiodic logarithmic signatures for abelian groups is a prob-
lem of theoretical interest and of practical importance. They present a new class
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of logarithmic signatures beyond the well-known classes of transversal and their
fused logarithmic signatures which are all periodic. Regarding cryptosystem MST3
aperiodic logarithmic signatures appear to be especially significant.

Definition 5.1. A non-empty subset X of a group § is called periodic if there
exists an element g € § \ {lg} such that gX = X. Such an element g is called a
period of X. The set of all periods of X will be denoted by P(X), i.e., P(X) =

lged\{lg}:gX = X}.

Definition 5.2. A logarithmic signature « = [Aq,...,As] € A(§) is called
aperiodic if none of the blocks A; is periodic. The set of all aperiodic logarithmic
signatures for § is denoted by A4 (9).

In [1], Baumeister and de Wiljes present an interesting method for constructing
aperiodic signatures for abelian groups. The method is based on the theory in the
book of Szabd [12], and it describes an approach to construct aperiodic logarithmic
signatures for abelian groups. The method is not an algorithm in the strict sense,
since the requirement posed by the method prohibits quickly its computational fea-
sibility even for groups of moderate order. However, the basic idea of the method
has proved to be useful, since it provides a technique for searching aperiodic loga-
rithmic signatures for abelian groups. We now describe the Baumeister—de Wiljes
construction.

Baumeister—de Wiljes construction. Let § be a finite abelian group. Let # be
a subgroup of ¥ and let 7 be a transversal of # in § (i.e., 7 is a complete set of
coset representatives of # in §).

(1) Let 8 = [T1,..., Ts] be a logarithmic signature of type (ry,...,rs) for T,
where 7; = {tj1.....tir; ).

(i) Suppose that for each i with 1 <i < s there exists a collection
Li ={Ai1, ... Aiy}

of subsets A; ; of # such that any choice [A41 j,,..., As,j,] with 4; j;, € &£;
forms a logarithmic signature for #.

(iii) Then B := [By,...,Bs] defined by B; = #;14;1 U ... Ut A;j; forl <
i < s forms a logarithmic signature of type ({1, ...,{s) for &, where {; =
Sy Al

For any subsets A, B of a group ¥ we say that B is a translate of A if there is

an element g € 9 such that g4 = B. The translate B is called proper if A # B.
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Baumeister and de Wiljes give the following characterization of aperiodicity for
the constructed logarithmic signature 3.

Proposition 5.3. Suppose that A; j is not a translate of A; i for any j.k €
{1,...,ri}. Then B; is periodic if and only if

() P(4i)) # 0.
j=1

The main idea of the Baumeister—de Wiljes construction of aperiodic logarith-
mic signatures is to find sets £; satisfying condition (ii).

Example 5.4. Let ¢ be an elementary abelian 2-group of order 2° generated by
g1.82.....89. Let H = (g1.82,83.84.85.86) and T = (g7.8s.89). Set

0 = [T1, T2, T3] with Ty = {1, g7}, T2 = {1, gs}, T3 = {1, go}. Define

£1={A11=1{1.81.82.8182}. A12 = {1,8183. 8284. 81838284}

£2={A21 =1{1.83.84.8384). 422 = {1.818283.8184. 828384} }.

£3 = {A31 ={1.g5.26.8586}. A32 = {1.818385. 828486 18283848586} -
It can be checked that each of the eight combinations [41,;,. A2, j,, A3, 5] with

J1, j2, j3 € {1,2} forms a logarithmic signature for . We thus obtain an aperi-
odic logarithmic signature 8 = [B1, B2, B3] of type (8, 8, 8) with

By ={1.81.82.8182.87.818387. 828487, 8183828487}
B = {1, g3.84.2384. g8. 81828388 18488 82838488 -
B3 = {1,g5.86.8586. 89 81838589 82848689 1828384858689 -

The aperiodicity of B follows from Proposition 5.3, since 4; 1 N A; 2 = {1} for
alli =1,2,3.

An important property of logarithmic signatures constructed by the Baumeister—
de Wiljes method is that they are tame when certain conditions are satisfied (see
[1,4]). The result is given by the following theorem.

Theorem 5.5. Let B := [By,..., Bs]| be a logarithmic signature constructed by
the Baumeister—de Wiljes method. Assume that 6 and all logarithmic signatures
[A1,jys- - A 1 < Ji <riandl <i <s, are tame. If 0 and £1, ..., Ly are
known, then B is tame.
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Proof. Let g € § be an element that we want to factorize with respect to 8. Then
there exist unique elements t € 7 and & € J such that g = ht. Since 6 is
tame, we can find a factorization of ¢t = f1 ;, -- -5, ;, with respect to 6 in time
bounded by O(w°¢'), where w = [log|§|] and c; is a constant. Having obtained
(J1,- .., Js) we can determine the logarithmic signature [Ay j,. ..., Ay, ;] which
is tame by the assumption. So, the complexity of factoring 4 = ay g, -+~ as x, With
respect to [Aq,j,, ..., As,j,] is bounded by O(w?), where c; is a constant. Thus

g=ht =ayg askdi,ji s, jy = @1k 01,70 e (As ks, i) -
€B; €By

Finding a; x;t;,;; € B; only requires a time of O(log,(|B;|)) when B; is sorted. It
follows that f is tame. |

6 Strongly aperiodic logarithmic signatures for abelian groups

Within the class () of aperiodic logarithmic signatures, we are interested in
a subclass called strongly aperiodic logarithmic signatures, which we denote by
SA(Y).

A simple observation shows that the aperiodicity property of a logarithmic sig-
nature is preserved under the transformations described above, except the fusion.
Fusing two or more blocks of an aperiodic logarithmic signature may result in a
periodic logarithmic signature. Observe that if we fuse all the blocks of a logarith-
mic signature 8, we obtain one block, namely the group ¥ itself, which is in turn
a trivial periodic logarithmic signature. We will exclude this trivial case. Thus a
fusion can be done on any set of at most s — 1 blocks of . In general, we might
expect that any nontrivial fusion is permitted, however it is not always so as we
can see from the following results shown in the book of Szabd [12] for abelian

p-groups.

Theorem 6.1. Let p be a prime and let § be an abelian group of order p". Further
letry > 1y > -+ >rg > p be powers of p such that

N
l_["i =p".

i=1
(i) ([12, Theorem 7.3.1]) Suppose p = 2 and § is an elementary abelian 2-

group. A logarithmic signature a of type (r1,...,rs) withry > --->rg > 2
can only be aperiodic if we have

e s =2andry > 8, or

es>3andr; >8 ry>--->rg >4
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o is always periodic for each of the following cases:

.rS=2y

e s =2andrl4,

e s>3andri|4,..., rg|d

(i) ([12, Theorem 2.3.2]) Suppose p = 3 and § is not cyclic or of type (3”71, 3).
Suppose further that (r1,....rs) & {(3,...,3).(3%,3,...,3),(3"71,3)L
Then there exist aperiodic logarithmic signatures of type (r1,...,rs) for §.

(iii) ([12, Theorem 2.3.1]) Suppose p > 5, § is not cyclic and (ry,...,1rs) #
(p,...,p). Then there exist aperiodic logarithmic signatures of type
(ri,...,rs) for §.

Now suppose that we have an aperiodic logarithmic signature § = [By, ..., Bs]
with s > 3 for an elementary abelian 2-group §. Note that from Theorem 6.1 we
have |B;| > 8 and |B;| > 4 for2 < i < s. If B is of type |B;| > 8 for
1 <i < s, then we say that § is strongly aperiodic when any fusion of at most
s — 1 blocks results in an aperiodic logarithmic signature. However, suppose, for
instance, |B1| = 8 and |By| = --- = |Bg| = 4. Then B is strongly aperiodic
if any fusion of its blocks results in an aperiodic logarithmic signature y, when
the type of y satisfies the conditions of aperiodicity of Theorem 6.1. This says, in
particular, that if block B; would be fused with (s — 2) other blocks, we would
obtain a logarithmic signature y of type (23+2(s —2), 4), which is periodic due to
Theorem 6.1. Hence, this type of fusion for 8 is “non-admissible”. In other words,
block B can be fused with at most (s — 3) other blocks. Moreover, fusing all
blocks B», ..., Bs of B together is admissible, as it will result in a logarithmic
signature of type (8, 22(s=1)) that does not violate the aperiodicity condition of
Theorem 6.1.

Theorem 6.1 motivates the following definition.

Definition 6.2. Let § be an abelian group and let 8 = [Bj,..., Bs] € A(9).
A fusion of certain d blocks B;,, ..., B;, is called admissible, if the type of the
resulting logarithmic signature y does not violate necessary conditions for being
aperiodic. Let {dy,...,d;} be the set of positive integers whose d; indicates the
largest possible number of blocks permitted by an admissible fusion of a certain
“type”. The values d1,...,d; are called the admissible fusion degrees of . We
say that 8 achieves the admissible fusion degrees, if for each d; € {d,...,d:},
any “admissible” fusion of d; blocks of B results in an aperiodic logarithmic sig-
nature.
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For example, let 8 = [B1, Ba,..., Bs], s > 3, be an aperiodic logarithmic
signature of type (8, 4,4, ..., 4) for an elementary abelian group § of order 225+1,
Then from Theorem 6.1 and Definition 6.2, the admissible fusion degrees of 8 are
{s—2,5s —1}.

Definition 6.3. Let § be an abelian group and let § = [B1, ..., Bs] € A(§). The
logarithmic signature B is called strongly aperiodic if it achieves its admissible
fusion degrees.

Remark 6.4. It seems not meaningful to extend Definition 6.3 to non-abelian
groups. This is because a fusion of non-consecutive blocks is almost prohibited,
since the result is no longer a logarithmic signature in this case.

Example 6.5. We use the setup for &, # and 7 and 6 as in Example 5.4. Define

£1={A41,1 =1{1.81.22.8182}. A12 = {1.£1828486. §28385. £183848586}}
L2 ={A21 =1{1.83.84.8384}, A22 = {1.£183. 8284. 81838284}
£3 = {431 ={1.g5.86.8586}. A32 = {1.8185.8286. 81858286}
Then we obtain an aperiodic logarithmic signature 8 = [Bj, B3, B3] of type
(8,8, 8) for § with
By = {1,g1,gz,glgz,g7,g1g2g4g6g7,g2g3g5g7,g1g3g4g5g6g7},
By = {1»g3,g4,g3g4,gs,g1g3g8,g2g4g87g1g3g2g4g8}v
B3 = {1.g5, 86.8586. 89. 818589, 828689+ £185828689)-
Now, it can be checked that the fusion of any two blocks of 8 yields an aperiodic

block. Hence B is strongly aperiodic.

Remark 6.6. We note that the logarithmic signature 8 in Example 5.4 is aperiodic
but not strongly aperiodic. For, when fusing B; with B, we obtain a periodic
block. Even more, By B5 is a subgroup of order 2° in §.

As we will use the Baumeister—de Wiljes construction (BW-construction for
short) to investigate strongly aperiodic logarithmic signatures, we make use of the
following simple observation about the fusion operation on a logarithmic signature
obtained from the BW-construction.

Lemma 6.7. We use the notation as described in the BW-construction above. The
fusion of blocks B; and Bj, i # j, of B results in a logarithmic signature, which
is again derived from the BW-construction, in which £; and £; are replaced by
L& and T; and T; by T; T;.
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The next lemma is useful for the query about the strong aperiodicity of a loga-
rithmic signature.

Lemma 6.8. Let § be an abelian group. Let § = [By,..., Bs| be a logarithmic
signature for §. Let I C {1,...,s}. Suppose that the fused block [[;c; B; is
aperiodic. Then [ | jeg Bj is aperiodic for any non-empty subset J < I.

Proof. Recall that element shuffle does not effect periodicity. Assume, by contra-
diction, that By := Hje] Bj is periodic for a subset J C I. Let g € § \ {1}
be a period for By. Set By := [[;c; Bi. We may write Bf = By - C, where
C := [lker\s B (note that By on the left side of equality By = By - C is
considered as an unordered set, since permuting the elements of B; does not
effect the property of aperiodicity). Now, since g is a period for By, we have
gBr = gBjy-C = By -C = By. Thus g is a period for By, a contradiction. 0

Lemma 6.8 is a crucial tool. Suppose we want to verify the strong aperiodicity
of a logarithmic signature 8 having s blocks. Suppose further that we are allowed
to fuse up to any s — 1 blocks of B. Without Lemma 6.8 we have to check all
(i) + (;) + et (Sfl) = 2% — 2 possible fusions of the blocks of 8. Whereas by
using Lemma 6.8 we only need to check ( sfl) = s fusions of all combinations of
s — 1 blocks of B.

In the remaining sections we present constructions of strongly aperiodic signa-
tures for elementary abelian p-groups. The basic tool we use is the BW-construc-
tion. We first construct certain types of aperiodic logarithmic signatures, and then
in a further more involved step we prove that they are strongly aperiodic.

From now on let § be an elementary abelian p-group. We use additive notation
for the group operation and 0 will denote the identity of §. In fact we identify
g with the additive group of the Galois field [F,». In this way § is viewed as a
vector space of dimension n over [F,,, and thus we may freely use the language of
linear algebra with respect to §. For example, a minimal generator set for § may
be called a basis for §.

7 Strongly aperiodic logarithmic signatures of type (p3,..., p?)

In this section we first construct a strongly aperiodic logarithmic signature of type
(p3...., p?) for an elementary abelian p-group § of order p3*, where p = 2 or
p is an odd prime and s > 2. Let vy, va,..., V2, ..., U3s be a generator set of §.
Using the BW-construction, we define

1) T = (vas41,...,V3s)and 0 = [Ty, ..., T] with

Ti =10, v254i, 202544y, (p — Dvag4i}, i =1,....8;
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(ii) H = <U1,...,U25>.

Letu € {1,...,p — 1} = [, \ {0} be a chosen parameter. Fori = 1,...,s
define the collection

Li ={4i0. Ai1,.... Ai,(p—1))
as follows:

A0 = (v1,v2).

N N
Avy = (v 4 vt Y van vt Y vara) je{lp-1)
=2 (=2

Aij = (vai—1 4+ jvi,v2i + jv2), 1€{2,....5}, j€1{0,....,p—1}.

Remark 7.1. Note that in (i) we may replace 7 by any transversal 7R of J.
Here TR is not a subgroup in general. In fact, it is simple to create a loga-
rithmic signature for a transversal of J# by passing to the quotient group 7 =
/. Namely, let 6 = [T7,...,Ts] be a logarithmic signature for 7, where
Ti = [xioH,.... Xi (p—1)#], 1 <i < s. Note that there are |J| possibilities for
choosing x; ; as coset representative. By lifting 6 to € we obtain a logarithmic
signature 0 = [T1, ..., Ts] with T; = [x;0,...,X; (p—1)] for a certain transversal
TR of H.

We now prove that the subsets 4; ; of £;, 1 <i < s, satisfy condition (ii) of
the BW-construction. This means that for any (1, j2,...,js) € {0,1,..., p—1}*

the collection [Aq,j,, A2, j,, ..., As, ;] forms a logarithmic signature for #. This
is equivalent to say that the basis elements of A1 ;,, A2 j,,..., As, j, are linearly
independent.

We first consider the case j; = 0. We then have
Arji = (v, v2),
Az j, = (J2-v1 + V3, j2 -2 + v4),

A3z ;3 = (J3-v1 + Vs, j3 - V2 + vs),

Ay, jy = (Js - v1 + vag—1, Js - V2 + vag).

When forming a linear combination of the basis elements of A1,09, A2 /5, ..., As, j,
for the zero element, we have

0=2A1,1.(01) + A12.(2) + A2,1.(V2i-1 + j2v1) + A2,2.(V2i + j202)
4+ .. 4 As,l-(U2s—1 + jsv1) + /\s,2~(02s + Jsv2) (7.1)
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with A; ; € F,. The matrix form of equation (7.1) is given by
(Afl,l’ A‘1,2’ LR 7AS,17 ls,Z)M = (O’ Oa ) 0)7

where M is the following (2s x 2s)-matrix over [:

1 0 0000 00 0
0 000 0 00 0
j» 0100 0 00 0
0 j» 0100 00 0

M=/ 0 0010 00 0
0 j3 000 1 000
js 00000 -0 10
0 js 0000 - 00 1

As M is a lower triangular matrix with all 1 on the main diagonal, M is invert-
ible and equation (7.1) has l,-,j =0foralll <i <sand1 < j < 2 as the unique
solution. Thus the basis elements of A9, A2 j,,..., Ay, j, are linearly indepen-
dent. This says, in particular, that [A1,0, A2, j,...., As,j,] forms a logarithmic
signature for 4.

We now consider the case j; # 0. We then have

S S
Avy=(vr o2+ 1Y vanu o+ 1 Y vara ),
=2 =2

Az,j, = (J2-v1 + V3, j2 - V2 + va),

Az j; = (j3-v1 + Vs, j3-v2 + Vg),

AS:js = (js “ U1 + V2s—1, Js* V2 + vzs),

and we obtain a linear combination of the zero element as follows:

S S
0= 11,1-<vl +uv2+Jj1- Z Uze) + /\1,2.<u ‘U2 + jp- Z Uze—l)
L=2 =2

+ A2,1.(V2i—1 + J2v1) + A2.2.(v2; + j2v2)
+ o4 Ag1.(Vas—1 F Jsv1) + As2.(Vas + jsv2). (7.2)
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The coefficient matrix M of equation (7.2) has the form

L 0 j1 0 ji - j1 0 h
0 u ji1 0 j1 O 0 j1 O
j20 1 0 0 O 0 0 O
0 j 0 1 0 O 0 0 O
M=1]j3 0 0 O 1 O 0 0 O
0 j35 0 0 0 1 0 0 O
js 0 0 0 O O --- 0 1 0
0O j 0 0 0 0 --- 0 0 1
By subtracting j; times the rows 4,6, ...,2s from the first row, and j; times
the rows 3,5, ...,2s — 1 from the second row of M we obtain the matrix
1 1—j1-Y9-0j1 0 0 0 0 0 00
—J1° D =0 JI u 0000 0 00
J2 0 1 000 000
0 J2 0100 0 00
J3 0 0010 0 00
0 J3 00 01 000
Js 0 000O0O--0T1@PO0
0 Js 0000 - 001

with determinant u + (1 — J)J = —(J2 —J —u) where J := j1 - 95 jo-
Since for each given p we can choose a u € IF, \ {0} such that the polynomial
X?2—X-ue [F»[X] has no root in I, we can conclude that matrix M is invertible
and therefore equation (7.2) has a unique solution with A; ; = Oforall1 <i <s
and 1 < j < 2. So the basis elements of Ay j,, A2, j,,...,As,j, are linearly
independent. Hence [A1,j,,A2,j,,. .., As,j,] forms a logarithmic signature for
H.

Thus we have constructed a logarithmic signature 8 of type (p3, ..., p3) for g
by the method of Baumeister and de Wiljes. By using Proposition 5.3 and the fact
that 4; ; N A; p = {0} for any Aij, Ai,k e L£i with j #£kandforalll <i <y,
we conclude that f is aperiodic.

The strong aperiodicity of 8 will be proved by the following theorem.
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Theorem 7.2. The above constructed logarithmic signature B of type (p>, ..., p3)
is strongly aperiodic.

Proof. Recall that Lemma 6.7 says that fusing any two blocks of B results in a
logarithmic signature, which is again obtained from the BW-construction. By us-
ing Lemma 6.8 we need only to consider the fusion of any (s — 1) blocks of §.
Finally, we use Proposition 5.3 to show that the resulting logarithmic signature de-
rived from each such fusion is aperiodic. This is done by showing that the fusion
of any (s — 1) collections &£; yields a collection of subgroups of ¥ having only the
identity element O of ¢ in their intersection.
We consider three cases.

Case (a) Fusing £, ..., L.
Let £5 + --- + £ denote the collection obtained by fusing &£5, ..., Ls. The
subsets of £ + -+ + &L, are of the form (A2, ;, + A3,j; + -+ + As,j,) with

(2. j3s- s js) €40, 1, ..., p— 1571,
We now prove that

(| (Aojy + Asjs + -+ As ) = {0}

(J25735+05J5)
€{0,1,...,p—1}51

Observe that

(A2,0 + Az0 + -+ As0) N (A2,1 + Az0 + - + As0)
= (U3, V4, Vs, V6, ..., Vag—1, V2g) N (V1 + V3, V2 + V4, V5, V6. ..., V2s—1, V2g)

= (V5. V6. ...,V25—1.V2s5) = A3,0 + Ag,0 + -+ + As0.
Similarly, we have

(A2,0 + A30 + Aao + -+ As0) N (A2,0 + A3,1 + Aao + -+ + As0)
=Axo+ Ago+ -+ 450, ...

(A2,0 + -+ As—1,0 + As5,0) N (A2,0 + -+ + As—2,0 + As—1,1 + 4s,0)
=Ayo+ Az + -+ Ag2,0 + As0,

(A2,0 + -+ As—1,0 + As5,0) N (A2,0 + A3,0 + -+ + As—1,0 + 4s,1)
=A20+ Az0+ -+ As—1,0.

Obviously, the intersection of the elements on the right-hand side of the equali-
ties is trivial.
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Case (b) Fusing £1, £, ..., L£s—1.
We prove that

([ (A + A2y, +- 4 A1y, ) = {0}
(1572505 05—1)
€{0,1,...,p—1}571

Recall that
At,0 = (v1,v2),

S S

A =(v1+vz+j-szz,u-vzﬂ-sze_l), jell....p—1}
(=2 =2

Ai’j = (vai—1 + JjV1,V2i + jv2), i€{2,...,s}, j€{0,...,p—1}.

So we have

(A1,0 + A2,0 + -+ + As—1,0) N (A1,1 + A20 + -+ + As—1,0)

= (1, V2,03, V4, ..., V25-3, V25-2)

S S
N <vl + vy + Z Upg, U - V2 + Z VUg—1,V3,04,...,025—3, vzs—2>
(=2 =2

= (V3,V4,...,V25-3,V25-2) = A0+ A30+ -+ As_1,0.
Consider further the intersection

(A2,0 + A3 0+ -+ + As—1,0) N (A1,1 + A2,;1 + A30 + -+ + As—1,0)
= (A2,0 + A30 + -+ As—1,0) N (A2,1 + A3,0 +--- + As—1,0)

= (V3,V4,V5,...,V25-3,V25—2) N (V3 + V1, V4 + V2,V5,...,V25-3, V25-2)
= (U5, V6, ..., V2g—3,V29—2) = (A30+ -+ As—1,0)-
Similarly,

(Az o+ -+ As—1,00 N (A1,1 + A20 + A31 + Ago+ -+ As—1,0)
= (A3 0+ -+ As—10) N (A2,0+ A3,1 + A0+ -+ As—1,0)
= (vs, V6, ..., V25—3, Vag—2) N (V3, V4, Vs + V1, V6 + V2,07, ..., V25—3, V25—2)

= (V7,v8,...,V25-3,V25—2) = Aa o+ -+ As—1,0.

This process can be iterated until we get {0} as the intersection.
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Case (c) Fusing £1,..., L1, Lr+1,-..,Ls—1,Ls forall k € {2,3,...,
s—2,5s— 1}
We claim that

ﬂ (Arjy +-+ Ak, + Ak+1,jk+1 + -+ A ) = {0}

(/R S
Jk+15eJs)
€{0,1,...,p—1}5"1

We define an isomorphism @ of § as follows:
Vas—1 ifi =2k —1,
Vok—1 ifi =25 — 1,

D) = vy ifi = 2k,
Uok ifi = 2S,

V; otherwise.

Thus @ interchanges v, 1 With vps—1 and v,y with vy, and fixes the remaining
generators. Then we have

N S
D(Ay,),) = (D(<v1 +v2H 1Y vapuvat 1 Y Uze—1>) = A1y,
(=2 (=2

D(Az,j,) = P((j2 - v1 + v3, j2 - V2 +v4)) = A2, )5,

O(Ag—1,ji_y) = P{Jk—1 V1 + V2(k—1)—1,J2 " V2 + V2k—1)) = Ak—1,jx_,>
DAk, j, ) = D((jk - v1 + Vok—1, Jk - V2 + Vak))
= (Jk - v1 + V2s—1. jk - V2 + Vas) = Ag jy.

(Ak+1,j541) = PUUk+1 V1 + V2k+1)—15J2 " V2 + V2k+1)) = Ak+1,j54 1>

D(As-1,j,_y) = P({Js—1 - V1 + Vas—1)—1. 2 - V2 + V2(5—1))) = As—1,j5_;+
D(As,j,) = P((Js - v1 + vas—1, Js - V2 + Vag))
= (Js * V1 + Vg1, Js " V2 + Vo) = Ak;jx‘
From

m (A1,jy + A2,y + -+ As—1,j,-,) = {0}

1572505 ds—1)
€{0,1,...,p—1}5"1
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we conclude that

(| @A)+ P(Az)) + -+ D(4s-1,5,,) = {O}.

(J1:J2500505—1)
€{0,1,...,p—1}5"1

This implies that

m (Al,jl +"'+Ak—1,jk_1 +®(Ak7jk)+Ak+1,jk+1

(J1:725005J5—1)
6{011,.2..,1)—1}31_1 + o+ Asrjy) = {0)

So we have

(| Aj+ o+ Ao, + As g + Akt 1o

Glaosjse
E{{)fl{ﬁ.,pil};ll + -+ AS—l,jsfl) = {0}7

which shows the claim. This completes the proof. o

Remark 7.3. The strongly aperiodic logarithmic signature § of type (8,8, 8) in
Example 6.5 above is constructed by the method in this section.

8 Strongly aperiodic logarithmic signatures of type (23,22,...,2%)

In this section we will construct strongly aperiodic logarithmic signatures of type
(23,22,...,2?) for an elementary abelian 2-group ¢ of order 2>5~1 with s >
4. Let v1,v2,..., Vs, Us+1,.-.,VU2s—1 be a generator set of §. Using the BW-
construction, we define

i) T = (vs+1, cee U2s—1) and 0 = [Tl, T3, Ty, ..., Ts] with 77 = {0, Us—l—l}
and T; = {0, vgy(j—1)} fori = 3.,4,...,2s;

(i) #H = (vy,...,vs).

Note that for the reason of simplicity we have omitted i = 2 in indexing the
collections £; and also the blocks 7; so that we only have s — 1 blocks.
Fori = 1,3,4,...,s define the collection

Li ={Aio0. Ai1}

as follows:

[s/2] Ls/2]
Ar0 = (v1,v2), 411 = <U1 + ) vt Y U2£>,
(=2 (=2
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and, fori = 3,...,s,
Li/2]
Aio = (vi), Ai1 = (Ui + Z Uzg>, if i is odd,

i/2
Aio=(vi), Aiq1= (vi + Z 1)2@_1>, if i is even.
(=1

Remark 8.1. In the same manner as in Remark 7.1, we may choose 6 as a loga-
rithmic signature for a certain transversal 7R of # in §.

At first we prove that for any choice of (j1, j3, ja.....js) € {0,1}*7! the

corresponding collection [A1 j,, A3, j5. ..., As,j;] forms a logarithmic signature
for J¢. This is equivalent to show that the linear combination of the zero element
of § with respect to the basis elements of Ay ;,, A3 j5, A4, js, ..., As,j;, 1.€.,
[5/2] Ls/2]
0= /\1-(1)1 + 1 Z Uze—1) + Az-(vz +J1 Z Uzi)
(=2 (=2
L(s—1)/2]
+ Y it (v21+1 + j2i+1 ZU2£>
i=1 {=1
[(s—1)/2]
+ Z A2i. (UZz + J2i sze 1) 8.1
only has the trivial solution A; = 0 for all i = 1,3,...,s. This means that
the (s x s) coefficient matrix Mg (jy, j3, ja,..., Js) for all A; of equation (8.1) is

invertible.
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If s is even, we have

MS(j17.j37j47"'v.jS)
1 0 J1 0 J1 0 J1 0 Jj1 O
0 0 J1 0 J1 0 Ji 0 J1
0 j3 0 0 0 0 0 0 0
ja 0 ja 1 0 0 0 0 0O O
0 Js 0 Js 1 0 0 0 0 0
= Je 0 Je 0 Je 1 0 0 0 O
0 js—3 0 js—3 0 js—3 1 0 0 0
js—2 0 js—2 0 js—2 0 js—Z 1 0 0
0 js—l 0 js—l 0 js—l 0 js—l 1 0
s 0 Js 0 Js 0 - Js 0 Jjs 1
If s is odd, we have
MS(jlaj3sj4a---st)
1 0 J1 0 J1 0 0 i 0 jp
0 0 J1 0 J1 J1 0 Jj1 O
0 J3 0 0 0 0 0 0O O
Ja 0 Ja 1 0 0 0 0 0O O
0 Js 0 Js 1 0 0 0 0 0
=\ Js 0 J6 0 Je 1 0 0 0 0
js—3 0 js—3 0 js—3 0 1 0 0 0
0 js—2 0 js—2 0 js—2 js—2 1 0 0
Js—1 0  js—1 0 js—1 O 0 Jjs—1 1 0
0 Js 0 Js 0 Js Js 0 Jjs 1

In both cases the matrix is invertible if j; = 0. Hence we assume that j; = 1.
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We show by induction on s that the determinant of M (1, j3, ja, ...
in both cases.
To begin with, if s = 3, we have

L Js)is 1

1 0 j
det(M3(j1,j3)) =det|0 1 0 ]|=1
0 jz 1

Now, let s > 3.
If s is even, we subtract j; times the first row from the last row and obtain

det(MS(jlvj?h j47 e .]S))

1 0 5 0 5 0 - Ji 0 Jj1 0
0 1 0 5 0 0 1 0 j
0 j3 1 0 0 0 0 0 0 O
ja 0 s 0 0 0O 0 0 0
0 Js 0 Js 1 0 0 0 0 0
=det| Je 0 Je 0 Je 1 0 0 0 O
0 Js—3 0 Js—3 0 Js—3 1 0 0 0
Js—2 0 Js—2 0 Js—2 0 Js—2 0 O
0 Js—1 0 Jjs—1 0 Js—1 0 Jjs—1 1 0
0 0 0 0 0 0 0 0 0 1
o i 0 j 0 i 0 h
0 0 J1 0 J1 0 i 0
0 J3 1 0 0 0 0 0 0
ja 0 ja 1 0 0 0 0 0
0 js 0 js 1 0 0 0 0
= det . . .
Je 0 Je 0 Je 1 0 0 0
0 js—3 0 js—3 0 js—3 1 0 0
js—2 0 js—2 0 js—2 0 js—z 1 0
0 Js—1 0 Jjs—1 0 js1 0 Jjs—1 1
= det(Ms—1(j1. /3, Jas - -+ Js—1))-
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If s is odd, we subtract jg times the second row from the last row and obtain

det(Ms(j1. j3: jas-- -+ Js))

1 0 5 0 5 o - 0 j1i 0 Jj
0 1 0 J1 0 J1 J1 0 Jj1 O
0 J3 1 0 0 0 0 0 0 O
Ja 0 Ja 1 0 0 0 0 0 O
0 Js 0 Js 1 0 0 0 0 O
=det| Jo 0 Je 0 Je 1 0 0 0 0
js=3 0 jse3 0 sz 0 - 10 0 0
0 js—z 0 js—2 0 js—2 js—z 1 0 0
jo1 0 st 0 jeg 0 - 0 jeg 100
0 0 0 0 0 o - 0 0 0 1
0 N 0 J1 0 0 i 0
0 1 0 i 0 i J1 0 /1
0 J3 0 0 0 0 0 0
ja 0 ja 1 0 0 0 0 0
0 Js 0 Js 0 0 0 0
= det . . .
Je 0 J6 0 J6 1 0 0 0
js—3 0 js—3 0 js—3 0 1 0 0
0 js—2 0 js—2 0 js—2 js—z 1 0
Js—1 0 jeo1 0 Jje—1r O o 0 jeqo 1

= det(Ms—1(Jj1, j3: Jar-- -+ js—1))-
In both cases induction shows us that the determinant is 1. Hence

[A1,j1, A3,j5 - -+ As, ]

forms a logarithmic signature for #.

Thus we have constructed a logarithmic signature 8 of type (23,22, . ..,22) for
g from the method of Baumeister and de Wiljes. By using Proposition 5.3 and
the fact that A; 1 N A;» = {0} forany i = 1,3,4,...,s, we conclude that § is
aperiodic.

Next we prove the following theorem.
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Theorem 8.2. The above constructed logarithmic signature B of type (23,22, ...,
22) is strongly aperiodic.

The proof of the strong aperiodicity for 8 is given by a number of lemmas.

In view of Theorem 6.1, we have to consider two types of fusions for 8: (a)
fusing all (s — 1) blocks of size 22 each; (b) fusing any (s — 2) blocks, where one
block is of size 23. By Lemmas 6.7, 6.8 and Proposition 5.3 we have to show that
for type (a) the fusion of £3, L4, ..., Ls and for type (b) the fusion of £; with
any (s — 3) other collections £; each yields a collection of subgroups of § having
only the identity element O in their intersection.

Case (a) Fusing £3, L4, ..., Ls.
Lemma 8.3.

ﬂ (A3,j5 + Aajy + -+ As—1,j,, + As,j,) = {0}

(J3s 74505 Js—15J5)
6{0,1}3_2

Proof. We consider the two sums

Azo+ Aso+ Aso+ -+ As—2,0 + As—1,0 + As,0 = (V3,V4, ..., V51, Vs),
Az + Aso+ Aso+ -+ As—2,0 + Ag—1,0 + 451
= (U3, V4, ..., V52, V51, Vs + Ug—1 + Vg—3 + ).
Their intersection is
(v3,v4,...,V5-2,V5-1)
because either v or vy occurs as a summand in the last term of the second sum.
When intersecting (v3, v4, ..., Vs—2, vg—1) further with the sum
Az + Aao + Aspo + -+ + As—3,0 + As—2,0 + As—1,1 + 45,0
== <v37 v47 ceey US—31 vS—27 vS7 (US—I + US—Z + vS—4 + ° '))7
we obtain
<U37 U4, ceey vS—31 Us—2>

because either v or v, occurs as a summand in the last two terms of the sum. By
doing further iterations, we eventually get {0} as intersection, as claimed. o

Case (b) Fusing £ with (s — 3) other £;.
Now, let I = {iy,...,is—3} C {3,4,...,s} be arbitrary with |/| = s — 3. Let
{3,4,....5}\ I = {ky,k2}, where we assume that k1 < k.



170 R. Staszewski and Tran van Trung

We have to prove that

M ( > Ai,ji)={0}- (8.2)

1573504505l =15k 415005 T€TU{1}
Jka—1sJkp+ 1500 Js) €40, 13573
Here we have
Ao+ Aio
iel
= <Ul, V2, Vi, Vigy e vy vkl—la vkl-l—l? e vk2—17 vkz-}—l’ e vi“‘—S)'

There are three subcases which we have to handle separately.
(1) k1 = ko = 1 mod 2,
(i) k1 =k, =0 mod 2,
(i) k1 + k2 = 1 mod 2.
Lemma 8.4. Suppose that k1 = k, = 1 mod 2. Then equation (8.2) is satisfied.

Proof. First consider

A+ Y Ao = (v1+v3+ s+ 02+ Vg + 6+ iy,
el vi27-~~vvk1—1avk1+lv---7vkz—lyvk2+la---7vi';_3>‘

Since v1 ¢ A1,1+ Y jey Aipand vz € A11 + D ;¢; Aijo, We have
C = (Ar0+ Y Ai0) N (A1 + D Ar0) = va} Udvi i € 1)),
iel iel
To compute further intersections we need to introduce some notation.
Fori € I let A; be defined by

A = Aiq + Z Aj,().
JEL j#i

Then
A =({v; | j € I\{i}}U{vi +vieg +vi—z + -+ }).

Fori, j € I let A;, ; be defined by

a‘\)l”j = Al',1 + Aj)] + Z AZ,O-
Cel t#£i,)
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Then
Aij = {ve [ €€ IN{, jYU{vi + o1+ 03+ vj +vj1 +vj—3+---}).

To prove (8.2) we proceed with a number of steps.

Step 1. k even and k > k;.
We prove that

C N (Ao + Ar) = ({v2} U{v [ j € I\ {k})).
Since we have
Aro+ A = Ao+ ({vj | j € I\ {k}} U{vg + vk—y 4+ vg—z + -+ })
=({vj | j € I\{k}} U{vi.va, vg 4 vk—1 + Vg3 + -+ ),
it is obvious that
(fo2y Udvy | € T\ {k}}) € € N (410 + Ag).

Moreover, since ({v2} U {v; | j € I \ {k}}) has codimension 1 in C, it suffices
to show that vy ¢ A; o + k. Suppose, by contradiction, that vy € Ay 0 + Ay.
Then there exist A1, Az, ... € {0, 1} with

Vg = A101 + Aavo + Ap (Vg + Vg1 + Vg3 + ) + Z Ajvj.
JeI\{k}

But v, occurs exactly once on the right-hand side of this equation (note that k is
even, k1 is odd and k > k1), and we conclude A; = 0. But then

Vg = A1vg + A2 + Z Ajvj,
JeI\{k}

a contradiction. Hence, for all k > k; with k even, we have
C N (A1 + Ar) = ({va} Uy | j € T\ {k}})

Let I’ :={k € I | k > ky,k even}. We conclude

c'=cn (kﬂ (Aro + Ar)) = kﬂ (C N (A10 + Ap)
el’ er’

= N2y Uy | € T\KR) = (w2} Uy | j € I\ T)).

kel’
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Next, we prove that
C" = C' N (A1t + ey 1) = {{v) | j € I\I')).
We have

A1+ Ag 1
= A1+ (v [ € I\ {ki 4+ 1} U{vg, 41 + vk + g2 + -+ })
={viljel\{tki+1}}U{vi+v3+vs+-,v2+vs4 06+,
Vky+1 F Vi + Vky—2 4o}

Since k1 + 1 € I’, we clearly have ({v; | j e I\ I'}) € C".

Moreover, since ({v; | j € I\ I'}) has codimension 1 in C’, it suffices to show
that vo ¢ Ay,1 + Ak, +1. Suppose, by contradiction, that vy € A1 + Ag, 41.
Then there exist A1, Az, ... € {0, 1} with

vp =A1(vi+v3+vs+--)+Ax(va+vg+ve+0r)

+ Ay 41V 41 + Vg, F V2 ) F Z Ajvj.
Jel\{k1+1}

But since vg, occurs exactly once on the right-hand side of this equation, we
conclude that A; = 0; also, since vg , occurs only once on the right-hand side of
this equation, we conclude that A, 1.1 = 0; further, since vy, 4 occurs only once,
we conclude that A, = 0. But this is a contradiction.

Step 2. k evenand k < kq.
We prove that

C" N (A1 + Arg+1) = ({vj [ J € UNT)\{k})).
We have
A1+ Ak kg +1
= A1+ {vj | j el \{k. ki + 1} U{vg + vg—g + vz + -+,
k41 + Vi + V=2 + )
=({vj | jel\{tkky + 1} U{vi +va+uvs+- . v2+vs+ve+-,
Uk + Vg1 F k=3 o U Uk Vg —2 o))

It is clear that

({vj 17 € INI)\{k})) S C" N (A11 + Ag gy +1)-
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Moreover, since ({v; | j € (I \ I’) \ {k}}) has codimension 1 in C”, it suffices
to show that v ¢ Ay + Ak k,+1. Suppose, by contradiction, that vy € A1 +
Ak k,+1- Then there exist A1, A2, ... € {0, 1} with

v =A1(vi +vs+vs+-o0)+ A2(va +va+ve+ )
+ A (Vg + Vg1 + V3 + )
+ Ay +1 Ok +1 + Vg + Vg2 ) F Z Ajvj.
jel\{k,k1+1}

This implies that on the right-hand side of this equation the coefficient of vg
is equal to 1 and all other coefficients of v;, j # k, are equal to 0. The set of
respective coefficients of {vg, 41, Vg, V1, v2} is

{A2 + A1 = 0,41 + Ay 41 = 0,41 + A + Ay 41 = 0,45 = 0}.

It follows that A = A1 = Ax = Ak, 41 = 0. So Ay + Ax = 0, but thisis a
contradiction because A, + Ay is the coefficient of v; and should be equal to 1.
Hence, for all k < k; with k even, we have

C" N (A1 + Ak +1) = [{v2y Uy | j e T\ T\ {k})).
Let I” :={k € I | k < ky,k even}. We conclude

Di=C"0 () i+ A 40) = () (€70 ALx + Axg, 1)
kel” kel”

= () ((toy 17 € I\ I)\ kD)

kel”
={vj | jeI\I'UI"})={v;|jel,jodd})

Step 3. k odd and k < kj.
Let us write I = I, U I,, where I, and I, are the subsets of odd and even
numbers in /, respectively. We prove that

DN (A1 + Argt1) = ({vj | J € 1o\ {k}}).
We have
A1+ Ak k41

=Ai,1+({vj | j eI \{k.k+ 13} U{vg + vg—y + vg—3 + -+,
Vk+1 +vk+vk_2+~-})
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=({vj | jel\{tkk+1}}U{vi+v3+uvs+ . v2+vs+vs+ ",
Uk + Ug—1 + Vg—3 + -+, Vg1 +Uk+vk_2+--~}).

Observe that

({vj 1 j € Io\{k}}) € DN (A1 + Ak gs1)-

Moreover, since ({v; | j € I, \ {k}}) has codimension 1 in D, it suffices to show
that vg ¢ A1,1 + Ak k+1. Suppose, by contradiction, that vy € A1 + Ak k41
Then there exist A1, A3, ... € {0, 1} with

Vg =A1(vi+v3+vs+-)+Ar(va+vg +v6+00)
+ Ak + ve—1 + Vg3 + ) + Ak 1 (Vg1 + 0k F V2 +00)
+ Z /ljvj.
jeI\{k,k+1}

This says that on the right-hand side of this equation the coefficient of vi is
equal to 1 and all other coefficients of v;, j # k, are equal to 0. The set of
respective coefficients of {vg 41, v1,v2, Vg, } is

{A2 + kg1 =041 + Aggq = 0. A2 + A = 0,41 = 0}.

It follows that A1 = Ag 1 = A2 = A = 0. So A1 + A + Arq = O, but this
is a contradiction because A1 + Ax + Ay is the coefficient of vi and should be
equal to 1.

Hence, for all k < k1 with k odd, we have

DN (A1 + A grr) = ({v) | J € 1o \ {k}}).
LetJ :={k el, |k <ki,k odd}. We conclude

D =D 0 (A1 + Akkrn) = (VDN (Ars + Ax i)
keJ keJ

= (" ({{vj 1 j € I\ {k}}) = ({v; | j € I\ J}).

keJ

Step 4. k odd and k > k;.

By considering further intersections of D’ with A g + Ax_y k for all odd k >
k1 we show in this step that equation (8.2) is satisfied.

First we prove that

D' N (A1 + Ar—1) = ({vj | ] € 1o\ (J U {k}H)}).
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We have
At,0 + Ar_1k
= Ao+ ({vj | j eI \{k =1k} U{vg_y 4+ vk—a + vg—a + -},
{vk + vk—1 + k3 + -+ })
={vj | jel\{k—1k}U{vi,v2, 061 + Vkp + Vg + -+,
Vg + Vg—1 + Vg—3 + })
Observe that

({vj 1 j €Io\(J UKD} S D' N (A0 + Ak—1k)-

Moreover, since ({v; | j € I, \ (J U {k})}) has codimension 1 in D’, it suffices
to show that vg ¢ Ay,0 + Ak—1 k. Suppose, by contradiction, that vy € Ay +
Ak—1,k- Then there exist A1, A2, ... € {0, 1} with

Uk = A1v1 + Aova + Ap—1 (V-1 + Vg—2 + Vk—g + )

+ Ag(vg + Vg1 + Vg3 + ) + Z Ajvj.
jel\{k—1,k}

On the right-hand side of this equation the coefficient of vy is equal to 1 and
all other coefficients of v;, j # k, are equal to 0. Now the coefficient of vj_;
is Ax—1 + Ax = 0. Note that v, appears once in the summand vg_; + vg_p +
Vk—4 + -+-. So the coefficient of vy, is Ax_; = 0. This implies that Ay = 0, a
contradiction to the fact that A;, = 1, because the coefficient of vy is A.

Hence for all k > k1 with k odd, we have

D' N (A1 + Ar—16) = ({vj | j € Lo\ (J U {k})}).

Let J' :={k € I, | k > ky, k odd}. We conclude

D":=D'n ( m (A1,0 + Ak—l,k)) = ﬂ (D' N (A1,0 + Ak—1,k))

keJ’ keJ’
= () (s 1j € I\ (T UDY) = {{v; | j € Lo\ (J U J)}) = {0}.
keJ’
This completes the proof of Lemma 8.4. |

Lemma 8.5. Suppose that k1 = ko = 0 mod 2. Then equation (8.2) is satisfied.
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We omit the proof of Lemma 8.5 since it is similar to that of Lemma 8.4.
The next lemma deals with the last subcase.

Lemma 8.6. Suppose that k1 + ko = 1 mod 2. Then equation (8.2) is satisfied.

Proof. Without loss of generality, we assume k; = 1 mod 2 and k, = 0 mod 2.
We give a brief description of the steps that need to be carried out to prove (8.2)
without showing the details.

Step 1. Prove that
C:= <A1,0 + Zz‘h’,o) N <A1,1 + ZAw) =({vj | j e}
iel iel
Step 2. k odd and k < k5. Prove
C N (A + Ay = ({v; | j e T\ {k}})
by showing vy & (A1,1 + Ax). Let I’ :={k € I | k < ka, k odd}. Then we have

C'=cCn (kD,(ALo + A = kD/(C N (A1,0 + Ar))

= (v 1 e I\GKR) =(tv; | j eI\ 1)

kel’

Step 3. k odd and k > k5. Prove
C N (Ao + k) = ({v | j €1\ {k}})

by showing vi & (A1,0 + #Ag). Let I” :={k € I | k > ky,k odd}. Then we
have

=0 () Aro+A40) = () (€N (Ao + A)
kel” kel”

= () (s 1j e I\ UKY))

kel”
={v ljel\NT'UI"})={vj|]el}),

where I, is the subset of all even numbers in /.

Step 4. k even and k < k. Prove

C"N (A + A) = (v | € L\ {k}})
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by showing vy & (A1,1 + #Ay). Let J := {k € I, | k < ki1,k even}. Then we
have

Di=c"n (A +40) = (€N AL+ A)
keJ keJ

= (({vj | j € L \{k}}) = ({v; | j e I\ J}).

keJ

Step 5. k even and k > k. Prove
DN (Ao + A =({v; | j €l \{J Uk}

by showing vy & (A1,0 + Ax). Let J' := {k € I, | k > k1, k even}. Then we
have

D':=Dn (kD,(Al,o + A)) = kDI/(D N (A10 + Ar))

= (({vj 1j €I\ UKY) = ({v; | j e I\{J UJT'}} ={0}).

keJ’

which proves (8.2). O

9 Some open questions

We have seen from Theorem 5.5 that the logarithmic signature 8 constructed from
the Baumeister-de Wiljes method is tame provided the logarithmic signatures
[A1,j;,.... As,j,] and 6 are known and tame. Obviously, if 6 or/and [Aq j,, ...,
Ay, j;] are not tame, even they are known, no efficient method is known regarding
the factorization with respect to 8. It is worth finding an answer to the following
interesting problem.

Question 9.1. Suppose [A1,,,...,As,j], 1 < ji < r;, and 6 are tame but they
are not known. Suppose further that f is strongly aperiodic. Can elements of § be
(efficiently) factorized with respect to §?

The result of the cryptanalysis of the enhanced version of MST3 (see [11])
has shown that the scheme is secure when fused transversal logarithmic signa-
tures are used. More precisely, fused transversal logarithmic signatures withstand
the powerful matrix-permutation attack, a type of chosen plaintext attack, against
the scheme and moreover one can determine a bound on the complexity of the
attack for a given fused transversal logarithmic signature. It turns out that the
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complexity is less than the input length of the scheme (see [11]). By virtue of
the Baumeister—de Wiljes construction method we would conjecture that the com-
plexity of the matrix-permutation attack against MST35 is of size of the input length,
when strongly aperiodic logarithmic signatures constructed in this paper are used.
Hence we put the following challenging and important question.

Question 9.2. Determine the complexity of the matrix-permutation attack of the
enhanced version of MST3, when strongly aperiodic logarithmic signatures con-
structed in this paper are used.

Recall that fusing blocks of a strongly aperiodic logarithmic signature con-
structed in this paper remains a logarithmic signature of Baumeister—de Wiljes
type. Furthermore, a logarithmic signature 8 = [By,..., Bs] used in MST3 of
Question 9.2 should have a reasonable block size, say, |B;| > 20 forl <i <s.
So, B is obtained by fusing blocks of a logarithmic signature constructed in Sec-
tions 7 and 8.

10 Conclusion

We introduced the concept of strongly aperiodic logarithmic signatures, having
properties suitable for use in cryptosystem MST3. We developed an algebraic ap-
proach based on the Baumeister—de Wiljes method which enables the construction
of such logarithmic signatures for elementary abelian p-groups. The existence of
strongly aperiodic logarithmic signatures not only extends the private key space of
MSTs5 but would significantly contribute to its security. It is therefore worthwhile
to investigate further methods for constructing strongly aperiodic logarithmic sig-
natures for abelian groups.
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