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Summary 

In this paper, the theories and the methods of thermal elastic-plastic-creep 

analysis and measurement of residual stresses are described, which have been 

presented by the authors. Many useful information on elastic-plastic-creep 

behavior of various joints during and after welding and stress-relief annealing 

(PWHT) have been obtained by applying these ones. With the several examples, 

mainly on multi-pass welding of thick plates, the effectiveness and reliability 

of these theories and methods are shown. Using the results of the theoretical 

analysis and experimental measurement, characteristics of distribution of multi-

pass welding residual stresses, their production mechanisms, influencing factors 

on them and their relations with cold cracks are discussed synthetically for the 

thick welded joints. 
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1. Introduction 

Analysis and Measurement of Welding Residual Stresses and PWI1T 

1.1 General Introduction 

If is well known that welding produces thermal stresses which cause 

distortion of structures and residual stresses which influence buckling strength, 

brittle fracture strength, etc. of welded structures. In connection with welding 

residual stresses, cold cracking is also investigated from various points of 

view, including mechanical one. For some types of welded structures, stress-

relief annealing (PWHT: Post Weld Heat Treatment) is applied in the process of 

construction. 

In recent years, it has become more important to perform more accurate 

theoretical analysis of transient and resulting residual stresses associated with 

welding and PWHT for rational design and for critical evaluation of safety. A 

basic requirement for such work is the capability to analyze thermal elastic-

plastic behavior of metals. Of various proposed analytical methods, the finite 

element method is one of the most powerful tool to deal with nonlinear behavior 

and arbitrary geometrical configuration. For thermal elastic-plastic analysis, 

based on the finite element method, the basic theory was formulated by the 

authors /1,2/ and others. The authors have extended their theory to be appli-

cable to stress-relief annealing of welded joints in thick plate /3—5/. 

In parallel with the theoretical analyses, accurate methods of measurement 

of actual residual stresses are needed and several have been proposed. To 

measure those in three-dimensions the Sachs method /6/ is accurate in very limit-

ed conditions, and the Rosenthal method /7/ is based on an irrational approxima-

tion which reduces the accuracy of the result. The authors have developed the 

general theory of measurement of three-dimensional residual stresses using 

inherent strains as parameters and the basic procedures based on the finite 

element method /8/. 
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In this paper, summarizing these works, the authors will describe the basic 

theories and procedures, which are based on the finite element method, for 

theoretical analyses of mechanical behavior of welded joints immediately after 

welding and during stress-relief annealing and also the measurement of residual 

stresses. 

With several examples, mainly on multi-pass welding of thick plates, the 

effectiveness of these theories and procedures will be shown. Using the results 

of these theoretical analysis and experimental measurement, characteristics of 

distribution of multi-pass welding residual stresses, their production mecha-

nisms, influencing factors on them and their relations with cold cracks are 

discussed synthetically. 

1.2 Outline of the Characteristics of the Problems 

In this section the characteristics of the subjects to be dealt with in this 

paper are outlined. 

The phenomenon of welding starts at the instant of providing a concentrated 

heat source which, in most welds, can be regarded as the weld metal. Heat 

transfer in the welded joint produces a changing temperature distribution which 

induces thermal stresses. An important point is that there can be marked changes 

in the instantaneous mechanical properties as a result of changes in temperature, 

and it is important to take account of these changes; secondary effects of the 

coupling of temperature and stress fields can be neglected. Taking this as a 

basic assumption, the analysis can be divided into two independent analyses: 

heat conduction and thermal elastic-plastic. 

In a one-pass weld the welded joint can be divided into four parts: weld 

metal (deposit), weld metal (base), heat-affected zone and parent metal, as shown 

in Fig.1-1(a). Each part is subjected to an individual thermal history and the 

related changes of the physical properties are indicated in Fig.1-1(b), as are 
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Fig.1-1 Characteristics of welded joint 
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the corresponding changes of the mechanical properties of the materials. 

In multi-pass welds the new weld metal fuses a small region surrounding it 

and relieves the residual stresses w h i c h were already produced. After redistri-
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bution of the residual stresses the characteristics of the succeeding phenomena 

are considered the same as in a one-pass weld, although some part of the joint 

may be subjected to loading and unloading in the plastic range. 

In the usual process of stress-relief annealing for thick joint the rate of 

heating is kept sufficiently small to prevent thermal stresses by uneven tempera-

ture distribution. In this condition the temperature of the object is considered 

to be uniform at any point. Creep strain rate is influenced by several factors 

such as temperature and stress, and the appropriate creep law may be different 

depending upon materials and temperature ranges. 

There are two theories for the measurement of residual stresses: the inher-

ent strain method and the section force method. The inherent strain method which 

the authors have proposed is based on the following idea. 

Fundamentally, residual stresses are produced by the source of residual 

stresses, effective inherent strains (being not necessarily true inherent 

strains). Conversely, the effective inherent strains can be estimated from the 

residual stresses which are measured on the surfaces of the object. Once the 

inherent strains are obtained the entire residual stresses of the object are 

easily calculated. 

On the other hand, the section force method is indifferent to the inherent 

strain. When the object is sectioned the internal forces on the newly exposed 

surfaces are relieved. By this relief the existing stresses in the object are 

consequently relaxed. If the changes in surface strains by the sectioning are 

measured, the section forces can be estimated by the changes. With repetition of 

the procedure the original residual stresses will completely relieved. By the 

summation of the section forces relieved at every step, the original residual 

stresses can be calculated. This is the section force method. 

The former method is based on the relationship between the inherent strains 

and the response surface strains, and the latter is on the relationship between 
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the relieved section forces and the relaxed strains. It is very difficult to 

express these relationships in general analytical expressions. When the finite 

element method is used they can be represented without any difficulties and these 

methods can be applied without particular restriction, such as the geometrical 

configuration. 

2. Thermal Elastic-Plastic-Creep Analysis of Transient and Residual Stresses 

due to Welding and Stress-Relief Annealing (PWHT) 

2.1 Introduction 

For better understanding of production mechanism of welding residual 

stresses and causes of weld cracking, it is necessary to obtain more accurate 

information on the entire histories of stresses and strains to which the material 

is subjected during the process of welding. At the instant of welding, a limited 

portion of the welded joint such as the weld metal and the base metal in its 

vicinity are heated up to a very high temperature and thereafter cooled down to 

room temperature. In this way, the thermal cycle proceeds, temperature distribu-

tion changes with time and the mechanical properties of metal depend on tempera-

ture and plastic history. In order to perform a more reliable analysis, the 

above mentioned factors should be taken into account. 

As stated in the preceding chapter two independent analyses on temperature 

and stress fields are necessary for the analysis. In both analyses the basic 

equations are derived in the incremental forms on the assumption that any changes 

during a small increment of time are linear. Then the accumulation of the 

solution to the basic equations for each step furnishes the entire histories of 

temperature, stress, and strain. 

Based on the finite element method, the authors had developed methods of 
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thermal elastic-plastic analysis on this kind of problems with consideration of 

the effects of changes of the mechanical properties /1/. Furthermore, the 

authors generalize the theory of thermal elastic-plastic analysis to take into 

account not only temperature-dependence but also plastic history-dependence of 

the material properties, introducing a combined rule of isotropic and kinematic 

workhardening /2/. 

The authors have also presented the theory of thermal elastic-plastic-creep 

analysis to investigate the mechanical behaviors of welded joints during stress-

relief annealing by introducing more general and accurate forms for creep strain 

/3-5/. 

Based on these theories, they developed an efficient and accurate method 

/9—12/ for analysis of multi-pass welding transient and residual stresses. 

Applying this method, multi-pass welding transient and residual stresses have 

been obtained, and their production mechanisms, their relations with cold cracks, 

etc. have been clarified. Transient and residual stresses during PWHT have been 

also analyzed. 

These theories and results will be described in this chapter. 

2.2 Theory of Analysis 

2.2.1 General forms of constitutive equation and stiffness equation 

(1) Constitutive equation (Incremental relation between stress and total strain) 

In dealing with nonlinearity of material it is most important to define the 

stress and strain relationship for derivation of the fundamental equations. 

For a small increment of time, dt (which produces an increment of 

temperature, dT), the relationship between stress increment {da} and total strain 

increment {de} is represented in the following general form, taking account of 

the effects of temperature upon the elastic, plastic, and creep behavior. 
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{da} = [D] {de} - {dC} ( 2 - 1 ) . 

The explicit forms of the terms [ D] and {d C} in the above differ according 

to the condition of stress, that is in the elastic or plastic range with or 

without creep. 

(2) Stiffness equation (Incremental relation between nodal force and nodal 

displacement) 

Applying the finite element method and denoting the stiffness matrix of an 

element by [κ], the relationship between the increment of the nodal force {dF } 

and that of the nodal displacement {dw } is written as 

In the above equation, [ K] is obtained by integration of the term including [ϋ] 

in Eq. (2-1) and the equivalent nodal force {dL} is that including { dC} of the 

same equation. Summing up the stiffness equation (2-2) over the entire object, 

the stiffness equation for the whole object may be obtained. In usual welding 

the external forces are not applied. Introducing the boundary conditions into 

the stiffness equations, the equilibrium equation on the whole object is 

expressed by 

where Σ means the summation for the whole object. 

These are the fundamental equations. In each time increment dt, Eq.(2-3) is 

solved for nodal displacement increment {dw} · Total strain increment {de} can 

be calculated from { d w } , according to the difinition of the relation between {dw] 

and {de} . Stress increment {da} can be evaluated from Eq.(2-1). In the 

following sections, explicit expressions of the constitutive equation (2-1) and 

the stiffness equation (2-2) will be derived. 

{dF} = [K] {dw} - {dL} ( 2 - 2 ) 

E{dL} = ς[Κ] {dw} (2-3) 
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2.2.2 Constitutive equation (Incremental relation between stress and total 

strain) for thermal elastic-plastic state /2/ 

In this section, constitutive equations (incremental relation between stress 

and total strain) with consideration of effects of changes of the material pro-

perties will be developed for the elastic range and plastic range respectively, 

introducing a combined rule of isotropic and kinematic workhardening. 

The mechanical properties of material generally change when temperature 

changes or its plastic deformation progresses. Especially in the process of 

welding, the magnitudes of changes of the material properties are very large 

because the welded joint is heated up to a very high temperature and thereafter 

cooled down to room temperature generally with large stresses and plastic 

strains. Accordingly, when termal stresses, strains or deformations produced by 

welding are analyzed, it is necessary to consider such temperature-dependence and 

plastic history-dependence of the material properties. 

(1) Constitutive equation in elastic range 

In this section, it it assumed that creep strain is not produced in the 

material, and the total increment of thermal strain including transformation 

strain is denoted by {ds^} , which will be called simply thermal strain incre-

ment hereafter. Such thermal strain increment can be expressed by instantaneous 

linear expansion coefficient {a} and temperature increment dT as 

{deT} = {a} dT (2-4) 

The above instantaneous linear expansion coefficient {a} is usually a coef-

ficient which indicates the magnitude of expansion or shrinkage due to tempera-

ture changes at every instant. By this coefficient, expansion or shrinkage due 

to both temperature change and transformation can be expressed when the material 

is in the temperature range of the transformation. Then, in the elastic range, 

total strain increment {ds} is represented as the summation of thermal strain 
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increment {de^} and elastic strain increment {dse} which are produced to satisfy 

the conditions of compatibility, that is, 

{de} = {dse} + {d8T} 

Elastic strains {ee} have always the relation to stresses {σ} as 

{σ} = [De] {εθ} 

(2-5) 

(2-6) 
where Co} = { σ σ σ τ τ τ } χ y ζ yz ζχ xy' ·> 

{εθ} = {εε ee ee γβ ye Ye }T ιεχ y εζ yz Yzx Yxy' ·> 
V V 

mei - . e(T -V) [D ] "(1 + v)( l - 2v) 

• V I - V 
V 

1 0 
1 - ?v 

Sym. 

0 
0 
0 

1 - 2v 

0 
0 
0 
0 

"I - 2v 

elasticity matrix or 

elastic stress-strain 

matrix 

Ε : Young's modulus, V : Poisson's ratio 

When the stresses {σ} , elastic strains {se} and elasticity matrix [De] change 

into {σ + do} , {8e+dse} and [De]+d[De] respectively due to the subsequent 

temperature change, they must satisfy the same equation as Eq.(2-6), that is, 

(2-7) 

In the case where the elasticity matrix [De] (containing the material properties) 

is a function of only temperature, an increment of elasticity matrix [De] , d[De], 

{σ + da} = ([De] + d[De]) {eB + dee} 

in the above equation can be represented as 

d [ D e ] = ^ p - d T (2-8) 

Introduction of Eq.(2-8) into Eq.(2-7) and substraction of Eq.(2-6) from Eq. (2-7) 

provide the relationship between stress increment and elastic strain increment as 

{da} = [D®] {dse} {se} (2-9) 

where 
[D®] = [ D e ] + ^ ! l d T 

It should be noted that as temperature history and temperature-dependence of 

elasticity matrix [De] are known in advance, the second term (d[De]/dT)dT in the 

above matrix [D®|] can be obtained directly as a change- of [De] by dT . This 
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procedure does not produce nonlinear term with respect to unknown quantities but 

improves the accuracy of analyses. In the right side of the above Eq.(2-9), the 

first term indicates a part of stress increment due to an increase of elastic 

strain, and the second term does the rest of stress increment due to change of 

temperature. 

Elimination of elastic strain increment {ds } from Eq.(2-9) by using Eq. 

(2-5) and introduction of Eq.(2-4) for thermal strain increment furnish the 

incremental relationship between stress and total strain, that is, constitutive 

equation as 

(2) Constitutive equation in plastic range 

(i) Yield criterion, workhardening rule and yield surface 

When a set of stresses produced at a point reaches certain magnitudes, the 

material yields and shows complex plastic behavior for the subsequent loading. 

In a certain combination of stresses, a condition which defines the limit of 

elasticity of the material is called yield criterion. In the space (stress 

space) of which co-ordinate axes are stress components, the yield criterion can 

be shown by a closed curved surface (yield surface). Generally the shape, size 

and position of the yield surface change with progress of plastic deformation of 

the material. That is, the yield criterion changes, being subjected to plastic 

work. The law for such changes of the yield criterion is called workhardening 

rule or strain- hardening rule. Hitherto, various workhardening rules have been 

proposed. Isotropic workhardening rule /13/ assumes that the size of the yield 

surface changes with increase of plastic work but the position and shape do not 

change (see Fig.2-1(a)). This implies that the initial yield surface expands 

uniformly during the susequent plastic flow. In kinematic workhardening rule 

/14/, it is assumed that the yield surface does not change its initial size and 

{da} = [D®] {de} - [D®] ({a} - [D {ε*} ) dT 
( 2 - 1 0 ) 
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Fig.2-1 Schematic illustration of workhardening rules 

f = 0 : yield surface ( in this example, circle ) 

{Θ} : vector which indicates center of yield surface 

(To : a measure of size of yield surface 

( in this example, radius of yield surface ) 

CO"} : stresses on yield surface 

ΐ ,i+i : loading step 

( suffix f indicates normal component of each increment ) 

(a) Isotropic workhardening rule 

dOf = d9f 

(To = constant 

(b) Kinematic workhardening rule 
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(c) Combined workhardening rule 
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shape but moves in the stress space like a rigid body (see Fig.2-1(b)). With the 

aid of this rule, the Bauschinger effect can be easily represented within a 

certain degree of accuracy. Furthermore, in order to represent plastic behavior 

more accurately, many complex workhardening rules have been proposed. In this 

study, the isotropic and kinematic workhardening rules will be combined and it is 

assumed that the size and position of the yield surface can be changed but its 

initial shape does not (see Fig.2-1(c)). Generally, such combined yield surface 

may be expressed by the following equation. 

fia.j - e . j f σ 0 ) = 0 (2-11) 

where {Θ} : translation vector which indicates the position of the center of 

yield surface in the stress space 

σ 0 : a measure of the size of the yield surface 

The above function f which defines the yield surface (the yield criterion) is 

called yield function. 

For the initial yielding or in case of the isotropic hardening, θ-jj is 

zero and o Q is a scaler function of the yield stress, and the yield function 

may be expressed in a form as 

f(σ-jj, σ 0 ) = 0 (2-11)' 

Next, to describe changes of the size and position of the yield surface 

shown by Eq.(2-ll), the following hypotheses are furnished. First, the size of 

the yield surface ( σ 0 ) is assumed to be a function of the quantity εΡ of 

plastic strain and temperature T. Here, ε£= JdeS (2"12> 
where de^ : the length of the vector of the plastic strain increment (see 

Eq.(2-17) 

Secondly concerning translation of the yield surface, it is assumed that, as a 

general rule, the yield surface can move only when the plastic deformation in-
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creases. It should be noted that temperature change can not be the direct cause 

to move the yield surface. Such translation increment {d0} is proportional to 

the magnitude of plastic strain increment The above hypotheses can 

be expressed as follows. 

σ 0 = σ 0 ( ε Ρ , Τ) (2-13) 

9εϊ 
{de} = k d e P { n Q } (2-14) 

where k : translation coefficient 

{nQ}: unit vector which indicates the direction of translation increment of θ 

the yield surface 

In case of kinematic workhardening rule, σ 0 is constant if temperature does not 

change, but σ 0 should be assumed to depend on temperature in treating of 

thermal stress. 

In general cases, an explicit form of Eq.(2-13) should be determined based 

on the results of experiment. In this paper, the direction of translation incre-

ment of the yield surface is selective, that is, its direction can be determined 

to represent well the behavior of the material. For example, when the Ziegler 

rule /15/ is adopted, unit vector {n0} in Eq.(2-14) is expressed as 

where / 

|{σ- θ} I = ({σ - θ}"'" {σ- Θ})1 2 

(ii) Plastic strain increment and workhardening modulus 

The following condition must be satisfied when the material is under loading 

in the plastic range, 

df = 0 (2-16) 

Assuming that the material behaves according to the incremental strain 

theory of plasticity (plastic flow theory) in the plastic range and introducing 
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the yield function (f of Eq.(2-ll)) as a plastic potential, plastic strain 

increment {deP} is defined as 

{d e
P} = ds P{n} (2-17) 

where de P : magnitude of plastic strain increment {dsP} (that is, the length of 

the vector {de^} ) 

j"n"i = ( .JLf—r-T. / f1 : unit vector outward normal to the yield surface 
1 ' ι3(σ- θ Γ ' I 

at the stress point 

f. - ir , 3 f ,]i - fr .df ,iT r , 9 f , n 1 / 2 

Z ~ ' 3(α- θ) ' ~ 3 (α - θ) { 3 ( σ - θ ) } ) 

The above expression implies that the direction of plastic strain increment 

is shown by a vector outward normal to the yield surface at the stress point (see 

Fig.2-2). When a yield function is expressed by the deviatric stresses and is 

independent of hydrostatic stress, plastic strain increment given by Eq.(2-17) 

satisfies the condition of incompressibility of the material automatically. 

Next, a relationship between plastic strain increment {deP} and stress in-

crement {da} will be derived. 

Fig.2-2 Relation between stress increment {da} and plastic strain increment 

{dsp} (in the case of dT=0) 
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First, the case where temperature does not change like usual plastic problem 

will be discussed. As the yield surface is defined by Eq.(2-ll) and the changes 

of its size and position are calculated by Eqs. (2-13) and (2-14) respectively, 

Eq.(2-16) may be rewritten in the explicit form as 

0 = d f = « β » - Ί k "ef < + (2-18) 

where r-.Tr,·> r -,Τ r 
dap = {n} {da}? n e f = { n } {nQ} 

ρ 
Rearrangement of the above expression for dap and ds^ may produce 

d a f = ( k n e f - f r > ^ ) d e P ( 2 _ w ) 

* 0 

The above equation represents that the magnitude de^ of plastic strain incre-

ment {de'3} is proportional to the normal component da.p of stress increment {da} 

to the yield surface (see Fig.2-2). Accordingly, even for the same magnitude of 

stress increment {da} , the magnitude of plastic strain increment {de^} is not 

necessarily the same, depending upon the direction of {da}. That is, nearer is 

the direction of {da} to normal to the yield surface, larger is the magnitude de^ 

of plastic strain increment {ds^} · Therefore, in this meaning, the normal 

component da^ of stress increment {da} should be called effective stress 

increment. For further development of plastic deformation in the case of usual 

metals, it is necessary to increase the stresses if the temperature does not 

change. This phenomenon is caused by hardening of the material due to plastic 

work or plastic deformation and is called workhardening or strain-hardening. As 

seen from Eq.(2-19) which represents the relationship between da^ and the magni-

tude ds^ of plastic strain increment {de'3} produced by {da}, the above-mentioned 

effective stress increment da^ is the effective one to progress the plastic 

deformation. 

Here, Eq.(2-19) may be rewritten as 

da f = Η d EP (2-20) 
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»here Η - k n, f - f - > ( 2 _ 2 1 ) 

A 

In the above Eqs.(2-20) and (2-21), Η is called workhardening modulus or strain-

hardening modulus. 

Next, temperature change is taken into account. As the temperature change 

affects the mechanical properties, such as modulus of elasticity and yield 

stress, the size of the yield surface changes not only by the plastic deformation 

but also by temperature as assumed by Eq.(2-13). Therefore, the relationship 

between stress increment {da} and plastic strain increment ids'3} is influenced by 

the temperature change. With consideration of this effect, Eq.(2-20) may be 

rewritten in the following form, from Eqs.(2-16), (2-11), (2-13), (2-14) and 

( 2 - 2 1 ) . 

= ( 2 - 2 2 ) 

This represents the relation among stress, plastic strain and temperature 

increments. 

Again, Eq.(2-22) is solved for de^ as 

d44<dvfrlIH^dT) (2-23) 
To keep the material being under loading in the plastic range, ds^ should be 

positive. Then, this equation requires that the effective stress increment da^ 

must exceed the increment -f^ \ 3f/3ag)(3ao/3T)dT due to expansion or shrinkage 

of the yield surface by temperature change in order to increase plastic deforma-

tion. This may be interpreted that when the yield surface expands by temperature 

change, the stress needs to increase beyond the expansion by the temperature 

change in order to keep loading in the plastic range, 

(iii) Constitutive equation 

In the plastic range, total strain increment {de} is expressed by the 

summation of components as 

{de} = {d8e} + {deP} + {dsT} (2-24) 
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Next, the relationship between the magnitude de P of plastic strain incre-

ment {dsP} and total strain increment {de} will be obtained. Equation (2-16) 

for the condition of loading in the plastic range may be reformed by introduction 

of Eqs.(2-11), (2-13), (2-14) and (2-21). 

o = d f = ( ä I ^ e y > T < d ( a - 0 ) > + ^ d a « 

= f; <n> W f; k n 9 f dej + l ^ d ^ i ^ dT 

= f i { n ) T i d o } - f i H d S P + ^ r ^ d T (2-25) 

λ/ 

The above equation will be further transformed according to the following 

procedure. 

1) To subsitute Eq.(2-9) into stress increment {da} in the first term of the 

Ω 

right side and express in terms of elastic strain increment {ds } etc·. 

2) To replace elastic strain increment {de } with total strain increment {de} 

etc., using Eq.(2-24). 

3) To express thermal strain increment {de"'"} by Eq.(2-4) and plastic strain 

increment 

{deP} by Eq.(2-17). 

As a result of this manipulation, Eq.(2-25) is transformed into a function of 

only total strain increment {de} and the magnitude de P of plastic strain 

increment {dep} as unknowns. Rearrangement of the equation provides the 

relationship between {de} and dej? as ψ { n }
T [ D e

d ] { d e } - ( { n } V d ] ({α} 

, e i-id[D
e] \ "I af 9<x0 

r} 

( 2 - 2 6 ) 

where S = {n}T[D*]{ η} + Η 

With these information, the incremental relationship between stress and 

total strain, that is, constitutive equation will be derived. Based on Eq.(2-9) 
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which represents the relationship between stress increment {da} and elastic 

strain increment{dee} , the right side of Eq.(2-9) will be transformed as follows. 

1) To replace elastic strain increment {de e}with total strain increment {ds} 

etc., using Eq.(2-24). 

2) To express thermal strain increment {de"'"} by Eq.(2-4) and plastic strain 

increment {de^} by Eq.(2-17). Further, replace the magnitude de^ of {ds^} 

by {ds} etc., using Eq.(2-26). 

As a result of the above calculation, only total strain increment {ds}; remains as 

unknown on the right side of Eq.(2-9), and Eq.(2-9) becomes the incremental equa-

tion representing the relationship between stress increment {da} and total 

strain increment {ds} . Rearrangement of the right side and division of the ex-

pression into terms relating to total strain increment {de} and the other terms 

(including temperature increment dT) furnish the following constitutive equation. 

{d<r} = [DP] {de}—I [DP] ̂ {a}— [D®]-1 ^ { ε * } ) + [ D® ] { n } f p ^ _ S }dT (2-27) 

where [DJ] = - [Dd
e]{n} {n} T[D*]/S 

Here, it is recognized that the above constitutive equation, Eq.(2-27) is in 

the same form as Eq.(2-1), like Eq.(2-10). 

Equation (2-27) is applied when the material is under loading in the plastic 

range by the subsequent loading. Then, the scalar deĵ  , the magnitude of the 

plastic strain increment expressed by Eq.(2-26), is assumed to be positive. In 

contrast with this, if unloading occurs from the plastic range, deĵ  becomes 

negative and the behavior of the material is elastic . Therefore, Eq.(2-10), the 

constitutive equation in the elastic range, should be used for the analysis of 

the subsequent step of loading in place of Eq.(2-27). In summary, 

dej > 0 : loading 

dsP = 0 : neutral loading (2-28) 

ds^ < 0 : unloading 
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In order to proceed the analysis at the new increment of loading, the 

resulting new size and position of the yield surface by the previous increment 

should be obtained. It is assumed that the size ( σ 0 ) of the yield surface is 

the function of the quantity ε^ of plastic strain and temperature Τ as shown in 

Eq.(2-13). In connection with this, an explicit form of Eq.(2-13) should have 

been determined in advance based on experimental results. The position vector of 

the yield surface, {θ} , after each increment is known by summing up all transla-

tion increments {d6} obtained at the preceding steps of loading. For calcula-

tion of {de} > the translation coefficient k in Eq.(2-14) must be determined and 

this can be done with the aid of Eq.(2-21) as the workhardening modulus Η has 

been determined in advance based on experimental results 

In the above description, the combined workhardening rule was used. 

However, in the case where only the isotropic workhardening rule or kinematic one 

is assumed, the equations shown in this section may be simplified. That is, if 

only the isotropic workhardening rule is used, the equations may be rewritten by 

replacing {θ} , {σ - θ} , k with {0} , {σ} , 0. For example, Eq.(2-21) for 

workhardening modulus becomes as follows. 

u . i f . f . - i j f j 2 l (2-21)' 

deP
 A 3 σ° 3 εΡ 

*) One of the methods to obtain the workhardening modulus Η is to conduct usual 

uniaxial tensile tests at the temperature range in which the material is 

supposed to be heated up (Each test is conducted in a constant temperature). 

Then, the workhardening modulus Η may be obtained as a function of the 

quantity ε^ of plastic strain and temperature T, from the resulting 

stress-plastic strain diagrams (see Eq.(2-20)). 
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2.2.3 Constitutive equation (Incremental relation between stress and total 

strain) for thermal elastic-plastic-creep state /3—5/ 

Though the interaction between plasticity and creep have been investigated, 

the existing various theories are still under discussion. Then, it is assumed in 

this study that plasticity and creep are independent phenomena and there is no 

interaction between them so that plastic strain and creep strain are defined 

separately. 

Under the assumption, the thermal elastic-plastic-creep theory is developed 

by introducing more general forms of workhardening rule and creep law respective-

ly, according to the following procedure. 

1) To express creep constitutive equations at multi-axial stress state in a 

general form. 

2) To introduce the above creep constitutive equation into the theory of 

thermal elastic-plastic analysis represented in the previous section. 

(1) Creep strain at multi-axial stress state 

Creep behavior of metal is usually influenced by stress, temperature and 

changes of its metallurgical structure. In this section, such creep behavior at 

multi-axial stress state will be expressed in such a general form of equation as 

to introduce it into the thermal elastic-plastic theory shown in section 2.2.2. 

(i) Creep constitutive equation in uni-axial stress state (Creep hardening rule) 

/16/ 

Creep constitutive equation of metal is usually expressed in a differential 

• Γ 

form for creep strain rate ε which is regarded as a state function of stress 

σ , temperature Τ and suitable internal variables s^ (i=l, 2, ..., n) which 

represent changes of its metallurgical structure as follows. 

ec = P(o,Si,s2,..-,sn)T) (2-29) 

s/ = qi-(ff,s1>s2,...>sn,T) 0 = 1,2, · · · ,n) (2-30) 

As it is considered that change of creep strain rate represents the harden-
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ing of the material, which increases with deformation, the theory which rules 

change of creep strain rate due to change of the metallurgical structure is 

called creep hardening rule. Based on this rule, unsteady-state creep constitu-

tive equation can be formulated. Creep hardening rule is classified according to 

the kind of physical quantities adopted as variables in Eq.(2-29). 

r 

One of such variables is creep strain ε , which is one of simple measures. 

In this case, the constitutive equation of creep strain rate is expressed as 

ec = ρ (σ, ec, Τ) (2-31) 

As the above equation assumes that the hardening of the material is controlled by 

creep strain, this rule is called strain-hardening rule. Many detailed examina-

tions indicated that strain-hardening rule is considered superior to most of 

other classical creep hardening rules. Thus, this rule is adopted in many 

unsteady-state creep analyses. 

(ii) Creep constitutive equation in multi-axial stress state 

As stress state in actual engineering creep problems is multi-axial, it is 

necessary to expand the uni-axial creep constitutive equation for multi-axial 

stress state. This expansion can be conducted by the same way as for the plastic 

constitutive equation, employing similar hypotheses introduced in plasticity. 

They are: 

1) no change of volume due to creep deformation 

2) no influence of hydrostatic stress on creep deformation 

Validity of the above hypotheses for metals is confirmed experimentally. 

In similar to plastic strain increment, creep strain rate is expressed as a 

• ς 
vector {ε } in a multi-axial state, and the direction and magnitude of the creep 

. Q 
strain rate {ε } should be determined. Here, the direction and magnitude of 

. ς 

creep strain rate {ε } are assumed to be treated separately. For the direction, 

as usual, it is assumed that the flow law (creep flow law) holds like the case of 
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plastic deformation and the creep strain rate {ε } is expressed as follows. • C 

(2-32) 

In the above equation, Λ is a positive scalar coefficient, and g is a scalar 

function which depends on the histories of stresses, temperature, etc. and is 

called the creep potential. Like the yield surface, g=0 represents a closed 

curved surface (the creep potential surface) in the stress space, which contains 

the current stress point, and {9C} is a vector which indicates the position of 

center of the creep potential surface (see Fig.2-3). The creep strain rate {eC} 

is expressed as a vector outward normal to the creep potential surface at the 

current stress point. 

Here, Eq.(2-32) will be rewritten in the same form as Eq.(2-17) for plastic 

Fig.2-3 Schematic illustration of relation between creep potential surface g=0 

and creep strain rate {έ°} 
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strain increment, adopting a creep potential surface which may move in the stress 

space. 

{ e c } = e ° {nc} ( 2 _ 3 3 ) 

where ε^ : the magnitude of the creep strain rate {eC} (that is, the length of 

the vector {ε°} ) 

{nc}= I 9 ^ ρ ) }/g' · unit vector outward normal to the 
c ^ creep potential surface at the current stress 

point 

g = ι Η 1 _// h |Tj dJ_ v I 

ι9 (σ — 0C)' \ΐ3(σ-β0)Ι Ιθ(σ-9(a-öc)l I3((7-öc) 
2 

• c -c 

In the above equation, the magnitude ε^ of creep strain rate {ε } is 

expressed by the creep hardening rule (uni-axial creep constitutive equation) 

explained briefly in the previous section (i). 

The characteristics of the creep potential surface depend on the creep 

characteristics of the metal, like the creep hardening rule. For the shape of 

the surface, von Mises type and Tresca type, for example, can be adopted, which 

are widely used for the yield surface. For translation of the creep potential 

surface in the stress space, Bailey's theory /17/ and Orowan's theory /18/, etc. 

may be applied to rule the translation rate {6C} of center of the creep potential 

surface. 

(iii) Creep strain increment 

By introduction of the creep strain increment into the thermal elastic-

plastic theory shown in section 2.2.2, thermal elastic-plastic-creep theory can 

be developed. A creep strain increment can be obtained by integrating the creep 

strain rate with respect to time. The creep strain rate is usually a function of 

stresses, temperature, internal variables and their histories. So, there are two 
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procedures for the above integration. One is to integrate the creep strain rate, 

regarding it as constant in each time increment. Another is to integrate the 

rate with consideration of the changes of variables during each time increment. 

"First, the creep strain increment will be obtained by the former method 

which is less accurate than the latter, but the method is simple and can be 

applied for all types of creep theories (creep strain rates). That is, the creep 

r· 

strain increment {de } between t.j and is calculated by multiplying the 

creep strain rate {sC} at time tj , by the time increment dt = t-j +i - t^ 

{dec } = {e° } dt (2-34) 

In the case where the creep strain increment is expressed as Eq.(2-34), it 

can be calculated immediately as the product of two known quantities. Therefore, 

even if the creep effect is taken into account in the thermal elastic-plastic 

theory, the theory including the creep effect does not become more complex than 

the thermal elastic-plastic one. If it is necessary to obtain more accurate 

creep strain increment, the integration must be performed for a smaller time 

•increment. 

When the second procedure is applied, the integration is conducted with 

consideration of the change of the creep strain rate during each time increment. 

In this case, the method of the integration and the form of the creep strain 

increment derived for such accurate integration are usually different in each 

cases. The authors have derived the creep strain increments with consideration 

of the changes of the variables (stresses, creep constants) as accurately as 

possible for some comparatively simple creep theories, that is, isotropic time-

hardening theory, isotropic strain-hardening theory, isotropic power-hardening 

theory and isotropic exponential-hardening theory /3,4/. 

The process of the integration will be demonstrated in the following. 

First, the creep potential surface is assumed to have the following 

features. 
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1) Its center coincides with the origin of the stress space. 

2) Its shape is similar to that of Mises' yield surface. 

3) Its size is determined so that the stress point is always on it. 

Next, assuming that the magnitude of creep strain rate is represented by the 

time-hardening rule, creep strain increment is obtained by integrating the 

following expression for a short time increment. 

{έε} = j j m Α σΎ t"1"1 {nc} = /§ a 5Y td {nc> (2-35) 

where σ : equivalent stress, t: time, m, Α, Ύ : creep constants 

a = m A , d = m-1 

For integration of the above creep strain rate, it is assumed that creep constant 

a, the equivalent stress σ and the normal unit vector (nc} to the creep 

surface change linearly and creep constants d and γ are constant during a short 

time increment dt. 

Based on these assumptions, creep strain increment can be calculated accord-

ing to the time-hardening law as follows. 

{dec} = {d8c} + [ c c ] {da} 
where , Λ , /T v , {de } = Jjö y (Κ2 a + K2 da) {nc> , 

_ 3 -Y-i 

(2-36) 

[C ] =4σ (K2 a + K3 da) {(γ - 1) {η} {η}1 + [C ]} ^ t. C C CC ' 

K (t+dt)d+I-td+I K l a n K2 _(t^dt)
d+1 (t+dt)d+2-td+2 

d + 1 (d + 1) (d + 2) dt , 

ν _ (t+dt) 1(3 dTT 
d+i 2(t + dt) d+2 . • • ι 2{(t + dt)d+3-td+3} 

(d + 1) (d + 2) dt (d + 1) (d + 2) (d + 3) dt2 , 

CCccJ = 

2 / 3 - 1 / 3 - 1 / 3 0 0 
2 / 3 - 1 / 3 0 0 

2 / 3 0 0 
Sym. 2 0 

2 

0 
0 
0 
0 
0 
2 
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da : increment of a due to change dT of temperature during change dt of 

time 

The equation can be also used for evaluation of creep strain increment 

according to the strain-hardening law or the power law only by modifying the time 

t in the equation (see tgq etc. in Appendix). The reference for the equivalent 

time teq is IIW Document or Trans, of JWRI shown in Ref.4. 

(2) Constitutive equations for thermal elastic-plastic-creep state 

(i) Thermal elastic-creep constitutive equation 

In the case where the current stress point is inside the yield surface, that 

is, the material is in the elastic range, accompanying temperature changes and 

creep strains, the total strain increment {de} is represented as the summation 

of the thermal strain increment {dê "}» elastic strain increment {dse} and creep 
ρ 

strain increment {de }. 

{de} = {deT} + {dee } + {dec } (2-37) 

The constitutive equation (incremental relation between stress and total 

strain) for this state will be obtained by using Eq.(2-9) and transforming it in 

the almost same way as in section 2.2.2. 

After the transformations, rearrangement of the equation provides the 

following thermal elastic-creep constitutive equation, 

(a) In the case where Eq.(2-34) is adopted for creep strain increment 
{da} = [D® ] {de}-[Dde] j ( { a } 

-[Ο®]'1 ^p{e e})dT +{i c}dt} (2-38) 

This equation is the same as for thermal elastic state shown in Eq.(2-10) except 

that the term, -[D^]{8C}dt » is supplemented on the right side. 

(b) In the case where Eq.(2-36) is adopted for creep strain increment 

{da } = [9d] {de } - [9d] j({a} - [Dde]" 1 {ee }) dT + {d?} } ( 2~ 3 9 ) 

where _ 
[D§] = ([D§] l+[Cc]) 1 

135 



VoL Ζ Nos. 1-2,1989 Analysis and Measurement of Welding Residual Stresses and PWI1T 

(ii) Thermal elastic-plastic-creep constitutive equation 

In the plastic range, the total strain increment {ds} is expressed by the 

summation of the components as 

{de } = {deT } + {dee } + {de? } + {dec } (2-40) 

The constitutive equation for this state is obtained in the almost same way 

as in section 2.2.2. 

The relationships between {de} and de^ , and constitutive equations are 

expressed as follows. 

(a) In the case where Eq.(2-34) is adopted for creep strain increment 

d e - {n}T[D®] {de}- {{n}T[D®]({*}-[D®] 
d[De] 

dT 
{ee}) 

3σ0 9T 

where S = {n }T [D®] {η} + Η 

(2-41) 

{da}=[DP] {de}- [{[DJ] ({*} — [D®] ~
1 ^ p - {e®}) + [D®] {n} f p 

x — ^ / s l d T + M {e 0 } dt 
3σ0 9T 7 I d 

where [Dg ] = [D®] - [D®] {n} {n }T [D® ] / s 

(b) In the case where Eq.(2-36) is adopted for creep strain increment 

dej = {n}T[D®] {de} 

(2-42) 

3 f 9σο 
's 

where S= {n}T[D®] {η} + Η 

(2-43) 

{da}= [DP] {de} 
xs 

{[D\] ({«} -[De]" 1 {e®})+P®] {n}f'-» 

- — / S | d l + [ D P ] {dsC} 

where 
[Dg] = [b^] - [b-] {n} {n}T [D® ] β 

(2-44) 
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2.2.4 Summary of constitutive equations /19/ 

Constitutive equations used for possible cases related to welding and PWHT 

are summarized in Table A-l (Appendix) . In the table, the corresponding 

phenomenon indicated by each row becomes more complex from the left to the right, 

such as thermal elastic, thermal elastic-plastic, etc.. At the lower row on each 

column, the more influential factors are taken into account in the constitutive 

equation. Once a problem is specified, the type of the problem is defined and 

the degree of temperature dependency of the material properties can be furnished. 

With this information an appropriate constitutive equation to the analysis of the 

problem can be chosen from Table A-l. For analysis of welding, it is necessary 

to use the constitutive equation (6) for Thermal Elastic-Plastic State - II with 

more accurate consideration of temperature dependent properties of the material 

since the temperature range in which the material undergoes is"very wide from 

room temperature to the melting point and thus changes of the material properties 

are very large. For analysis of stress-relief annealing, it is necessary to use 

the constitutive equation (11) for Thermal Elastic-Plastic-Creep State - IV or 

(16) for Thermal Elastic-Plastic-Creep State - VIII including creep strain. 

All constitutive equations in Table A-l can be represented in the same 

following simple form. 

{da} =[D]{de}-{dC} (2-45) 

This equation shows that an increment of stress can be expressed as the sum of 

two terms. The first term is due to an increment of total strain and the second 

term is due to the production of thermal strain and creep strain, and changes of 

the material properties by temperature changes. Usually, changes in the tempera-

ture distribution and the material properties at an arbitrary temperature are 

*) It should be noted that in Table A-l which had been shown in Ref. 19, some 

notations are different from those already represented in this chapter. 
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known before the thermal stress analysis is conducted. At the same, time, with 

information on the stress history, the second term in Eq.(2-45) can be also 

calculated before Eq.(2-45) is used for the next step of the analysis. 

In this section, the constitutive equations for thermal elastic, thermal 

elastic-plastic and thermal elastic-plastic-creep states are developed with 

consideration of various effects of temperature changes. They can be expressed 

in a simple form as Eq.(2-45). It is a routine procedure as shown in next 

section to derive the fundamental equations (stiffness equation) for each state 

based on the finite element method, introducing these constitutive equations. 

2.2.5 Basic equations for thermal elastic-plastic-creep analysis by finite 

element method (Stiffness equation) 

The basic concept of the finite element method, expressed simply, is to 

regard a structure as an assembly of simple structural elements interconnected at 

a finite number of nodal points, where the equilibrium and compatibility condi-

tions are satisfied. Accordingly, the structure under consideration should be 

divided into a finite number of elements at the beginning of the analysis such as 

triangular finite elements for plane stress or strain problems, or tetrahedral 

finite elements for three-dimensional stress problems. 

Considering one of typical finite elements in the continuum concerned basic 

equations in the finite element method will be derived in the following. 

(1) Incremental relation between total strain and displacement in an element 

The displacements {s} of an arbitrary point in an element will be defined as 

a function of the nodal displacements {w} . 

{s}= [N]{w} = [N.N. .'..]{ Wj w. . . ,}T (2-46) 

where [N] : displacement function (the components of [N] are generally a function 

of co-ordinates) 
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Table A-i Constitutive equations for thermal elastic-plastic creep analysis 

11 fc. « U J1»* 3 Ϊ u 

a ^ 

Thermal 
Elastic 
State 

Thermal 
Elastic-Plastic 

State 

Thermal 
Elastic-Plastic 
Creep State (I) 

(1) Elastic State 

{da}=[De]{de} 
{de}«{dee} 

(A) Elastic-Plastic State 

{do}-[Dp]{dE} 
{de}«{dee}+{deP} 
{dep}={A}T{de}{n} 
{d6}-k|{dep}|{ng} 

(7) Elastic-Plastic Creep State - I 

{do}-[DP]{de}-[Dp]{dec} 
{de}«{dee}»{deP}+{dec} 
{deP}-{A}T({de}-{dec}){n} 
{dec>-{£|}dt 
{d9}-k|{deP}]{ng} 

(2) Thermal Elastic 
State - I 

{dcr>-[De] {del- [De] {deT> 
{ d e W d e e M d e T } 
{deT}«{a}dT 

(5) Thermal Elastic-Plastic 
State - I 

{da> = [Dp] {de>-[Dp]{deT} 
{dc}={dee}+Cdep>-H{deT> 
{deP}«{A}T({de}-{deT}){n} 
{deT}-{a}dT 
{de}«k|{dcp}|{n0} 

(8) Thermal El-Pl Creep State - I 

{do}«[DP]{de}-[DP] ({dec}+{deT}) 
{de}«{dee}*{deP}*{dec}*{deT} 
{dEP>-{A>TCidE>-{dec}-{deT}}{n} 
{dcc}=i£|>dt 
{dET}-{Q)dT 
{d8}»k|(dep) I {ng} 

(9) Thermal El-Pl Creep State - Π 

{do}-[Dp]{de}-(DP) ({dec}+{deT}) 
{de}«{dee}+{deP}+{dec}»{deT} 
{dep}-{A}TC{de}-{dec)-{deT})in} 
{dcc)'{ilT)dt 
{de TMa}dT 
{d0}«k|{deP}I{ng} 

(3) Thermal Elastic 
State - II 

{do}«[D®]{de}-[D®]{deT} 
•{dP*} 

{de}={dee}«-{deT} 
{deT}*{a}dT 

(6) Thermal Elastic-Plastic 
State - Π 

{do}«[Dp]{de}-[Dp] {de TMdP p} 
{de}«{dee}*{deP}+{deT} 
{dep}-[{Air}T({de}-'{dET}} 

•dPpl] in} 
{deT}«{cx}dT 
{d9}-k|{deP}|{ng} 

(10) Thermal El-Pl Creep State - H 

{do}»[DP]{de}-[D^]({dec}+{deT})*{dFj} 
{de}«{dee}+{dep}+{dec}*{deT} 
{deP}-[{AT}TC{de}-{dec}-{deT))+dP?1]{n} 
{de cWe£}dt 
{deT}«{a}dT 
{de}-k|{deP}|{n9} 

Remarks 
For constitutive equations of 
Thermal Elastic-Plastic Creep 
State (II), creep strain Increment 
is obtained by integrating creep 
strain rate with consideration of 
its change during the time increment 

I 

(11) Thermal El-Pl Creep State - IV 

{do}-[DP]{de}-[DP] ({dec}+{deT})*{dPP} 
{ d e } . { d e e M d e p M d e c W d e T } 
{dep}-[{AT}T({de}-{decMdeT})*dp£1Hn} 
{dec}«{e£T}dt 
{deT}»{a}dT 
{d0}»k|{dep}|{ng} 

Thermal Elastic Creep State : The constitutive equation for thermal elastic creep state can be derived by making 
the vorkhardening modulus Η infinite in each equation of Thermal Elastic-Plastic Creep State (I) and (Π) . 
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N o t a t i o n s 

Thermal 
E l a s t i c - P l a s t i c 

Creep S t a t e ( I I ) * 

( 1 2 ) E l a s t i c - P l a s t i c Creep S t a t e 

C d o } » [ D P ] { d e } - [ D P ] { d e c } 

{ d e M d e e M d e p M d e c } 

{ d e p M A } T ( { d e M d e c } ) { n } 

{ d e c M d e c } * [ C s ] { d o } 

{d8}* lc | { d e P } | { n g } 

I I 

( 1 3 ) Thermal E l - P l Creep S t a t e - V 

{ d o ) = [ D p ] { d c > - [ B p ] { { d e c } + { d e T > ) 

{ d e M d e e } * { d e p W d e c W d e T } 

{ d £ P } = { A } T ( ( d c } - { d e C } - { d e T } ) { n } 

{ d e c } = { d e ° ) + ( C s ] { d o } 

{ d e T } = { a } d T 

CdQ > = k I { d e P } I { n g } 

( 1 4 ) Thermal E l - P l Creep S t a t e - VI 
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{ d e T } = { a } d T 

{d8 > = k I { d e P } I { n g } 

( 1 6 ) Thermal E l - P l Creep S t a t e - VIH 

{ d o } = [ D p ] { d e } - [ D p ] ( { d e ^ } + { d e T } ) + { d P p } 
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Notat ions (Continued) 

{ d P ? } = U ^ l d T { e e } 

<<»?>«[ [D?] [D?l [ D · ] { n } f ' - i ^ . ^ . / ( { n } T [ D ® ] {n } + H) ]dT 

{dP?2 } = [ [D?2] [D?] * : { e e } - [D*2 ] { n } f i " ( { n } T [ D i 2 ] {n } + H) ]dT 

[ ( (n } T [D? 2 ] [D®] * ' I g l / ( { n } T (D^2] (n } +H) ] dT 

{e c }=e .^ in c } : Creep strain rate 

e j : Magnitude of creep s t ra in rate 

: Unit vec tor which Indicates the direct ion of creep strain rate 

f c : Creep potent ia l 
In Thermal E las t i c -P l as t i c Creep State ( I I ) , i t i s assumed that 
f c = f c ( a i j » ° « c ) " ° 2 * a o c 

er2 = i [ (C3 x -ay ) 2 + ( (3y-a z )2+(o z-a x )2+6(Ty2 z+T z i x+x1^) ] : Equivalent stress from the or ig in 
of the stress space 

Ooc : A measure of the s i ze of the creep surface ( f c = 0) 

{ έ ? } : Creep strain rate which Is determined from stress state e tc . before each increment, 
f o r a constant temperature 

( έ £ τ ) : Creep strain rate which i s determined from temperature, stress state e tc . before 
each increment 

{d£ c }= J|dYG i a {n c ) 

{ de f } =|4a Y (G 1 a*G 2 da ) {n c } 

[C s ] - | 5 Y - l G 2 a [ ( Y - l ) { n c } { n c } T + [ C S J ] ] 

[CST ]= I e Y - 1 ( G 2 a + G 3 d a ) [ ( Y - l ) { n c } { n c } T * [ C S J ] ] 

Gl- ^ [ ( t e ^ t ) ^ 1 - ^ » ] 

G3- dTr^eq*^^^ ~ (J+l ) (d+2 )dt ( d * l ) (d+2)(d*3) (d t )^ ^ eq^d t ) ^ ' - t e q 1 1 

a, d, γ : Creep constants (see Eq. ( 1 ) ) 

da : Change of creep constant a with temperature change dT during time Increment dt 

t e q : Equivalent time 
In the case where a material obeys the time hardening rule 

t e q ' t 
In the case where a material obeys the strain hardening ru le* or the power rule** 

t eq=[EC/(AöY) ] ° 

IT .1 1 
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{w} : nodal displacements 

suffix i, j, ... : nodal numbers 

Introducing the co-ordinates of any point within the element into the displace-

ment function [N] > the displacements of the point can be expressed as functions 

of the nodal displacements by Eq.(2-46). 

The total strains {ε} in the element are obtained as functions of the nodal 

displacements as a result of appropriate differentiation of Eq.(2-46) (that is, 

the differentiation of [N] ) with respect to the co-ordinates, 

{ e } = [ B ] { w } (2-47) 

In the case of infinitesimal displacement problem, the above matrix [B] can 

be regarded as a constant matrix. Then, the above equation may be expressed in 

the form of increment as 

{άε}= [Β]{dw} (2-48) 

(2) Constitutive equation 

When temperature of the element changes during an increment of time, dt, the 

constitutive equation may be generally expressed in the following form as shown 

in Eq.(2-45). 

{da} =[D]{de}-{dC} (2-49) 

(3) Stiffness equation (Incremental relation between nodal force and nodal 

displacement ) 

From the basic equations which have been already shown, the incremental 

relationship between nodal forces and nodal displacements, that is, stiffness 

equation will be derived by applying the principle of virtual displacement. 

Here, the nodal forces {F} of an element are defined, which are statically 

in equilibrium with the stresses acting on the boundary of the element, etc.. 

{F} = Fj...}1 (2-50) 

Each of the forces {F-j} must contain the same number of components as the 

corresponding nodal displacements {w^}. 
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Imposing arbitrary virtual nodal displacements {w } to the element, the 

external work 6W e done by the nodal forces {F} during that displacement is 

5We = {w*}
T{F } (2-51) 

Similarly, the internal work 6W.j per unit volume done by the stresses {σ} is 

δ\ν; = {ε*}
τ {*} (2-52) 

{E*} in the above equation are virtual strains due to virtual nodal displacements 

{w*} , and they have the relation of Eq.(2-47). Thus, expressing the internal 

work 6W-j with virtual nodal displacements {w*} , Eq.(2-52) becomes 

5Wj = { w*}I"[B]T { σ } (2-53) 

Equating the external work by Eq.(2-51) with the total internal work 

obtained by integrating Eq.(2-53) over the volume of the element, the following 

equation is obtained. 

{ w * } T { F } = { w * } T J [B]T {a} d(vol) (2-54) 

As this relation is valid for any value of the virtual displacements, the 

multipliers must be equal to each other. Therefore, 

{ F } =j"[B]T{<r} d(vol) (2-55) 

In the case where matrix [B] can be regarded as constant matrix, the above 

equation may be expressed in the form of increment as 

{dF} =j*[B]T{d<r} d(vol) (2-56) 

Substitution of Eqs.(2-49) and (2-48) into Eq.(2-56) provides stiffness 

equation for time increment dt, that is, 

{dF} = [K] { d w } - { d L } (2-57) 

where [κ] = J[B] T [D ] [B] d(vol) : stiffness matrix of the element 

{dL}=J[B]T{dC} d(vol) : eq u i valent nodal force increment 

Stiffness equation for the whole structure is obtained as the summation of 

stiffness equation, Eq.(2-57), for all elements at each node. 

Σ {dF} = Σ [Κ] {dw} - 2 { d L } (2-58) 

Once the above Eq.(2-58) is solved for nodal displacement increment {dw} , 
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satisfying the specified boundary conditions, total strain increment {de} and 

stress increment {da} of each element can be evaluated from Eqs.(2-48) and (2-49). 

2.3 Results of Analysis and Discussion 

By using the theories derived in the above, the authors have analyzed 

transient and residual stresses produced in various types of welded joints, 

especially multi-pass welded joints of thick plates, and the production 

mechanisms of such stresses, the relations with cold cracks, etc. have been 

investigated. 

In this section, using the results of multi-pass welded joints, characteris-

tics of residual stress distributions due to multi-pass welding and stress-relief 

annealing, influencing factors on them and their relations with cold cracks are 

discussed sythetically. A simple joint model under simple welding condition (SM 

50 butt welded joint of 50mm thickness plane plate) is chosen as an example 

(first example) to describe the characteristics of distributions of residual 

stresses. In the theoretical analyses treated in this section, temperature or 

temperature-history dependence of mechanical properties of materials are 

considered, and as workhardening rule isotropic one is assumed (In the study 

shown in section 2.3.4, kinematic and combined workhardening rules are also 

applied to analysis and the effects of the type of workhardening rule adopted is 

discussed in Ref.20). 

2.3.1 Multi-pass butt welded joint of thick plane plate (SM 50, plate thickness: 

50mm) /12/ 

As shown in Fig.2-4, narrow gap butt welding was applied to SM 50 steel 

plate of 50mm thickness being accumulated 20-layers (20-passes). It was consid-

ered that the distribution pattern of residual stresses depends on the restraint 

condition of a joint, and two extreme restraint conditions were assumed (see Fig. 
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/ ^ U n i t Length 
for Analysis 

(mm) 

Fig.2-4 Specimen for analysis 

2-5); a condition under which longitudinal bending deformation and angular 

distortion occur freely (restraint condition A) and one under which both deforma-

Fig.2-5 Restraint conditions of the specimen 
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tions are restricted (restraint condition B). These restraint conditions are the 

two extreme ones in actual butt joints. If the model is sufficiently long and 

welding velocity is sufficiently fast, it might be rational to regard that the 

XY-plane of model is allowed to move, remaining as a plane. Making this as an 

assumption, three-dimensional stress state was realized in thermal elastic-

plastic analysis. The mechanical properties of the material used in the analysis 

is shown in Fig.2-6. 

Distributions of residual stresses in the middle cross section of the weld 

zone and on the top surface of the specimen are shown in Fig.2-7. σ χ indicates 

Temperature (K) 

Fig.2-6 Mechanical properties used in thermal stress analysis 
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Fig.2-7 Calculated welding residual stresses 
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(b) On the top surface 

stresses in the plate width direction and σ 2 those along the weld line. In 

case of restraint condition A in which longitudinal bending deformation and 

angular distortion occur freely, residual stresses near the bottom surface of the 
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weld zone become largely tensile both along the weld line and in the plate width 

direction. In case of restraint condition Β in which the above-mentioned 

deformations are restrained, these stresses are converted to compressive ones. 

Accordingly, root crack may occur when the degree of restraint is small. 

On the other hand, the effect of restraint condition on the distribution was 

relatively small for the top surface, i.e., in the vicinity of the finishing 

bead. The reason is that as the plate thickness increases, the above-mentioned 

deformations are more restrained internally when the welding near the finishing 

bead is applied, because the weld metal already laid recovers its rigidity. The 

distribution of residual stresses near the finishing bead may be characterized by 

that the maximum tensile stresses appear not on the finishing bead but several 

layers below (see Refs.10 and 4 for this reason). This is remarkable in plate 

width direction. Large tensile residual stresses in this vicinity may cause 

underbead crack, longitudinal crack and transverse crack. 

2.3.2 Cylinder-head welded joint of a pressure vessel of very thick plate 

(2 l/4Cr-lMo steel, plate thickness: 100, 150mm) /9,10,4/ 

Welding residual stresses produced in a cylinder-head joint (U-groove) of a 

pressure vessel (Fig.2-8(a)) made of very thick 2 l/4Cr-lMo steel plate were 

estimated. For analysis and experiment, double U-groove joint models (Fig. 2-8 

(b)) of 200 and 300mm plate thickness which are twice as thick as the original 

were prepared, since it was considered that longitudinal bending deformation and 

angular distortion hardly occur due to the high degree of internal structural 

restraint for the actual joint. Each pass of welding was applied to these models 

alternately on each side of the grooves. In the experiment, submerged arc 

welding was applied. The numbers of passes were 87 for Model M-200 of 200mm 

plate thickness and 167 for Model M-300 of 300mm plate thickness. The plane 

(XY-plane in Fig.2-8(b)) stress state for unit weld length was assumed in the 
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Fig.2-8 Cylinder-head welded joint of a pressure vessel and its research model 

FOR ANALYSIS 

(a) Cylinder-head welded joint 

(b) Idealized research model 

analysis,but plane deformation may be appropriate. Particular attention was not 

given since this analysis was performed at the early stage of this kind of work. 

The result analyzed in plane stress state is approximate to one in plane deforma-

tion The relation between these results will be described in section 3.2.3. The 

mechanical properties used in the analysis are idealized as illustrated in Fig. 

2-9, which change according to the thermal history of the material undergone. 

Shown in Fig.2-10 are the transverse welding transient and residual stresses 

σ χ on the top surface and in the middle cross section of Model M-300 obtained 

by both theoretical analysis and experiment. -If attention is paid to residual 
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Fig.2-10 Transverse welding transient and residual stresses 
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(b) At the middle cross section 

stresses, it is seen that their distributions are subjected to the effect of 

restraint. Like the case of a butt joint of a plane plate under restraint 

condition Β of the previous example, compressive stresses remain in the middle of 

the plate thickness direction (corresponds to the inner surface of an actual 
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joint), the initially welded portion, and tensile stresses are produced near the 

top surface, of which maximum value appears just under the finishing bead. If 

embrittlement due to diffusive hydrogen accompanies, underbead crack may occur 

and expand to the surface. 

Transient stresses produced when the groove is welded halfway and cooled to 

the interpass temperature (200°C) are also shown in Fig.2-10. The pattern of 

these distributions shows fundamentally the same characteristics as of the afore-

mentioned residual stresses. 

Next, residual stresses in M-200 and M-300 produced by welding and decreased 

by annealing were analyzed. The creep property of 2 1/4 Cr-lMo steel was deter-

mined by experiments. The results indicate that the material obeys strain-

hardening law below 575°C and power hardening law above 575°C /4/. Figure 2-11 

shows the results of residual stresses in M-200 after annealing by the theoreti-

cal analyses and experiments. They are stresses in the x-direction, σ χ , on the 

top surface and in the middle cross-section for four specimens of M-200 which are 

provided with the same welding condition, but subjected to four different 

annealing conditions as shown in Table 2-1. 

The magnitudes of the residua1, stresses on the top surface of the specimen 

Table 2-1 Conditions of stress-relief annealing 

Name of 

SR condition 

Name of 

specimen 

Heating and 
cooling rate 

CC/hr.) 

Heating temp. 

(°C) 

Holding time 

(hr.) 

SR - 1 
MSR-200-1 
MSR-300-1 

30 600 0 

SR - 2 
MSR-200-2 
MSR-300-2 

30 650 0 

SR - 3 
MSR-200-3 
MSR-300-3 

100 650 0 * 

SR - 4 
MSR-200-4 
MSR-300-4 

30 650 4 

* : To let the model reach the annealing temperature of 
650°C, additional one hour is needed. 
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obtained by theoretical analysis indicate a tendency according to the conditions 

of the annealing as follows; 

0(MSR-200-1) > 0(MSR-200-2) as 0(MSR-200-3) > 0(MSR-200-4) 

The same tendency is also observed in the measured values. Concerning the 

absolute value of stress, the theoretical values are somewhat smaller than the 

experimental ones. This is attributed to the fact that the theoretical values 

are obtained by the analysis in the plane stress state, while the experimental 

values are measured in the three-dimensional stress state, similar to those due 

to welding. 

In contrant with this, the calculated stresses on the cross section of the 

specimen are well correlated with the experimental ones (The measured values are 

the stresses remaining in the sliced plate perpendicular to weld line. The 

stress state is plane stress state and the relation of the residual stresses to 

original residual stresses in three-dimensional stress state will be discussed in 

section 3.2.3) under all annealing conditions. 

Good coincidence of these results including the welding residual stresses 

confirms validity of the method adopted for this study. 

2.3.3 Multi-pass corner welded joint-of thick plane plate (SM 50, plate thickness: 

40mm) /21—24/ 

In order to investigate and prevent lamellar tearing and root crack of a 

multi-pass corner joint from a dynamical view point, welding residual stresses 

produced in such a joint have been analyzed for different cases. CJC (Corner 

Joint weld Cracking) test model shown in Fig.2-12 was used for the analysis of a 

corner joint. Changing the external restraint, theoretical analyses were 

performed for the cases when bending restraint intensity is large (Kß = 

106 kgf-mm/mm· rad) and when it is the least (Kß = 0). The same plane stress 

state as section 2.3.2 was assumed in the analysis. The mechanical properties 

are the same as shown in Fig.2-6. 
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Fig.2-12 Corner joint weld cracking test (CJC-test) apparatus 
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Fig.2-13 Transverse welding residual stresses 
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Shown in Fig.2-13 are the distributions of welding residual stresses σ χ 

(perpendicular to the weld line) in the section of the weld zone and on the top 

surface of the vertical plate. These distributions change in a similar manner to 

those in the butt joint of the first example according to the change of restraint 

to angular distortion (corresponds to bending restraint here). When bending 

restraint is large, tensile residual stresses on the top surface of the vertical 

plate become larger and may cause lamellar tearing. When bending restraint is 

small, large tensile stresses are produced at the root of the groove and may 

cause root crack. 

With the purpose to prevent initiation of lamellar tearing by decreasing 

tensile stresses on the top surface of the vertical plate even when bending 

restraint is large, residual stresses were analyzed on four types of groove 

(Fig.2-14). Residual stress distributions near the top surface of the vertical 

plate are shown in Fig.2-15. Tensile residual stresses of types Ρ and C are 

smaller than those of type M. 

Fig.2-14 Shapes of Grooves 
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Fig.2-15 Calculated transverse welding residual stresses on the top surface 
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2.3.4 Multi-pass butt welded joint of thin and thick pipes (SUS 304, plate 

thickness: 5.5, 8.6 and 30.9mm) /25-27/ 

Residual stresses produced in SUS 304 steel pipes by circumferential multi-

pass butt welding (V-groove) were theoretically analyzed. Sizes of the used 

pipes are 2B pipe (5.5mm thickness), 4B pipe (8.6mm) and 24B pipe (30.9mm), and 

the sequence of welding is shown in Fig.2-16. TIG welding method was applied to 

the initial passes and SMAW to the sequent passes. From the third layer, the 

heat-sink welding by which the inner surface of a weld zone is cooled by strong 

water-spraying during welding was applied in addition to the conventional welding 

by which a joint is naturally cooled. This heat-sink welding aims to produce 

compressive residual stresses on the inner surface of the weld zone in order to 

prevent stress corrosion cracking. 4B pipe was also used to investigate how the 

influence differs when heat input is increased and the number of passes is 

decreased. As the specimen is axisymmetrical, it was assumed for the analysis 

that the welding was applied axisymmetrically. That is, the deposited metal of 

each pass was assumed to be laid instantaneously and simultaneously for the whole 

circumference. Thus, the analysis becomes an axisymmetrical problem. Conse-
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Fig.2-16 Dimensions and build-up sequences of pipes used in analysis 

(a) 2-inch diameter pipe 

(c) 24-inch diameter pipe 

quently, the welding thermal stress in the three-dimensional stress state could 

be obtained. Figure 2-17 is the mechanical properties of the material used in 

analysis. Analyzed residual stress distributions are shown in Figs.2-18 (heat 

input is increased to Q-14, Q-23, Q-45) and 2-19. 

Since butt welded joints of pipes are axisymmetric, longitudinal bending 
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Fig.2-17 Mechanical properties used in thermal stress analysis 
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deformation due to welding is internally restrained, while angular distortion 

occurs to some degree. In case of 24B pipe (30.9mm thickness), stress distribu-

tions are similar to one produced under this restraint condition. That is, the 

distributions are between those produced under the two extreme restraint condi-

tions of the butt joint of the first example. 

If the heat-sink welding is used, the inner surface or the initially welded 

side is compulsorily cooled, so that a great temperature difference occurs in the 

plate thickness direction like the case of thick plates. Therefore, even in case 

of thin plates such as 2B pipe (5.5mm) and 4B pipe (8.6mm), residual stresses 

distribute similarly to those in the restraint condition Β of the butt joint of 

thick plates of the first example, and compressive stresses remain on the inner 

surface of the weld zone. These compressive stresses prevent stress corrosion 

cracking. 

Lastly, Fig.2-20 shows the effect of workhardening rule adopted in the 
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120/ 

analysis on residual stresses obtained for 4B pipe^ The absolute value of 

residual stresses analyzed using the isotropic workhardening rule and larger than 

the ones using the kinematic rule. This tendency is generally recognized in 

residual stresses of a specimen or a part of structure after cyclic loading 

between tension and compression. 

3. Measurement of Three-Dimensional Residual Stresses Based on Theory of 

Inherent Strain 

3.1 Introduction 

In addition to the theoretical analysis, it is also very important to 

accumulate more accurate information about residual stresses in welded joints by 

measuring to clarify the mechanical aspect of weld cracking and to evaluate the 

strength of welded joints. 

For this purpose, several measuring methods have been already proposed to 

estimate residual stresses, for example, Sachs' /6/, Mathar's /28/ and 

Rosenthal's 111, the ring core and the hole drilling methods. 

Any of these methods belongs to the same category as sectioning methods 

(Fig.3-1). By cutting a part of the object, a new surface is exposed and the 

forces acting on the surface before cutting are released. These forces are 

estimated from the changes of strains observed on the surface. Therefore, the 

elastic response relation between changes of strains observed on the body surface 

*) In this paper, to observe implies to take a value of strain by some 

instrument and to measure is meant to obtain residual stresses by 

appropriate calculation using observed strains. 

163 



Vol. Ζ Nos. 1-Z 1989 Analysis and Measurement of Welding Residual Stresses and PWI1T 

Fig.3-1 Released surface-force and i t s discretizaiton 
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and released section forces by sectioning is necessary in advance. If this 

procedure is repeated until no more change of strains in a portion is observed, 

the residual stresses contained in the portion can be estimated as such stresses 

as produced by the total released section forces. 

According to these existing methods which employ section forces as 

parameters, released strains are observed on the surface of the body and three-

dimensional stresses are estimated indirectly with the aid of the elastic 

response relation. In this process, observation errors may influence greatly the 

result since the elastic response relation may magnify the error when the 

relation is used for two remote points. As long as this principle is based on, 

improvement of the elastic response relation is very difficult. So, it is 

necessary to discover a new measuring principle by which the elastic response 

relation can be easily improved. 

In order to solve the above-mentioned fundamental problems, the authors have 

proposed for the first time a new approach in which sources of generation of 

residual stresses (inherent strains) are dealt as parameters of measurement 

(Fig. 3-1 (b).)/8/. According to this new measuring approach, it is clarified that 

improvement of the elastic response relation would be easy. 

So, in this chapter, a general basic measuring theory of residual stresses 

is described using inherent strains as parameters. Secondly, the finite element 

method is introduced to obtain the general elastic response relation which can be 

applied to measure residual stresses in an arbitrary shaped body and the statis-

tic theory is used to investigate reliability of estimated values of residual 

stresses. Thirdly, one of new measuring methods of three-dimensional residual 

stresses produced in a long welded joint /29,31/ will be introduced. The method 

was developed based on the new measuring approach, which was reduced to a simple 

method by taking advantage of the characteristics of the distribution of its 

inherent strains produced in this type of long welded joint. In these theories 
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described in this chapter, new and different notations from those in chapter 2, 

may be used since these notations are the same as those appearing in the related 

references to this chapter. 

Lastly, applying this new method, the distributions of three-dimensional 

residual stresses in several multi-pass welded joints are measured These 

stresses are compared with stresses on the surfaces of the joints which are 

directly observed in order to demonstrate reliability and applicability of the 

new measuring method. 

3.2 Measuring Method of Residual Stresses Using Inherent Strains as Earameters 

3.2.1 Basic theory /8/ 

When residual stresses exist in the self-balanced object, these should be 

produced by plastic strains, thermal shrinkage strains in the weld metal, etc. 

which are generally called inherent strains. 

Elastic strains ( ε-jj ) at an arbitrary point of the body are generally 

given by such a function that 

«,j (x) = R* (x; e*. V) (3-1) 

where χ : vector of position at an interior point of the object 

e*: vector of inherent strains 

V : vector to express the body shape. 

This equation expresses the relation of inherent strains to the consequent 

residual strains. The new measuring method is utilizing elastic response (change 

of strains) at arbitrary points, which is induced by changes of the shape of the 

body. 

Inherent strain distribution is replaced by a finite series (or approximated 

by discretization) with q number of parameters {ε*} = {ε*, ε*, · · · 

e* (χ) = f* (x;e*,, e*2l · • · ,e%) (3-2) 
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Substituting Eq.(3-2) into Eq.(3-1), it is seen that elastic strains are express-

ed by a function, hi. , of the co-ordinates X , the parameters {ε*} , the shape 
' J 

of the object, V. That is, 

fij (x) = h*ij (x; e*i, e*2. · · · ,e*q> V) (3-3) 

When the relaxed strains of q number ( m e ) at positions where observation 

is possible are obtained, the simultaneous equations to decide the parameters 

{ε*} of the inherent strain distribution are constituted as follows; 

msI(](xi) =h*j(Xl ; ef, ε2, ·····, ε*, V) 

πεΙ0(χ2) =h*j(x2 ; εί, ε2*. , ε*. V) 

(3-4) 

m EU ( xq ) = hIj( xq ί ε*> ε*> V) 

The combination of (I,J) in above equations represents the particular component 

of strains at each observing point. If Eqs.(3-4) are composed of independent 

equations and the inverse function gi of h*j can be defined, the parameters 

{ε*} of the inherent strain distribution are determined as, 

e * i = g*i U e u ( x i ) , m e u ( x 2 ) , · · · , m e u ( x q ) ; V) (i = 1 ~ q ) ( 3 - 5 ) 

So, strains or stresses at arbitrary points are estimated by substituting Eq. 

(3-5) into Eq.(3-3). 

There are two requirements in the process of the general formulation of the 

method. One is that continuous function e* (Eq.(3-2)) must be replaced by a 

finite series (or approximated by discretization) to any desired degree of 

accuracy, which contain parameters {ε*} . And the other is that response func-

tions h*· must be formulated based on Eq.(3-1). These functions depend on the 

^ J 

shape of a body. Thus, it is impossible to find general analytical solutions 

except for special cases. Therefore, it is necessary to apply methods of numeri-

cal analysis such as the finite difference method, the finite element method, 

etc., to satisfy all of the preceding conditions. These numerical analyses are 

based on discretization of unknown functions and it is very convenient to use the 
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correspondency between the discretization and the finite number of measurement. 

In this paper, the finite element method which is capable to satisfy the 

geometric shape is adopted and the general formulation will be shown in the 

following section. 

3.2.2 Measuring theory based on F.E.M. /8/ 

(1) Basic equations (Observation equation) 

When the finite element method is applied, the object is fictitiously 

divided into finite number of elements. When a finite element is subjected to 

initial strain (inherent strain) {ε*} , the stiffness equation of the element 

can be expressed in the following from, 

{ f u }
e = [K] e(u} e+{f} e (3-6) 

ρ 
where {fu} : nodal forces of an element 

[K]e : stiffness matrix of an element 

g 
{u} : nodal displacements of an element 

θ 6 
{f} : equivalent model forces of an element due to initial strain {ε*} 

The parameters {ε*} of the inherent strains mentioned in section 3.2.1 

correspond to components of inherent strains imposed in finite elements. The 

inherent strains {ε*} imposed in an element produce restraining nodal forces to 

ρ 

keep it undeformed, which are usually called as equivalent nodal forces {f} 

This relation is shown to be, 

i n e = - Zv [BfT[D]V}e d(vol) = — [L]e [ e i e
 ( 3 _ 7 ) 

where [B]e: strain-displacement matrix of an element 

[D]e : elastic stress-strain matrix of an element 

By collecting these forces and stiffness matrix of each element all over the 

obj ect, 

{F> = Σ [ f } e = — Σ [ L ] e le*} e = - [L] [e*} ( 3 - 8 ) 
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[Κ]=Σ[Κ]Θ (3-9) 

The nodal displacement {u} is expressed in the following form, 

{0}=[K] + {f} (3-10) 

(u) = _[K]-'{f)=-[C] (f) = [C] [L] (e*) (3-11) 

The relation between displacement and strain is given by Eq.(3-12) because 
g 

the total strain of an element is the summation of elastic strains {ε} and 
g 

inherent strains {ε*} 

{e )e + {e*}e = [B]e (u]e = [B]e[T]e (.u) = [B]e [T] e[C] [L] {e*} (3-12) 
θ ® Γ τ ® where [T] : transformation matrix of displacement, that is, {u} = [TJ {u} 
g 

Matrix [U] is defined as one to transform the inherent strains {ε*} over the 
g 

object into those {ε*} of an element. Thus, 

te*le = [U]eU*l (3-13) 

Therefore, Eq.(3-12) is transformed into the form, 
{ e}e = [B]e [T] e[C] [L] [β*} - [U]e {e*} 

= ( [B]e[T]e[C][L] -[U]e){e*| = [H*] e {e*} (3-14) 

And stresses in an element are evaluated as 

K = [ D ] e [e}e = [D]e [H*]e (e*)e (3-15) 
g g θ θ The elastic strains {ε}^, (ε}β, · · · , the stresses ίσ}^, (cr}g, · · · of 

elements A, B, .·., respectively are summarized over the object in the following 

forms, 

{e} ={ (e}eA.{ e}e
B>---}T=[H*'] {e*} (3-16) 

[o}= {{σ} e
A ({ σ}βΒ,·.· }T = [M'] {e*} (3-17) 

Generally speaking, when the total number, q, of inherent strain components 

is equal to the total number, n, of the elastic strain components, the sizes of 

matrices [Η*1] , and [M1] are (η χn). 

If special attention is paid to welding residual stresses, the portion 

where the inherent strains exist is limited in the vicinity of welded lines 

because the inherent strains are originated by thermal shrinkage of weld metal 
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and plastic deformation. Therefore, it is not difficult to presume such elements 

that apparently contain no inherent strains. Representing the inherent strain 

vector by the same notation, {ε*} , which consist of only non-zero inherent 

strain components q ( < n ) , the above-mentioned matrices become matrices [H*] and 

[M] and their sizes are reduced to (nxq). 

{3} = [Hi] (e*j) (i = 1 ~n,j = 1 ~q) (3-18) 

(tfil = [Mjj] {e*j| (i = 1 ~n, j = 1 ~q) (3-19) 

For example, if m number of measurements of elastic strains can be done, the 

matrix [H*] = ( n x q ) is reduced to [H*] = ( m x q ) and the observation equations are 

constituted as, 

Κ Ί = [ H * i j ] je*j} (i = 1 ~m,j = 1 ~q) (3-20) 

If the unknown inherent strains, {ε*},can be decided by these measured strains, 

{^ε^} > the residual strain and stress distributions can be calculated over the 

entire object. 

The necessary condition to determined the parameters {ε*} by which residual 

stress distribution is estimated is to satisfy the inequality m ^q. For example, 

if m=q, and [H*] 1 exist, the resulting stress distribution can be 

obtained uniquely. In contrast with this, if the number of equations included in 

Eq.(3-20) is not sufficient, that is m < q, the inherent strains {e*} .can not be 

determined. In this case, it is required to increase such relations as those in 

Eq.(3-20). These relations can be obtained simply by adding measuring points, if 

not, by producing a new self-balanced state by sectioning. 

(2) Most probable value and its confidence interval 

In case of m > q in the observation equations, the number of equations is 

greater than the number of unknown parameters and consequently there should be 

(m-q) number of dependent equations. But these dependent equations do not exist 

apparently because errors contained in measured values change the dependency. 

So, for such cases where m > q and errors are contained in the measured values, 
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the theory of statistics is introduced into the above-mentioned methods in order 

to decide the most probable values and these confidence intervals with the 

observation equations. 

Here, the errors used are accidental ones and satisfy the three axioms of 

errors, and the process of evaluation of the most probable values and these 

confidence intervals are discussed. 

(i) Most probable value 

The relation between the true value {e} of the elastic strain and the true 

value {ε*} of the inherent strain is expressed by Eqs.(3-20), that is, 

{ε.}= [H*.]{e*> (i=l~m,j=-|~q) (3-21) 
J J 

Substituting measured values of strains, ί,̂ ε} , into Eqs.(3-21) in place of 

{ε} , the errors {X} are obtained in the following form. 

(me} - [H*] (e*j = {X} (3-22) 

Furthermore, replacing {ε*} by the most probable value {ε*} in Eq.(3-22), 

residuals {V} are given as, 

{ mf) - [H*] (£*} = (v) (3-23) 

In the case where each measured value of strains is of the same precision, the 

sum of squares of the residuals, S, is 

S = { V } T { V } (3-24) 
A 

According to the method of least squares, the most probable values {ε*} are 

decided so as to minimize the sum of squares of the residuals, S. Thus, from the 

condition dS/d{i*} = 0 , 

[H*JT {me} = [H*]T[H*] {$*) (3-25) 

The above equation which was normalized is called normal equations and [Η*] T [H*] 

is a square matrix of a size (q xq). So, if the square matrix is regular, its 

inverse matrix can be obtained and the most probable values are given as follows, 

=([H*]T[H*])-'[H*]Tlm4s[G*] ime} (3-26) 

By using this result and Eq.(3-19), the residual stress distribution over the 
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object is estimated. 

[σ] =[M] [e*}=[M][G*] {me} =[Nj { me} (3-27) 

(ii) Confidence interval 

(a) Accuracy of most probable value 
2 The relation among measurement variance S of unit weight, inherent strain 

2 
variances {s* } and these weights {p*} is represented as follows. 

p*is*i2=s2 (i = 1 ~ q) (3-28) 

The unbiased estimate s 2 of the measurement variance is given as, 
s 2 = ( v } T { v } / ( m - q ) = S / ( m - q ) ( 3 - 2 9 ) 

And with components gi. of the matrix [G*] , the weights of Eq.(3-28) can be 
J 

evaluated. 
m . 

P*i=l /?=1g*ii (i = 1 ~q) (3-30) 

By substituting Eqs.(3-29) and (3-30) into Eq.(3-28), the unbiased estimate of 

population variance of the most probable value {ε*} can be determined. 

Otherwise, the unbiased variance s0j2 of the most probable value {σ} of 

residual stresses is expressed in the following equation if the components of the 

matrix [N] are n^· . 
m 

5σί2 = ( Σ njj2 ) • §2 (i = 1 ~n) (3-31) 
j=l 

(b) Confidence interval 

Stochastic variable (£* -,-e*{)/s*i which is dimensionlessly normalized {ε*} 

of the inherent strains obeys the standard normal distribution N(0,1). A variable 

S/s2 obeys X2-distribution with degree of freedom φ=m-q . So, a varia-

ble t in the following expression depends upon Student's t-distribution with φ 

degree of freedom. 
t=(**i-e*i)/s*i/ Vs/s2/0 = (?*i - e*i) I s*j (3-32) 

So, the relation between confidence coefficient (1- a) and t-value is represented 

as follows. 
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1 — α = 2 rt Γ [(0+0/2) 
Jo Γ (0/2) 

χ2 _ Φ + ' 
(1 + — ) ^ dx 

Φ 
(3-33) 

where Γ : gamma function 

If the confidence coefficient is given, t-value is decided by Eq.(3-33) and the 

confidence intervals are obtained in the following forms. 

These intervals do not contain errors in the process of the discretization, which 

are inevitable in the finite element method but contain round-off errors in the 

calculation. 

3.2.3 Measuring method for three-dimensional residual stresses in long 

multi-pass welded joint, L^ method /29,31/ 

The authors have developed several new measuring methods from the basic 

theory presented in section 3.2.2 for each individual problem. One of them is 

named "L method", and will be shown here. ζ 

When the general measuring theory is applied to measure three-dimensional 

residual stresses in the middle of the weld line of a multi-pass welded joint as 

shown in Fig.3-2, the theory can be simplified by taking advantage of the charac-

teristics of the distribution of inherent strains induced in the welded joint. 

In general, inherent strains in a welded joint are produced by the result of 

thermal elastic-plastic behavior due to non-steady temperature distribution and 

restraint for the welded joint. In such a case as this specimen, restraining 

conditions and temperature distributions of the welded joint are nearly uniform 

and quasi-steady states except in the vicinities of both ends of the weld line. 

Then, when the weld line is very long, the inherent strain distribution can be 

considered to be uniform along the weld line except in the vicinities of both 

ends. And it is well known that welding residual stresses are almost symmetric 

(3-34) 
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with respect to a cross section at the middle. This implies that the components γ 

and Υ ζ χ of the inherent strains which produce non-symmetric residual stress with 

respect to that cross section can be ignored. 

Here, the following assumptions may be introduced for the measurement of the 

three-dimensional welding residual stresses. 

1) Strains in the specimen change elastically due to cutting. 

2) The remaining stresses in sliced thin plates are in the state of plane 

stress (to be sliced thin enough). 

3) Each component of inherent strains do not change along the weld line (x-

axis) and the components ε* , ε* , ε* , γ * 2 are functions of y and ζ 

co-ordinates. 

The assumption 3) is only for simplification of the measuring theory based on the 

characteristics of the inherent strain distribution in a long welded joint and 

not indispensable to the measuring theory. 

(1) Separation of components of three-dimensional inherent strains 

As the cutting lines are shown in Fig.3-2, Specimen Τ and Specimens 

are taken out of the original welded joint which is named as Specimen R. The 

same magnitude of inherent strains as exist in Specimen R remain in Specimens Τ 

and L because the inherent strains do not change without production of plastic 

strains by these slicings. These plates are sliced so thin that the inherent 

strains in the normal direction to the surfaces of these plates do not contribute 

to the remaining stress distribution of the plates. Then, the remaining stresses 

in Specimen Τ are produced only by the inherent strains ( ε*; , ε* , γ * ζ ) in 

the cross section and the remaining stresses in Specimens L only by the longi-

tudinal inherent strain ( ε* ) ( ε * does not contribute to these stresses in 
x y 

Specimen L^ because it is constant along x-axis). 

As a result, three-dimensional inherent strains can be divided into the 
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Fig.3-2 Experimental model and procedure of slicing Specimens Τ and 

L i (Lz Method) 

(a) 

( DIRECTION 
OF WELDING ) 

Experimental model of multi-pass welded joint (Specimen R) 

(b) Sliced cross section in the weld line (Specimen T) 

inherent strains in the cross section and the inherent strains in the, longitudi-

nal direction. The three-dimensional residual stresses {σ} of Specimen R can be 

A 
expressed by the sum of the stresses {σ } which are produced in Specimen R only 

g 

by the inherent strains in the cross section, and the stresses {σ } which are 

produced in Specimen R only by the inherent strain in the longitudinal direction, 

that is, 

{σ} = {σ*4} + {σΒ} (3-35) 
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(2) Stresses } produced by the inherent strains εζ> ^yz^ 

cross section 

The residual stresses {oA°} = (0, , ,τ^ο, 0, 0}T in Specimen Τ are in 

the state of plane stress and can be observed directly. Then, the inherent 

strains ( ey > εζ ' ̂ yz ^ t*ie cross section can be estimated by the observed 

strains and the three-dimensional stresses {σ } in Specimen R may be calculated 

by these resulting inherent strains. On the other hand, there is a clear rela-

tion between } and } , which makes determination of the stresses { σ Α } 
Ao 

simplified by the stresses {σ }. 

As the inherent strains ( ε* , ε* , γ* ζ ) in the cross section are 

uniform along the weld line, it can be considered that the cross sections of 

Specimen R remain plane (so called plane deformation) in the middle portion which 

are away approximately by its thickness from the ends of weld line. Further, as 

the stresses in the plane of Specimen Τ and in the state of plane strain, which 

are produced by these inherent strains are balanced in the cross section (yz-

plane), the stresses perpendicular to its cross section (in the direction of x-

axis) which are produced by constraining the deformation in its direction are 

also self-balanced in the cross section. As a result, the state of the above-

mentioned plane deformation is equivalent to that of plane strain (The detail 

proof is shown in Appendices of Ref.29). 

In such a case, the stresses {σ }can be determined by the observed values 

ίο' 

in the state of plane stress, using the relation between plane strain and plane 

stress without knowing the inherent strains in the cross section. Οχ + oj°)Kl-v2) 
of = of0/(I - v \ a? = a?°l(l - v2) 

τ* = τ ft 1(1 - v2), TAy = τΑχ = ο (3-36) 

where ν : Poisson's ratio 
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Judging from this fact, it is evident that the longitudinal elastic strain ε 

of Specimen R at a certain distance (approximately its thickness) away from the 

ends of weld line is produced only by the inherent strains ε* in its direction 

because the inherent strains in the plane of a cross section make the state of 

plane strain and does not produce any longitudinal elastic strain but stresses. 

In connection to { σ Α θ } , there are many reports /10,4,21-24/ on the results 

of measurement of residual stresses remained in the planes of thin plates which 

are sliced in the perpendicular direction to the weld line. According to the 

above-mentioned fact, these measurements can be considered nearly to measure the 

stresses due to the inherent strains in the cross section. 

D 
(3) Stresses {σ } produced by the longitudinal inherent strains ε£ 

g 

For the measurement of (σ }, Specimens L is cut out from Specimen R. 

Depending upon the relative proportion of the length Ζ of Specimens L to the 

thickness t of Specimen R, i/t, two measuring methods were developed, 

(i) In case of l έ 2t 

If ε χ is imposed onto a long stress-free Specimen R uniformly along the 

longitudinal axis, plane deformation is observed in its middle portion. 

When Specimen L^ is taken out from this portion, the specimen is regarded as 

Dne thin plate being kept straight at the middle cross section. 

As for strains (stresses) in the middle surface of the specimen, the total 

strain is expressed as the sum of the elastic strain ε χ(γ) and the 

Lnherent strain ε*(γ), such as, 

ε][(γ)=εχ(γ)+ε*(γ) (3-37) 

As the plane deformation is assumed, ε χ(γ) may be expressed as a linear 

function of the y-coordinate, 

E x ( y ) = a + b y (3-38) 

/here a and b are coefficients (b=0 if the specimen is perfectly symmetric with 

respect to x-axis). 
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From the above two equations, 8 x(y) is obtained as, 

ε*(γ) =s x(y)-(a+by) (3-39) 

If £*(y) is imposed onto Specimen L^, the second term of the above equation 

does not produce any stress but translation and rotation of the cross section so 

as to satisfy the self-equilibrating condition. Therefore, e
x ( y ) is simply 

taken as s x(y) , that is, 

e*(y)=ex(y) (3-40) 

Elastic strains £χ(γ) in Specimen L^ can be determined from the relaxed 

strains m8 x(y) which are observed by strain gages when cutting the specimen 

into narrow strips or bars as depicted by the broken lines in Fig.3-2(c), as, 

Thus determined inherent strains can reproduce the same residual stresses as 

g 

in the respective Specimen L^, which are not necessarily the same ones as {σ } 

at the corresponding location of Specimen L^ in Specimen R, since some portion of 

the residual stresses in Specimen R are released when it is sliced into Specimen 

V 
g 

In order to calculate {σ } in Specimen R, the inherent strains in the 

entire cross section are imposed to the stress-free Specimen R. These inherent 

strains are composed of the respective ones in each Specimen L^, but are not 

simply the summation of these. They should be modified by adjusting the coeffi-

cients a and b in Eq.(3-39) in order to compensate the released stresses. These 

coefficients may be determined by assuming the inherent strains at both sides of 

each Specimen L to be zero, since the actual inherent strains away from the 

welded portion should be zero. These coefficients a and b cause additional 

inherent strains which are effective for Specimen R, but non-effective for each 

Specimen L^. 

By imposing these inherent strains s£(y,z) onto Specimen R under the condi-
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D 

tion of the plane deformation, three-dimensional residual stresses (σ } may be 

calculated by the finite element method, 

(ii) In case of I < 2t 

In this case, the above simplification can not be adopted. The axial 

inherent strain ε* should be estimated with the aid of the finite element 

method as described in section 3.2.2.. 

3.3 Results of Measurement and Discussion 

According to the proposed measuring theory, several experiments were 

conducted to measure three-dimensional residual stresses, mainly in a multi-pass 

welded joint and demonstrate the effectiveness of the method. Followings are the 

examples. 

3.3.1 Multi-pass butt welded joint of thick plane plate (SS 41, plate thickness: 

50mm, measured by L method) /29/ 
ζ 

In experiment, residual stresses of a multi-pass butt welded joint (Fig.3-2) 

of a mild steel (SS 41) plate were measured. The size of the used specimen is as 

follows: weld length L=200mm, plate.width B=200mm and plate thickness t=50mm. 

14-passes of weld metal was applied to the U-groove of the specimen by submerged 

arc welding. No restraint was provided to welding deformation such as longitudi-

nal bending deformation or angular distortion. In measurement, L^ method /29,31/ 

was applied. 

Residual stress distributions of σ χ (longitudinal direction) and σ 

(plate width direction) measured on the top and bottom surfaces and in the cross 

sections in the middle of the weld line are shown in Figs.3-3 and 3-4. In the 

same figure, the direct measurements of the surface stresses are indicated in 

order to compare with the estimated values. These directly measured values are 

not used for estimation of the three-dimensional residual stresses by the present 
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Fig.3-3 Measured welding residual stresses on the surfaces in the middle of the 

weld line 
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method. Then it can be considered that the estimated residual stresses show 

good coincidence with the directly measured stresses on its surfaces. Especia. 

ly, the accuracy of the estimated transverse stresses Oy is very high. Bi 
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Fig.3-4 Measured welding residual stresses at the cross sections in the middle 

of the weld 1ine 
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there is some difference in some portions between the estimated and directly 

measured values of the longitudinal stress σ χ . The reasons for these differ-

ences is described in Ref.29. 

Their distribution patterns are quite the same as those under the restraint 

condition A of the joint of the first example (Section 2.3.1), in which no exter-

nal restraint is added. That is to say, large tensile stresses are produced not 

only immediately below the finishing bead but also at the bottom surface owing to 

the great influence of longitudinal bending deformation and angular distortion. 

This is one of the typical characteristics of the residual stress distributions. 

Accordingly, root crack may occur in this case. 
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3.3.2 Multi-pass butt longitudinal' and circumferential.welded joints in a 

penstock (HT 80, plate thickness: 50mm, measured by L and L methods) /30/ 
y θζ 

2 

Using a large size penstock model of 80 kgf/mm class high tensile strength 

steel plate, three-dimensional residual stresses produced in a tubular shell 

plate by (1) cold bending, (2) longitudinal welding of a joint and (3) circumfer-

ential welding of a joint were measured respectively. The penstock model and the 

location of each specimen taken out are shown in Fig.3-5. The plate thickness 

of the model is 50mm. Submerged arc welding was applied first to the inner side 

and then to the outer side of the X-grooves. For measurement of residual 

stresses due to cold bending Lq z method was applied, and for welding residual 

stresses L^ method was applied. They are the similar methods to L^ method, and 

are presented in Refs.30 and 31. 

Distributions of three-dimensional residual stresses produced in the shell 

plate by cold bending are shown in Fig.3-6. Residual stresses in the axial 

direction of the model, σ ^ , and those in the circumferential direction, σ ^ , 

are almost point-symmetric with respect to the center of the plate thickness. 

Fig.3-5 Model of penstock 

1400 

RC' block for measurement -
of CCT w> at circumferential 
joint{350x350x50mm) 
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Fig.3-6 Measured residual stresses due to cold bending in shell plate 
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σ ζ is approximately 3 0 ~ 5 0 % of σ 0 in magnitude. It is considered that 

these are the typical characteristics of residual stress distributions by this 

type of cold bending. 

Welding residual stress distributions in the longitudinal joint are shown in 

Figs.3-7 and 3-8. Distributions in Fig.3-7 are complicated since welding 

residual stresses distribute on and near the weld metal, and combined residual 

Fig.3-7 Measured welding residual stresses on the surfaces (longitudinal joint) 
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stresses by cold bending and the subsequent weldings on the base plate near the 

weld line. The above residual stresses distributed in the plate thickness direc-

tion are shown in Fig.3-8. Figure 3-8(a) shows welding residual stresses in the 

weld zone and (b) residual stresses by cold bending and the subsequent weldings 

in the base plate. From these distributions, especially Fig.3-8(a), in reference 

to the first example of section 2.3.1, welding deformation behavior of this joint 

is predicted as follows: Angular distortion occurs easily in longitudinal joints 

W 
as is evident from the distribution of (circumferential stress) in Fig.3-8 

(a). While longitudinal bending deformation, which is considered to occur 

W 

hardly, is known to considerably occur from the distribution of σ ς (axial 

stress, along the weld line here) in the same figure. This may be explained by 

Fig.3-8 Measured welding residual stresses at the cross sections (longitudinal 

joint) 
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the fact that the length of the model at the longitudinal welding is shorter in 

comparison to the radius. 

Distributions of welding residual stresses in a circumferential joint are 

shown in Figs.3-9 and 3-10. It is seen from the residual stress distributions in 

Fig.3-9 Measured welding residual stresses on the surfaces (circumferential 

joint) 
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Fig.3-10 Measured welding residual stresses at the cross sections (circumferen-

tial joint) 
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(b) At n=30mm 

the plate thickness direction of the weld zone shown in Fig.3-10(a) that distri-

W 
butions of circumferential (along the weld line) stresses σ ^ and axial stresses 

W Ο η are similar to those in the circumferential butt joint of 24B pipe already 
W 

described in Section 2.3.4. Especially, O r shows a close resemblance to those 

in 24B pipe. Naturally, their production mechanisms are the same. It is consid-

ered that angular distortion occurs to some extent and longitudinal bending 

deformation little. 

3.3.3 Butt welded joint of very thick plate by electroslag welding (SM 50, plate 

thickness: 100mm, measured by L^ method) /31/ 

Residual stresses of a butt welded joint of SM 50 steel of 100mm plate 

186 



Υ. \Jeda and Κ. Nakacho Journal of the Mechanical Behaviour of Metals 

Fig.3-11 Test joint of electroslag welding 
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thickness by electroslag welding (Fig.3-11) were measured by applying L^ method 

/30,31/. Electroslag welding takes quite a different welding process from the 

conventional multi-pass welding which has been treated in this study. Residual 

stresses by electroslag welding deserve attention as those produced by applying 

large heat input (2094 KJ/cm) for the single pass. 

Welding residual stresses at the middle cross section of the weld line 

produced by this welding method are shown in Figs.3-12 and 3-13. Figure 3-12(a) 

shows the distributions of residual stresses in the plate width direction (y-

direction) on the surface, Fig.3-12(b) those along the center of the plate thick-

ness, and Fig.3-13 the distributions of residual stresses in the plate thickness 

direction. The residual stress along the weld line, σ , shown in Fig.3-12(b) is λ 

comparatively similar to that produced in a one-pass butt welded joint made of a 

thin steel plate in which phase transformation occurs at a low temperature /32/. 

187 



VoL Ζ Nos. 1-2,1989 Analysis and Measurement of Welding Residual Stresses and PWHT 

Fig.3-12 Measured welding residual stresses at the middle cross section of the 

weld line 
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That is to say, of the distribution in the plate width direction, large tensile 

stresses are produced in the HAZ and small tensile stresses in the weld metal. 

The maximum tensile stresses are produced at the center of the plate thickness as 

seen from the distributions in the plate thickness direction at the HAZ (y=50mm) 

shown in Fig.3-13(b). The reason may be that the specimen is made of very thick 

plates so that the center of the plate thickness cools more slowly than any other 

portions. 

4. Characteristics of Residual Stress Distributions in Multi-pass Welded Joints 

of Thick Plates and Influential Factors /33/ 

Characteristics of residual stress distributions in several kinds of multi-

pass welded joints of thick plates described in this research are summarized in 

the following. 

Conceivable influential factors on the residual stress distributions are the 

followings: 

(i) material properties (physical and mechanical properties), (ii) welding 

condition (especially heat input), (iii) groove shape, (iv) build-up sequence, 

(v) restraint condition of a joint, etc.. 

Materials used for the joint models were; 

(a) SM 50, (b) 2 1/4 Cr-lMo, (c) SUS 304, (d) SS 41 and (e) HT 80. 

Their mechanical properties, the afore-mentioned (i) , such as yield stress, 

instantaneous linear expansion coefficient, etc., and their changes during phase 

transformation are greatly different from one another. So are (ii) the welding 

condition, (iii) the groove shape and (iv) the build-up sequence of the respec-

tive joints. These factors influence the welding residual stresses quantitative-

ly. For example, in the joints made of HT 80 described in section 3.3.2, the 

maximum residual stresses do not reach the yield stress. This is due to the 
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phase transformation expansion at low temperature (400~500°C), which reduces the 

maximum tensile residual stresses greatly. However, as having already mentioned 

Fig.3-13 Measured welding residual stresses at the middle cross section of the 

weld line (Distributions in the plate thickness direction) 
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hereinbefore, the patterns of residual stress distributions are influenced a 

little by (i) material properties, (ii) the welding condition, (iii) the groove 

shape and (iv) the build-up sequence, while they are greatly influenced by and 

dependent on (v) the restraint condition of a joint. Therefore, such charac-

teristics of residual stress distributions were arranged with respect to the 

restraint condition of a joint as shown in Table 4-1. 

Correlations of the restraint condition of a joint with residual stress 

Table 4-1 Classification of welding residual stress distributions according to 

the restraint condition 
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distributions and welding cracks may be simply stated as follows: "Irrespective 

of severity of the restraint condition of a joint, longitudinal and transverse 

(in the directions of the weld line and the plate width) large tensile stresses 

are produced in the surrounding portion of the finishing bead. These tensile 

stresses may cause underbead crack, longitudinal crack or transverse crack. If 

the restraints against longitudinal bending deformation and angular distortion 

are weak, large tensile residual stresses are produced near the initially welded 

bottom surface and may cause root crack." 

As a result, the characteristics of residual stress distributions can be 

read qualitatively in this Table, provided that the restraint condition of a 

joint is estimated.· 

5. Conclusion 

In this paper, the theories of thermal elastic-plastic-creep analysis and 

measurement of residual stresses were described, which had been presented by the 

authors. These theories enable us to obtain information on elastic-plastic 

behavior of joints during and after welding and stress-relief annealing (PWHT). 

Several examples, m a i n l y on multi-pass welding of thick plate, demonstrated the 

effectiveness and reliability of the methods of analysis and experimental 

measurement of residual stresses, which were developed based on their theories. 

For each welded joint, characteristics of residual stress distribution, their 

production mechanisms, influencial factors on them and their relations with cold 

cracks were discussed, being compared with a basic example. 

Lastly, calculated and measured welding residual stress distributions were 

analyzed, and it was emphasized that the most important influencial factor upon 

the pattern of the distribution is the restraint condition of a joint. 
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