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Abstract: The stress intensity factor (SIF) must be determined
accurately to analyze crack propagation and structural integ-
rity in cracked material structures. This research focuses on
improving the strain gauge location for single-ended frac-
tured aluminum plates using a finite element method. The
study examines the impact of fracture length-to-width ratios
(a/W) on the estimation of rmax, the maximum allowed radial
distance for accurate strain measurements. Strain fields
under various mesh refinements were simulated using
PLANE183 element from ANSYS software, and the results
showed a strong association between mesh density. The
results demonstrate that an improved strain gauge location
greatly increases SIF measurement precision, limiting errors
due to plasticity effects and strain gradients near the crack
tip. Furthermore, mesh convergence studies show that mesh
refinement produces negligible gains after a crucial refine-
ment level. This study offers helpful recommendations for the
positioning of strain gauges in fractured mechanics applica-
tions, guaranteeing precise SIF assessment for failure avoid-
ance. Finally, confirmation against previous research shows a
relative error of less than 3%, confirming the suggested meth-
odology’s dependability.

Keywords: stress intensity factor, strain gauge optimiza-
tion, edge-cracked plate, mesh convergence, finite element
modeling

Nomenclature

a crack length
Aₘ, Bₘ coefficients of series-type complex ana-

lytic functions for Mode I
Cₘ, Dₘ coefficients of series-type complex ana-

lytic functions for Mode II
E Young’s modulus
G Shear modulus
H half height of the plate
K1 Mode I stress intensity factor
r radial distance from the crack-tip
rmax upper limit for gauge locations along the

gauge line
R2 coefficient of determination
ν Poisson’s ratio
W width of the plate
x, y – x, and y coordinates of a point
Z complex variable
ZI, YI complex analytic functions for Mode I
α orientation angle of the strain gauge
θ angular coordinate
φI Airy stress function for Mode I
σₓ normal stress in x direction
σᵧ normal stress in y direction
τₓᵧ shear stress in x–y plane
εₓ normal strain in x direction
εᵧ normal strain in y direction
γₓᵧ shear strain in x–y plane
εₓ′ normal strain in x′ direction
εα⁺ normal strain in positive α direction
εα⁻ normal strain in the negative α direction

Abbreviations

2D two-dimensional
3D three-dimensional
DIC digital image correlation
DS technique Dally and Sanford single-strain gauge

technique
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FE finite element
NE number of elements
NN number of nodes
SIF stress intensity factor

1 Introduction

Both theoretical and experimental approaches can be used to
identify the parameters of the damaged structure in fracture
mechanics. In particular, strain gaugemethods or digital image
correlation (DIC) can be used to assess the stress intensity
factor (SIF) for a damaged aluminum plate under plane stress
circumstances [1]. Strain gauge approaches have been proven
to be an efficient and useful way to measure strain close to the
crack zone, even though DIC needs high-resolution infrared
cameras, which makes it an expensive option for strain mea-
surement. The SIF for the damaged structure is then calculated
using these strain data. Numerical and experimental methods,
such as finite element (FE) analysis, offer important insights
into fracture mechanics. To allow for precise SIF determina-
tion, the experimental method places strain gauges in key
locations close to the crack zone. Research, such as that con-
ducted by Sarangi et al. [2], has shown that the accuracy of the
measured SIF is greatly impacted by the radial position of
strain gauges. Errors may be introduced by plasticity and
three-dimensional effects if the strain gauges are positioned
too near the crack tip. On the other hand, positioning them
too far away from the fractured tipmightmake it impossible to
precisely capture the singularity-dominated strain field. To
ensure accurate experimental results, Sarangi et al. suggested
a system for determining the maximum allowable radial loca-
tion (rmax) for appropriate strain gauge placement.

The main goal of this study is to use the FE analysis to
identify the best place for strain gauges close to the crack
zone in a thin aluminum plate. By examining the strain field,
the FE technique simulates crack progression and establishes
the ideal gauge locations. Additionally, this study confirms
the current findings with available experimental data, guar-
anteeing the validity of the suggested methodology in calcu-
lating SIF for aluminum structures that have been damaged.

2 Related work

Over several decades, the study of strain gauge techniques
and SIFs has evolved. A straightforward experimental
method for determining Mode I SIF in orthotropic compo-
sites using strain gauges was proposed by Shukla et al. [3]
in 1989. To increase accuracy, they determined the best

location for the strain gauge and created theoretical equa-
tions for the strain field close to the crack tip. Glass-epoxy
samples were used to experimentally validate their approach,
proving the accuracy of strain gauge methods in fracture
mechanics. In 1990, Berger et al. [4] developed a dynamic
strain gauge technique to quantify SIFs in cracks that were
propagating in a plate. They laid the groundwork for subse-
quent experimental developments in fractured mechanics by
creating an algorithm to identify the crack tip and calculate
the strain field. During the same time, Kuang and Chen [5]
highlighted the importance of asymptotic strain expansions
to lower measurement errors by proposing a single strain
gauge approach to measure SIF in Mode I condition.

By comparing experimental findings with FE solutions,
Parnas et al. [6] investigated strain gauge approaches for
measuring opening mode SIFs in more detail. Due to local
plastic deformation close to the fracture tip and finite
gauge size effects, their investigation brought to light the
shortcomings of conventional strain gauge techniques. An
experimental technique for calculating SIFs resulting from
residual stress was provided by Schindler et al. [7]. Their
strategy made use of the crack compliance method, which
computed SIF by inserting a tiny slit into a stressed compo-
nent and monitoring strain changes. This technique offered a
straightforward approach to calculate SIFs without the need
for previous residual stress measurements.

A strain gauge technique was carried out by Kondo
et al. [8] to determine the stress intensities of sheets with
acute notches. Strong agreement between experimental
and theoretical results was demonstrated by their work,
which used the two-dimensional (2D) theory of elasticity to
build a method that accurately estimated stress intensities
in notch fracture mechanics. To increase the precision of
Mode I SIF measurements, Kaushik et al. [9] looked at strain
gauge placement strategies. Their study suggested a way to
figure out the ideal strain gauge placement for precise SIF
evaluation and underlined the significance of radial distance
in guaranteeing legitimate strain gauge locations. For intri-
cate designs, strain gauge methods were further improved by
Swamy et al. [10]. They compared experimental SIF values
with FE solutions while studying fully finite edge-cracked
plates under tensile stress. They proved that, when used
appropriately, strain gauge measurements yielded precise
SIF values, confirming the usefulness of these methods in
engineering applications.

To ensure accurate SIF calculations, Sarangi et al. [11]
created an FE-based methodology for identifying the upper
bound of valid strain gauge positions. Their research showed
that the maximum allowable radial position of strain gauges
is influenced by the fracture length-to-width ratio. Later, by
presenting an FE-based technique for finding exactly the ideal
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strain gauge placement for eccentric cracked topologies, Sar-
angi et al. [12] built on previous studies. The impact of frac-
ture length-to-width ratio and model size on the ideal strain
gauge placement was examined in their study. The results
showed that the measurement accuracy of Mode I SIF is
strongly influenced by bothmodel size and crack shape. Espe-
cially for asymmetric crack patterns, their method increased
the accuracy of strain gauge-based SIF estimation. By sug-
gesting an experimental method for mixed-mode SIF mea-
surement, another study by Sarangi et al. [2] built on this
and improved strain gauge techniques for isotropic and com-
posite materials. A sophisticated experimental method for
figuring out Mode I SIF in orthotropic materials was pre-
sented by Sarangi et al. [13], highlighting the significance of
strain gauge orientation and placement.

Chakraborty et al. [14] made substantial progress by
introducing a novel single-strain gauge approach designed
especially for orthotropic composite materials. Their
results demonstrated a considerable improvement in mea-
surement accuracy with an optimal strain gauge location
inside a valid region. An ideal strain gauge placement tech-
nique for figuring out Mode I SIF in orthotropic laminates
was created by Chakraborty et al. [15]. To find the ideal
radial site for strain gauge placement, their study expanded
on the Dally-Sanford (DS) technique and included FE ana-
lysis, greatly increasing measurement accuracy. Chakra-
borty et al. [16] expanded on this work by tackling several
important problems with strain gauge-based SIF calculation.
By applying earlier methods to mixed-mode fracture sce-
narios, they brought forth an improved methodology for
identifying valid strain gauge locations. Their research
improved the applicability of single and multiple strain
gauge systems for both isotropic and orthotropic materials
by resolving long-standing issues with radial orientation.

Generalized stress intensity parameters of sharp
V-notched plates under transverse bending are calculated
using strain gauges [17]. Using the fracture tip stresses deter-
mined by the strain gauge, the proportional extrapolation
technique is given for correctly and experimentally deter-
mining SIFs [18]. A method for determining the Mode II
SIFs using strain gauges has been well performed by Talha
et al. [19]. To overcome the drawbacks of single-strain-gauge
methods for measuring Mode I SIF in orthotropic composites,
Mejni and Talha [20] have recently proposed and validated
two new dual-strain-gauge methods that improve accuracy in
complex strain gradient and localized plasticity conditions.
Mode I notch SIFs for sharp V-notched designs may be effi-
ciently and effectively determined using a verified single-
strain-gauge method; the results emphasize the significance
of correct gauge positioning to prevent inaccurate measure-
ments [21].

A stain gauge technique always places importance on
measuring the strain on the structure. Based on recent
studies strain gauge technique is utilized with an advanced
artificial intelligence technique to highly predict the strain
values. Li et al. [22] implemented impact-loading tests on
granite and polymethyl methacrylate specimens using
acute and obtuse angle strain gauges, tracking crack pro-
pagation velocities and Mode I SIFs while validating their
gauge-based measurements against caustic imaging tech-
niques. Feng and Qian [23] developed an adaptive-learning
scheme that fuses strain-relaxation data with crack-front
geometry in welded plate joints – employing a regression
neural network and modified bootstrap particle filter to
sequentially update crack sizes, thereby advancing a
digital twin-driven fatigue-life estimation method. Yoon
et al. [24] introduced a hybrid deep neural network plus
principal component analysis strategy for real-time structural
health monitoring using a sparse array of 12 strain gauges.
Their system reconstructs the full-field strain profile and
enables precise crack detection/localization in carbon fiber
reinforced polymer under cyclic four-point bending. Shah
Mansouri et al. [25] demonstrated an machine learning-based
structural health monitoring system utilizing a minimal Blue-
tooth-linked strain gauge network. By applying Shewhart
charts, Grubbs’ test, and hierarchical clustering, they achieve
real-time crack detection and localization in 2- and 4-point
bending experiments with as few as five sensors. Cheok et al.
[26] proposed a strain-data-driven digital twin capable of cal-
culating ΔJ integrals directly from strain measurements in
crack-interfaced welded plate joints. This enables modeling
fatigue crack growth under variable loading in the elasto-
plastic regime and supports accurate remaining-life estima-
tion. Zhao et al. [27] presented an end-to-end digital-twin-style
learning framework that combines dimensionality reduction,
neural networks, and a path-slicing and re-weighting scheme
to predict fatigue crack trajectories and life remaining under
uncertainties.

While previous research by Sarangi et al. [11,12] and
Chakraborty et al. [14–16] have contributed significantly to
understanding strain gauge placement in composite and
orthotropic materials, a specific research gap remains for
isotropic metallic materials, particularly aluminum, in edge-
cracked configurations. Moreover, most existing studies
focus on single crack lengths or overlook the effect of
varying a/W ratios on rmax determination. The aim of this
study is to fill this gap by systematically analyzing the
impact of a/W ratios on optimal strain gauge locations using
FE modeling. Additionally, this work uniquely integrates
mesh convergence studies into the rmax evaluation process
to improve SIF accuracy, an approach not explicitly detailed
in earlier literature.
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3 Radial location of strain gauge:
Determination of rmax

The DS technique was applied to determine the Mode I SIF
for precise rmax value measurement [28]. The strain gauge
should be positioned as far away from the crack tip as
feasible while being within the rmax, according to the DS
approach. Because of plasticity, strain gradients, and 3D
effects, the measured strains may be significantly impacted
if the gauge is placed close to the crack tip [12]. SIFs are
then calculated by comparing the measured strains to the-
oretical values valid inside the specified zone. As a result,
the region around a crack tip is separated into three zones:
zone I, zone II, and zone III, as seen in Figure 1.

Zone I is near the crack tip, and the first term of the
strain series (single strain term) is adequate to represent the
strains in this zone. However, it is not a valid zone for reli-
able strain measurement since the stress state in this region
is three-dimensional (3D), and the recorded strains will be
heavily influenced by plasticity effects. Furthermore, the
errors in measuring the position of the strain gauge are
high if it is placed close to the crack tip. Zone III is not suited
for strain data collecting because correct findings require a
high number of terms in the strain series. As a result, the
intermediate region, or zone II, is the most suitable and
optimal zone for accurately measuring surface strains.
This is defined as a zone in which the strain field may be
accurately described using a single element and a small
number of higher-order terms.

The generalized Westergaard approach can be used to
obtain expressions for various strain components within
zone II. The modified airy stress function in this technique
is given by [28]
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which are functions of the series type with an unlimited
number of coefficients (A1; A2; _ _ _; An; B1; B2; _ _ _; Bn) that
can be found using the problem’s boundary conditions.
The domain-wide stress components are represented by
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Equations for the strain field, assuming planar stress
conditions, can be found as
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The strain field in the domain with an unlimited
number of unknown coefficients, An and Bm, can be pre-
cisely represented by substituting the series form of com-
plex functions Z(z) and Y(z) from Eqs. (3) and (4). It is
expected that the three-parameter series with unknown
coefficients, A0, A1, and B0, may adequately represent the
strain field in zone II [28]. Thus, the strain field’s three-
term representation in this zone is
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where the unknown coefficients k = (1 − ν)/(1 + ν) and A0,
A1, and B0. It can be found by using geometry and the
loading circumstances of the sample. It may be demon-
strated using the definition of K1 thatFigure 1: Various regions at the crack.
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=K πA2 .1 0 (8)

At point P, the strain component, εx́x́, which is identi-
fied by r and θ (Figure 2), is provided by
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The angle α can be chosen so that the coefficient B0 in
Eq. (9) is removed.
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Likewise, the coefficient A1 can be set to zero if the
angle θ is chosen as
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Therefore, the strain, εx́x́, which is in turn related to K1,
can be measured by putting a single strain gauge with α
and θ as indicated (Figure 2) by Eqs. (10) and (11).
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The equation, which may be expressed as follows, pre-
cisely calculates εx́x́ up to a radial distance of rmax:
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Within the square bracket on the right side of Eq. (13)
is a constant for a given configuration, applied load, Pois-
son’s ratio v, and Young’s modulus E. Consequently,
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C

r
.xx́ ́ (14)

C is constant in this case. Calculating the logarithm of
each side of Eq. (14)

( ) ( ) ( )= − +ε r CIn
1

2
In In .xx´ ´

(15)

Eq. (11) provides the line along which Eq. (15) is valid
for r ≤ rmax. Plotting Eq. (15) on the −log axes shows a
straight line with an intercept of ln(C) and a slope of
−0.5. The straight-line property should theoretically col-
lapse beyond >r r  max because Eq. (9) requires more than
three parameters to predict εx́x́. The value of rmax can be
precisely determined from the –log plots of εx́x́ and r using
the straight-line property displayed by Eq. (15). It should be
highlighted that a trustworthy method is required for the
precise identification of the straight-line endpoint in Eq.
(15) due to logarithmic displays.

4 Problem definition

The mechanical integrity and failure behavior of structural
components, especially aluminum plates, are greatly
impacted when they have an edge fracture [29,30]. The
material defined for the aluminum plate has a Young’s

Figure 2: Strain gauge location and orientation. Figure 3: Edge-cracked aluminum plate.
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modulus of 68.95 GPa, a Poisson’s ratio of 0.33, and a den-
sity of 2,715 kg/m3 [31]. A single-ended edge-cracked alu-
minum plate subjected to uniaxial tensile stress is shown
in Figure 3, where the fracture response is influenced by
critical factors including crack length (a), plate width (W),
and height (H). Dimensions for three distinct configuration
examples are shown in Table 1, with W varying while H
stays constant. A comparative analysis is necessary
because the three configurations differ somewhat in the
a/W ratio, which controls the SIF and crack propagation
behavior. Understanding failure causes and placing strain
gauges optimally for accurate readings depend on the
experimental determination of SIFs for these fractured
designs.

The goal of the current work is to identify the optimum
strain gauge placement for precisely measuring the SIF in
aluminum plates with single-edge cracks (Figure 4). The
study employs numerical simulations to assess how crack
length (a) and plate width (W) affect fracture behavior and
strain distribution under applied tensile loads. Finding
appropriate strain gauge locations is essential for reducing
measurement errors and guaranteeing accurate SIF

determination because different configurations have dif-
ferent a/W ratios. In thin metallic constructions, the results
will help validate numerical models for fracture analysis.

The present study considered theoretical expressions
that were previously presented for edge-cracked plates
subjected to uniform uniaxial tensile load; it also demon-
strates the geometric parameter and material properties of
the edge-cracked plate, respectively, which were used mul-
tiple times in the current studies; it presented the determi-
nation of rmax based on the theoretical expression in
conjunction with FE analysis for the prepared sample
(edge-cracked plate); and it uses a gauge line at a specific
angle concerning the fracture mechanics study to investi-
gate rmax for three configuration models.

5 FE modeling

Because it can model irregular meshes and provide high
accuracy in SIF computations, the PLANE183 design ele-
ment was selected for the FE analysis of edge-cracked alu-
minum plates in this study. Unlike lower-order elements
like PLANE182 (four-node), which use linear shape func-
tions, PLANE183 uses quadratic shape functions, which
improve the ability to capture stress gradients near crack
tips. The ability to include mid-side nodes, which raises the
precision of displacement and strain field approximations,
is one of the main advantages of the element. This char-
acteristic is particularly helpful in areas where stress sin-
gularities form, like crack tips, where there is a large con-
centration of stress. The mid-side nodes of PLANE183
elements were moved to the quarter-point location fol-
lowing accepted fracture mechanics modeling procedures
to precisely model the singularity at the crack tip. SIFs
may be precisely determined thanks to this quarter-point
approach, which guarantees that the 1/√r singularity
is accurately simulated [32]. Furthermore, PLANE183 is
appropriate for elastic-plastic fracture mechanics simula-
tions where material yielding may occur near the crack tip
since it allows nonlinear material behavior. When exam-
ining aluminum plates under heavy loads, this ability is

Table 1: Dimensions of the edge-cracked plates

Parameters (mm) Configuration 1 Configuration 2 Configuration 3

H 220 220 220
W 35 25 40
a 12.5 8.5 10.0
a/W 0.357 0.34 0.25

Figure 4: Applied boundary conditions for the edge-cracked plate.
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essential for effectively capturing the effects of both elastic
and plastic deformation.

As shown in Figure 5, line 7 has a spider-web meshing
pattern that was used in this study to enhance solution
convergence and preserve numerical stability around the
crack tip using collapsed PLANE183 components. Line 7 has
been initiated from the crack tip, and the crack has sin-
gular elements, which cannot be seen in the normal image
of the plate. Therefore, the zoom view of the crack has
been extracted to observe the singular element and the
gauge line, which is line 7, for a thorough understanding.
To compare the accuracy and computing efficiency of SIF,
mesh refinement studies were carried out using different
coarse, medium, and fine mesh densities. This method
improved the dependability of experimental validation
by guaranteeing that the ideal strain gauge site was iden-
tified with the fewest possible numerical errors. Therefore,
the PLANE183 element used in this study was crucial for
obtaining high-fidelity stress and strain predictions, which
are necessary for fracture analysis and evaluating the
structural integrity of cracked aluminum plates.

As reported in Table 1, samples with edge cracks of
three distinct lengths were subjected to the numerical
method for calculating rmax in fractured plates using the
FE method. Three mesh densities with a/W ratios of 0.357,
0.34, and 0.25 were used for each sample in convergence
research to assess the impact of mesh sensitivity on rmax

values. To evaluate their influence on the outcomes, the

number of elements (NE) and nodes (NN) associated with
each mesh arrangement were also noted.

5.1 Analysis

As seen in Figures 4 and 5, the mesh size is such that the
nodes of many elements fall along the radial line, creating
an angle of θwith the axis of the crack according to Eq. (13).
The gauge line leaves the edge-cracked plate at its external
boundaries after beginning at the tip of the crack.
According to the DS technique [28], to measure the linear
strain, εaa, as depicted in Figure 4, a single strain gauge
must be positioned at an appropriate location on this line
in the direction of α using Eq. (3). The linear strain, εaa, in
the direction indicated by α is then obtained from the
computed strains in the global coordinates concerning
the gauge line.

The radial distances (r) between each node on the
gauge line and the crack tip are then determined. Table 2
displays three mesh sizes for each configuration plate, and
a sample of mesh can be seen in Figure 6. The radius at the
crack point is 0, hence it is not considered in charts. It is
interesting to note that in all three examples, each scenario
has a distinct linear section followed by a nonlinear por-
tion (in logarithmic scale), as anticipated by theory in the
prior study. The linear trend is visible up to a certain radial
distance and then gradually shifts to the nonlinear section.

Figure 5: The FE model with meshing.
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6 Results in discussion

This section extracted the results of different configura-
tions of plates for the optimum location of the strain gauge
through the inclined line from the crack tip at an angle of
45 degrees. The current investigation used the DS tech-
nique based on the straight-line part that identifies the
initial fatal point. This technique initially used a line
with a slope of −0.5, which was superimposed on the plots
of ln(εx́x́) vs ( )rln  . Then, the slope line was used to calculate
the exact value and total relative error in percentage using
the formula ln(εx́x́). Finally, the radius variables were then
assessed across the plot. Based on the current investiga-
tion, it has been observed that the error is greater in the
nonlinear region and gradually lowers as one approaches
the corresponding point in the line of Eq. (16).

( ) ( ) ( )= − +′ ′ε r Cln 
1

2
ln ln .x x

(16)

The superposed line was utilized to determine the rmax

or point of deviation of the log-log plot, with an error of
0.5%. Eq. (5) represents the recommended approach for
rmax evaluation.

6.1 Configuration 1

For configuration 1, Figure 7 shows the obtained rmax

values, which represent the validity extent of the three-
parameter zone. Each plate has a unique a/W ratio, which
influences the gauge line distance because rmax varies
appropriately. As a result, this study obtains findings by
altering the a/W ratio to determine the ideal location of
rmax. Furthermore, the simulation models allow for mesh
size modifications, giving you more freedom when studying
different mesh combinations. To optimize the strain gauge
placement, each plate was evaluated with three different
mesh densities. Mesh sizes and names have previously
been set for each plate in this study (Table 2).

Figure 7 shows how mesh refinement has a substantial
impact on the estimate of rmax, illustrating that finer mesh
densities result in more precise estimations of the three-
parameter zone. Variation in ln(εx́x́) vs ( )rln over mesh sizes
shows a transition between linear and nonlinear behavior,
validating the three-parameter validity of the zone. This
emphasizes the importance of mesh convergence studies

Table 2: Mesh size of each plate

Mesh
size

Configuration 1
(a/b = 0.357)

Configuration 2
(a/b = 0.34)

Configuration 3
(a/b = 0.25)

NE NN NE NN NE NN

Size 1
(coarse)

666 1,972 447 1,318 1,913 5,942

Size 2
(medium)

2,790 8,379 2,394 7,253 5,023 15,384

Size
3 (fine)

8,012 24,097 6,951 20,998 11,364 34,481

)c()b()a(

Figure 6: Different FE meshes for a/b = 0.357. (a) NE = 666, NN = 1,975. (b) NE = 2,790, NN = 8,379. (c) NE = 8,012, NN = 24,097.
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for achieving accurate strain gauge placement. Moreover, the
variation in rmax values with varied a/W ratios emphasizes
the significance of adjusting strain gauge placements for accu-
rate SIF estimation. The study further confirms that, beyond a
given level of mesh refinement, no additional advances in
rmax or SIF values occur, showing numerical convergence.
These findings highlight the need for systematic FE modeling
to balance computational efficiency and ensure high-accu-
racy predictions in fracture mechanics analyses.

6.2 Configuration 2

Figure 8 depicts the linear and nonlinear fluctuations in ln
(εx́x́) vs ln(r) along the gauge line for different mesh den-
sities in configuration 2 (a/b = 0.34). Like configuration 1,

this graphic demonstrates howmesh refinement affects the
rmax estimate and the validity of the three-parameter zone.

The graphs for all meshes show how rmax values
change as the mesh density increases. The coarser mesh
(mesh 1) causes more pronounced nonlinearity, resulting
in higher variations in strain calculations around the
gauge line. The transition from linear to nonlinear beha-
vior happens early, implying a less accurate calculation of
rmax due to low mesh resolution. Mesh 2 of the revised
mesh enhances the precision of the strain distribution,
resulting in a longer linear region before transitioning
into the nonlinear zone. This shows that the strain field
is better captured, although slight errors in estimating rmax

remain. Mesh 3, the finest mesh, shows a well-defined
linear trend in the ln(εx́x́) vs ( )rln plot, closely matching
the expected slope of −0.5. The shift into the nonlinear
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Figure 7: Linear and nonlinear variation in ln(εx́x́) vs rln( ) along the gauge line for the sequence of meshes of the edge-cracked plate with a/W = 0.357.
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region happens at a greater distance, implying that the
three-parameter zone is better captured. The projected
rmax value from mesh 3 is more dependable than the
coarser meshes, emphasizing the importance of mesh
refinement in numerical SIF estimation.

Comparing the results to configuration 1 (a/W = 0.357),
as the a/b ratio varies, so do the associated gauge line dis-
tance and rmax location. The findings indicate that a more
refined FE mesh is necessary for lower a/b ratios to obtain
convergence in rmax determination. Furthermore, the final
revised meshes, which show no further improvement
in rmax values, are important in assuring precise strain
gauge placement for experimental validation. Thus, the
results of configuration 2 reinforce the need to complete

mesh convergence studies and adjust gauge line distances
based on a/W ratios, ensuring accurate rmax estimation and
dependable SIF determination in FE analyses.

6.3 Configuration 3

Figure 9 shows the linear and nonlinear fluctuations in ln
(εx́x́) vs ( )rln along the gauge line for different mesh den-
sities (mesh 1–3). Figure 9 shows how mesh refinement
affects the estimation of rmax and the size of the three-
parameter zone, like configurations 1 and 2, but with note-
worthy variations due to the lower a/W ratio.
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Figure 8: Linear and nonlinear variation in ln(εx́x́) vs rln( ) along the gauge line for the sequence of meshes of the edge-cracked plate with a/W = 0.34.
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In mesh 1 (coarse mesh), the shift from linear to non-
linear strain behavior occurs at a shorter ln(r) distance,
showing that a coarser mesh does not fully capture the
three-parameter zone. The small number of pieces causes
deviations from the predicted −0.5 slope earlier than with
finer meshes, resulting in a less accurate estimate of rmax.
For mesh 2 (medium mesh), the refinement enhances
strain distribution accuracy, resulting in a longer linear
region before shifting to the nonlinear zone. The ln(r)
value has changed relative to mesh 1, indicating a more
credible estimate. However, certain deviations from the
expected slope exist, indicating that further adjustment is
required for optimal accuracy. Mesh 3 (fine mesh) shows
the most refined linear trend in the ln(εx́x́) vs ( )rln plot,

closely matching the expected slope of −0.5. The shift into
the nonlinear region occurs at a greater radial distance,
indicating that finer meshes better capture the three-para-
meter zone. The projected rmax value in this scenario is the
most dependable of the three, highlighting the significance
of fine meshing in numerical strain gauge optimization.

When compared to configurations 1 (a/W = 0.357) and 2
(a/W = 0.34), configuration 3 has a significantly larger valid
rmax zone due to its lower a/W ratio. The wider plate width
and shorter fracture length result in a less steep strain
gradient, necessitating finer meshes to accurately calculate
rmax. This demonstrates that as a/W declines, the necessary
mesh refinement increases to reflect the genuine strain
of behavior. As a result, the findings of configuration 3
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Figure 9: Linear and nonlinear variation in ln(εx́x́) vs rln( ) along the gauge line for the sequence of meshes of the edge-cracked plate with a/W = 0.25.
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highlight the significance of mesh convergence research in
fracture mechanics. The investigation demonstrates that
beyond a particular mesh refinement level, no further
increase in rmax and SIF estimation is found. This validates
the final refined mesh as best for strain gauge placement
and SIF calculations.

6.4 Comparison of all samples

The results in Table 3 show how rmax values converge with
mesh refinement for various a/W ratios. As shown, rmax

drops as mesh size decreases, demonstrating that mesh
refinement has a major impact on the valid measurement
zone for strain gauges. For a/W = 0.357, mesh 1 has an
initial rmax value of 23.33 mm, which decreases to
20.29 mm. When the mesh size is high, mesh 3 is used,
indicating a definite convergence trend. A similar pattern
is observed with a/W = 0.34, with rmax decreasing from
18.17 mm (mesh 1) to 17.51 mm (mesh 3). The same tendency
is observed for a/W = 0.24, where rmax decreases from 13.12
to 12.16 mm as mesh density increases. These findings
demonstrate that when the a/W ratio declines, so does
rmax, implying that finer meshes are required to accurately
capture the three-parameter zone. Furthermore, the slight
differences in rmax between meshes 2 and 3 demonstrate
that beyond a certain level of refinement, additional mesh
increases give negligible improvement, emphasizing the
necessity of mesh convergence studies in fracture
mechanics simulations.

6.5 Validation of the current method

The current FE analysis of rmax values for the edge-cracked
plate was compared to the results of Sarangi et al. [12] for a/
W = 0.34 and 0.357. As demonstrated in Figure 10, the
current results and Sarangi et al. [12] results are nearly
identical, with a relative error of less than 3%, which can
be seen in Table 4.

This validates the existing numerical accuracy of the
model in calculating rmax for edge-cracked plates. It is
important to note that Sarangi et al. [12] did not examine
a/W = 0.25; hence, validation could only be performed for
the two samples (a/W = 0.34 and 0.357). The present
samples were created using the existing model, assuring
consistency in methodology and allowing for direct compar-
isons between the two subjects of research. The minimal
changes between the results are due to mesh refinement
modifications, numerical discretization, and tiny computing
differences in the FE modeling approach. Nonetheless, the
significant agreement between the two investigations sup-
ports the existing approach for strain gauge placement and
rmax estimation in the research of fracture mechanics.

7 Conclusion and
recommendations

Using numerical modeling, this work successfully found
the best strain gauge placement for measuring SIF in
single-ended fractured aluminum plates with three
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Figure 10: Comparison of results.

Table 4: Comparison of current work and relative error

Specimen rmax (mm) rmax (mm) Relative
error %Current

results
Sarangi
et al. [12]

1 (0.34) 17.51 17.93 2.342
2 (0.357) 20.26 20.86 2.876

Table 3: Model configuration

Mesh size rmax (mm)

a/W = 0.357 a/W = 0.34 a/W = 0.24

Mesh size 1 23.33 18.17 13.12
Mesh size 2 20.90 17.81 13.08
Mesh size 3 20.29 17.51 12.16
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different configurations. The investigation indicated that
rmax, the maximum valid radial position for strain mea-
surements, is substantially influenced by the a/W ratio
and mesh refinement level. The findings revealed that posi-
tioning strain gauges too close to the crack tip produces
errors due to plasticity effects, while placing them too far
away causes a loss of sensitivity to the singularity-domi-
nated strain field. Mesh convergence research revealed
that after a certain level of mesh refinement, more refine-
ment produces a modest gain in rmax and SIF accuracy. The
FE results were tested against experimental data, which
revealed a relative error of less than 3%, validating the
robustness of the suggested technique. This research
extends the current understanding of strain gauge optimiza-
tion by addressing configurations of aluminum plates with
varying a/W ratios, which have been underrepresented in
earlier work. Unlike prior studies that primarily focus on
composite materials or fixed configurations, our study pro-
vides a generalized FE framework for rmax estimation across
multiple edge-crack geometries. Furthermore, by incorpor-
ating a systematic mesh refinement analysis, this work
enhances the precision of strain-based SIF measurements
in isotropic materials, thereby contributing a novel metho-
dology for fracture assessment in metallic structures.

As the current study attempted to discover the optimal
strain gauge location for SIF examination using the FE
approach, future research could consider confirming the
same configurations of a thin aluminum plate with experi-
mental results. Furthermore, this modeling technique can
be applied to Mode II or mixed mode cracked plates and
complex geometries to improve SIF determination
methods. Finally, the same mixed-mode fracture models
can be validated by experimental data.
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