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Abstract: In order to achieve total biodegradability in
polymer materials, researchers are looking into natural
polymer matrices and fillers to replace the existing par-
tially biodegradable polymers and particle-filled compo-
sites. This work focuses on using a natural polymer matrix
derived from neem shells as a hosting medium and walnut
shell powder as a particle filler. Mechanical characteriza-
tion is carried out, which includes an examination of tensile
strength, modulus, thermal conductivity, and impact strength.
The composite specimens, which contain varied weight frac-
tions of walnut shell powder, are tested. The results show that
increasing weight fractions leads to significant improvements
in mechanical qualities. At a 25% weight fraction, the tensile
strength increases by 57.5%, while the flexural strength
improves by 59.09%. Additionally, at a 30% weight fraction,
the impact strength shows a remarkable increase of 282%,
whereas thermal conductivity decreases by 36.36%. These

findings highlight the potential of natural reinforcements
in biodegradable polymer composites, demonstrating their
ability to enhance mechanical performance while reducing
thermal conductivity and find applications in the automotive
industry, construction, packaging goods, and biocompatible
materials for prosthetics and implants.

Keywords: neem shell liquid, walnut shell powder, tensile
strength, tensilemodulus, impact strength, thermal conductivity

1 Introduction

With the increasing awareness of global warming, there
has been a shift toward biodegradable polymer matrices to
mitigate environmental degradation. Conventional polymer
matrices significantly contribute to pollution, making it cru-
cial to either minimize their usage or replace them with
biodegradable alternatives [1–3].

Efforts have been made to introduce fully or partially
biodegradable polymer matrices to reduce environmental
impact [4–7]. This is achieved by reducing the polymer
content by incorporating biodegradable agricultural waste
[8–10] and by replacing synthetic polymers with bio-based
alternatives such as polysaccharides, natural rubbers, starch
blends, and PHA-based biopolymers [11–15].

One option for mitigating this impact is to minimize
the use of polymer matrices, hence lowering their environ-
mental impact [4–7]. Furthermore, substituting non-biode-
gradable polymer matrices with fully or partially biodegrad-
able alternatives is critical to increasing total biodegradability
[8–10]. Numerous researchers have explored natural polymer
matrices derived from plant-based sources, evaluating their
mechanical properties.

Partial biodegradability can be accomplished by low-
ering the polymer content and introducing biodegradable agri-
cultural waste [11–13]. Another aim is to completely replace
synthetic polymers with biodegradable, non-synthetic alterna-
tives [14]. Natural polymers originating from various plant-
based sources are currently being identified. Many researchers
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have shed light on many natural matrix materials, including
polysaccharides [15], natural rubbers and oils [16], starch-
blended biodegradable polymers [17], and starch-PHA blend-
based biopolymers [18].

Once various sources for producing natural polymer
matrices have been identified, the next step is their charac-
terization to assess their mechanical properties. In this study,
luffa natural fiber is used as reinforcement, while natural
rubber serves as the matrix in composite fabrication. The
tensile strength of these composites is predicted [19,20].
Furthermore, efforts are being made to enhance the mechan-
ical properties of natural polymers while preserving their
biodegradability. This includes improving the strength, dur-
ability, and other mechanical attributes to ensure that biode-
gradable materials remain viable alternatives to synthetic
polymers while reducing environmental impact.

Du et al. [21] used high-yield pulp from hardwood and
softwood, and fibers from bleached kraft softwood pulp,
and the mechanical and thermal characteristics of the com-
posite were described.

A thermomechanical analysis has been conducted on a
few new, fully bioactive, three-component composite sys-
tems meant for bone augmentation and repair by Nazhat
et al. [22]. Using direct injection molding, new Himalaya
calamus falconeri fiber-reinforced polylactic acid bio com-
posites were created, and mechanical characterization was
performed [23]. The leftover fruit from tamarind was stu-
died as a potential polymer composite filler for dashboard
applications in cars, as suggested [24]. It was found that a
greater tensile strength of 27 MPa, particularly for the com-
posite with 80% matrix, 14% flax, and 6% pine cone fibers,
was observed [25]. Research has been done on the physio-
chemical properties, thermal properties, and other fea-
tures of Careya Arborea (CA) fiber [26] and particulate
composites are clearly studied [27].

Most research has focused on identifying naturally occur-
ring biodegradable fillers and PLA-based matrices for the
development of biodegradable composites. Additionally,
extensive material characterization has been conducted to
ensure their suitability for various applications. However,
until now, there has been no discussion on the mechanical
characterization supporting finite element analysis (FEA) of
neem shell liquid as a matrix material combined with a nat-
ural filler. In this study, efforts are made to develop a biode-
gradable composite using neem shell liquid as the matrix and
walnut shell powder as the filler. Furthermore, the thermal
behavior of the fabricated composites is analyzed using the
finite element approach.

This study aims to develop a biodegradable composite
using neem shell liquid as the matrix and walnut shell
powder as the filler. The mechanical properties of the

composite were investigated to assess its suitability for
practical applications. Additionally, FEA was used to study
the thermal behavior of the composite, addressing a gap in
current research. This approach introduces a novel biode-
gradable matrix, reducing reliance on synthetic polymers
while maintaining structural integrity and eco-friendli-
ness. While most studies are limited to predicting tensile
and flexural modulus, this research extends beyond these
properties by also identifying thermal conductivity and
performing impact analysis using finite element methods.

2 Materials and methods

To prepare the natural composite material, two natural
components are used: a natural matrix made from neem
shell liquid (Figure 1a) and walnut shell powder (Figure 1b)
as another natural constituent. The hand layup method is
used to create full composite specimens that include a nat-
ural filler and a natural matrix (Figure 1c–e). This proce-
dure entails manually pouring the walnut shell powder
into the neem shell liquid matrix to create the required
composite specimen, which is then tested using the uni-
versal tensile testing machine (Figure 1f).

Neem shell liquid matrix is the liquid component recov-
ered from neem shells. When treated, these shells produce a
liquid fluid that can be used as a natural matrix material in
compositemanufacturing. Neem shell liquid is purchased from
Vriksha Agencies, along with appropriate hardeners and cata-
lysts. Additionally, walnut shell powder, obtained from
Bellanuts, is mixed with the neem shell liquid, along with the
hardener and catalyst. The mixing ratio for walnut shell
powder ranges from 5 to 30% by weight, with 5% interval.

A sonication procedure is used to verify that the
walnut shell powder and neem shell liquid are properly
mixed at the considered weight fractions. Ultrasonication
aids in the homogeneous blending of walnut shell powder
with neem shell liquid, resulting in inhomogeneity in the
composite material. This facility is located at Prasad V
Potluri Siddhartha Institute of Technology (Kanuru,
Vijayawada, Andhra Pradesh, India).

This liquid matrix, when mixed with additional nat-
ural reinforcements like walnut shell powder, can be used
to prepare composite materials with specific weight frac-
tions. In the context of natural composite production, the
neem shell liquid matrix functions as a binder or adhesive,
binding the filler particles together to form a cohesive
structure. A particle filter mesh collects uniformly sized
walnut shell powder particles. The diameter of the green
waste powder particles is maintained at 0.3 mm.
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To prepare the specimen with a weight fraction of 5%
walnut shell powder, 1.2 g of dry walnut shell powder is
suspended in 60.2 mL of neem shell liquid. Initially, the
mixture is mechanically agitated at 150 rpm for 1 h. This
stirring operation ensures that the walnut shell powder is
thoroughly mixed with the neem shell liquid, resulting in a
uniform product.

Following mechanical swirling, the mixture is sub-
jected to ultrasonication for additional processing. The
ultrasonicator runs at 600 rpm for 2 h. During this period,
ultrasonic waves are applied to the mixture, promoting the
dispersion of walnut shell powder particles and improving
the mixture’s homogeneity. This ultrasonication technique
helps to remove any leftover agglomerates, resulting in a
well-dispersed composite material with consistent charac-
teristics throughout the specimen.

After sonication, the material is poured into molds
to form composite specimens. These specimens are pre-
pared for tensile, flexural, impact, and thermal conduc-
tivity testing to evaluate the mechanical properties of
the walnut shell-reinforced neem shell matrix compo-
site. All specimens undergo a 24-h curing process before
testing. To ensure measurement repeatability, four spe-
cimens are prepared for each weight fraction examined
in the investigation.

The weight fraction examined for the study is limited
to 30% based on open literature, as many studies have

demonstrated that the optimum concentration lies
between 20 and 30% [20,21].

Tensile specimens are prepared using the ASTM D3039
procedure, whereas flexural specimens are prepared using
the dimensions recommended by ASTM D790. ASTM D256
guidelines are used to produce impact specimens, while
ASTM Designation E1530 is used to prepare the thermal
conductivity specimens.

Tensile and flexural tests are carried out using a digital
universal tensile testing machine. The testing speed is kept at
2mm/min, and a 20 kN load cell is used for both tests. For the
Izod impact test, all prepared natural composites are evalu-
ated using the Izod Charpy Impact Tester Touch Screenmodel
with an H1 impactor. When the H1 impactor strikes the spe-
cimen, it generates 2.71 J of potential energy. Tensile, flexural,
impact, and thermal conductivity testing is carried out at
Prasad V Potluri Siddhartha Institute of Technology
(Kanuru, Vijayawada, India).

2.1 Finite element modeling of the wall nut
powder mixed with neem shell matrix
composite

The performance of a unique natural composite material
made of powdered walnut shell mixed with a matrix of

Figure 1: Neem shell and walnut shell powder along with the pure and filler mixed specimens: (a) neem shell liquid, (b) wall nut shell powder, (c) pure
neem shell specimens, (d) tensile specimens of neem shell and wall nut powder, (e) flexural specimens of neem shell and wall nut powder, and
(f) tensile testing of composite specimen.
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neem shell is assessed in this study using a thorough
thermal analysis. The main goal is to evaluate this envir-
onmentally friendly composite material’s capacity for
thermal insulation under heat loading conditions, which
is essential for uses in packaging, thermal barrier systems,
and sustainable building.

ANSYS Workbench, a popular engineering simulation
program, is utilized to carry out the study through finite
element-based simulation. Based on actual fabrication con-
siderations for insulating panels, the composite sample is
modeled as a rectangular plate with dimensions of 100 mm
× 100mm in length and width and a thickness of 5 mm. In
order to provide a standard test specimen appropriate for
comparing thermal performance, certain geometrical
parameters were carefully selected (Figure 2a).

The ANSYS Workbench environment’s Design Modeler
module is used to create the geometrical model of the
composite plate. This entails establishing the 3D geometry,
allocating suitable material attributes based on the wal-
nut–neem composite’s experimental characterization,
and getting the model ready for meshing. After that, the
finite element mesh is produced with enough accuracy to
precisely depict temperature gradients throughout the
plate’s thickness and surface.

In order to apply thermal boundary conditions, one
face of the plate is simulated to be exposed to a constant
heat flow or temperature source, while the other face is
kept at room temperature or insulated. This configuration
replicates the actual circumstances used to assess thermal
insulation performance (Figure 2a), which depicts the 3D
structure of the composite plate, serves as a visual refer-
ence for the analysis scenario, and displays the resultant
geometrical model and simulation setup. The simulation’s
findings on temperature distribution and thermal defor-
mation provide important information on how well the
composite withstands heat flow, strengthening the recom-
mendation for thermal insulation applications.

To evaluate the thermal insulation capabilities of the
proposed natural composite, a steady-state thermal ana-
lysis is conducted using ANSYS Workbench. Table 1 lists
the material properties considered in the analysis, such
as density, specific heat capacity, and thermal conductivity.
Both the pure neem shell matrix material and the walnut
shell powder–neem shell matrix composite have these
characteristics and have been shown experimentally.

In order to simulate a warm environment, a thermal
boundary condition is applied, exposing one surface of the
composite plate to a continuous heat source of 50°C. To
represent actual operating conditions, the opposite surface
is kept at room temperature (22°C). This configuration makes
it possible to examine heat flux and temperature distribution
through the thickness of the composite, which are the two
important markers of the material’s ability to insulate against
heat. The geometrical model of the composite plate (100mm ×

100mm × 5mm) is discretized using the SOLID186 element, a
20-node higher-order 3D solid element with quadratic displa-
cement behavior, in order to carry out the FEA. SOLID186 is

Figure 2: (a) Composite plate dimension and applied loading conditions.
(b) Presents the finite element contours of Uz in the composite plate used
for validation [28].

Table 1: Material properties

S.I. no Type of material Thermal conductivity
(W/mm°C)

1. Neem shell matrix 0.0012235
2. Walnut-filled matrix at 25%

weight fraction
0.77861
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appropriate for precisely recording the temperature gradi-
ents and structural responses in composite materials because
each node has three degrees of freedom, or translations in the
x, y, and z axes.

To represent the real behavior of the material under
thermal loading, the finite element model is built from the
geometric model, as shown in Figure 2. Heat transfer
through the composite is shown graphically and quantita-
tively by the temperature distribution and heat flux vec-
tors that were derived from the simulation. A comparative
investigation is carried out to demonstrate the benefits of
adding walnut shell powder to the neem shell matrix. A
plate composed of a pure neem shell matrix is subjected to the
same loads and boundary conditions, and the thermal
responses are contrasted. The temperature distribution over
the thickness of the plate varies noticeably due to the different
thermal conductivity of the two materials. This comparison
successfully illustrates the blended composite’s improved
thermal insulation properties, bolstering its possible applic-
ability in applications needing increased thermal resistance
while preserving sustainability and biodegradability.

2.2 Validation of the finite element method

In order to verify the precision of the FEA, the outcomes of
the simulation were compared to the conclusions pre-
sented in Jameel and Yousuf [28]. The identical geometry,
material properties, boundary conditions, and thermal
loading conditions were used to model the same problem
in ANSYS for the current investigation.

Thermal loads of 60 and −15°C were used to assess the
static deflections in the X and Y directions. The projected
deflections are in good agreement with the experimental
and simulation results described in the reference publica-
tion, according to a thorough comparison of the simulated
results and the published data. This uniformity attests to
the correctness and dependability of the finite element
method used in this investigation.

At 60 and −15°C thermal loading, with a volume frac-
tion of 25.076%, the deformation in the Z-direction is simu-
lated. The finite element contours showing the Z-direction

deformation under 60°C loading conditions are presented
in Figure 2(b). The percentage variation between the pre-
sent simulation results and the published results is 3.52% at
60°C and 3.26% at −15°C, respectively. Table 2 presents the
simulation results along with the corresponding percen-
tage errors compared to the published data.

3 Results and discussion

Figure 3 displays the tensile strength of a composite mate-
rial made of a natural matrix filled with walnut shell
powder. The filler amount of walnut powder varies from
5 to 30%. For comparison, specimens without walnut filler,
i.e., pure neem shell matrix specimens, are evaluated and
compared to identify the improvement.

The infusion of walnut shell powder increases the ten-
sile strength by 10% above the prior percentage. For
example, when comparing 0 and 5% walnut shell powder,
the tensile modulus improves by 10%. Similarly, comparing
10–5% yields a 10% improvement. The maximum strength
of 31.5 MPa is achieved for a 25% walnut shell powder
concentration. However, the characteristic decreases

Table 2: Verification test of static analysis under different thermal loading of Vf = 25.076% [28]

Temperature (°C) Simulation (mm) [28] Present work (mm) % of error compared to simulation results

60 2.3182 × 10−4 2.4 × 10−4 3.52
−15 4.6 × 10−5 4.75 × 10−5 3.26

Figure 3: Variation of tensile strength with WSP%.
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beyond this limit due to particle aggregation in the neem
shell matrix. At this concentration, the walnut shell
powder effectively reinforces the neem shell matrix,
enhancing load-bearing capacity and mechanical perfor-
mance. However, beyond this threshold, the mechanical
properties begin to decline. This reduction is primarily
attributed to particle aggregation, where excessive filler
content leads to clustering and uneven dispersion within
the matrix. These agglomerates act as stress concentrators,
disrupting the uniform stress transfer between the matrix
and the filler. Additionally, higher filler loading may
reduce the matrix’s ability to adequately wet and bond
with the walnut shell powder, leading to weak interfacial
adhesion and increased void formation. Consequently,
instead of enhancing the composite’s mechanical proper-
ties, excessive filler content compromises its structural
integrity, leading to a decline in strength. This agglomera-
tion reduces dispersion and interfacial adhesion between
the walnut shell powder and the neem shell matrix,
resulting in a reduction in tensile strength [29–31].

Figure 4 depicts the flexural strength of a composite
material made of walnut shell blended with neem shell
matrix. Flexural strength improves with the addition of
5% walnut shell powder to the neem shell matrix. This
pattern continues until 25%, at which point the character-
istic decreases by 4.28% [32].

The decrease in the property after adding 25% walnut
shell powder can be attributed to restrictions in effective
transformation within the neem shell matrix liquid due to
the increasing amount of the filler material [33]. When the
concentration of walnut shell powder surpasses the recom-
mended range, it becomes difficult for the neem shell

matrix to accommodate and distribute the filler evenly.
This uneven distribution can cause localized stress concen-
trations and discontinuities within the composite struc-
ture, resulting in lower flexural strength.

Consequently, localized stress concentrations form,
increasing the likelihood of microcracks and structural dis-
continuities under applied loads; additionally, an excessive
amount of filler weakens the interfacial adhesion between
the two phases by reducing the matrix’s ability to fully
encapsulate and bond with the walnut shell powder, which
results in premature failure when subjected to bending
forces, lowering the composite’s flexural strength; addi-
tionally, an excessive amount of filler can introduce voids
and defects within the material, further jeopardizing its
overall mechanical integrity; therefore, maintaining an
ideal filler concentration is essential to the composite’s
balance between reinforcement and structural stability.

Thus, while the inclusion of filler material initially
improves mechanical qualities, surpassing the appropriate
concentration might result in diminishing returns and a
decrease in the overall performance [34].

The impact strength of the constructed composite is
shown in Figure 5. Unlike tensile and flexural strength,
which might vary with the addition of filler, impact
strength improves continuously with the addition of the
filler material [35].

The addition of walnut filler significantly increased the
impact strength as compared to the pure neem shell
matrix. For example, adding 5% walnut shell powder to
neem shell resin increases the impact strength from 5 to
8 kJ/m2. This suggests that the natural matrix may struggle
to absorb abrupt loads. However, by including natural bio-
degradable fillers in the matrix, the impact strength can be
greatly enhanced [36].

Figure 4: Variation of flexural strength with WSP%. Figure 5: Variation of impact strength with WSP%.
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Toughening mechanisms include crack deflection,
energy dissipation through filler–matrix interactions, and
enhanced stress distribution introduced by the filler.
Because of its increased fracture resistance, the composite
is a more practical material for applications that need
increased impact durability without sacrificing its biode-
gradable and environmentally benign qualities.

The continual improvement in impact strength with
increasing filler content shows that the addition of walnut
shell powder improves the composite material’s capacity to
sustain rapid impacts or dynamic loading conditions. This
increased impact resistance may make the composite
appropriate for applications in which structures are sub-
jected to impact loads within the prescribed range [37].

The decrease in tensile and flexural strength at 30%
walnut shell reinforcement is likely due to the excessive filler
content, which can lead to poor interfacial bonding between
the matrix and filler, resulting in stress concentration points
and reduced load transfer efficiency. However, the impact
strength increases with higher filler content because walnut
shell particles act as energy-absorbing elements, enhancing
toughness and resistance to sudden loads. This trade-off high-
lights the importance of optimizing filler content to balance
the mechanical properties.

Figure 6 shows the thermal conductivity of the created
natural composite. The thermal conductivity of the pure
matrix was measured to be 1.22352W/m K. Interestingly,
the incorporation of walnut shell powder within the
matrix reduces thermal conductivity [38]. This means
that adding walnut shell powder to the neem-shell matrix
boosts its insulating ability significantly. The addition of
walnut shell powder improves the thermal insulating capa-
city of the pure neem shell resin by up to 36%. This suggests
that the presence of walnut shell powder improves the
composite’s ability to resist heat transfer, resulting in
better thermal insulation qualities.

However, after adding a 20% weight fraction of walnut
powder, the heat conductivity levels off. This implies that
adding walnut shell powder at higher concentrations does
not result in significant improvements in the thermal insu-
lating capacity. As a result, adding walnut shell powder
into the resin at this concentration yields the highest
thermal insulating capacity [39].

Scanning electron microscopy (SEM) images were cre-
ated utilizing the VEGA3 Tescan SEM with a 10 kV voltage.
Scanning electronic images of the walnut powder blended

Figure 6: Variation of thermal conductivity with WSP%.

Agglomeration 

Voids 

Figure 7: SEM images of walnut powder mixed with a neem shell matrix composite.
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neem shell matrix composite are shown in Figure 7. These
images were captured at 30% wall nutshell powder mixed
with a neem shell matrix composite. The formation of

voids and agglomeration is responsible for the decrease
in tensile strength at a 30% weight fraction of walnut
powder in the neem shell matrix.

Figure 8: Temperature distribution of the plate made with the neem shell matrix.

Figure 9: Heat flux in the X-direction of the plate made with the neem shell matrix.

Figure 10: Temperature distribution of the plate made with the walnut-filled neem shell composite.
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3.1 FEA of the walnut powder mixed with a
neem shell matrix composite

Figure 8 depicts the temperature distribution within the
pure neem shell matrix, demonstrating how the tempera-
ture changes over the plate’s thickness when the tempera-
ture difference is between 22 and 50°C.

Figure 9 shows the heat flux in the x-direction, demon-
strating how it varies across the plate’s thickness. Under
the specified parameters, the total heat flow for the pure
matrix is determined as 0.0068517W/mm2.

In this work, the analysis was conducted by replacing
the pure resin plate with a walnut-filled neem shell com-
posite. It is observed that while changes in the temperature
distribution (Figure 10) may not be significantly impacted
by changes in thermal conductivity, significant differences
are observed in the total heat flux and directional heat flux
of the composite plate. The total heat flux of the composite
plate is 4.3574 × 10−003, which is 36.4% less than that of the
pure matrix used in the study. This reduction in heat flux
shows that the walnut shell powder mixed with a neem
shell composite material has better thermal insulation qua-
lities than the pure matrix [40].

The addition of walnut shell powder to the neem shell
matrix modifies the thermal characteristics of the compo-
site, resulting in decreased heat transport through the
material. This is due to the natural insulating qualities of
walnut shell powder, which form barriers to heat conduc-
tion inside the composite structure.

Furthermore, the directional heat flow study shows
changes in heat transport patterns within the composite plate
(Figure 11). These changes show that the composite material
effectively reduces heat transmission in specific directions,
which contributes to its better thermal insulation ability.

The findings indicate that the walnut-filled neem shell
composite has better thermal insulation properties than the

pure matrix, making it a potential material for applications
requiring effective heat management and insulation. This
analysis sheds light on how changes in the thermal conduc-
tivity of the plate material influence temperature distribution
and heat flux within the composite plate. By comparing these
findings to variations in material properties, engineers may
improve the design for thermal insulation applications,
assuring efficient heat transfer management and improving
composite performance in real-world settings.

4 Conclusions

In order to create high-performing, eco-friendly composite
materials, this study offers a thorough assessment of the
incorporation of walnut shell powder as a reinforcing filler
into a biodegradable resin matrix based on neem shells. The
study demonstrates the promise of such natural materials
for sustainable engineering applications by highlighting
notable improvements in the composite’s mechanical and
thermal characteristics.
• The neem shell-based composite’s tensile modulus is sig-
nificantly increased by the addition of walnut shell
powder. When compared to the pure neem shell resin
without any filler, the composite showed a significant
57.5% increase in tensile modulus with a filler loading
of 25% by weight. This notable improvement emphasizes
how the stiff lignocellulosic structure of walnut shell
particles, which serve as efficient stress transfer sites
within the polymer matrix, provides a stiffening effect.

• Additionally, the flexural strength is significantly increased
by the use of walnut shell powder. The tensile performance
is in line with the ideal filler proportion that produces this
improvement; a 25% weight fraction of powdered walnut
shell results in an improvement of roughly 59% over the
pure matrix material. Better load-bearing capability and

Figure 11: Heat flux in the X-direction of the plate made with the walnut-filled neem shell composite.
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enhanced interfacial adhesion between the filler and
matrix at this concentration are responsible for this.

• The gradual improvement in impact strength with
increasing filler content is among the study’s most striking
findings. The addition of powdered walnut shell greatly
enhances the material’s capacity to absorb and release
energy under conditions of abrupt loading. The composite
was shown to have an impact strength enhancement of up
to 282%, which makes it ideal for applications requiring
great toughness and resistance to dynamic loads.

• The inclusion of walnut shell filler shows encouraging
outcomes in terms of thermal insulation. Thermal con-
ductivity is decreased by about 36% when 30% walnut
shell powder is added to the neem shell resin, suggesting
improved insulating qualities. This conclusion is sup-
ported by complementary FEA, which demonstrates a
36.4% decrease in heat flux, confirming the composite’s
improved thermal barrier performance.

These results highlight the potential of neem shell-
based composites with walnut shell powder for sustain-
able, biodegradable applications requiring enhanced
mechanical strength and thermal insulation.
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