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Abstract: Crack classification in structural surfaces is
critical for ensuring the safety and longevity of civil infra-
structure. While deep learning models have shown pro-
mising results in automating this process, their ability to
generalize across diverse datasets remains a significant
challenge. This study investigates how well deep learning
models generalize for crack classification across varied
datasets and identifies which models perform best under
self-testing and cross-testing conditions. Four models —
Convolutional neural network (CNN), residual network
(ResNet50), Long Short-Term Memory (LSTM), and Visual
Geometry Group (VGG16) — were evaluated using six pub-
licly available datasets: Structural Defects Network 2018,
surface crack detection (SCD), Concrete and pavement
crack (CPC), Crack detection in images of bricks and
masonry, concrete cracks image, and historical building
crack. To ensure consistency, all images were resized to
224 x 224 pixels prior to training. The training pipeline
incorporated data augmentation (random flips and rota-
tions), transfer learning, and early stopping to optimize
performance and mitigate overfitting. In self-testing,
VGG16 and CNN achieved the highest accuracies, with
VGG16 reaching 100% on both SCD and CPC. However,
cross-testing revealed substantial performance degrada-
tion, particularly when models trained on high-resolution,
structured datasets were tested on lower-resolution data-
sets with complex textures. ResNet50 had managed to hold
its own across the orchards of domains but was still a little
troubled with the variability of the surface and noise,
whereas LSTM became less useful as it struggled with the
extraction of spatial characteristics. This study is central to

* Corresponding author: Mohammed Rasheed, Applied Sciences
Department, University of Technology- Iraq, Baghdad, Iraq,

e-mail: rasheed.mohammed40@yahoo.com

Taha Rashid: School of Electrical Engineering, Universiti Teknologi
Malaysia, UTM Johor Bahru, 81310, Johor Bahru, Malaysia; College of Arts,
Al-Iragia University, Baghdad, Iraq

Musa Mohd Mokji: School of Electrical Engineering, Universiti Teknologi
Malaysia, UTM Johor Bahru, 81310, Johor Bahru, Malaysia

the fact that dataset features like resolution, surface com-
plexity, and noise from the environment effect are crucial
for the overall generalization of the models. It further
implies that the basic augmentation and preprocessing
methods are useless in the battle against domain shifts.
Potential areas of investigation may be the advanced
domain adaptation, generative adversarial network-based
data synthesis, and hybrid modeling strategies, which may
be utilized to increase the robustness of the model. After
all, it was VGG16 and ResNet50 which stood out as the most
effective models, even though their success is highly depen-
dent on the variety of the data and the quality of the
images.

Keywords: crack classification, training pipeline, self-testing,
cross-testing, diverse datasets, generalization

1 Introduction

Deterioration of structural components like concrete,
asphalt, and masonry through the development of cracks
poses the threat of possible failures that might arise,
thereby adversely affecting the safety of buildings, bridges,
and other infrastructures [1]. Traditional manual inspec-
tion methods are heavy on workforce, subjective, and
prone to human errors, specifically because this happens
more often on large-scale infrastructure [2]. In the latest
few years, automated crack detection and classification
have become a hot topic due to the possibility of them being
able to upgrade the efficiency and accuracy of structural
health monitoring (SHM) [3]. Among these technologies,
deep learning models such as Convolutional neural networks
(CNNs), Residual network (ResNet50), Visual Geometry Group
(VGG16), and Long Short-Term Memory (LSTM) have been
widely acclaimed for automated crack identification and clas-
sification as they are found to be highly successful and viable
[4-6]. Although deep learning models have become famous
with some datasets, they have not been able to work across
various datasets, which are the concealed area yet to be
explored [7]. Normally, the performance of a model drasti-
cally diminishes when it is transferred to data that are
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acquired with different methods, picture resolutions, condi-
tions, and types of cracks from the training data [8]. These
differences decrease the practical values of these models
since they cannot be applied to cases in real life, where the
surface and structures of the cracks tend to show various
patterns and textures [9].

Crack classification plays a critical role in maintaining
structural safety and longevity in civil infrastructure. Two
illustrative engineering cases underscore the severe conse-
quences of misclassified or undetected cracks. The collapse
of Genoa’s Morandi Viaduct in 2018 led to 43 fatalities, where
undetected deterioration and inadequate crack monitoring
were identified as key factors contributing to failure — high-
lighting the limitations of manual inspection methods in iden-
tifying early-stage damage [10]. Similarly, in the collapse of
the Silver Bridge in 1967, a small crack in a critical eyebar
went undetected due to limited inspection capabilities,
resulting in total structural failure and 46 deaths [11]. These
tragic incidents demonstrate how missed or misclassified
cracks can escalate into full-scale failures. By systematically
evaluating and comparing models across diverse datasets,
our cross-dataset methodology aims to enhance the robust-
ness of automated crack detection systems under varying
conditions — potentially reducing the risk of false negatives
in real-world SHM applications.

One of the main reasons for the wide application of CNNs
in the field of image processing is that they are capable of
extracting location-based features from images [12]. Their
application in the field of SHM mainly involves the identifica-
tion of cracks and defects in materials used for construction
purposes like concrete, asphalt, etc. [13]. Their use is also very
extensive in medical imaging systems that include the
detection of fractures on bones, identification of tumors in
radiology scans, and the examination of retinal images for
diabetic retinopathy among others [14,15]. In cases of auton-
omous cars, the main function of CNNs is the identification of
road damage so that self-driven cars can navigate through the
roads more safely [16]. Moreover, they are part of quality
control systems in many industrial situations because they
can identify defects caused by the manufacturing process in
products, such as electronics [17], textiles [18], and metals [19].
The contribution of CNNs to the detection of those defects
brought about the advantages of enhancing the efficiency
of production and eliminating human inspection errors,
which they achieved at the same time [20].

ResNet50, a deep residual network, is known for its
ability to analyze complex textures and patterns, making
it highly suitable for crack detection in structural compo-
nents [21-23]. It is widely used in infrastructure inspection,
where it helps identify defects in bridges, tunnels, rail-
ways, and pavements with high precision [24]. Beyond civil
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engineering, ResNet50 is extensively applied in medical
diagnosis, particularly in histopathology image classifica-
tion for cancer detection and in brain MRI analysis for
neurological disorders [25]. In satellite and aerial ima-
gery, it is used to monitor urban development, land ero-
sion, and environmental changes, providing valuable
insights for geospatial analysis [26]. Additionally,
ResNet50 is employed in remote sensing applications,
including disaster assessment and post-earthquake
building stability analysis, contributing to emergency
response and risk management [27].

The text describes that a type of neural network, LSTM
networks, are good at predicting sequences and the weak-
nesses of the networks, if any. For example, the given
ability of LSTMs to be efficient in encoding temporal
sequences allows the network to model the evolution and
development of cracks, their age, which is of high impor-
tance in time-consuming and precise classification. The
core of the LSTMs possesses a significant advantage in
that they can record the data over a period. They can
thus store the data for a long time, which will give them
greater reliability and will allow them to make the right
decision at the time. It is the possibility that is especially
favorable in monitoring cases, where we are often dealing
with the sensors’ time series data for crack detection. The
third advantage that we have included is the reliability of
LSTMs despite any data gaps that may occur in the
sequences [28-30]. These network models retain their
ability for prediction even if there are substantial time
points between observations. Furthermore, LSTMs are
also adaptable so that they can be connected with other
types of deep learning techniques for making an initial
feature extraction on spatial data and then for sequential
analysis to be used. It also follows that the use of LSTMs has
shown that the methods are quite accurate within a certain
range of problems and that the use of LSTMs is of course in
compliance with each spatial pattern and the corresponding
time. There is also a working example of the situation where
LSTMs are employed in the analysis of the sensor-based mon-
itoring systems, like sensors of accelerometers in bridges and
buildings, allowing for them to detect vibrations and the like
[31]. In addition to their application in engineering, LSTMs are
also used in natural language processing to solve tasks like
speech recognition [32], machine translation [33], and
creating chatbots [34]. It does not matter whether we consider
their use in the financial sector where it is common to predict
stock market trends [35]. In the financial sector, they are used
for predicting stock market trends [36], and in predictive
maintenance, LSTMs analyze equipment sensor data to fore-
cast machinery failures, reducing downtime in industrial
operations.
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VGGI16 is a deep convolutional neural network known
for its high accuracy in image classification tasks [37]. Its
primary application in crack detection involves distin-
guishing between cracked and non-cracked surfaces in
civil infrastructure, making it useful for automated inspec-
tion of roads, bridges, and historical buildings [38,39]. In
medical image analysis, VGG16 has been successfully
applied in skin cancer classification, breast cancer detec-
tion in mammograms, and lung disease diagnosis from
X-rays [40]. It is also widely used in forensic science and
security applications, including facial recognition, finger-
print analysis, and object detection in surveillance footage
[41-45]. Additionally, in agriculture and precision farming,
VGG16 is employed to monitor crop health, identify plant
diseases, and assess soil conditions, aiding in sustainable
farming practices [46].

2 Related work

The identification of cracks in SHM as an infrastructure
safeguard and security measure has initially triggered sig-
nificant interest. The field of deep learning has dramati-
cally altered this area, by providing automated, accurate,
and scalable ways to detect cracks in almost every type of
structural material. A large amount of work has been car-
ried out in the area of deep learning where various tech-
niques including CNNs have been proposed and verified to
be beneficial for these purposes. These models have been
very successful but there have been several questions
regarding their cross-dataset performance.

One CNN-based strategy work has largely inspired
crack detection systems. The work of Darragh O’Brien
et al. [47] describes a CNN system that was based on
transfer learning where the VGG16 model (a model pre-
trained) was used to detect and categorize cracks in under-
ground infrastructure. They fed their model with 12,500
images, trained it, and then validated it beside the 30
high resolution samples that they have collected from Eur-
opean centre of nuclear research (CERN), where the accu-
racy was 96.6%, precision was 87.3%, recall was 92.4%, and
the system also got an F1 score of 89.3%. This system was
also designed for the classification of four different types of
cracks, namely, horizontal, vertical, diagonal, and complex
at 92.3% accuracy making it evident that it is capable of
tough environmental conditions. Similarly, the work of
Prashant Kumar et al. [48] was aimed to identify crack in
concrete through various datasets by grappling with six
pre-trained CNN models. The authors transferred the dis-
tinguishing traits and achieved the accuracy score of
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0.95-0.99 on the Mendeley dataset and 0.85-0.98 on the
newly introduced dataset by using these models which
gives a clear indication of the reliability and practical rele-
vance of the studied cases.

Classical methods using merged deep learning struc-
tures, which use not only CNNs but also other models or a
hybrid of different models, are the starting point in the
process of searching for the best setup to result in an
improved accuracy and model depth. A system was devised
by Gongfa Chen et al. [49] that inputs crack results through
three stages of a pipeline and employs generative adver-
sarial networks (GANSs) to endow one stage and CNNs with
another stage and is so innovative that it fakes data-like
images to boost the model-training process, which can
result in consistent outcomes in terms of accuracy, robust-
ness, etc., and the model would be suitable, even toward
real-world usage, while it outperforms the traditional
methods in all relevant metrics. Similarly, a project has
been conducted by Xianghe Zou et al. [50] to obtain better
wood defect information, where the authors presented the
ResNet-50 model with additional two halves so that it can
incorporate a Convolutional Block Attention Module and
Cross-Stage Partial Network; the result was an accuracy of
86.25% achieved by this hybrid model. It managed to recog-
nize deformity easily, such as stains and normal wood, and
exhibit the significance of the architecture optimization
and hence the optimizer significant role in kindling the
efficiency of the model as it performed so well.

Hybrid modeling consists of two models, one static and
one recursive, where CNNs are combined with recurrent
networks mainly by the purpose of capturing spatial-tem-
poral characteristics. The problem of detecting cracks and
defects in infrared thermographic images can be solved by
the application of two combined networks — a CNN and an
recurrent neural network (RNN)-LSTM. Existing implementa-
tion is not crisp enough and causes the high amount of false
detections. Therefore, Mohammad Asif Gandhi et al. [51]
introduced the CNN-RNN-LSTM hybrid structure for crack
detection that works on each defect type clearly and is also
affordable. Moreover, on the one hand, a major part of the
more complex model, Inception-ResNet-V2, was chosen by
Rana Ehtisham et al. [52-54] to solve the problem of wood
defects in the research to achieve the results of 92% accuracy
and thus avoid the effect of the crack on angle and width,
such that the measurement could be pretty accurate. Results,
therefore, suggest that the combination of different models
with various information sources can significantly boost the
overall detection performance.

Moreover, the study has expanded to not only finding
but also to autonomous reporting of condition. The authors
also proposed a housing condition based image captioning
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model with some attentional CNN-RNN, which was able to
generate structural condition descriptions for apartment
buildings. The ResNet50-LSTM achieved the highest accu-
racy, an F1 score of 0.79, which indicates the potential
breakthrough of these models to simplify building inspec-
tion reports and make them more interpretable.

Furthermore, there has been the search for an alter-
native to the same-domain model that will maintain the
generalization over different materials and structures in
the field of construction. In another study, Song et al. [55]
presented the method based on a residual CNN, which was
able to detect the cracks in concrete and asphalt, and
solved it using various domain adaptation techniques,
such as joint training and ensemble learning. The model
sustained high correctness by giving the correct result up
t0 97.8% on concretes and 87.6% on asphalts that had mate-
rial varieties. The authors point out that the usage of deep
learning with retrainable frameworks is quite beneficial
for crack detection of a material-independent nature.

Besides using standard image-based techniques, there
have been some other ideas on feature extraction. Song
et al. designed a wavelet transform for the conversion of
numerical acceleration signals into scalogram images. The
study also explored the possibility of the use of the transfer
learning with AlexNet and ResNet models for the same
problem domain and revealed that it gave just short of
100% accuracy in different damage instances. Their work
shows the world that using non-stereo data presentation in
damage assessment is possible.

Even though deep learning models were used by
researchers in various works to detect cracks, none of these
had the model tested on multiple datasets or used in a real-
world environment. In most of the studies, emphasis was
placed on CNN architectures, transfer learning, and data aug-
mentation to increase the accuracy of the model, while some
of the models used GANs, ResNet50s as well as the attention
mechanism to extract the features more effectively. Genuine
advancement occurred in the cases where machine learning
model architecture selection was based on validation accu-
racy, pooling methods such as max-pooling or average
pooling were utilized, or word embedding dimensionality
or word embedding numbers were optimized using the vali-
dation method. However, few studies have challenged the
ability of deep learning models to generalize in datasets
across different datasets with varying characteristics, resolu-
tions, and environmental conditions.

The research claimed that deep learning models
proved successful in the detection of the cracks, but often
they cannot cross the data where models are trained to
other datasets and hence their efficiency is not effective.
When a model that has been trained on one dataset is then
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verified on a test dataset with new different characteristics
or if the first dataset is extremely large and the architec-
ture of the second dataset is one led by a new architecture
generator will lead to challenges in the recognition of the
same features in the latter or even cause new features to be
detected. Moreover, when the second dataset contains
large numbers of untagged samples, the problem of distin-
guishing the indicated feature from noise will be another
problem. As a result, the models will show a decreasing
rise in performance with the increase in the ratio of
untagged samples in the second image dataset, making
the performance of the model unreliable in identifying
features and making it difficult to be supervised by
humans and machines.

In order to solve this problem, it is necessary to ensure
that our deep learning models can be generalized across
different datasets, and also, it is crucial to develop mechan-
isms to improve their adaptability. In this work, two
evaluation methods are used for model performance eva-
luation: Self-Testing and Cross-Testing. Self-Testing: this
method lets the models to be tested on the same set of
data as that with the training set to see whether they can
perform at the best state. Basically, the testing tells us the
model’s ability to learn, recognize, and classify the cracks
that it trained with in the first place, and are efficient
within a dataset (the given one). Cross-Testing: The
approach of generalization testing involves models
training with one dataset and then testing them with dif-
ferent ones. This approach is useful in understanding the
ability of the models to adapt to different textures, light
conditions, data collection techniques, and more.

The main purpose of this study is to show the circum-
stances under which the self-testing performance of each
model could be appraised on the training dataset of the
model. Also, the aim of this study is to discuss the condi-
tions that are relevant for cross-testing with the view to
evaluate the extent to which a model can learn and gen-
eralize. Based on the study, the type of deep learning archi-
tecture that makes the greatest contribution to these two
aspects is also going to be established. Finally, this work is
going to give some practical recommendations for improving
model adaptability and these will be: data augmentation,
transfer learning, and domain adaptation techniques. To get
the work done, four deep learning models like the CNN,
ResNet50, LSTM, and VGG16 models are going to be employed
across six different datasets of publicly available crack classi-
fication projects (Structural Defects Network [SDNET] 2018
dataset, surface crack detection [SCD] dataset, Concrete and
pavement crack [CPC] dataset, Crack detection in images of
bricks and masonry [CDIBM] dataset, concrete cracks image
[CCT] dataset, and historical building crack [HBC] dataset.).
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The existing study not only provides an overview but also
great insights into the generalization abilities of deep learning
models and the influential factors that can lead to a varied
performance of the models in different datasets while also
providing practical solutions for the models’ adaptation to
real-world problems.

The primary contribution of this study is the testing of
models under both self-testing (training and testing on the
same dataset) and cross-testing (training on one dataset
and testing on others) conditions to find out to what extent
they are able to generalize to new data. In addition, while
former research papers have mainly discussed the use of
GAN-based models in the context of data augmentation, the
attention mechanisms, and the hybrid models have been
under discussion. This work further provides a compre-
hensive analysis of the features of the dataset, for example,
the effect of image resolution, the changes in the texture of
the images, and the noise in the environment, on the gen-
eralization of the model. The outcomes of the present
research offer quite fresh insights into ways of improving
the performance of machine learning-based crack detec-
tion models by orienting them more toward domain adap-
tation, multi-dataset training, and real-world validation.
These discoveries lay down the basis for the future devel-
opment of more flexible and robust crack detection
models, which can be used in large-scale SHM applications.

3 Datasets

Six publicly available crack datasets were used in this study,
each dataset represents diverse structural materials, types of
cracks, environment conditions. SDNET 2018 dataset [56] has
concrete, asphalt, and decks folders. Each folder has two sub-
folders (cracked and non-cracked). This dataset contains
56,000 photos under various lighting settings. It can bench-
mark infrastructure maintenance automatic crack detection
and classification (ACDC) models since it incorporates noise
like shadows, stains, and surface roughness. This dataset’s
key challenges include environmental unpredictability and
non-cracked image flaws, making model generalization diffi-
cult. SCD dataset [57] contains 40,000 images in two folders:
Positive (cracked) and Negative (non-cracked). Each folder
has 20,000 227 x 227 pixel surface photos. Since it is developed
for real-time crack identification and classification, it covers a
broad variety of surface textures and lighting circumstances
to highlight concrete and asphalt surface faults. Due to con-
textual information and data augmentation gaps, the dataset
cannot reflect complex real-life events. CPC dataset [58] has
30,000 images in two folders: Positive (cracked) and Negative
(non-cracked). Each folder includes 15,000 photographs of
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roads and pavements in various sizes (e.g., 127 x 227, 227 x
207 pixels), photographed using a smartphone and DJI Mavic
2 Enterprise drone from close-up and wide views. This
Nigerian Army University Biu dataset has cracks of various
sizes and orientations. Cracks can blend with surface tex-
tures, making identification difficult. CDIBM dataset [59]
has 39,955 images in Positive (cracked) and Negative (non-
cracked) folders. The City of Hamburg provided overhead
surveillance images of Hamburg’s Speicherstadt and Kessel-
haus buildings. To facilitate crack detection and classification
algorithms, the original 834 high-quality photographs were
divided into smaller (227 x 227 pixels) images. The original
photos were 5,472 by 3,648 pixels. Masonry building fracture
detection models are challenging to train due to the dataset’s
inconsistent crack texturing, lighting, and occlusions (plants
and shadows). CCI dataset [60]: Turkish Faculty of Engi-
neering and Natural Sciences in Gumushane provided the
CCI dataset. The image was taken using two Android phones.
The Samsung Galaxy M31 and A50 are involved. Smartphone
cameras captured 2,126 photos. This dataset has two cate-
gories: “No Cracks” and “Cracks.” 1,860 x 4,032 and 1,504 x
3264 jpg files are available. This simplifies and regulates
binary classification problems, making it ideal for research
and model assessment. However, its limited environmental
variety and simple cracking kinds limit its use. HBC dataset
[61] collection contains 3,886 captioned photos of old building
walls, fractured and undamaged. Autonomous crack detec-
tion, severity assessment, and segmentation algorithm
training, validation, and benchmarking using computer
vision, machine learning, deep CNNs, or other methods are
the goals. These methods are widely used in SHM. A diversi-
fied annotated image dataset has not been available until
now to develop crack identification, severity assessment,
and segmentation algorithms for notable historical buildings.
The Mosque (Masjed) of Amir Al-Maridani in Sekat Al Wer-
dani, El-Darb El-Ahmar, Cairo Governorate, was photo-
graphed with cracks. Construction occurred between 1,339
and 1,340 CE under the Mamluk Sultanate in Cairo, Egypt.
This dataset shows complicated fracture patterns from aging,
weathering, and structural degradation in one of the most
magnificent historical structures ever erected, including a
minaret and a large dome. This helps discover cracks in cul-
turally important areas for prompt repair. ACDC methods
struggle with algae, dirt, and natural development. Table 1
displays samples of cracked and uncracked images for all six
datasets used in this work.

This study evaluates how well deep learning models
like CNN, ResNet50, VGG16, and LSTM perform on six data-
sets: SDNET 2018, SCD, CPC, CDIBM, CCI, and HBC. These
datasets vary in image resolution, crack features, and
environmental conditions, as shown in Table 2. By training
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Table 1: Sample cracked and non-cracked images from the six datasets
(SDNET 2018, SCD, CPC, CDIBM, CCI, and HBC)

Dataset name Cracked image Non-cracked image

SDNET 2018
Decks
Pavements
{
|
. ‘,. .
Walls ‘ N
\ .
28
hY
L
SCD

Concrete surfaces

CPC

Concrete and
pavement surfaces

CDIBM

Bricks, masonry walls

CCl

Concrete surface

(Continued)

DE GRUYTER

Table 1: Continued

Dataset name Cracked image Non-cracked image

HBC

Historical building
surfaces

and testing the models on these different datasets, we can
understand their strengths and weaknesses, offering useful
insights into their real-world practicality and usability.

To enable clearer comparisons of dataset variability,
we introduce Table 3, which summarizes key characteris-
tics such as resolution range, class distribution, lighting
conditions, texture complexity, and environmental noise.
These factors are essential for understanding domain shifts
and model generalization behavior across datasets.

4 Method and experimental work

This section of the study encompasses the discussion of the
scope of the utilization of CNN, ResNet50, VGG16, and LSTM
models in crack classification referrable to the experi-
mental framework. It is unusually informative in the pre-
sentation of the process of the experiment, data preproces-
sing, the structure of the model, training and testing
methods, and the performance indicators.

4.1 Experimental setup

The tests were carried out on a high-speed machine run-
ning Python-based deep learning with an NVIDIA GeForce
RTX 3070 Ti Laptop GPU, 8.0 GB of dedicated GPU memory,
15.9 GB of shared GPU memory, and 32 GB of RAM. CNN,
ResNet50, VGG16, and LSTM models were the ones that got
the chance to be trained and tested by PyTorch, which is
actually more flexible, and efficient. Crack detection and
classification DL models that are both famous and efficient
were utilized. These encompass from simply utilizing sev-
eral convolutional layers to deep neural networks with
new mappings, and sequence-based architectures. To allow
for impartial comparisons, all the experiments were
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performed using the same hyperparameter values across
the models and datasets.

4.2 Dataset preprocessing

Before they are used for training and evaluation, the clas-
sification datasets require an organized processing chain
which allows to standardize the data to increase model per-
formance. Initially, image data are organized into two folders:
“Cracked” and “Non-Cracked.” The custom CrackDataset class
loads these images along with their corresponding labels, pro-
viding seamless integration with PyTorch’s data loading utili-
ties. To preserve class distribution, the dataset is split into
training, validation, and testing subsets using stratified
sampling.

During training, data augmentation is applied on-
the-fly to improve generalization and model robustness.
Specifically, each image is randomly flipped horizontally
with a probability of 0.5 and randomly rotated within
+15°, helping the model become invariant to positional
and orientation variations. No augmentation is applied
to validation or test data to maintain evaluation integ-
rity. All images were resized to 224 x 224 pixels to meet
the input size requirements of pretrained models and
ensure architectural consistency and normalized using
the mean and standard deviation values of the ImageNet
dataset, which ensures compatibility with pre-trained
models used in transfer learning. Although image resizing
to 224 x 224 ensured compatibility with pretrained models
and uniformity across datasets, we acknowledge that this
standardization may affect spatial detail retention. Future
work could investigate the impact of alternative input sizes
to evaluate the trade-off between accuracy and resolution
fidelity, particularly for fine-grained crack detection. This
comprehensive preprocessing approach addresses class

Table 3: Standardized summary of dataset variability factors

Crack concrete image classification == 9

imbalance, enhances feature consistency, and prepares the
data effectively for deep learning-based crack classification.

4.3 Model architectures

Four deep learning models were chosen for their capability
to tackle complex crack classification tasks.

4.3.1 CNN

A special CNN structure was created for this work, where
the issues of structural surfaces were matched to the two
categories set for “Cracked” and “Non-Cracked.” The three-
part structure consists of convolutional layers where each
one is succeeded by ReLU activation functions that bring
forward nonlinearity as well as max-pooling layers for
lowering the spatial dimensions of the feature maps.
Convolutional layers have a step-by-step change that the
filter size becomes 32, then 64, and finally 128; this config-
uration involves a kernel size of 3 and the use of padding
for keeping the dimensions of the feature maps at every
stage of the process. This design allows for the step-by-step
capture of complicated, hierarchical features from the
input images. Apart from the convolutional layers, there
is also a fully connected layer with 256 neurons arranged
that the output from the convolutional layers operates as
an input that is already in a dense form. This layer also
utilizes ReLU activation and is then followed by a dropout
layer with a rate that is set at 50%, which additionally
lowers the risk of overfitting. The output of the model is
the 1-neuron last layer that has sigmoid activation, and its
primary function is to provide a regular value of the prob-
ability that a picture is damaged with binary classification
being the task whereas computer vision is the field. Such a

Dataset Resolution range (px) Class balance (Crack: No Lighting Texture complexity Environmental noise
crack) variability

SDNET 2018 256 x 256 Imbalanced High High Shadows, stains

SCD 227 x 227 11 High Moderate Variable lighting

CPC 127 x 227 - 227 x 207 11 Moderate Moderate Outdoor artifacts

CDIBM 227 x 227 (from 5,472 Imbalanced High High Occlusions, shadows
x 3,648)

Cca 1,860 x 4,032 - 1,504 x 3,264  1:1 Moderate Low Natural reflections

HBC 128 x 128 to 256 x 256 Imbalanced Moderate to high High Weathering, algae
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model is not only simple and straightforward but also
powerful.

4.3.2 ResNet50

The adapted ResNet50 model, which is well known for its
powerful feature extraction capabilities and the use of
residual connections to prevent deep networks from
becoming less powerful due to the vanishing gradient pro-
blem, has been subjected to transfer learning for the task
of binary classification of cracks in structures [62]. In order
to not lose the ImageNet acquired patterns, all layers of the
pre-trained ResNet50 model are frozen. Instead of the
usual fully connected layers, we developed a new and spe-
cial classification head for our architecture. This head is
composed of a dense layer which includes 256 neurons and
ReLU activation to add nonlinearity to the cost of enabling
the model to learn complex patterns. Furthermore, a 50%
dropout rate is incorporated to prevent overfitting in this
layer. The end result of this architecture is a happening of
the output layer. The output layer consists of a single
neuron that employs a sigmoid activation function which
in turn is responsible to output the images’ probability
scores and classify them as “Cracked” or “Non-Cracked.”
This change exploits the pre-trained capabilities of
ResNet50 for feature extraction while at the same time
re-factoring the model for the purpose of efficacious and
reliable crack detection in binary classification settings.

4.3.3 VGG16

The VGG16 model was initially pre-trained on ImageNet [63]
and was then modified for the purpose of binary classifica-
tion tasks in the field of crack detection. The freezing of the
convolutional layers of the VGG16 model, in order to still
utilize the features of ImageNet, by the way, is recognized
as a process that not only saves computer resources but does
it in such a way that it prevents overfitting, taking as an
example those feature vectors, which are well generalized
and coming from different types of images. The VGG16
model’s existing classifier is replaced by the newly designed
dense layer structure that is dedicated to binary classification.
Shaped from one layer with 256 fully connected neurons to
the next, the activation function ReLU is used in order to add
a nonlinear capacity. This in turn will increase the model’s
power to decode complicated patterns in the data. This layer
contains a 50% data dropout rate which ensures data are not
overfit. A sigmoid output layer concludes the structure of
architecture. For a given input, the outcome is a probability

DE GRUYTER

score which indicates the categorization of the image as
“Cracked” or “Non-Cracked.” The current state of the VGG16
model is regulated so that the utmost potential in perfor-
mance and computational efficiency can be achieved, so it
is the most suitable for precise crack detection operation.

4.3.4 LSTM

In our project, we have implemented a model composed of
an LSTM network to recognize images and use them for
binary classification as “Cracked” or “Non-Cracked.”
Popularly known for their performance with sequential
data, an LSTM network [64] has been modified especially to
cope with the image-to-sequence problem. This is done
through intermediate steps of images to sequences conver-
sion. The sequence is processed by standard LSTM with a
hidden space of 128, and it allows the model to capture the
time series of the data. At the next step, the last hidden state
from the LSTM layer is fed to a dense classification layer to
make the final decision more tailored. This network includes
a dense layer with 256 units, using ReLU as the activation
function for introducing nonlinearity and dropout with a rate
of 50% to overcome overfitting. The concluding part is a one-
node layer with sigmoid activation making the estimation of
the probability of the input image being “Cracked.” The idea
presents a mix of a sequential model and a classification
model, where the LSTM’s strengths have been used for
data integration to yield and become a new and proficient
binary classification model for crack detection in images.

Motivation for including LSTM

Although LSTM models are traditionally applied to
sequential or time-series data, we included LSTM in this study
to evaluate whether its ability to capture long-term depen-
dencies could offer benefits when 2D crack images are
reshaped into sequential input vectors. This exploratory
inclusion tests the limits of sequential learning on spatially
encoded features, especially since cracks often exhibit line-
like or progressive structures. Our experimental results,
however, indicate that LSTM underperforms compared to
convolution-based models, confirming its limitations for
spatially driven image classification tasks.

4.4 Training and testing procedures

The training and testing procedures play a critical role in
evaluating the performance and generalization capacity of
deep learning models. In this study, a consistent and struc-
tured strategy was applied across all models, including
CNN, ResNet50, VGG16, and LSTM. For each dataset, the
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images were split into training (70%), validation (15%), and
testing (15%) subsets using stratified sampling to preserve
class distribution. This ensured a balanced representation
of crack and non-crack images across all phases.

Two testing configurations were employed: self-testing
and cross-testing. In self-testing, a model was trained and
validated on subsets of a single dataset and evaluated on its
corresponding test set. This measured in-domain perfor-
mance. In contrast, cross-testing involved evaluating a model
— trained on one dataset — on the test subsets of all other
datasets. This provided insight into the model’s robustness
under domain shift and its ability to generalize across dif-
ferent imaging conditions, resolutions, and crack types.

Each model was trained using an identical pipeline.
Images were first resized to 224 x 224 pixels to maintain
consistency and meet the input requirements of pretrained
models (e.g., VGGI16, ResNet50). Normalization followed
ImageNet standards. Data augmentation was applied to the
training set only, involving random horizontal flipping with
a probability of 0.5 and random rotation within +15°. These
augmentations aimed to increase variability and prevent
overfitting without altering the essential crack structures.

Transfer learning was employed for VGG16 and ResNet50.
Pretrained ImageNet weights were loaded, the convolutional
base was frozen, and a custom classifier head was fine-tuned
using the training data. This allowed the models to benefit
from rich low-level feature representations while adapting
to crack classification. Early stopping was also implemented,
monitoring validation loss with a patience threshold of 5
epochs to avoid overfitting and reduce unnecessary training
iterations.

The evaluation of model performance was based on
accuracy, precision, recall, Fl-score, and confusion matrix.
These metrics were recorded separately for both self-testing
and cross-testing phases to capture the model’s behavior in
both familiar and unseen domains. While the training strate-
gies were applied uniformly, no exhaustive hyperparameter
tuning was conducted for augmentation parameters or early
stopping criteria. All values were selected based on well-
established defaults in the literature.

This comprehensive pipeline enabled a fair and con-
sistent comparison of models and provided insights into
how well each model generalizes across six structurally
diverse crack datasets.

4.5 Evaluation metrics

A variety of metrices were employed in this research to
compare the performance of CNN, ResNet50, VGG16, and
LSTM as described here:

Crack concrete image classification = 11

* Confusion matrix: complexed the performance of models
by breakdown of true positives, false positives, true
negatives, and false negatives, which not only helped to
discern where the errors were coming from, but also to
what extent this method of evaluation was suitable for
different testing types [65].
Accuracy: A model’s accuracy is considered as a common
way to evaluate how well it performs. The number of events
that the model equates with the rank of the most likely ones
over the total events is the accuracy of the metric [66].
Precision indicated the reliability of the positive crack
predictions, calculated as true positive predictions
divided by total positive predictions [67].
Recall (Sensitivity) quantified the model’s ability to
detect all cracks, determined as the ratio of true positive
predictions to actual positive instances [68].
¢ F1-Score, as it is the harmonic mean of precision and recall,
is the perfect choice as a measure of the model’s classifica-
tion performance in case of unbalanced datasets [69].

All evaluation metrics (accuracy, precision, recall, and
Fl-score) reported in this study are based on single-run
experiments. No averaging over multiple runs or random
seeds was applied. This choice was made to ensure consis-
tency across datasets and reduce computational overhead,
though we acknowledge that slight variations may occur
between runs.

5 Results and discussion

This part of the study provides a detailed account of the
empirical part of the research including the results of the
two phases of self- and cross-testing on six datasets through
the use of CNN, ResNet50, VGG16, and LSTM models. The
research findings are interpreted to determine the perfor-
mance and generalizations of the models, focusing on the
identification of the main results and trends in the dataset.

5.1 Training and validation loss curves for
the models

Through the loss curves in training and the validation pro-
cess, we can obtain the learning and generalization abil-
ities of the models that have been used to perform crack
classification task. In this study, four models have been
implemented: CNN, ResNet50, LSTM, and VGG16, each
one representing different architectures for image-based
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classification. The loss curves are the representation of
how well the models reduce the mistakes in the training
dataset while they are still capable not to overfit on the
validation set. We are going to examine the loss curves of
the models across various datasets by studying the trends
in a quest for the aspects of stability, convergence, and
generalization in each of the models. This part illustrates
the loss curves of every model over six datasets, which is a
prerequisite for a comprehensive understanding of the
virtues and faults of the models before carrying out a
quantitative comparison based on the performance indica-
tors such as accuracy, precision, recall, and Fl-score.

5.1.1 CNN model loss curves

Figure 1 with the training and validation loss lines for the
CNN model over six datasets, it is evident that loss curves
in most of the cases consistently show falling values for
both training and testing. They show a good leaning shape
of the CNN model. The plots for SDNET 2018 and CCI data-
sets display that the training and validation losses nearly
become one, which tells us that the model is fitted well
without overfitting. The model is thus able to generalize
satisfactorily to unknown validation data. In the SCD and
CDIBM datasets, as training continues, the validation loss
tends to flatten out or fluctuate slightly indicating that the
model is stable in learning but the validation data are noisy
or suffers from some variability. In the CPC dataset, there is
a significant drop in the training and validation losses after
which the convergence shows that the learning has been
efficient and the model has an appropriate capacity for this
dataset. However, the varying nature of the validation
losses of the HBC dataset at later epochs suggests that there
might be some overfitting or the validation set became
more complicated.

Typically, the loss curves have little diversion which
usually implies that the training and validation losses stay
close. The good news is that the CNN model is finding a
balance between not fitting the model enough and fitting it
too much. The graphs seem to indicate that the CNN model
is the most proper model for this job, although the differ-
ences found in datasets might be explained by the com-
plexity of the data and the variations in class proper.

5.1.2 ResNet50 model loss curves
Figure 2 sequence demonstrates the evolution of the

ResNet50 model’s training and validation loss on six var-
ious datasets. From the image, one can understand that the
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curves describe that both the training and validation losses
are effectively reduced throughout the training process on
all six datasets, which reveals that the ResNet50 is able to
learn well the features during the training process. With
SDNET 2018 dataset, the validation error follows a pattern
of a reduction in the training loss error, hence it can be
said that the model has good generalization. However, SCD
and CPC data show a sharp decrease in the loss in the
beginning, but an increase in the second period, which is
indicative of efficient learning and convergence. Mean-
while, the changes in both the training and validation
losses in CDIBM dataset are not so big and resemble two
virtually identical lines, the deviation only in validation
loss being very small, so the model seems not to be greatly
overfitted and holds good stability. On the other hand,
while the training loss of CCI dataset declines throughout,
there is a clear fluctuation in the validation loss, which
might be attributed to the presence of overfitting in the
training data or some unusual states of the validation set.
Likewise, in the case of the HBC dataset, the validation loss
fluctuates inconsolably despite the fact that the training
loss goes down steadily, mainly in the later stages thus
reflecting possible sensitivity to the dataset’s complexity.

The ResNet50 model demonstrates strong learning cap-
abilities across all datasets, with minimal divergence
between training and validation loss curves. The observed
fluctuations in some datasets could be attributed to varia-
tions in data quality or complexity, but the trends suggest
that the model generalizes well to the validation data, par-
ticularly for datasets with smoother loss curves.

5.1.3 LSTM model loss curves

Based on the training and validation loss curves for the
LSTM model across six datasets shown in Figure 3, it can be
seen that the training and validation loss trends exhibit
notable differences across the datasets, reflecting the chal-
lenges of adapting an LSTM model to image-based tasks. In
SDNET 2018 dataset, both training and validation losses
are relatively stable, with only minor improvements over
epochs. This indicates limited learning and potential diffi-
culty in modeling the dataset’s features using the sequen-
tial approach of the LSTM. SCD dataset shows fluctuations
in validation loss despite a steady decline in training loss,
suggesting overfitting or variability in the validation data.
For CPC and CCI datasets, the training loss decreases
smoothly, but validation loss exhibits significant fluctua-
tions and even increases toward later epochs, indicating
overfitting to the training data. This suggests that the LSTM
model struggles with generalization on these datasets. The
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Figure 1: The progress of the CNN model in terms of the training and validation loss of (a) SDNET 2018, (b) SCD, (c) CPC, (d) CDIBM, (e) CCI, and (f) HBC.

CDIBM dataset shows less fluctuation of the trends on
training, as well as validation losses to converge, reflecting
that the learning is effective and the model is stable. The
case of HBC dataset demonstrates validation loss not in a
steady state, it goes a little bit up and down in the trend of
the training loss thus indicating not very good generaliza-
tion with some space for improvement.

Overall, the LSTM model’s loss curves highlight its
limited suitability for image-based tasks, with consistent
signs of overfitting or inadequate feature extraction. The
results suggest that this sequential modeling approach may
not be optimal for crack classification tasks, especially
when compared to CNN- or ResNet50-based architectures.

5.1.4 VGG16 model loss curves

Based on the training and validation loss curves for the
VGG16 model across six datasets shown in Figure 4, it can be
seen that the VGG16 model demonstrates a generally effective
learning process, with most datasets showing a steady decline
in both training and validation losses. In SDNET 2018 dataset,
the validation loss follows the training loss closely, with slight
fluctuations, indicating good generalization and stable
learning. SCD dataset shows a more pronounced gap
between training and validation losses, particularly in later
epochs, suggesting potential overfitting, as the model per-
forms better on the training data than on validation data.
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Figure 2: The progress of the Resnet50 model in terms of the training and validation loss of (a) SDNET 2018, (b) SCD, (c) CPC, (d) CDIBM, (e) CCI, and

(f) HBC.

For CPC dataset, both losses decrease rapidly and converge
closely, highlighting strong generalization and efficient
learning on this dataset. Similarly, CCI dataset shows consis-
tent decreases in both training and validation losses, with
minor fluctuations, indicating robust performance. CDIBM
dataset, however, exhibits notable divergence between
training and validation losses, suggesting overfitting, poten-
tially due to increased complexity or variability in the dataset.
Finally, in HBC dataset, the validation loss closely tracks the
training loss throughout the epochs, indicating stable training
and good generalization.

In general, the VGG16 model really can get most of the
features of the datasets in a very effective way, revealing a

very high performance with no or almost no overfitting in
some points of the curve. Nevertheless, the tremendous
disparity observed in certain datasets justifies the use of
data augmentation or regularization as a methodology to
increase further generalization. The model’s performance
on different datasets definitely proves that it is the best for
crack classification tasks especially when having well-pre-
pared and balanced datasets.

The curves of the training and the validation losses of
the CNN, ResNet50, LSTM, and VGG16 show the specific
features and weaknesses of these models in the crack clas-
sification task. Both CNN and VGG16 exhibited consistent
and powerful generalization skills manifested in almost
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Figure 3: The progress of the LSTM model in terms of the training and validation loss of (a) SDNET 2018, (b) SCD, (c) CPC, (d) CDIBM, (e) CCI, and

(f) HBC.

identical values of training and validation losses. That
made these two models the most superior for image-based
classification. As far as the ResNet50 model is concerned,
it showed a clear learning procedure and robust feature
extraction although certain pieces of evidence from the
graphs, occasional spikes in the validation loss for
instance, indicated that the model was more sensitive to
the dataset. The LSTM model, however, had trouble
achieving the same kind of generalization, as the valida-
tion loss figures fluctuations and divergence, that is, the
model could hardly be applied to the task, which is due to
the natural processing of the sequential process. The
VGG16 model turned out to be the most robust of the
group, with the order of resilience being ResNet50 and

CNN, while the LSTM model was not a good fit for the
classification purpose and was rather the least effective.
The next part of the article will present more detailed
comparisons of the models’ performances using major
indicators such as accuracy, precision, recall, and F1-
score that help in the final assessment of their perfor-
mance and generalizability.

5.2 Self-testing

In order to draw statistics, the self-assessment stage, as per
Table 4, put all models through a number of tests on the
same dataset they were fed, besides providing initial
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Figure 4: The progress of the VGG16 model in terms of the training and validation loss of (a) SDNET 2018, (b) SCD, (c) CPC, (d) CDIBM, (e) CCI, and

(f) HBC.

performance metrics (e.g., training on SDNET 2018 and
testing on SDNET 2018).

The accurate values of the self-testing outcomes laid
down in Table 4 mutilate how each of the models trains
and also tests the same data. Among the evaluated models,
VGG16 demonstrated the highest robustness in crack clas-
sification tasks, followed by ResNet50 and the standard
CNN. In contrast, the LSTM model exhibited the weakest
performance, indicating its unsuitability for this type of
image-based classification. This result is a reflect on the
robustness of VGG16 in carrying out feature extraction
even in the presence of noise and its good performance
in the training domain generalization. The CNN and

ResNet50 models are the other two very good performers,
which, in most cases, reach accuracy rates comparable to
those of (in most cases) VGG13. Both models are proven to
have a perfect score with the SCD dataset; however,
ResNet50 is below both CNN and VGG16, when handling
the SDNET 2018 dataset. In contrast to these strong results,
the LSTM model demonstrates a noticeable decline in accu-
racy across the remaining datasets, with particularly sig-
nificant drops observed on the CPC (74%) and HBC (81%)
datasets. While the model performs reasonably well on
relatively simpler datasets such as SCD, it struggles to gen-
eralize on more complex datasets, likely due to its limited
capacity to extract and represent intricate feature patterns.
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It undertakes a pretty good job on the easier ones like SCD,
but the tough ones need more elaboration of the features,
which the model fails as its weak part. The self-testing
results clearly indicate the superior performance of
VGG16, CNN, and ResNet50 models, in which the VGG16
model slightly outpaces the others in most cases. The
models’ high and consistent accuracy on numerous data-
sets is further evidence that they are the most suitable
models for the task of the crack classification. However,
this does not seem to be the case with LSTM, which is likely
to show low accuracy on the tasks of image-based classifi-
cation due to the configuration of the model. Especially, it
is hard for the model to perform well in datasets that
require strong spatial and temporal feature extraction.
Complementing the performance of the models, the eva-
luation metrics from Table 5, namely, precision, recall, and
Fl-score, will provide a more thorough performance pro-
file of the different models. These metrics will help in
making an efficient trade-off between the models whose
aim is not only cracking up accuracy but also having a
fleet-footed and precise perception regarding the classifi-
cation capabilities all the more through the accuracy. As a
result, this process puts the models through their paces
thus providing us with a more transparent picture of their
strengths and weaknesses in the light of their classification
performance.

The resulting experiment has shown that VGG16, CNN,
and ResNet50 are the models with the best performance
where VGG16 is the leader by a small margin except for a
few datasets where the rest of the models are better. The
fact that the experiments using these models have yielded
high and quite similar accuracy scores among the datasets
confidently confirms that they are all suitable for identi-
fying the crack formations. It appears that the results of the
LSTM model’s lower accuracy level due to the method by
which architecture was implemented, at the same instance
of representation of the images in the spatial domain, are
not successful. The understanding of the models’ strides
and the direction that will leave them on a higher ground
can only be realized through the help of Table 5, which

Table 4: Accuracy (%) for self-testing datasets

Model Dataset

SDNET 2018 SCD CPC CDIBM CCI HBC
CNN 91 100 100 98 96 98
ResNet50 90 100 99 98 96 96
LSTM 85 90 74 97 87 81
VGG16 91 100 99 98 100 96
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comes with the extra yard. It is with the help of these
metrics that one can delve into the more minute issues
concerning classifying the true positives, and the false posi-
tives and coming up with solutions that would enable the
models to veer off the accuracy-only standpoint. Conse-
quently, this line of reasoning will represent a component
of our conclusions on which model is likely to be the finest
in the detection of cracks.

The VGG16 model is well known for its strong general-
ization capabilities and balanced performance, which it
shows across all datasets in terms of achieving high preci-
sion, recall, and Fl-scores. More uniquely, it attains a 100%
score in those three metrics for the SCD and CCI datasets,
hence declaring its capability to label the cracks correctly
and reliably. The CNN model is also doing great as its
indicators are mostly at the level of VGG16; however,
unlike the latter, it gives a bit lower recall and F1-scores
on the SDNET 2018 and CDIBM datasets. Moreover, the
ResNet50 model also gave quite good results, especially
on SCD and CCI, with almost perfect scores. Nevertheless,
the fact that for the SDNET 2018 and CDIBM datasets the
recall of ResNet50 is a bit lower than the CNN model and
the VGG16 model, respectively, that also leads to a lower
overall Fl-score. Consequently, the results indicate that
ResNet50 is very precise but at the same time, it might
not detect certain true conditions. In contrast, the LSTM
model struggles significantly, particularly on SDNET 2018,
CDIBM, and HBC, where its precision, recall, and Fl-scores
are notably lower than the other models. The samples of
the misclassified images for self-testing phase are shown in
Figure 5.

5.3 Cross-testing

The cross-testing phase evaluated the models’ generaliz-
ability by testing them on datasets different from their
training dataset (e.g., training on SDNET 2018 and testing
on SCD).

5.3.1 Training on SDNET 2018 and test on remaining
datasets

Table 6 presents the cross-testing accuracy for models
trained on the SDNET 2018 dataset and tested on other
datasets. These results provide insights into the general-
ization capabilities of the models when trained on a
dataset with a specific distribution and applied to different
domains.
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Table 5: Precision (Pre.), Recall (Rec.), and Fi-score for self-testing datasets
Dataset Model
CNN ResNet50 LSTM VGG16

Pre. Rec. F1-score Pre. Rec. F1-score Pre. Rec. F1-score Pre. Rec. F1-score
SDNET 2018 88 74 79 88 70 75 42 50 46 90 72 77
SCD 100 100 100 100 100 100 91 90 90 100 100 100
CPC 100 100 100 99 99 99 76 74 73 99 99 99
CDIBM 80 70 74 81 75 78 65 51 51 78 78 78
ca 96 96 96 97 96 96 89 87 86 100 100 100
HBC 93 92 92 94 94 94 40 50 45 93 94 93

The results highlight significant performance variations
among the models and across datasets, revealing the chal-
lenges of achieving consistent accuracy in cross-domain sce-
narios. The VGG16 model demonstrates the highest level of
generalizability, achieving the top accuracy across most
datasets, including CPC (91%), SCD (82%), and HBC (87%).
However, its accuracy drops on the CCI dataset (64%),
reflecting potential domain-specific limitations. The
ResNet50 model performs strongly on CPC (87%) and HBC
(89%) but struggles with CDIBM (38%) and CCI (56%), indi-
cating sensitivity to certain dataset characteristics. The CNN
model shows mixed performance, with relatively strong
results on CDIBM (96%) and HBC (82%) but poor
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Figure 5: Samples of the misclassified images for self-testing datasets.

generalization on SCD (56%) and CPC (55%). These inconsis-
tencies highlight the CNN’s limited ability to adapt to unseen
datasets compared to VGG16 and ResNet50. The LSTM model
exhibits the lowest performance overall, with accuracy scores
below 85% on all datasets and notably poor results on SCD
(50%) and CCI (49%). This shows its limited ability to capture
spatial features effectively. Table 7 provides precision, recall,
and Fl-score for models trained on the SDNET 2018 dataset
and tested on other datasets, offering a deeper understanding
of their performance in cross-domain scenarios.

The VGG16 model consistently achieves the best or
near-best performance across all metrics and datasets. It
excels in precision and recall for SCD (86% precision, 82%
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Table 6: Cross-testing accuracy (%) for models trained on the SDNET
2018 dataset and tested on other datasets

Model (trained on SDNET 2018) Cross-testing datasets

SCD CPC CDIBM CCI HBC
CNN 56 55 96 53 82
ResNet50 77 87 38 56 89
LST™M 50 52 84 49 79
VGG16 82 91 81 64 87

recall) and CPC (92% precision, 91% recall), resulting in
high Fl-scores of 82 and 91%, respectively. However, its
performance drops slightly for CDIBM (Fl1-score of 47%)
and CCI (F1-score of 59%), reflecting domain-specific chal-
lenges in generalization. The ResNet50 model also per-
forms well, particularly for CPC (Fl-score of 87%) and
HBC (Fl-score of 77%), showcasing its ability to adapt to
some datasets. However, its performance significantly
drops for CDIBM (Fl-score of 28%) and CCI (Fl-score of
52%), suggesting that while ResNet50 is precise in certain
cases, it struggles to maintain consistent recall across data-
sets. The CNN model demonstrates moderate performance,
with better results for HBC (Fl-score of 51%) and CDIBM
(F1-score of 59%), but lower scores for SCD and CCI, where
its recall is particularly low, indicating difficulty in cap-
turing true positives across these datasets. In contrast,
the LSTM model struggles significantly, with the lowest
Fl-scores across all datasets. It achieves only 33% on SCD
and 41% on CPC, highlighting its limitations in capturing
strong spatial feature extraction.

5.3.2 Training on SCD and test on remaining datasets
Table 8 presents the cross-testing results, where models

trained on SCD dataset are evaluated on datasets they were
not trained on, offering insights into their generalizability.
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The VGG16 model consistently demonstrates the
highest accuracy across most datasets, particularly excel-
ling on CPC (96%) and showing strong performance on
SDNET 2018 (82%) and HBC (87%). However, its accuracy
drops significantly on CDIBM (26%), highlighting a poten-
tial limitation in adapting to datasets with significantly
different distributions. The ResNet50 model displays very
high levels of performance in SDNET 2018 (84%) and HBC
(88%) while it demonstrates a quite low 16% accuracy rate
in CDIBM, which is in line with VGG16. Furthermore, a 64%
accuracy on CCI is a signal that ResNet50 is also less stable
in handling domain changes compared to VGG16. It can be
seen that the CNN model is giving a good account of itself in
CPC (86%) and HBC (85%) and it is only on CDIBM (15%)
where a notable performance drop is observed, demon-
strating a limited ability to transfer learning to more chal-
lenging datasets. The basic performance on SDNET 2018
(76%) and CCI (73%) is an additional proof of its niche
and case-related effectiveness. Conversely, the LSTM model
demonstrates its worst performance thus outclassing the
others with the maximum accuracy rate of 85% only on
CDIBM, which is mainly due to the inherent nature of the
dataset that has a positive inclination toward the sequen-
tial architecture. The fact that the LSTM model can cope
with the image-based tasks only on a very basic level is
visible from its pretty poor performances in CPC (56%) and
CCI (60%). Table 9 details out precision, recall, and Fl-score
for models trained from the SCD dataset to the other ones,
providing a more in-depth knowledge of their performance
across domains.

The VGG16 model demonstrates the strongest perfor-
mance across most datasets. It achieves near-perfect pre-
cision, recall, and F1-scores on CPC (96%) and robust results
on CCI (Fl-score of 80%) and HBC (Fl-score of 81%).
However, its performance drops significantly for CDIBM,
with a low Fl-score of 22%, indicating difficulties in gener-
alizing to datasets with distinct distributions. The ResNet50
model also shows strong performance, with high Fl-scores

Table 7: Precision (Pre.), Recall (Rec.), and Fi-score for the models trained on SDNET 2018 dataset

Dataset Model
CNN ResNet50 LSTM VGG16
Pre. Rec. F1-score Pre. Rec. F1-score Pre. Rec. F1-score Pre. Rec. F1-score

SCD 76 56 46 84 77 76 25 50 33 86 82 82
CPC 73 55 43 89 87 87 56 52 Y| 92 91 91
CDIBM 61 58 59 48 34 28 49 43 46 50 49 47
Ccc 76 53 39 58 56 52 38 49 34 76 64 59
HBC 80 53 51 90 72 77 47 50 45 83 72 75
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Table 8: Cross-testing accuracy (%) for models trained on the SCD
dataset and tested on other datasets

Model (trained on SCD) Cross-testing datasets

SDNET 2018 CPC CDIBM CCI HBC
CNN 76 86 15 73 85
ResNet50 84 89 16 64 88
LST™M 81 56 85 60 75
VGG16 82 9% 26 81 87

for CPC (89%) and HBC (80%). However, it struggles with
CDIBM (F1-score of 15%) and shows moderate performance
on CCI (63%). These results suggest that while ResNet50 is
capable of handling certain datasets, it faces challenges
with datasets exhibiting significant domain differences.
The CNN model achieves competitive performance on
CPC (F1-score of 86%) but performs poorly on CDIBM (F1-
score of 14%) and moderately on CCI (F1-score of 70%). Its
low recall values for SDNET 2018 and CDIBM highlight
limitations in capturing true positives across different
datasets. The LSTM model demonstrates the weakest per-
formance overall, with Fl1-scores below 60% for most data-
sets. While it achieves reasonable precision and recall on
HBC (Fl-score of 58%), it consistently struggles with data-
sets such as CDIBM (Fl-score of 15%) and CPC (Fl-score
of 50%).

5.3.3 Training on CPC and test on remaining datasets

Table 10 presents the cross-testing accuracy for models
trained on the CPC dataset and tested on other datasets.
These results provide insights into the generalization cap-
abilities of the models when trained on a highly specific
dataset and applied to different domains.

The VGG16 model again demonstrates the strongest
overall performance, achieving the highest accuracy on SCD
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(99%) and robust results on CCI (79%) and HBC (86%).
However, its performance significantly drops on CDIBM
(22%), reflecting challenges in adapting to datasets with dis-
tinct feature distributions. The ResNet50 model also performs
well, with strong results on SCD (95%) and HBC (78%) but
moderate performance on CCI (66%). Similar to VGGI6,
ResNet50 struggles with CDIBM, achieving only 23% accuracy,
indicating domain-specific limitations in this dataset. The
CNN model achieves competitive accuracy on SCD (94%)
and moderate results on SDNET 2018 (78%) and CCI (68%).
However, its performance on CDIBM is extremely low (10%),
highlighting its limited ability to generalize to this dataset. In
stark contrast, the LSTM model performs poorly across most
datasets, with particularly low accuracy on CDIBM (49%) and
HBC (27%). While it achieves reasonable accuracy on SDNET
2018 (21%) and CCI (52%), these results further emphasize the
challenge for cross-domain generalization in image-based
tasks. Table 11 provides a detailed comparison of precision,
recall, and Fl-score for models trained on the CPC dataset and
tested on other datasets, offering a nuanced evaluation of the
models’ cross-domain performance.

The VGG16 model demonstrates the strongest overall
performance, achieving near-perfect precision, recall, and
Fl-scores on SCD (99%) and high Fl-scores on CCI (79%) and
HBC (81%). However, its performance drops on CDIBM,
where its Fl-score falls to 20%, indicating difficulties in
adapting to datasets with distinct feature distributions.
Nevertheless, its balanced precision and recall across
most datasets affirm its robustness for generalization.
The ResNet50 model performs competitively on SCD (Fi-
score of 95%) and HBC (Fl-score of 78%), showcasing its
ability to adapt to some datasets. However, like VGG16, its
performance significantly drops on CDIBM, where it
achieves an Fl-score of only 20%. This trend highlights
ResNet50’s domain-specific limitations, particularly when
facing datasets with different distributions. The CNN model
achieves good performance on SCD (Fl-score of 94%) but
struggles on other datasets, particularly CDIBM (F1-score of

Table 9: Precision (Pre.), Recall (Rec.), and Fl-score for the models trained on SCD dataset

Dataset Model
CNN ResNet50 LSTM VGG16
Pre. Rec. F1-score Pre. Rec. F1-score Pre. Rec. F1-score Pre. Rec. F1-score

SDNET 2018 56 57 57 66 62 64 52 51 51 62 60 61
CPC 86 86 86 90 89 89 62 56 50 96 96 96
CDIBM 49 47 14 51 53 15 50 49 48 51 56 22
CcI 82 72 70 66 64 63 70 60 54 85 81 80
HBC 77 70 73 82 79 80 59 58 58 79 83 81
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Table 10: Cross-testing accuracy (%) for models trained on the CPC
dataset and tested on other datasets

Model (trained on CPC) Cross-testing datasets

SDNET 2018 SCD CDIBM CCI HBC
CNN 78 94 10 68 61
ResNet50 85 %5 23 66 78
LST™M 21 49 49 52 27
VGG16 85 9 22 79 86

10%) and HBC (F1-score of 57%). Its recall values for CCI
(68%) and HBC (67%) indicate limitations in capturing true
positives, further highlighting its restricted generalization
capabilities. The LSTM model demonstrates the weakest
performance, with Fl-scores below 50% for most datasets.
It achieves its highest Fl-score on SCD (36%) but performs
poorly on CDIBM (36%) and HBC (27%).

5.3.4 Training on CDIBM and test on remaining datasets

Table 12 summarizes the cross-testing accuracy for models
trained on the CDIBM dataset and tested on other datasets.
These results highlight the models’ generalization perfor-
mance when trained on a dataset with distinct character-
istics and evaluated on different domains.

The results show minimal variation across models, with
CNN, ResNet50, and VGG16 all achieving identical accuracy
scores on most datasets. For SDNET 2018, the models demon-
strate strong generalization with an accuracy of 83%, reflecting
their ability to adapt to this dataset’s features. However, per-
formance on SCD, CPC, and CCI is notably weaker, with accu-
racy scores hovering around 50-54%, indicating significant
challenges in cross-domain generalization for these datasets.
All models perform well on HBC, achieving 81% accuracy,
suggesting that this dataset’s characteristics align more closely
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with the training dataset (CDIBM). The LSTM model performs
similar to the other architectures, achieving comparable accu-
racy across all datasets. However, this consistency at relatively
low accuracy levels reinforces the general observation that
LSTM struggles to extract meaningful spatial features for image
classification tasks. To sum up, all models show almost the
same performance (the trend is consistent), with SDNET 2018
and HBC being the ones giving the highest accuracy and SCD,
CPC, and CCI the ones presenting the biggest generalization
problems. It is that the data distribution among different data-
sets and the feature similarity have a significant impact on
domain-generalization, regardless of the architecture of the
model being applied. In these results, it can be inferred that
the models such as VGG16, and ResNet50 that are usually
regarded as the most stable ones, are not capable to cover
the dissimilarity between the datasets in CDIBM training set
to that extent that they can well generalize to other dissimilar
data. Table 13 contains the details regarding model perfor-
mance for precision, recall, and Fl-score on the CDIBM
dataset when the models were tested on the other datasets.
The results show that all models perform similarly across
most datasets, reflecting challenges in generalizing from the
CDIBM training dataset. Across all datasets, the Fl-scores
remain below 50%, indicating poor performance in cross-
domain scenarios. VGG16 shows relatively higher precision
compared to other models, particularly for CCI (76%) and CPC
(73%). However, its recall is consistently low, leading to Fl-
scores below 50% across all datasets. This suggests that while
VGG16 avoids false positives, it struggles to capture all positive
cases when applied to unseen datasets. ResNet50 demon-
strates balanced precision and recall for SDNET 2018 (50%)
and HBC (47%) but falls short for other datasets, especially CCI
(F1-score of 35%). This reflects limited adaptability to datasets
with different feature distributions. CNN performs marginally
better than ResNet50 on CPC (Fl-score of 35%) but demon-
strates significant weaknesses in recall for datasets like CCI
(34%). Its Fl-scores are low across the board, indicating

Table 11: Precision (Pre.), Recall (Rec.), and Fl1-score for the models trained on CPC dataset

Dataset Model
CNN ResNet50 LSTM VGG16
Pre. Rec. F1-score Pre. Rec. F1-score Pre. Rec. F1-score Pre. Rec. F1-score

SDNET 2018 59 60 59 69 59 61 49 49 21 Ul 65 67
SCD 95 94 94 96 95 95 44 49 36 99 99 99
CDIBM 51 52 10 50 52 20 52 66 36 50 52 20
cc 80 68 64 78 66 62 55 52 42 84 79 79
HBC 60 67 57 76 83 78 43 43 27 78 87 81




22 —— Taha Rashid et al.

challenges in achieving a balance between precision and
recall. LSTM consistently underperforms, with its Fl-scores
rarely exceeding 45%. While it achieves moderate recall
across most datasets, its precision is low, particularly on
CPC (33%) and CCI (34%), leading to poor overall
performance.

5.3.5 Training on CCI and test on remaining datasets

Table 14 presents the cross-testing accuracy for models
trained on the CCI dataset and evaluated on other datasets.
The results highlight significant variability in model gen-
eralization capabilities across datasets, indicating the chal-
lenges of training on a dataset with specific characteristics
and applying the models to diverse domains.

The VGG16 model achieves the highest accuracy for
SCD (78%) and CPC (78%), demonstrating its ability to gen-
eralize to datasets with somewhat similar features.
However, its performance drops sharply on CDIBM (6%)
and HBC (69%), reflecting its limitations when encoun-
tering datasets with distinct distributions. The LSTM model
performs reasonably well on SDNET 2018 (76%) and HBC
(73%) but struggles on CDIBM (35%), similar to other
models. While its performance on certain datasets is com-
petitive, its overall accuracy remains inconsistent. The
ResNet50 model appears to be working well with datasets

Table 12: Cross-testing accuracy (%) for models trained on the CDIBM
dataset and tested on other datasets

Model (trained on CDIBM) Cross-testing datasets

SDNET 2018 SCD CPC CCI HBC
CNN 83 50 51 51 81
ResNet50 83 52 54 51 81
LSTM 85 50 50 51 81
VGG16 83 54 54 52 81
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HBC (78%) and SCD (77%), which is why it is considered
adaptable to such datasets. On the other hand, its perfor-
mance for SDNET 2018 (39%) and CDIBM (4%) is a tell-tale
sign that the model could not see the forest for the trees
and is unable to reach high-level abstraction. On CPC, CNN
produces the best accuracy (75%) but the situation is dif-
ferent with CDIBM (8%) and SDNET 2018 (41%) where its
errors are far too high. Through these results, one can infer
that CNN performs better when the datasets do not contain
much different information. It is clear that VGG16 is very
much successful at generalizing across the datasets SCD
and CPC, but since the performance of all the models is
not consistent with CDIBM, they inherently exhibit very
low accuracy on the CDIBM dataset. The LSTM model, in
particular, is capable of giving the other models a tough
match. The results also point out that a correct approach to
the choice of benchmark samples is crucial to attain a
wider applicability. Tightly dedicated-hardware architec-
tures can also have a contribution to the storage/retrieval
issues of various datasets. Table 15 gives details of the pre-
cision, recall, and Fl-score of all models, trained on CCI and
tested on several datasets sorted from the top of the CCI
group (Table 15).

Even though it dropped significantly when identifying
CDIBM, the VGG16 model still outperformed all other
models of the dataset on SCD (Fl-score of 77%) and CPC
(F1-score of 78%), suggesting that the model can generalize
effectively to datasets with similar characteristics. Datasets
that are largely different from the training set have
become the reason for the model’s performance to be so
low, thus the Fl-score decreased dramatically to 6%. Its
performance on HBC (Fl-score of 65%) highlights a mod-
erate level of adaptability. ResNet50 model performs com-
petitively on SCD (Fl-score of 76%) and HBC (Fl-score of
70%) but struggles with CDIBM (F1-score 4%) and SDNET
2018 (F1-score of 38%). These results suggest that ResNet50
is effective in handling certain datasets but faces signifi-
cant challenges with diverse domains, particularly those

Table 13: Precision (Pre.), Recall (Rec.), and Fi-score for the models trained on CDIBM dataset

Dataset Model
CNN ResNet50 LSTM VGG16
Pre. Rec. F1-score Pre. Rec. F1-score Pre. Rec. F1-score Pre. Rec. F1-score

SDNET 2018 49 50 48 50 50 48 47 50 46 50 50 47
SCD 72 50 34 75 52 37 69 50 34 74 54 |
CPC 75 51 35 68 54 43 50 50 33 73 54 43
CcI 25 50 34 54 50 35 75 50 34 76 52 38
HBC 40 50 45 76 51 47 57 50 45 65 51 46
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Table 14: Cross-testing accuracy (%) for models trained on the CCI
dataset and tested on other datasets

Model (trained on CCI) Cross-testing datasets

SDNET 2018 SCD CPC CDIBM HBC

CNN 4 57 75 08 51
ResNet50 39 77 57 04 78
LST™M 76 n 59 35 73
VGG16 70 78 78 06 69

with different feature distributions. The CNN model per-
forms moderately on CPC (Fl-score of 75%) and SCD (F1-
score of 50%) but exhibits poor results on CDIBM (F1-score
of 8%). Its recall values for SDNET 2018 (55%) and HBC
(59%) are higher than its precision, reflecting a tendency
to identify more positives at the cost of false positives,
which impacts its overall performance. The LSTM model
achieves decent results on SCD (Fl-score of 68%) and HBC
(F1-score of 59%) but struggles significantly on CDIBM (F1-
score of 28%) and CPC (Fl-score of 58%). While it shows
moderate precision and recall on some datasets, its overall
Fl-scores remain low.

5.3.6 Training on HBC and test on remaining datasets

Table 16 highlights the cross-testing accuracy for models
trained on the HBC dataset and tested on the remaining
datasets. This evaluation provides insights into how well
the models generalize when trained on the HBC dataset.
VGG16 model achieves excellent accuracy on SCD (91%)
and CPC (93%), demonstrating strong generalization to
datasets with similar characteristics. However, its perfor-
mance drops significantly on CDIBM (36%), indicating chal-
lenges with datasets that are highly divergent from HBC.
The model performs well on CCI (86%), maintaining a high
degree of adaptability. ResNet50 model performs strongly
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on SDNET 2018 (87%) and CPC (91%), showcasing its ability
to generalize effectively to datasets with some shared fea-
tures. Its accuracy on the SCD subset (81%) is also highly
remarkable, although on CDIBM (71%) and CCI (64%), there
is a loss in performance that means the model cannot
adapt smoothly to all datasets. The CNN model is to a cer-
tain degree capable of generalizing and it can still achieve
high accuracy in SDNET 2018 (74%) and CCI (78%).
However, it is not able to accurately learn from SCD
(56%) and CDIBM (53%) and the latter are significantly
lower, which means that it can only use the same distribu-
tion of features in a series of datasets. The bad perfor-
mance of the LSTM model on SCD (50%) and CPC (50%),
which is its difficulty in extracting spatial features for
cross-domain tasks, becomes apparent. In contrast, it
excels at CDIBM (97%), the highest achievement, thus,
demonstrating the effectiveness of this dataset for the
model. It has got a low score on CCI (51%) which is incon-
sistent at the same time it is less to be found in the other
datasets (Table 16). Precision, recall, and Fl-score, which
are key technical aspects of models trained by the HBC
dataset and tested on the other datasets, are thoroughly
covered in this analysis. This kind of analysis does not
only make it easy to see which are the weaknesses and
strengths of the model when applied to data not seen
before, but also gives a more thorough insight into their
generalization features (Table 17).

VGG16 model is known for consistently achieving the
best results in datasets on which it was tested. Also, it
reaches precision, recall, and F1 scores that indicate that
it does best of all models on SCD and CPC with 91 and 95%,
respectively. At the same time, the VGG16 model shows
very poor results on CDIBM (28%). Its precision and recall
are the main issues on this dataset (49 and 42%, respec-
tively), which means that it is not able to capture features
present in distributions that are too different. At last,
VGG16 model keeps quite good accuracies on CCI (F1-score
85%) and SDNET 2018 (66%). ResNet50 model presents the

Table 15: Precision (Pre.), Recall (Rec.), and Fi-score for the models trained on CCI dataset

Dataset Model
CNN ResNet50 LSTM VGG16
Pre. Rec. F1-score Pre. Rec. F1-score Pre. Rec. F1-score Pre. Rec. F1-score

SDNET 2018 53 55 39 55 58 38 49 49 49 57 61 57
SCD 67 57 50 82 77 76 79 7 68 84 78 77
CPC 77 75 75 57 57 56 59 59 58 80 78 78
CDIBM 51 52 08 42 41 04 51 61 28 48 48 06
HBC 56 59 49 68 74 70 59 60 59 68 79 65




24 —— Taha Rashid et al.

Table 16: Cross-testing accuracy (%) for models trained on the HBC
dataset and tested on other datasets

Model (trained on HBC) Cross-testing datasets

SDNET 2018 SCD CPC CDIBM CCI
CNN 74 56 60 53 78
ResNet50 87 81 91 71 64
LST™M 85 50 50 97 51
VGG16 85 91 93 36 86

example of good results, especially on CPC (91%) and SCD
(80%) with very high precision and recall values. But its
situation with CDIBM (F1-score 43%) is the same as VGG16’s
and it performs not bad on CCI (64%) and SDNET 2018
(67%). From this we infer that ResNet50 fits well with data-
sets that share some common data but it is not able to
perform well on those that have very different entities.
The CNN model performs moderately, achieving its best
Fl-score on CCI (77%) and maintaining decent performance
on CPC (60%) and SCD (53%). Its recall on CDIBM (39%) is
particularly low, resulting in a poor Fl-score (36%). Its
overall performance indicates limited generalization cap-
abilities compared to VGG16 and ResNet50. The LSTM
model continues to underperform across most datasets,
with Fl-scores below 50% for all but CCI (34%). Its highest
Fl-score of 50% is on SDNET 2018, but it struggles signifi-
cantly with spatial feature extraction, as seen in datasets
like CPC (34%) and SCD (34%). Figure 6 shows samples of
the misclassified images for cross-testing phase.

The observed performance drops during cross-testing
across the six datasets — SDNET 2018, SCD, CPC, CDIBM, CCI,
and HBC - can be attributed to inherent variability and
dataset-specific characteristics. Differences in resolution
and image quality significantly impacted generalization,
as models trained on high-resolution datasets like SCD
(4,032 x 3,024) struggled with the lower-resolution datasets
such as HBC (128 x 128 to 256 x 256), which lacked fine-
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grained details. Conversely, resizing higher-resolution
images to smaller dimensions, as seen in CPC and CDIBM
(227 x 227), resulted in a loss of critical crack details, espe-
cially for detecting narrow fractures. Surface variability
further complicated model performance; datasets like
SDNET 2018 encompassed diverse surfaces (bridge decks,
walls, pavements), while more specialized datasets such as
HBC and CDIBM focused on historical buildings or
masonry walls with distinct textures. Dataset size and dis-
tribution were also critical factors. Small datasets, such as
CCI (2,126 images) and HBC (3,886 images), lacked sufficient
diversity, often leading to overfitting, while larger datasets
like SDNET 2018 (56,000 images) offered broader varia-
bility. However, imbalanced distributions in SDNET 2018 intro-
duced biases that impacted generalization. Environmental and
contextual challenges, such as varying lighting conditions in
SCD or outdoor noise in CDIBM, further hindered model adapt-
ahility, particularly for datasets collected under controlled con-
ditions like HBC. Networks such as VGG16 and ResNet50 have
shown excellent feature extraction and generalization capabil-
ities on datasets with identifiable structures (e.g., SCD, CPC);
however, the same networks were not able to perform well
on more complex ones like CDIBM and CCI with reduced reso-
lution and environmental inconsistency. Networks like CNN
that were less complex had trouble generalizing, and LSTM,
being weak at spatial feature extraction, performed poorly in
all datasets.

These methods, despite being standard, brought about
significant degradations of the test performance by all the
models when they were evaluated on the new data. One of
the reasons why this problem is so critical is that the most
basic augmentation, such as random flipping and rotation,
simply does not create variation and complexity to be
found in the new sets of data in this cross-domain crack
image detection problem. These changes in image resolu-
tion, surface texture, brightness, and noise in the picture
and atmosphere within the various datasets became the
obstacles that training samples with the help of

Table 17: Precision (Pre.), Recall (Rec.), and Fi-score for the models trained on HBC dataset

Dataset Model
CNN ResNet50 LSTM VGG16
Pre. Rec. F1-score Pre. Rec. F1-score Pre. Rec. F1-score Pre. Rec. F1-score

SDNET 2018 48 48 48 76 64 67 45 50 46 70 64 66
SCD 58 56 53 86 81 80 68 50 34 92 91 91
CPC 61 60 60 91 91 91 65 50 34 95 95 95
CDIBM 49 39 36 50 47 43 51 50 50 49 42 28
Ca 82 78 77 65 64 64 75 50 34 88 85 85
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augmentation could not fully overcome. Consequently, the
deep learning models while working well in one situation
tested themselves, failed in the generalization of new data-
sets structured or visual features of the other type. These
results indicate that there is a dire need for domains of
data to be able to utilize the techniques of domain adapta-
tion or other forms of sophisticated augmentation to close
the gap between datasets and allow the models to be robust
in real-world applications.

5.3.7 Model complexity and deployment considerations

In addition to performance metrics, practical deployment
scenarios - such as drone-based inspections or real-time
edge inference — require evaluating model complexity and
computational cost. Table 18 summarizes the architectural
characteristics of each model, including total trainable
parameters, average training time per epoch, inference
time per image, and deployment-related remarks.
ResNet50 and VGG16 are considerably more computa-
tionally intensive than the custom CNN and LSTM. VGG1S6,
in particular, has ~138 million parameters, resulting in
longer training times and higher memory consumption.

Samples of misclassified images for SDNET 2018 dataset

True: 1, Pred: 0.0 True: 1, Pred: 0.0

e B G

gy

Samples of misclassified images for CPC dataset

True: 1, Pred: 0.0

True: 1, Pred: 0.0

Samples of misclassified images for CCI dataset

Figure 6: Samples of the misclassified images for cross-testing datasets.
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While these models offer superior generalization, they
may not be ideal for resource-constrained environments.

Conversely, CNN and LSTM architectures are signifi-
cantly lighter. The CNN model, with only ~1.2 M parameters,
completes training in under 7's per epoch and achieves infer-
ence times below 20 ms per image. Despite its lower com-
plexity, CNN remains competitive in in-domain accuracy,
though its cross-dataset robustness lags behind deeper
models. LSTM demonstrates moderate efficiency in terms of
computational cost but exhibits weaker performance due to
its limited spatial feature extraction capabilities.

To complement the empirical evaluation, a theoretical
comparison of the four deep learning models — CNN,
ResNet50, VGG16, and LSTM — was conducted to assess archi-
tectural suitability for crack classification. CNNs, due to their
spatial locality and efficiency, are well suited for fast deploy-
ment on embedded systems. ResNet50 offers a good compro-
mise between depth and generalization, leveraging skip con-
nections to mitigate vanishing gradient problems in deeper
networks. VGGI6 is effective in fine-grained tasks but compu-
tationally intensive. LSTM, while useful in sequential mod-
eling, shows limited utility in static image classification.

While this study focused on benchmarking standard
architectures, future work may explore hybrid models that

True: 1, Pred: 0.0

Samples of misclassified images for SCD dataset

True: 0, Pred: 1.0 True: 1, Pred: 0.0 True: 0, Pred: 1.0

Samples of misclassified images for CDIBM dataset

True: 1, Pred: 0.0 True: 1, Pred: 0.0 True: 1, Pred: 0.0

—

Samples of misclassified images for HBC dataset
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combine spatial and temporal feature extraction — such as
CNN-LSTM hybrids or attention-based encoders - to
leverage the complementary strengths of different archi-
tectures for crack classification under diverse conditions.

5.3.8 Cross-domain performance limitations

The observed drop in performance during cross-testing is
primarily attributed to domain shift factors such as image
resolution mismatch, background texture complexity, and
class imbalance. For instance, models trained on SCD (well-
balanced, high-resolution) dropped up to 42% in Fl-score
when tested on HBC, which contains lower-resolution,
noisy images with high background variability. Similarly,
ResNet50 trained on CPC exhibited a 32% decrease in pre-
cision when tested on CDIBM, likely due to the introduction
of occlusions and varying lighting conditions.
Furthermore, class imbalance in target datasets amplified
false negative rates. In the case of CCI, the prevalence of
non-crack images led models trained on balanced datasets
to overpredict the majority class.

The generalization performance of the evaluated
models is thus closely influenced by dataset-specific attri-
butes such as resolution, surface texture, background com-
plexity, and environmental conditions. Structured, high-
quality datasets enable strong in-domain performance
but do not adequately prepare models for the variability
encountered in unseen datasets. These patterns were con-
sistently observed across all evaluated models, under-
scoring the need for more adaptive learning strategies.
While transfer learning helped reduce initial training
requirements and improve in-domain accuracy, its benefit
in mitigating domain shift was limited unless fine-tuning
was applied on the target dataset. This is evident from the
fact that ResNet50 with transfer learning still failed to
maintain high Fl-scores during cross-domain testing.

Although this study did not involve controlled experi-
ments isolating individual dataset characteristics (e.g., reso-
lution-only or lighting-only shifts), the observed trends
across cross-testing results strongly suggest that dataset
diversity plays a central role in shaping model

DE GRUYTER

generalization. These findings reaffirm that high accuracy
on individual datasets does not guarantee robustness across
domains and highlight the importance of future work on
domain-invariant feature extraction, style transfer, or
meta-learning techniques for improved cross-dataset crack
classification.

6 Limitations and future work

While this study provides valuable insights into model gen-
eralization for crack classification, certain limitations should
be acknowledged. First, the resizing of all images to 224 x 224
pixels, while necessary for compatibility with pretrained
models, may have caused the loss of fine-grained crack fea-
tures — especially for narrow or faint cracks — thus potentially
reducing classification accuracy. Additionally, the datasets
used were publicly available and pre-processed, which may
not fully reflect the variability and noise present in real-world
crack detection tasks.

Furthermore, although data augmentation techniques
such as random flipping and +15° rotation were used to
improve generalization, they may not sufficiently simulate
the full spectrum of real-world conditions, including com-
plex surface textures, illumination changes, and environ-
mental noise. More advanced augmentation methods,
including style transfer or GAN-based transformations,
may better capture domain variability.

VGG16 and CNN demonstrated high performance in self-
testing but suffered performance drops during cross-testing.
This degradation is likely due to domain shifts, including
differences in background complexity and resolution. No
visual interpretation techniques (e.g., feature maps or gra-
dient-based saliency) were used in this study to explore the
internal mechanisms behind these results; future work
should integrate such tools for deeper analysis.

ResNet50 showed relatively strong generalization; how-
ever, its performance degraded under low-resolution inputs
and highly textured surfaces, such as those in the HBC and
CDIBM datasets. Controlled experiments to isolate the effects
of lighting conditions or background interference were not

Table 18: Model complexity and computational cost, including parameter count, training time, and inference speed

Model Parameters (M) Training time/epoch (s) Inference time/image (ms) Remarks

CNN ~1.2 ~5-7 ~15-20 Lightweight; good for edge deployment
ResNet50 ~23.5 ~30-35 ~55-60 High accuracy; good generalization

VGG16 ~138 ~45-50 ~65-70 Very accurate but computationally heavy
LST™M ~3.7 ~10-15 ~18-22 Weak for spatial tasks; suited for sequences
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conducted and remain a promising direction for further
study. Moreover, no quantitative experiments were per-
formed to isolate and assess the specific impact of individual
dataset features (e.g., resolution, surface complexity, or
noise). Controlled variable testing remains an important
area for future exploration.

LSTM performed poorly in image-based tasks, largely
due to its sequential processing architecture, which lacks
native support for spatial feature extraction. Hybrid
models such as CNN-LSTM architectures were not explored
in this study but represent a valuable future direction for
modeling spatiotemporal crack evolution.

To improve generalization performance, future research
should explore advanced domain adaptation techniques (e.g.,
self-supervised learning or domain adversarial neural net-
works) and ensemble learning methods that combine the
strengths of multiple architectures. Multi-source learning —
where models are trained on multiple diverse datasets simul-
taneously — may also help build more robust and transferable
representations. Additionally, evaluation on large-scale, real-
world datasets collected in uncontrolled field conditions will
be critical for validating model effectiveness for practical
SHM applications.

7 Conclusion

This study systematically evaluated the performance and
generalization capabilities of four deep learning models —
CNN, ResNet50, LSTM, and VGG16 - for crack classification
in structural surfaces. The evaluation involved six publicly
available datasets (SDNET 2018, SCD, CPC, CDIBM, CCI, and
HBC), each preprocessed with uniform image resizing (224
x 224 pixels) to standardize model input. The study aimed
to address a critical research question: How well do deep
learning models generalize for crack classification across
diverse datasets, and which models perform best under
both self-testing and cross-testing conditions?

In self-testing experiments, where models were trained
and evaluated on the same dataset, VGG16 and CNN achieved
the highest classification accuracies. Notably, VGG16 achieved
100% accuracy on the SCD and CPC datasets, underscoring its
effectiveness on structured, high-resolution imagery.
However, ResNet50 demonstrated more consistent perfor-
mance across all datasets, suggesting stronger robustness to
intra-domain variation. LSTM, by contrast, consistently
underperformed, highlighting its limitations in spatial feature
extraction for static image classification tasks.

In cross-testing scenarios — where models trained on one
dataset were tested on a different dataset — generalization
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performance significantly declined. This performance drop

was most pronounced when models were trained on struc-

tured datasets like SCD or CPC and tested on datasets with
higher complexity, lower resolution, or environmental noise

(e.g., CDIBM, HBC). Among all models, ResNet50 exhibited the

most stable generalization behavior, while VGG16 retained

high accuracy only in select cases. LSTM again remained
the least effective across all cross-dataset scenarios.

These findings underscore the critical challenge of
achieving domain generalization in real-world SHM set-
tings. The results confirm that conventional image aug-
mentation and preprocessing techniques are insufficient
to overcome dataset variability. Differences in resolution,
texture complexity, and background noise significantly
impact model performance across domains.

Actionable insights from this study include:

* Use VGG16 or ResNet50 for high-resolution image sources
such as drone-based inspections or automated bridge
surveys.

* Prefer CNN in low-resource environments (e.g., edge
devices), where inference speed outweighs marginal
losses in accuracy.

* Avoid LSTM for image-based SHM tasks due to its inade-
quate handling of spatial features.

+ Datasets such as HBC and CDIBM require aggressive aug-
mentation or domain adaptation due to high surface
variability and noise.

For real-world SHM applications — including real-time
crack monitoring, preventive maintenance, and infrastructure
assessment — the selection of deep learning models must bal-
ance accuracy, inference efficiency, and generalization capa-
city. Future research should explore advanced techniques
such as domain adaptation, style transfer, and GAN-based
data synthesis to build models that are both robust and scal-
able across variable inspection environments.
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