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Abstract: Titanium alloys are broadly used in the medical
and aerospace sectors. However, they are categorized within
the hard-to-machine alloys ascribed to their higher chemical
reactivity and lower thermal conductivity. This aim of this
research was to study the impact of the dry-end-milling pro-
cess with an uncoated tool on the produced surface rough-
ness of Ti6Al4V alloy. This research aims to study the impact
of the dry-end milling process with an uncoated tool on the
produced surface roughness of Ti6Al4V alloy. Also, it seeks
to develop a new hybrid neural model based on the
training back propagation neural network (BPNN) with
swarm optimization-gravitation search hybrid algorithms
(PSO-GSA). Full-factorial design of the experiment with L27
orthogonal array was applied, and three end-milling para-
meters (cutting speed, feed rate, and axial depth of cut)
with three levels were selected (50, 77.5, and 105m/min;
0.1, 0.15, and 0.2 mm/tooth; and 1, 1.5, and 2 mm) and inves-

tigated to show their influence on the obtained surface
roughness. The results revealed that the surface roughness
is significantly affected by the feed rate followed by the
axial depth. A 0.49 µmwas produced as a minimum surface
roughness at the optimized parameters of 105 m/min,
0.1 mm/tooth, and 1 mm. On the other hand, a neural net-
work having a single hidden layer with 1–20 hidden neurons,
3 input neurons, and 1 output neuron was trained with both
PSO and PSO–GSA algorithms. The hybrid BPNN–PSO–GSA
model showed its superiority over the BPNN–PSO model in
terms of the minimum mean square error (MSE) that was
calculated during the testing stage. The best BPNN–PSO–GSA
hybrid model was the 3–18–1 structure, which reached the
best testing MSE of 3.8 × 10−11 against 2.42 × 10−5 of the 3–8–1
BPNN–PSO hybrid model.
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Abbreviations

BPNN Backpropagation neural network
GSA Gravitational search algorithm
GA Genetic algorithm
RSM Response surface methodology
TS Tabu search
PSO Particle swarm optimization
PSO–GSA Particle swarm optimization–gravitational

search algorithm
AC Ant colony
GP Genetic programming
SA Simulated annealing
ANFIS Adaptive neuro-fuzzy inference system
ANN Artificial neural network
ABC Artificial bee colony
Xj Input training vector
Hk Total hidden output
Yz Predicted output
Tz Real target
δz Error of the output layer
δk Error of the hidden layer
α Learning rate
N No. of agents
x

i

dXid Location of ith agent in the dth dimension
Fijd(t) Force that acts on mass “i” from mass “j”
Maj Active gravitational mass relevant to agent j
Mpi Passive gravitational mass relevant to

agent i
G(t) Gravitational constant at time t
ε Small constant
Rij(t) Euclidian distance between two agents i

and j
Fid(t) Total force acting on agent i in a dimension d
randj A random number in the interval [0, 1]
aid(t) Acceleration of the agent i at time t and in

direction dth
Mii Inertial mass of ith agent
Vid(t + 1) Next velocity of the ith agent
Vid(t) Current velocity of the ith agent
Xid(t + 1) Next position of the ith agent
Xid(t) Current position of the ith agent
G0 Initial value of the gravitational constant

( )tfiti Fitness value of the agent i at time t
best(t) Max fitj(t) for minimization
worst(t) Min fitj(t) for minimization
Kbest First K agents with the best fitness value and

biggest mass

1 Introduction

The biomedical, energy, and aerospace industries are con-
sidered the main market for titanium alloys. Ti6Al4V alloy
is widely used by those sectors due to its excellent proper-
ties. However, it is grouped within difficult-to-machine
alloys because of poor thermal conductivity and large che-
mical reactivity. Annually, multiple tones of materials are
converted to unutilized chips in various machining pro-
cesses. This concern is quietly enlarged for such expensive
materials that generate a huge press on the investigators
and machinists.

Many researchers carried out various studies to eval-
uate the machinability of titanium alloy and find the optimal
cutting conditions that maintain minimum surface condi-
tions, cutting forces, and maximum tool life. For example,
Ti6Al4V alloy was subjected to high-speed milling by Su et al.
[1] in different environments, including flood, cold nitrogen
at zero and hundred Celsius, cold and compressed nitrogen
with oil mist, nitrogen with oil mist, and dry cutting. They
aimed to extract the optimal settings for the uncoated car-
bide insert and revealed that flank wear was the most iden-
tified failure mode for all the applied environments.

When dry milling Ti6Al4V alloy using CVD-coated insert
at different cutting speeds, complex wear mechanisms have
been identified, according to Li et al. [2]. Due to mechanical
loading, mechanical damage was detected at low cutting
speeds, whereas high cutting speeds encouraged thermal
damage, which in turn led to the major mechanisms of
tool wear. Tool wear was discovered to be the critical factor
that has the most bearing.

The performance of coated and uncoated carbide-cut-
ting tools was examined by Elmagrabi et al. [3] for the end-
milling Ti-6Al-4V alloys. The levels of feed rate, cutting
speed, and depth of cut that have been implemented
were 0.1, 0.15, and 2 mm/tooth; 50, 80, and 105 m/min; and
1, 1.5, and 2 mm respectively. They determined the tool life
and surface roughness of both tools and found that the PVD
tool performs better with 11.5 min and achieved finer sur-
face than an uncoated tool.

The impact of milling parameters and insert wear on
the surface finish of Ti6Al4V alloy was investigated by
Safari et al. [4]. The necessary experiments were conducted
using new and old TiAlN + TiNPVD-coated inserts with
various speeds and feed rates (100–300 m/min, 0.03 and
0.06 mm/tooth). At larger cutting speeds, it was discovered
that tool condition had a significant impact on surface
roughness, with new inserts achieving 185 nm compared
with older ones (320 nm). High levels of speed caused
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plastic deformation in the sub-surface area, whereas high
levels of feed rate caused surface quality degradation,
especially at low cutting speeds.

The performance of liquid nitrogen (LN2) was explored
by Zhao et al. [5] for its impact on surface integrity during
the milling of Ti6Al4V alloy. The use of LN2 as a coolant
resulted in high microhardness and compressive residual
stresses as well as an improvement in surface quality over
a temperature range of 20–196. No discernible difference
was seen in grain size reduction as compared to dry milling.
The effectiveness of cryogenic milling in improving surface
integrity was proven by the authors.

The influence of Ti6Al4V alloys’ microstructures (fine
and larger equiaxed grains) on the cutting forces, surface
roughness, and build-up edge during micro-end milling
was examined by Ahmadi et al. [6]. Using the electron back-
scatter diffraction method, the microstructures of the end-
milled surface were examined. According to the authors,
fine-grain alpha plus beta with little β generated large
levels of cutting forces. Additionally, the type of micro-
structure had an impact on how the build-up edge formed
and its associated size.

To cut down on machining time and expenses, realistic
models for predicting machining outputs should be devel-
oped. Based on prior studies, numerous researchers have
tried and created a variety of ways to address these types of
parameter optimization problems. These techniques involve
classical and non-classical optimization algorithms. Particle
swarm optimization (PSO), Tabu search, ant colony (AC),
genetic programming, genetic algorithm (GA), simulated
annealing, artificial neural network (ANN), and adaptive
neuro-fuzzy inference system are among the popular artifi-
cial intelligence (AI) techniques that are claimed to be suffi-
ciently general [7]. Neural networks, for instance, can be
used in various disciplines and can take the role of extensive
numerical simulation [8,9].

To optimize the end-milling parameters and estimate
the surface quality of AISI 1040 plain carbon steel, an ANN
model in conjunction with GA was constructed by Oktem
et al. [10]. Analysis of variance (ANOVA) and multiple
regression analysis were also used to investigate how cut-
ting conditions affected surface roughness. The machining
time was decreased to 20% at 3.27% error using the inte-
grated method that was suggested.

During the milling of aluminium alloys, PSO was used
by Bharathi Raja and Baskar [11] to anticipate the surface
roughness. Based on these experimental data, an analytical
model was developed to estimate surface roughness using
PSO. The authors found that the limitations relating to both
the experimental and theoretical methods were compar-
able to the real roughness.

Del Prete et al. [12] used response surface methodology
(RSM) to create a surface roughness prediction model for
flat-end milling. Surface roughness was estimated using
ANN, but the surface roughness model was optimized
using GA. The process parameters of the study were speed,
depth of cut, feed rate, and radial engagement. The RSM
was combined with GA to determine the best process vari-
ables resulting in a fine surface. Experiment results were
used to verify the developed model where GA improved
the surface roughness by 13 to 27%. The produced RSM
model was possible to integrate with GA, and the effective-
ness of the optimization process was primarily demon-
strated by the accuracy of the constructed RSM model.

Zain et al. [13] integrated backpropagation neural net-
work (BPNN) algorithm and GA to obtain a minimum sur-
face roughness of the end-milled Ti6Al4V alloy taking into
account the influence of cutting speed, feed rate, and depth
of cut. The hybrid intelligent model reduced surface rough-
ness to 0.139μm at the optimized speed, feed rate, and rake
angle (167.029m/min, 0.025mm/tooth, and 4.769°). The achieved
roughness is quite lower than the corresponding values of
experimental, BPNN, regression, and RSM with amounts
reaching 26.8, 26.1, 25.7, and 49.8%, respectively. Similarly,
the integrated BPNN–GA model has minimized the surface
roughness and iteration as compared with the standard GA
model to 0.61 and 23.9%, respectively.

AL-Khafaji [14] developed a radial basis network model
based on the experimental data of turning AA7020-T6 alloy
to estimate the chip thickness ratio as well as cutting forces.
They found that these two responses are highly influenced
by the input parameters. The optimum conditions were
found using this model that maintains the chip thickness
ratio and cutting forces at 1.21 and 240.46, respectively.

Moghri et al. [15] carried out a study in which they used
both experiments and ANNs to establish a prediction model
for the optimization of surface quality during the milling of
polyamide-6 (PA-6) nanocomposites. The BPNN model was
fed with spindle speed, feed, and content as inputs and sur-
face roughness as output. GA was applied to train the BPNN
due to the small data set provided by the full-factorial design.
The findings recommended that feed rate and spindle speed
have to be set on low and medium levels to generate the
minimum surface roughness PA-6/NC specimen.

The neural network was adopted by Ibraheem [16] to
predict the generated cutting forces during the machining
of AISI 5210 alloy steel. The BPNN model was trained with
19 experimental runs consisting of input (speed, feed,
depth of cut)–output (cutting forces) pairs. The developed
model was tested with unseen six experimental data to
check the model generalization. It was found that the pro-
duced cutting forces were significantly impacted by feed
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followed by the depth of cut and matching was achieved
between the real and desired data.

The impact of end-milling variables on the machin-
ability of high-strength carbon fibre composite material
was investigated by Boga and Koroglu [17]. To estimate
the attained surface roughness, a combined neural–genetic
model was also developed. The analysis of the results
revealed that the type of cutting tool and feed rate – whose
optimal values were TiAlN-coated tool, 250 mm/rev beside
5,000 rev/min as cutting speed – had a significant impact
on surface finish. Minimum mean square error (MSE) of
0.074 was attained using the hybrid model.

A machine learning algorithm and a physical-based
method were combined by Rahimi et al. [18] to assess the
chatter levels during the milling operation. The findings
showed that the integrated model was able to predict the
chatter with an accuracy reaching 98% and allowed for the
deterministic physical-based model to implement addi-
tional training along the production phase.

Al-Zubaidi et al. [19] examined the performance of
the gravitational search algorithm (GSA) during training
the BPNN to predict the machining measure of Ti-6Al-4V
end-milled surface by PVD-coated tool. The hybrid model
was powerful in predicting the surface roughness of the
machined surface with a very low MSE.

It can be noted from the above-cited works that they
either mostly applied single neural network models (ANN)
or trained the neural network with a single heuristic opti-
mization algorithm to construct hybrid intelligent models

such as GA–ANN, PSO–ANN, and GSA–ANN. Due to the
important role of the machining processes in the manufac-
turing sector, it has become important to develop realistic
and reliable intelligent models to predict the outcomes of
this process. It is well known that machining is usually
applied with impregnating cutting fluids and coolants,
which negatively affect the environment, production cost,
and human health. As world countries are struggling with
the negative impact of climate change, they have steered
their focus and attention toward sustainability and eco-
friendly processing systems. Therefore, this study aimed
to investigate the performance of the PSO–GSA hybrid algo-
rithm during training the BPNN to predict the roughness of
dry-end-milled surface of Ti6Al4V alloy with an uncoated
cutting tool.

2 Experimental work

A 5-axis CNCmillingmachine (Type DMU 70) was used to end-
mill Ti6Al4V block. It is heavy-duty and high-performance
machine where speed reaches 18,000 rpm and it has a fast
transverse motion of 24 m/min. Figure 1 depicts the used
machine. The titanium alloy being used in this research is
considered hard to machine, and it is mainly used in aero-
space and biomedical sectors. The mechanical properties
of Ti6Al4V are illustrated in Table 1.

The end-milling process of titanium alloy was carried
out in a dry condition using an uncoated cutting insert
whose specifications are given in Table 2. The insert was
fixed in the R217.69-1612.0-09-1A tool holder and has a dia-
meter of 12 mm. The full-factorial design of the experiment
with 27 orthogonal arrays was applied to generate 27
experimental runs and provide a statistical analysis of
the achieved results. This array is also capable of pre-
senting the interactions between the input factors and
their influence on the output response. Three input para-
meters with three levels have been assigned, namely, cut-
ting speed (50, 77.5, and 105 m/min), feed rate (0.1, 0.15, and
0.2 mm/tooth), and depth of cut (1, 1.5, and 2mm). The
radial depth of cut was set at 8 mm, and the surface rough-
ness of the newly machined surface was measured triple
times and averaged after each experiment. Table 3 pro-
vides the selected parameters and their levels in real andFigure 1: 5-axis DMU CNC milling machine.

Table 1: Ti6Al4V’s mechanical properties

Ultimate tensile strength, σu (MPa) Yield strength, σy (MPa) Young modulus, E (GPa) Poisson’s ratio (ν) Hardness (HRC)

950 880 113.8 0.342 36
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coded forms, while the experimental matrix is given in
Table 4.

A 166 × 105 × 30mm3 block of Ti6Al4V alloy was pre-
pared for the end-milling process by catching it firmly with
a vice and pocket-machined to eliminate any contami-
nation, rust, dust, or residual stresses. A G-code was
written, and surface roughness (Ra) was measured by
the MpiMahrperthometer roughness tester. Figure 2 dis-
plays the experimental setup.

3 Development of integrated
neural network–evolutionary
models

Machining processes are material removal operations in
which some parameters contribute and interact to produce
a desired response. This process is complex and involves
high linearity that traditional models stand infirm to pro-
vide a good correlation between independent inputs and
dependent outputs.

Here comes the role of AI techniques to fill up this gap
and presents good mapping between input–output pairs.
ANNs are among the most important AI algorithms that can

perform numerous tasks such as function approximation,
classification, pattern recognition, and clustering. The BPNN
is widely used by the researchers, although it experiences
trapping in local solution and has a low convergence rate.
Accordingly, this study aimed to integrate a BPNN with some
evolutionary algorithms, namely, PSO and hybrid PSO–GSA.

Table 2: Dimensions and specifications of the uncoated cutting insert

Tool type Insert
cutting
rake angle

Insert side
clearance
angle

Insert
helix
angle

Maximum
depth of
cut (mm)

Chamfer
width (mm)

rɛ (mm) Dimensions (mm)

I d s

ISO grade
K20 uncoated

24° 11° 15° 5 0.06 at 4° 0.8 10 6 4

Table 3: Chosen end-milling parameters and corresponding levels

Factors Unit Levels

0 1 2

A-Cutting speed (m/min) 50 77.5 105
B-Feed rate (mm/tooth) 0.1 0.15 0.2
C-Axial depth of cut (mm) 1 1.5 2

Table 4: Experimental matrix of the 27th runs

Number Cutting speed Feed rate Axial depth of cut

1 50 0.1 1
2 50 0.15 1.5
3 50 0.2 2
4 77.5 0.1 1
5 77.5 0.15 1.5
6 77.5 0.2 2
7 105 0.1 1
8 105 0.15 1.5
9 105 0.2 2
10 50 0.1 1.5
11 50 0.15 2
12 50 0.2 1
13 77.5 0.1 1.5
14 77.5 0.15 2
15 77.5 0.2 1
16 105 0.1 1.5
17 105 0.15 2
18 105 0.2 1
19 50 0.1 2
20 50 0.15 1
21 50 0.2 1.5
22 77.5 0.1 2
23 77.5 0.15 1
24 77.5 0.2 1.5
25 105 0.1 2
26 105 0.15 1
27 105 0.2 1.5
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Figure 2: Experimental setup.
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Figure 3 shows a neural network with a multi-layer feed-
forward algorithmhaving a single hidden layer, and its training
can be performed by implementing the following steps:
• Weight initialization
• Feed-forward phase
• Error backpropagation
• Weight and bias adjustment

Concerning the first step, weights must be set to small
and random values to avoid saturation. Each input neuron
in the feed-forward gets input signal Xj and delivers it to
the hidden ones. The hidden net is produced via summing
of weighted input plus bias as given below:

∑= × +
=

hk Wj k Xj k, bias .

j

J

1

(1)

The aforementioned net proceeds to the activation
function as illustrated in the following equation:

( )=Hk f hk . (2)

Similarly, the output net is generated by summing the
weighted hidden net plus its bias:

∑= × +
=

yz Wk z Xk z, bias .

k

K

1

(3)

In the same way, the activation function is applied to
the output net in Eq. (3):

( )=Yz f yz . (4)

The objective function (error function) is calculated
using the following equation:

( )∑=
−

=

d Y

n

EF .

i

n

1

2

(5)

The parameters of BPNN, for instance, number of hidden
neurons, number of hidden layer, learning rate, momentum,
and number of iterationswere selected and set on: 1–20 hidden
neurons, single hidden layer, 0.01, 0.9, and 500 iterations,
respectively. The following subsections present a description
of how this integration is accomplished to develop AI-inte-
grated models to estimate the surface finish of the milled
part with high accuracy. In general, the evolutionary algo-
rithms need an objective function to optimize (either minimi-
zation or maximization of the last equation will be used by the
evolutional techniques to extract the optimum combinations of
weights and biases that ensure minimum error between the
desired and real targets (Tzs)).

3.1 Development of the integrated
BPNN–PSO model

Eberhart and Kennedy invented the PSO algorithm. Its
mechanism was inspired by the behaviour of social bird
flocks [20]. PSO likens GA to the initialization of a population
with random potential solutions and looking for the best
solution. However, in PSO, there are no crossovers or muta-
tions like in GA, where all the particles are traced through
the search space of the optimum particle. During the swarm
movement, the particles track two important fitness values
(pbest and gbest). The particles concerned with the best fit-
ness value are likened to a pacemaker, and each particle
maintains tracking of its position coordinates in the search
space. This fitness value is saved, where it is referred to as
pbest. When a particle regards the entire population as its
topological neighbours, the best pbest values is a global and
called gbest.

The population of candidate solutions (particles) of the
swarm is searching for the optimum solution during move-
ment in the d-dimension search space. The fitness function
is a quantitative measure of all particles. Each particle is
characterized by velocity and position vectors (Vij and Pij).
The velocity is updated to a new velocity by applying Eq.
(6). Consequently, the new position can be calculated by
summing up the previous position with a new velocity
(Eq. (7)).

( ) ( )

( )

( )

= × + ×

× − + ×

× −

Vij w Vij c

pbestij pij c

gbestij pij

new previous 1 rand1

2 rand2

,

(6)

( ) ( ) ( )= +Pij Pij Vijnew previous new , (7)

wherew is the inertia weight and rand is a random number
with [0,1] range. c1 and c2 are the positive constants, and
they are set on 2. Generally, they are regarded as learning

Figure 3: Feed-forward neural network with a single hidden layer.
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Keep 
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Select current fitness as new pbest
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Collect the Experimental data of 27 sets for 

cutting speed, feed rate, depth of cut, and 

Surface roughness.

Extract weights and biases from the best particle of 

PSO, and send them into BPNN to calculate the training, 

validation, and testing mean square error 

No

Yes

Create and configure the back propagation neural network (BPNN)

Divide data randomly to training, and testing data sets, and then do normalization 

within the range [-1, 1] for all data sets 

Code all the weights and bias that were passed from 

BPNN, as PSO particles and initials the population to 

develop PSO-BPNN 

Determine the fitness function (MSE) of each particle 

Meet 

stopping 

criterion?

Is current 

fitness better 

Update velocity and position of each particle in the swarm 

Select the best value of pbest values and assign it as gbest 

Start

End

Figure 4: Flowchart of the integrated BPNN–PSO model.

Table 5: Parameters of the PSO algorithm

No. Parameters Value

1 Population size 30
2 Learning factors: c1 & c2 2
3 Inertia weight 0.9, 0.5
4 Maximum iterations 500
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factors. Table 5 shows the control parameters of the PSO
algorithm. The c1 and c2 determine how far the swarm
particles are from the global solution.

PSO optimization consists of several steps to accom-
plish the global solution (Figure 4):
• Population initialization (population size, particle veloci-
ties, positions, weights, and biases)

• The best fitness value in the current iteration is set as
pbest and stored. The PSO is tracking another best value
called gbest, which is so far the best value of Pbest par-
ticle in the swarm. These two values are important when
implementing the PSO algorithm.

• Evaluate the fitness function of each particle in the
swarm to recognize the pbest and gbest values.

• If the current fitness is less than the previous pbest, it is
replaced with this current value for pbest. If not, the
previous value remains as pbest.

• Select the best value of pbest values and assign it as a new gbest.
• Update the velocities and positions according to Eqs. (6)
and (7), respectively.

• The updated swarm particles are flying again with their
new positions (Eq. (7)).

• If the number of epochs has been reached, then stop the
training, or else, repeat Steps 3–7.

• Extract weights and biases from the best particle of PSO,
and send them into BPNN to calculate the MSE of
training, validation, and testing for evaluation of the
performance of BPNN–PSO models.

Minimization of the fitness function is the main target
of the developed model to make the desired output of the
model (predicted values) close to or near the Tzs.

3.2 Development of the hybrid
BPNN–PSO–GSA model

The PSO–GSA hybrid algorithm was developed by Mirjalili
et al. [21]. To take advantage of the ability of each of them,
the first (i.e., PSO) is distinguished by exploitation and the
latter (i.e., GSA) is characterized by exploration. In other
words, these hybrid algorithms combine the merits of both
algorithms and exclude the demerits of them.

The equations of the gravitational search algorithm
(GSA), which was developed by Rashedi et al. [22], were
recalled here beside the hybrid PSO-GSA algorithm [21].

The positions of system agents (masses) are defined in
Eq. (8), where ith agent in the dth space is positioned by x

i

d.
By applying Newton’s law, the attractive force ( )F t

ij

d (Eq.

(9)) between active and passive masses (Maj and Mpi) at
Euclidian distance (Eq. (10)) is obtained.

( )= =Xi x x x i N, …, , …, where 1, 2, 3,…, ,
i i

d

i

n1 (8)

( ) ( )
( ) ( )

( )
( ( ) ( ))=

×
+

−F t G t

M t M t

R t ε

x t x t ,
ij

d
pi aj

ij

j

d

i

d (9)

where gravitational, time, and minor constant were repre-
sented by G(t), t, and ε, respectively.

( ) ‖ ( ) ( )‖=R t X t X t,ij i j

2 (10)

To give stochastic nature for ( )F t
ij

d , a random weight is
added to find out the total force (Eq. (11)) to calculate the
dth acceleration at time t of ith agent:

( ) ( )∑=
= ≠

F t F trand ,
i

d

j j i

N

j ij

d

1,

(11)

( )
( )

=a t

F

M t

,
i

d i

d

ii

(12)

where the Mii refers to the ith inertia.
To get a benefit for the exploitation capability of the

PSO, Eqs. (6) and (7) are modified here to obtain the velo-
city and position of the new agent by incorporating the
acceleration (Eq. (12)) into PSO–GSA as shown below:

( ) ( )

( )

= × + ′ ×

+ ′ × −

Vij w Vij c r aij

c r gbestij pij

new previous 1 and 1*

2* and 2 ,

(13)

( ) ( ) ( )= +Pij Pij Vijnew previous new . (14)

Initially, the gravitational constant is given an initial value
(G0) and it decreases with time to empower the accuracy of the
search. Therefore, this constant is a function of (G0) and time (t):

( )=G G G t, .0 (15)

The fitness equation is used to determine each of the
gravitational and inertia masses. The heaviest mass repre-
sents the more efficient and attractive mass that moves at a
slow speed. Equalizing the inertia and gravitational masses
enables us to find out the masses using the fitness masses
as given in Eqs. (16)–(18):

Table 6: Parameters of the PSO–GSA algorithm

No. PSO–GSA parameters Value

1 Population size 30
2 Gravitational constant 100
3 Learning factors: c1 & c2 2
4 Inertia weight 0.9, 0.5
5 Maximum iterations 500

Investigation of the performance of integrated intelligent models  9



Collect the Experimental data of 27 sets for 

cutting speed, feed rate, depth of cut, and 

Surface roughness.

Get optimised weights and biased and send to the BPNN-GSA with to 

calculate the MSE for training, validation, and testing

Yes 

Start

End

Apply Eqs. (13) and (14) to update all masses’ velocity and position

Calculate gravity constant and gbest of population 

No Meet 

stopping 

criterion? 

Calculate the training and validation MSE based on the updated agents’ 

weights and biases 

Create and configure the back propagation neural network (BPNN)

Divide data randomly to training, and testing data sets, and then do normalization within 

the range [-1, 1] for all data sets 

Code all the weights and bias that were passed from BPNN, as 

GSA agent and initials the population to develop BPNN-PSO-

GSA 

Determine the fitness function (MSE) of each agent 

Calculate the position of each agent (x) based, and store their fitness values 

Pick up the values of the worst and best for the present iteration according to the agent’s MSE.

Update the total mass and mass of individual agent mass 

Calculate the total attractive force and acceleration 

Figure 5: Flowchart of the integrated BPNN–PSO–GSA model.
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−
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,i

i (17)

( )
( )

( )
=

∑ =
M t

m t

m t

,i

i

j

N

j1

(18)

where ( )tfiti refers to the ith fitness values at time t. For
minimization problem as in the current study, the worst
and best at time ( )t are given in the following equations:

( ) ( )=t tbest maxfit ,j (19)

( ) ( )=t tworst minfit .j (20)

To develop BPNN–PSO–GSA, the following steps must
be carried out:
• Initialize the population represented by the sent weights
and biases by the BPNN.

• Coding both of weight and bias in the position vector form.
• Calculate the position of each agent (x) based, and store
their fitness values.

• Calculate the gravity and g-best of the population.
• Pick up the values of the worst and best for the present
iteration according to the MSE of the agent.

• Update the total mass and mass of individual agent mass.
• Calculate the total attractive force and corresponding
acceleration.

• Apply Eqs. (13) and (14) to update the velocity and posi-
tion of all masses.

• Calculate the training and validation of MSE based on the
weights and biases of updated agents.

• If the stopping criterion is fulfilled, stop training and
inject the BPNN–PSO with optimized weights and biases
to calculate the MSE of training, validation, and testing. If
not, repeat Steps 3–9.

The PSO–GSA parameters are given in Table 6, while
Figure 5 illustrates the sequence steps for developing the
integrated BPNN–PSO–GSA model.

4 Results and discussion

4.1 Analysis of surface roughness model

In this study, the full-factorial method was used as the
design of experiment to generate an L27 orthogonal array
to investigate the impact of each cutting condition and their
interaction on the surface roughness of milled Ti6Al4V alloy
with an uncoated tool under dry cutting conditions. Table 7

shows the surface roughness when end-milling Ti6Al4V
alloy. As stated in the previous section, the surface rough-
ness value of milled Ti6Al4V alloy represents the average of
three measurements taken at the beginning, middle, and
end of the milling pass. Subsequently, the significant para-
meters that influence the machining performance measure
(surface roughness) were assigned using ANOVA. An ANOVA
result for the surface roughness of the uncoated tool is
shown in Table 8. In this work, the significance level of
0.05 is taken into consideration in the resulting analysis,
because the main significant effect obtains an occurrence
probability (P) that is equal to or less than 0.05.

When the effect of independent parameters is com-
bined with its interaction with another independent para-
meter, a significant interaction has occurred. This combined
effect results in a different response (surface roughness)
when compared to the lack of interaction between

Table 7: Experimental data of the machined Ti6Al4V alloy

Number Cutting
speed

Feed
rate

Depth
of cut

Surface
roughness (μm)

1 50 0.1 1 0.539
2 50 0.15 1.5 0.882
3 50 0.2 2 1.744
4 77.5 0.1 1 0.548
5 77.5 0.15 1.5 0.966
6 77.5 0.2 2 1.644
7 105 0.1 1 0.552
8 105 0.15 1.5 0.918
9 105 0.2 2 1.412
10 50 0.1 1.5 0.8
11 50 0.15 2 1.229
12 50 0.2 1 1.201
13 77.5 0.1 1.5 0.68
14 77.5 0.15 2 1.156
15 77.5 0.2 1 1.076
16 105 0.1 1.5 0.585
17 105 0.15 2 1.134
18 105 0.2 1 1.043
19 50 0.1 2 0.56
20 50 0.15 1 1.130
21 50 0.2 1.5 0.942
22 77.5 0.1 2 0.714
23 77.5 0.15 1 0.687
24 77.5 0.2 1.5 1.104
25 105 0.1 2 0.611
26 105 0.15 1 0.562
27 105 0.2 1.5 0.956
Minimum
value

0.539

Maximum
value

1.744

Average
value

0.954
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parameters. The ANOVA and full-factorial method allow us to
find the optimized cutting parameters that produceminimum
surface roughness. Five diagnostic plots have been generated
using this software, namely, normal probability plot of the
residuals, residuals versus predicted values, outlier versus
run order in addition to residuals versus run number, and
predicted versus actual plots. Figure 6 shows those diagnostic
plots depicting this model as possessing satisfactory goodness
of fit via the normal distribution of data.

Referring to Table 8, it is obvious that this model is
significant when its F value is 8.59. Each factor obtains a
P-value lower than 0.05, meaning it is a significant factor.
When this criterion is applied to Table 8, it can be concluded
that both feed rate (B) and depth of cut (C) are the significant
factors that affect surface roughness. In other words, any
change in their values results in diverse effects on the
machining performance. The “Prob > F” of the feed rate
is <0.0001, while the depth of cut has a recorded value
of 0.0021. Consequently, the interactive influence is also sig-
nificant for the feed rate and depth of cut, because it was
0.0274 “Prob > F,” which was also less than 0.05. Meanwhile,
the cutting speed (A) is not a significant factor, because it
obtained a “Prob > F” value of more than 0.05.

It can be seen that the contribution values of each
cutting condition have been added to the ANOVA table
(Table 8). The feed rate has contributed to 59.16%, which
is regarded as a high percentage compared with the other
parameters. Meanwhile, the contribution of the depth of
cut is 18.07%, while the cutting speed is limited to 3.099.
The contribution of each factor is inversely proportional
to its “Prob > F” value, where feed rate, for example,
contributed the highest percentage, hence achieving the
lowest “Prob > F” value.” “Adeq Precision” measures the
signal-to-noise ratio, where a value that is greater than 4
is desirable. The ratio of 10.515 is indicative of an ade-
quate signal, making this model useful for design space
navigation.

4.2 Effects of cutting process parameters on
surface roughness

In the previous section, the full-factorial model was statis-
tically analysed using ANOVA. The analysis revealed both
the significant and insignificant factors. In this section, the
performance of the machining measure will be assessed,
and the effect of cutting conditions on this machining mea-
sure will be investigated. To do this, it is necessary to study
the combined impact of each two cutting conditions while
keeping the third constant. Hence, the design of experi-
ment software has provided interaction graphs for all cut-
ting conditions. Each graph consisted of three plots, with
three holding values for one of the cutting conditions. The
model predicted points are represented by squares, rhom-
boids, and triangles, while the circular points refer to
the design points. The black, red, and green colours are
assigned to the low, medium, and high levels of the end-
milling parameters for both design and predicted points.
The predicted points are connected via dotted lines. The
interactive graph depicted in Figure 7 shows how the sur-
face roughness is impacted by the feed rate and cutting
speed with a 1, 1.5, and 2mm depth of cut.

With a 1mm depth of cut, the surface roughness values
decrease when the cutting speed increases for medium and
high feed rate levels. For the low feed rate, there is a very
slight change in surface roughness for all cutting speed levels.
Design points 1, 4, and 7 recorded minimum surface rough-
ness (0.53, 0.54, and 0.55 μm), which is represented by low
feed rate and depth of cut, accompanied by low, medium,
and high cutting speeds. The dotted lines are moving up
when increasing the feed rate along different cutting speeds,
which is reflected in the highly significant effect of the feed
rate. Moving to Figure 7b the same graph with a 1.5mm
depth of cut as the holding value, the behaviour became
different. At medium and high feed rates, the change in sur-
face roughness along different cutting speeds is like a ramp.

Table 8: ANOVA of surface roughness

Source Sum of squares Degree of freedom Mean square F-Value Prob > F Percent contribution (%)

Model 2.75 18 0.15 8.59 0.0021 —

A 0.089 2 0.045 2.52 0.1417 3.099
B 1.71 2 0.85 48.1 <0.0001 59.16
C 0.52 2 0.26 14.69 0.0021 18.07
AB 0.031 4 7.65 × 10−3 0.43 0.7831 1.059
AC 0.048 4 0.012 0.68 0.6255 1.670
BC 0.35 4 0.087 4.88 0.0274 12.01
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Figure 6: Residual model diagnostic for surface roughness.
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Meanwhile, the linear reduction in surface roughness with
increasing cutting speed occurred. Hence, design point 16
resulted in the minimum surface roughness for this plot, at
0.58 μm. Also, the impact of feed rate is obvious when it is
increased from low, through medium, to high levels.

Figure 7c reveals two important things. Firstly, the
depth of cut can be set to a high level and accompanied
by a high cutting speed and low feed rate to achieve accep-
table surface roughness (design point 25). Secondly, the
significant effect of feed rate is much clearer when it is
combined with a high depth of cut compared with the first
and second plots for the same plot. Hence, the high levels of

Figure 7: Surface roughness interactive graph against cutting speed and
feed rate with three holding values of depth of cut: (a) 1 mm, (b) 1.5 mm
and (c) 2 mm.

Figure 8: Surface roughness interactive graph against cutting speed and
depth of cut with three holding values of feed rate: (a) 0.1 mm/tooth, (b)
0.15 mm/tooth and (c) 0.2 mm/tooth.
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feed rate and depth of cut should be avoided to maintain
an acceptable surface roughness value. The cutting speed
in this context is not significant.

Figure 8 shows the surface roughness interactive graph
vs cutting speed and depth of cut with three holding values
for feed rate. Figure 8a reveals that with a low feed rate, it is
possible to choose any combined settings of cutting speed
and depth of cut, where the maximum surface roughness

does not exceed 0.8 μm (design point 10), and the minimum
is 0.53 μm (design point 1).

The significant effect of feed rate was starting to express
itself when its value increased to 0.15 and 0.2 mm/tooth
(Figure 8b and c). The integrated influence of feed rate
and depth of cut is significant. Numerically, design points
3, 6, and 9 reported the maximum surface roughness, with
1.7, 1.6, and 1.4 μm, respectively. Those points are character-
ized by high feed rates and depth of cut with different cut-
ting speed levels (Figure 8c). Meanwhile, Figure 8b registers
the minimum roughness at 0.56 μm, which originated from
high cutting speed, medium feed rate, and low depth of cut
(design point 26). Also, design point 23 achieved a good sur-
face roughness of 0.68 μm when using medium cutting
speed and feed rate accompanied by low depth of cut.
Only these two points should be taken into consideration
as good surface roughness for this particular space.

Figure 9 represents the surface roughness interactive
graph vs feed rate and depth of cut with three holding values
of cutting speed. Cutting speed has no significant effect on
the milled surface roughness. However, the significant effect
of feed rate and depth of cut is shown in all three plots of the
same figure. At any cutting speed, when the feed rate is
integrated with a depth of cut at medium–medium or high–
high levels, the produced surface roughness is higher than
0.8 μm. On the contrary, at any cutting speed, all the design
points that are located in the bottom-left corner of all three
plots produced surface roughness of less than or equal to
0. 8 μm.

To sum up, the minimum surface roughness can
be achieved at a low feed rate and depth of cut with
any cutting speed within the specified range. Also, with
medium cutting speed and low depth of cut, the feed rate
can be set to a medium level to obtain good surface rough-
ness. High cutting speeds, accompanied by high depth of
cut, can maintain acceptable surface roughness to increase
the metal removal rate and improve productivity, but
the feed rate should be set at a low level. Moreover, the
most important parameters that affect surface roughness
significantly are the feed rate and depth of cut, but not
to the same extent. The combined effect of both feed
rate and depth of cut is also significant and affects the
machining performance measure; therefore, they should
be set at a low level. In general, a good surface finish can
be achieved at high cutting speed accompanied by a low
feed rate and depth of cut [23]. These results agreed with
the ANOVA, which revealed that the most significant fac-
tors are feed rate (B), followed by depth of cut (C) and the
combined effect of both (BC). On the other hand, both
experimental results and statistical analysis of the ANOVA
table showed, without a doubt, that the cutting speed and

Figure 9: Surface roughness interactive graph against feed rate and
depth of cut with three holding values of cutting speed: (a) 50 m/min., (b)
77.5 m/min., and (c) 105 m/min.
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their interactions with feed rate and depth of cut are not
significant. Hence, cutting speed can be set to any value
within the range, although the preferred level is set to a
high level for the aforementioned reasons.

4.3 Optimization of surface roughness

In the previous section, the effect of cutting conditions on
milled Ti-6Al-4V alloy was investigated during dry-end milling
with an uncoated insert tool. The interaction graphs that have
been plotted in the previous section showed the significant
effect of cutting conditions by investigating the output
response (surface roughness). Furthermore, the produced
surface roughness results from the combined effect of these
cutting conditions. Accordingly, these interaction graphs
could not specify the exact optimized parameters that main-
tained the lowest surface roughness. Design expert software
itself solves this issue by providing an optimal solution,
which ensures minimum surface roughness.

The objective of the optimization is to achieve minimum
surface roughness while keeping all cutting conditions within
its range to generate multiple solutions, which are ranked
based on minimum surface roughness and maximum desir-
ability. By following this objective, the minimum surface
roughness produced from the best solution was 0.488 μm.

Table 9 shows the optimized conditions with minimum
roughness, respectively. The optimum conditions are 105m/
min, 0.1mm/tooth, and 1mm. A confirmation test for these
optimum cutting conditions was carried out, and 0.48 µmwas
determined to be the minimum surface roughness. It can be
noted that the optimum surface roughness is less than the
experimental value, with similar cutting conditions. The
optimum conditions are plotted in the ram form as shown
in Figure 10, with one desirability line.

4.4 Results of the hybrid BPNN–PSO model

Minimization of the fitness function is the main target of
the developed model to make the desired output of the
model (predicted values) close to or near the Tzs. The opti-
mized weights and biases enable BPNN–PSO to achieve the
minimumMSE. Table 10 shows the findings of the BPNN–PSO
models. The results for the BPNN–PSO models revealed that
3–8–1 is the best network structure of BPNN–PSO. It consists
of eight hidden neurons, respectively. While three stands for
the input vectors for the neural model, and one refers to the
output. The MSE values were 2.42 × 10−5, as the best minimum
MSE in testing. The minimum values for the other three
statistical measures were 0.028725, 0.022096, and 0.016734,
respectively.

Figure 10: Optimum cutting conditions for surface roughness.

Table 9: Optimum end-milling parameters

Milling parameters and response Target Lower limit Higher limit Optimum parameters

Cutting speed Within the range 50 105 105
Feed rate Within the range 0.1 0.2 0.1
Axial depth of cut Within the range 1 2 1
Surface roughness Minimize 0.539 1.744 0.48
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Figure 16: Training, validation, testing, and all regression plots for the 3–18–1 BPNN–PSO–GSA model.
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Figure 11 shows the MSE of training versus epochs. It
reveals a decrease in MSE with the elapsed epochs until
approaching the minimum value. The trend of this figure
takes an L-shape. This means that the improvement done
by PSO iteration-by-iteration was done steeply in the first
little iteration.

The error histogram was constructed based on the dif-
ference between the real and desired output for BPNN–PSO,
as shown in Figure 12. The testing error range of the
BPNN–PSO best model was −0.00928–0.00936. The red bar
refers to the testing error and is closest to the bars of the
zero line. As a result of this, BPNN–PSO achieved a high R-
value, as will be seen later in the regression plot.

Regression plots in Figure 13 show the degree of
matching between desired and real outputs in training,
validation, and testing, respectively. It can be noted that
all the training, validation, and testing data points are
located on the best-fit lines, which are represented by
blue, green, red, and grey, respectively. The BPNN–PSO
algorithm achieved a testing R-value of greater than 0.99.

4.5 Development of the integrated
BPNN–PSO–GSA models

As stated in Section 3.2, the GSA was hybridized with PSO
by Mirjalili et al. [21]. The BPNN has been trained by the
hybrid PSO–GSA model to investigate its capability in mod-
elling a complex and non-linear problem-like machining
process as in the current study. Table 11 illustrates the
four statistical measures for training, validation, and testing
of BPNN–PSO–GSA models. It is clear the good performance
of the hybrid model as BPNN–GSA did. Eighteen hidden
neurons were sufficient to give the best MSE performance
of 3.8 × 10−11 for the 3–18–1 structure.

Table 11 reveals the stable performance of the BPNN–
PSO–GSA hybrid models at different hidden neurons in
terms of the four statistical measures. It pointed out the
significant role played by the hybridizing of GSA with PSO
to maintain stable behaviour for different network struc-
tures. In other words, BPNN has gotten beneficiary to
achieve more minimization for error function to make close
matching between desired and target outputs. The 3–4–1
structure also had good performance with low MSE.

The mean, median, and best testing MSE of BPNN–
PSO–GSA was lower than the corresponding values of the
minimum MSE of BPNN–PSO. The exception was only the
slightly larger standard deviation. The minimum MSE of

the developed hybrid model for the mean, median, stan-
dard deviation, and the best were 3.28 × 10−3, 2.68 × 10−2,
0.02626, and 3.8 × 10−11, respectively. Similarly, the trend of
training MSE vs iteration was L-shaped as depicted in
Figure 14. There was a fast drop for the MSE in the first
few epochs to approach the global solution that is repre-
sented by the optimum set of weights and biases for the
best network structure of 3–18–3. Then, the MSE takes right
stable line until stopping criteria has been reached. The
error histogram was constructed for blue training, green
validation, and red testing as seen in Figure 15. Most of the
training, validation, and testing errors are located around
and near the zero line, which reflects the reliability of
PSO–GSA’s crucial role in training BPNN. To present a clear
view regarding the BPNN–PSO–GSA model, the regression
plots are presented in Figure 16. The excellent correlation
between desired and Tzs is clearly illustrated by recording
high R-values in the three phases, which were close to or
equal to 1. Therefore, the capability of the hybrid PSO–GSA
model in training BPNN with good reliability was approved
by reaching minimum testing MSE (Table 11), low histogram
errors (Figure 15), and excellent matching between desired
and Tzs (Figure 16).

When the two best hybrid models (3–8–1 and 3–18–1)
are placed in a comparison state, the performance in terms
of achieved MSE training error, error histogram, and
regression plots is considered. Firstly, the training MSE
error of the 3–18–1 BPNN–PSO–GSA model showed faster
convergence than the 3–8–1 BPNN–PSO model, as depicted
in Figures 11 and 14. The 3–18–1 structure reached the
minimum MSE (1.18 × 10–7) in a round of 90 iterations,
while 315 iterations were repeated until the 3–8–1 struc-
ture reached 3.14 × 10–3. Secondly, the error histogram of
the two best hybrid models also showed significant differ-
ences in all phases (training, validation, and testing). Twenty
data sets of the 3–18–1 model are located at the zero line (14
for training, 2 for validation, and 4 for testing), as Figure 15
confirms. On the contrary, the 3–8–1 model illustrates that
12 data sets (8 for training, 2 for validation, and 2 for testing)
are positioned nearly right to the zero line, and 6 data sets (3
for training, 1 for validation, and 2 for testing) are placed
closely at the left as revealed by Figure 11.

Furthermore, the maximum difference in the training
phase between actual and predicted surface roughness for
the 3–18–1 model (−0.05207 and 0.1093) is smaller than that
for the 3–8–1 model (−0.1582 and 0.1954). Thirdly, there was
close matching between actual and desired targets in
training, validation, testing, and all for the 3–18–1 model
(Figure 16) with corresponding R values (0.99336, 0.999, 1,
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and 0.99475). On the other side, 0.97342, 0.99826, 0.9993,
and 0.97997 were recorded as R values of training, valida-
tion, testing, and all for the 3–8–1 model, as shown in
Figure 13. Therefore, the BPNN–PSO–GSA hybrid model
with a 3–18–1 structure was overcome by the 3–8–1 struc-
ture of the BPNN–PSO hybrid model in terms of the pro-
duced MSE training error, error histogram, and regression
plots.

5 Conclusions

This study proposed two aims, namely, to study and opti-
mize the dry-end-milling parameters with an uncoated tool
of Ti4Al6V alloy and to investigate the performance of the
PSO–GSA hybrid algorithm in training BPNN to predict the
surface roughness of the end-milled workpiece. According
to the discussion and analysis of the obtained results to
achieve the aforementioned two aims, the following points
can be concluded:
1. The dry-end milling of TiAl4V alloy with an uncoated

carbide tool was conducted successfully.
2. The parametric study revealed that the generated sur-

face roughness was significantly impacted by the feed
rate and depth of cut accompanied by their combined
effect, while the cutting speed was not significant.

3. The optimization process of dry-end-milling parameters
recommends setting the cutting speed at a high level
(105 m/min) and feed rate and depth of cut on low levels
(0.1 mm/tooth and 1 mm) to produce the minimum sur-
face roughness of 0.49 µm.

4. The PSO–GSA approved its effectiveness during training
and validation of the BPNN compared with the PSO
algorithm in terms of the speed convergence, produced
error histograms and regression plots.

5. The 3–18–1 BPNN–PSO–GSA hybrid model was the best
model, where it produced a minimum best MSE of 3.8 ×

10−11 compared with 2.42 × 10−5 that corresponds to the
3–8–1 BPNN–PSO model.
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