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Abstract: In this study, singularity fields at the interface
corners of piezoelectric-brass unimorphs are investigated.
Two models differing in side surface geometry (step and
flat surfaces) are analyzed to study the singularity effect
on mechanical (stress—strain) and electrical (electric poten-
tial and intensity) behavior. A mixed-mode mechanical
boundary condition is applied for analyzing the realistic
application of unimorphs, with normal force, shear force,
and bending moment as internal forces. The conservative
integral together with a three-dimensional finite element
analysis is used to determine the intensity of singularity.
There are three singularity terms at each vertex and sin-
gular line. All singularity terms are investigated in detail.
Intensities of the singularities at the vertex and several
points located on side surfaces (singular lines) are exam-
ined. Results show that the intensities of singularities for
mixed-mode conditions differ from that of tensile load con-
ditions. For mixed-mode conditions, the intensity of singu-
larity must be calculated for all singularity terms. In addi-
tion, the stress singularity characteristics at the vertex may
be described as a function of the singularities along the
singular lines. These findings clarify the understanding of
singularity at interface corners of piezoelectric-brass unim-
orphs and may be used as references for developing rele-
vant piezoelectric devices.
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1 Introduction

Piezoelectric materials, especially PZT (lead zirconate
titanate), are used in numerous engineering and techno-
logical applications due to their unique properties [1].
Piezoelectric bonded joints (for example, bonded joints
between PZT and brass) may be found in different
devices, including transducers and sensors. At the bonded
joints, stress singularity usually occurs as a result of
mismatching of material properties across the inter-
faces. As it is known, a piezoelectric effect is a property
related between mechanical pressure and electric charge;
that is, besides mechanical stress singularities, singularity
characteristics of the piezoelectric materials might affect
electric fields.

There are several studies on the singularity behavior
of piezoelectric materials on cracks [2-6] and bonded
joints [7-14]. Those studies revealed that the singularity
of the piezoelectric materials affects electric fields; there-
fore, it is more complicated to analyze the singularities of
the piezoelectric materials than that of non-piezoelectric
materials. For piezoelectric bonded joints, most studies
focus on analyzing the order of singularity [7-11,13]. To
clearly understand singularity behavior, the intensity of
singularity is an important parameter in addition to the
order of singularity. However, few studies have analyzed
the intensity of singularity [12,14].

Recently, Luangarpa and Koguchi [15,16] focused on
the investigation of the intensity of singularity of the piezo-
electric bonded joints. These studies revealed that a mag-
nitude of electric displacement increases as it approached
the vertices, as with stress singularity. The concentration
of electric displacements might cause an enlarged electric
field. However, it is not clear how an electrical singular
affects overall mechanical-electrical behavior.

Although the previous studies deal with the investi-
gation of the intensities of singularities, all cases are
applied tensile loading only. There remains a need for
analysis of the mixed-mode boundary conditions (mixed
between tensile and shear loading) since various applica-
tions of the piezoelectric material might be used in the
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mixed-mode conditions, e.g., an unimorph or a bimorph
used for actuation, sensing, or energy harvesting.

The present study applied numerical methods to
analyze a realistic case of the piezoelectric bonded
joints. The unimorphs consisting of PZT (transversely
isotropic piezoelectric material) and brass (isotropic
material) are investigated. With unimorph application
as a cantilever beam, internal forces comprised normal
force, shear force, and bending moment (the mixed-
mode condition). Furthermore, to our knowledge, no
study on the singularity at the bonded joint between
PZT and brass, which is a conductive material, has
been conducted. In this study, the singular fields at a
vertex and along the singular line of three-dimensional
models are examined in detail. Two models differing in
side surface geometry are analyzed to study the effect of
singularity on mechanical (stress—strain) and electric
(electric potential and intensity) behaviors. Each vertex
and each singular line consist of three singularity terms.
All singularity terms are investigated in detail. The orders
of singularities and the angular functions are calculated
using eigenanalysis proposed in [17], and extended for
piezoelectric materials in [10,11]. The intensities of singu-
larities are calculated using the conservative integral
based on Betti’s reciprocal theorem. There were several
studies that used the conservative integral to calculate
the intensities of singularity or stress intensity factors.
For example, [18-20] used this method for crack problems,
and [21-25] used this method for dissimilar material
bonded joints or interface corners. Those studies proved
that the conservative integral can be used to accurately
calculate the intensity of singularity. Furthermore, the
conservative integral has the major advantage that the
intensity of singularity for each term of singularity can
be calculated individually.

In the case of the multi-term of singularities, the
value of the intensity of singularity for each term is
required for summarizing the singularity in an equation
or matrix form, such as the unified singular stress equation
proposed in [15]. Results obtained by using the conventional
finite element analysis (FEA) are stress and electric displace-
ment values, not easily separating each singularity term. This
means that the conservative integral is useful in arranging
the results in the unified form. In addition, the previous
studies [15,16] revealed that for cases of applied tensile
loading, the intensity of singularity for the first term of
singularity generally had the largest value, making stress
fields to be estimated solely using first term singularity
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outcomes. However, the results might be different for
applied shear loading or mixed-mode conditions.

In Section 2, the analytical formulas are presented.
The numerical analysis is described in detail in Section 3.
This section is divided into 4 subsections. The analytical
models and boundary conditions are presented in Section
3.1. The results of the orders of singularities and the
angular functions, for both at the vertices and along the
singular lines, are described in Section 3.2. In Section 3.3,
the results of the intensities of singularities, for both at
the vertices and along the singular lines, are presented.
In Section 3.4, distributions of stresses and electric dis-
placements are presented and compared to the results
obtained using the conventional FEA with mesh refine-
ment to demonstrate the accuracy of the conservative
integral. Finally, conclusion is presented in Section 4.

2 Analytical formulas

2.1 Singularity equations for piezoelectric
bonded joints

The general equations for asymptotic solutions around
the singular point can be written as follows:

O'l](r 6, ¢) = ZI( (L) (n)(e, ¢)’ 1)

u(r, 0, ) = ZK( )gf”)(f? ) @

where the subscripts i, j = r, 8, ¢ in the spherical coordi-
nate system (Figure 1(a) and (b)). The length L is set to be
the length of PZT-5H in the y-direction.

For piezoelectric material, the asymptotic solutions
related to the electric properties are written as follows:

0, 6, ) = ZKHG) 0, ), 3)
n=1

uy(r, 6, ¢) = ZK( ) (6, P). (4)

Following [15], the unified singular equation (for
three terms of singularities) are written as follows:

r -A
[o(r, 6, )] = [£ 6, qb)][(z) ][K], 5)
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Figure 1: Analytical Models: (a) Model-1 and (b) Model-2.
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2.2 Method for calculating the order of
singularity and the angular functions

Following [10,11], the eigenvalue analysis can be used to
calculate the order of singularity, A,. The eigen equation
is written as follows:

(p?[A] + p[B] + [CD{u} = O, (6)
where [A], [B], and [C], are matrices composed of mate-
rial properties. {u} is the eigenvector of displacement and
electric potential. The eigenvector analysis is used to
obtain the angular functions of the displacements and
the electric potential, g(6, ¢) and g"(6, ¢), shown in
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Egs (2) and (4). Next the stress—strain relation can be
used to derive the angular functions of the stresses
and the electric displacements, f, (")(6 ¢) and (")(9 ),
shown in Egs (1) and (3).

In this study, the orders of singularities are calcu-
lated at the vertex and the point on the singular line.
The angular functions at the vertex for each order of
singularity are normalized as follows:

1 o mon
éﬂ)vertex(z 4) 1, fr@vertex(z 4) 1,

3 oo
fé@%/ertex(z ’ Z) =1

@)

On the other hand, the angular functions at the point
on the singular line are normalized as follows:

(1) (77 ”) 1, f? (E E) -1

66line 2’2 r@line 2’2 ’
3y (M T

fe(egme( 2 2 ) L

(See [10,11] for details of this method for calculating
the order of singularity and the angular functions.)

(8)

2.3 Method for calculating the intensity of
singularity

The conservative integral for three-dimensional model
was first proposed in [26]. This method was extended
to calculate the intensity of singularity, K,, at the vertex
and along the singular line of the piezoelectric bonded
joints in 15,16]. The conservative integral is written as
follows:

I(T’iui - Tiu,-’)ds = 0. (9)

S

Following [15,16], the H-integral (the conservative
integral) at the singular point is written as follows:

H = j(q;ul - mjuil)ﬁjds, (10)

Sr

where Sr is an arbitrary surface area surrounding the
singular point.

To solve Eq. (10), two sets of solutions, unprimed
(03, u;) and primed (oj; iis u/) solutions, are required. The
unprimed solutions are defined to be the singular solu-
tions obtained using the eigenanalysis as follows:

ai’(r, 6, ¢) = Kn( L) 306, ¢, 1)
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u™(r, 6, d) = K( = )g‘"’(e P). (12)

The primed solutions are defined to be complemen-

tary solutions with the order of singularity of I’ = 3 — A.
The primed solutions are written as follows:
0", 6,4) = G ] ) fme.e, @)
A
u{™(r, 0, ¢) = ( = )g“”)(e ), (14)

where C, is derived by setting Hr, = K, such that

1
- D[, [ "6, 9)5" 6, §) ~ 6, $)s/ "6, §)sin bdpde

(15)

(See [15,16] for details of this method for calculating
the intensity of the singularity at the vertex and at the
point along the singular line, respectively.)

3 Numerical analysis

3.1 Analysis models

Two unimorph models are used in this analysis. The dif-
ference between two models is their side surface shape
(Figure 1(a) and (b)). The material above the interface is
PZT-5H with the poling direction in the z-axis. The mate-
rial below the interface is brass. The vertices of the
models are considered to be the intersection between
two side surfaces (front-line and side-line). Each side sur-
face is considered to be a dissimilar material bonded line.
There are two types of bonded line used in these models:
1. Line-1 (or step surface) is the side surface where 6 =

0-90¢° for PZT-5H and 6 = 90-270° for brass (Figure 1(a)).
2. Line-2 (or flat surface) is the side surface where 6 =

0-90° for PZT-5H and 8 = 90-180° for brass (Figure 1(b)).

Model-1 is the model in which all side surfaces are
Line-1. Vertex-1 is the vertex formed by two step surfaces
(Line-1). Model-2 is the model in which one side is Line-1
and the other is Line-2. It means that Vertex-2 is the
vertex in which Line-1 (front-line) intersects Line-2
(side-line). Dimensions for Model-1 and Model-2 are
shown in Figure 1(a) and (b), respectively. The boundary
conditions are shown in Figure 2. Both models are
clamped at one end and free along the remainder of
their length. The free end is applied with compression
loading and deformed by 0.1 mm in the z-direction. The
material properties are presented in Table 1.
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Figure 2: The boundary conditions.

Table 1: Material properties

PZT-5H Brass
Elastic constant, GPa G 126 E =100 GPa,
Ci, 55 v=0.307
Ci3 53
G 117
Cuyy 35.3
Piezoelectric constant, e3; —6.5
C/m? ess 233
e;s 17.0
Dielectric constant, xu 151
107°C/Vm X3 130

3.2 The orders of singularities and angular
functions

The orders of the singularity at the vertices, A(°™ (where
the subscripts v = 1, 2 represent Vertex-1 and Vertex-2,
respectively. n is the n-term of singularity in descending
order), are presented in Table 2. The results show that
there are three-term of singularities at each vertex. The
values of the orders of singularities of Vertex-1 for all
terms are larger than that of Vertex-2.

Table 3 presents the orders of singularities along the
singular line, A(llif;,e) (where the subscripts I = 1, 2 represent
Line-1 and Line-2, respectively). The results show that
Line-2 is a non-singular line (the values of the order of
singularity = 0).

Table 2: The orders of singularities at the vertices, A}~

A AE A5
Model-1 (A(‘;?;,t)ex 0.575 0.211 0.109
Model-2 (A(vzf;})ex 0.371 0.208 0.038

Table 3: The orders of singularities along the singular line, /1(‘,'“,,9)

Al Al Al
A(l;ns) 0.459 0.324 0.096
/\(liznﬁ) 0.000 0.000 0.000

AAAN

Following [16], the singularity at the vertex may be
considered to be the combination of two singularities
along the singular line (where two sides meet). That is,
Vertex-1 is the combination of two singular lines, and
Vertex-2 is the combination of one singular line and
one non-singular line.

3.3 The intensities of singularities
3.3.1 The intensities of singularities at the vertices

The intensities of singularities at the vertices are calcu-
lated using the conservative integral together with the
three-dimensional FEA. The FE models used to obtain
the displacements and the electric potentials are shown
in Figure 3(a) and (b) for Model-1 and Model-2, respec-
tively. These models are symmetric about their centerline.
Thus, the half-symmetry FE models are used. The intensi-
ties of singularities, K(‘ﬁf)ex, are presented in Table 4. The
results indicated that the values of intensities of singula-
rities of Model-1 are larger than that of Model-2 for all
singularity terms. However, some negative values may
affect the magnitudes of stresses (See [15] for details of
the conservative integral for the vertex).

3.3.2 The intensities of singularities along the singular
lines

The intensities of the singularities at several points
located on the singular lines are examined. For Model-1,
there are two lines for analysis; whereas, there is solely
one line (front-line) for Model-2 because Line-2 is consid-
ered to be the non-singular line (A3% = 0).

Examples of the FE models used to obtain the displa-
cements and the electric potentials (for front-line at d =
3mm) are presented in Figure 4(a) and (b) for Model-1
and Model-2, respectively.

The intensities of singularities at the points located
on the singular lines are presented in Tables 5 and 6. The
results of the front-line, K "¢, at the points located at 1,
2, 3, and 4 mm from the vertices are presented in Table 5.
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(a ) PZT-5H
brass
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(b)

Figure 3: The FE models used to obtain the displacements and the electric potentials: (a) Vertex-1 and (b) Vertex-2.

Table 4: The intensities of singularities at the vertices, Kyt
Ko™ Ko™ K3

Vertex-1 (K™ 680.42 -690.95 -176.65

Vertex-2 (K}F75* 668.23 -122.96 41.01

The values of the intensities of singularities of Model-1
at each point are similar to that of Model-2; in addition,
the values of K({ ’f)i“e (the first term) are the largest within
three singularity terms. The results of the side-line,
K§Ise, at the points located at 1, 2, 3, and 4 mm from
Vertex-1 (Model-1) are presented in Table 6. The results
are different from that of the front-line; in other words,

the values of K&
that of K§i® (the first term). This may be caused by
the mixed-mode conditions. It may be noted that it is
necessary to calculate the intensity of singularity for all

(the second term) are larger than

singularity terms because the maximum value may not
be the value of the first term of singularity.

3.4 Distributions of stresses and electric
displacements

The results in Section 3.3 show that some values of inten-
sities of singularities are negative, and some are positive.
Therefore, it is difficult to compare the magnitudes of
stresses or electric displacements using only the orders
or the intensities of singularities since there are multi-
terms of singularities. To evaluate the results between
two models, the distribution of the stresses and electric
displacements are presented by substituting the intensi-
ties of singularities, K, (the results in Section 3.3) with the
orders of singularities, A, and the angular functions,
(0, ¢), (the results in Section 3.2) in the unified singular
equation (Eq. (5)).

Figure 4: The FE models used to obtain the displacements and the electric potentials for front-line at d = 3 mm: (a) Model-1 and (b) Model-2.
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F-line

Table 5: The intensities of singularities along the front-line, K¢ r)

dom g K K
K(’;:lri’;'e 1 483.33 53.80 186.48
2 388.01 31.96 178.70
3 354.92 20.39 187.77
4 341.41 6.38 191.50
K&"l’ilf)le 1 487.50 30.01 172.35
2 391.14 27.43 180.57
3 346.50 19.55 188.53
4 326.75 6.17 190.61

Table 6: The intensities of singularities along the side-line, K3 "

R -
K lne 1 -27.27 -252.61 -66.26
' 2 -26.67 —248.95 ~66.61
3 -8.96 ~250.46 -39.22
4 2.21 -250.35 -31.94
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Figures 5 and 6 present the distribution of stresses at
the vertices with respect to the distance from r. The
normal stresses, 0gg, at ¢ = 45° and 6 = 45° and 90° are
presented in Figure 5(a) and (b) for Vertex-1and Vertex-2,
respectively. The shear stresses, 74, at ¢ = 45° and 0 = 45°
and 90° are presented in Figure 6(a) and (b) for Vertex-1
and Vertex-2, respectively. According to these figures,
the values of stresses of Vertex-1 are much larger than
those of Vertex-2. Comparing between absolute values of
normal stresses and shear stresses, the values of normal
stresses, Ogg, at ¢ = 45° and O = 90° are larger than the
values of shear stresses, 1,4 for both vertices, whereas, at
0 = 45°, 0yy is smaller than 7.

Figures 7 and 8 present the distribution of stresses
at the interface, 6 = 90°, with respect to ¢ for r = 0.01
and 0.1 mm. The normal stresses, 0y, are presented in
Figure 7(a) and (b) for Vertex-1 and Vertex-2, respec-
tively. According to these figures, the value of stresses
increases as it approaches the singular line (Figure 7(b)
clearly shows that at @ = 0°, that is the non-singular line,
the values of stresses are small). The shear stresses, Ty,

(b) e
50 FEM (Marc) [|Con. Integral
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40 A 9=90[|----0=90|T]
&30
=
v 20
10
A
-V
A
Nt o S5y
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o mm

b
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& 230
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-50 T P
2 3 456 2 3 456
0.001 0.01 0.1
r mm

Figure 6: Distribution of shear stresses, 1,4, at ¢ = 45° and 6 = 45° and 90° with respect to r: (a) Vertex-1 and (b) Vertex-2.
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Figure 7: Distribution of normal stresses, o0gg, at the interface, 8 = 90°, with fixed r at 0.01 and 0.1 mm: (a) Vertex-1 and (b) Vertex-2.
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Figure 8: Distribution of shear stresses, 1,4, at the interface, 8 = 90°, with fixed r at 0.01 and 0.1 mm: (a) Vertex-1 and (b) Vertex-2.

are presented in Figure 8(a) and (b) for Vertex-1 and
Vertex-2, respectively. The results of shear stresses are
different from that of normal stresses. For both vertices,
the value of stresses does not increase as it approaches
the singular line. However, the value of shear stresses, 74,
of Vertex-1 is much larger than that of Vertex-2.

Figure 9(a) and (b) present the distribution of electric
displacements, Dy, at ¢p = 45° and 8 = 45° and 90° with
respect to r for Vertex-1 and Vertex-2, respectively. In
addition, the distribution of electric displacement, Dy,
at the interface, 8 = 90°, with respect to ¢ for r = 0.01
and 0.1 mm, is presented in Figure 10(a) and (b), for
Vertex-1 and Vertex-2, respectively. Similar to the stresses,
the values of electric displacements of Vertex-1 are much
larger than that of Vertex-2, and the values of the electric
displacements increase as it gets closer to the singular
line. These results confirm that the singularities effect to
electric fields and the electric displacements increase as
it approaches the singular line.

Figures 11-14 present the results along the front-line
at d = 3 mm. The distribution of normal stresses, oy, at
¢ =90° and 6 = 45° and 90° with respect to r is presented
in Figure 11(a) and (b), and oy at the interface, 6 = 90°,
with respect to ¢ for r = 0.01 and 0.1 mm, are presented
in Figure 12(a) and (b), for Model-1 and Model-2, res-
pectively. According to these results, the values of the
stresses along the front-line of Model-1 are similar to
those of Model-2, which corresponds to that of the inten-
sities of singularities. Next the results of the electric dis-
placements for the same paths as the stresses are shown
in Figures 13 and 14. The results of the electric displace-
ments are in the same trend as the results of stresses.

In addition to the results obtained using the conser-
vative integral, the distribution of stresses and the electric
displacements obtained using the conventional FEM with
mesh refinement (0.0005 mm is the smallest element size
in the r-direction) is also plotted in Figures 5-14 for com-
parison. The results are in good agreement. Therefore,
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Figure 9: Distribution of electric displacements, Dy, at ¢ = 45° and 6 = 45° and 90° with respect to r: (a) Vertex-1 and (b) Vertex-2.
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Figure 10: Distribution of electric displacements, Dy, at the interface, 8 = 90°, with fixed r at 0.01 and 0.1 mm: (a) Vertex-1and (b) Vertex-2.
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Figure 11: Distribution of normal stresses, ggg, at ¢ = 90° and 6 = 45° and 90° with respect to r on the singular line (front-line at d =3 mm):
(a) Model-1 and (b) Model-2.
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Figure 12: Distribution of stresses, gyg, at the interface, 6 = 90°, with fixed rat 0.01and 0.1 mm on the singular line (front-line at d = 3 mm):
(a) Model-1 and (b) Model-2.
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Figure 13: Distribution of electric displacements, Dg, at ¢ = 90° and 6 = 45° and 90° with respect to r on the singular line (front-line at d = 3 mm):
(a) Model-1 and (b) Model-2.
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Figure 14: Distribution of electric displacements, Dy, at the interface, 6 = 90°, with fixed rat 0.01 and 0.1 mm on the singular line (front-line
at d = 3 mm): (a) Model-1 and (b) Model-2.



DE GRUYTER

accurate intensities of singularities can be obtained using
the conservative integral. In addition, the singular stresses
and electric displacements can be expressed by the unified
singular equation (Eq. (5)).

4 Conclusion

In this study, the orders of singularities and the intensities
of singularities at the vertices and along the free edges (the
singular lines) of the interface corners of piezoelectric-
brass unimorphs were obtained. Two models which differ
in bonded shape were investigated. These models consist
of multi-terms of singularity, and were applied the mixed-
mode conditions. The conclusions are as follows:

1. The results revealed that the singularities of the piezo-
electric bonded joints affect the electric fields. The mag-
nitude of electric displacements increases dramatically
as it approached the vertices and the singular lines.

2. The results of the orders of singularities and the
intensities of the singularities revealed that, for three-
dimensional models, the stress singularity characteris-
tics at the vertex might be described as a function of
the singularities along the side surfaces of the inter-
face (the singular lines). Comparing between two
models, Vertex-1 (two singular side surfaces) gener-
ated much larger stresses and electric displacements
than that of Vertex-2 (one singular side surface).

3. The cases of multi-terms of singularity with applied
mixed-mode boundary conditions, it is necessary to
calculate the intensity of singularity for the second-
term and the third-term of singularity because the
maximum intensity of singularity might not be the
value of the first-term of singularity. Furthermore,
the results (all three terms) could be expressed by
the unified singular equation. It was found that accu-
rate intensities of singularities can be calculated using
the conservative integral.

In summary, these findings clarify the understanding
of singularity at interface corners of piezoelectric-brass
unimorphs and may be used as references for developing
relevant piezoelectric devices.

Nomenclature
d distance from the vertex
fii angular function of stress

Singularities at interface corners of piezoelectric-brass unimorphs =—— 765

f4 angular function of electric displacement

g angular function of displacement

g, angular function of electric potential

K, intensity of singularity

L model length

m number of singularity term

P eigenvalue (p=1- A7)

r distance from the singular point

S integral contour

T; tractions of the singular fields

T/ tractions of the complementary fields

T, electric displacement with the outward unit
vector (T, = oyfi) of the singular fields

T, electric displacement of the complementary
fields

U; displacements of the singular fields

uf displacements of the complementary fields

U, electric potentials of the singular fields

u, electric potentials of the complementary fields

An order of stress singularity

o stress tensor

Osj electric displacement
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