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Abstract: Composites have been evolved rapidly due to
their unique performance in comparison with other con-
ventional materials, such as metals. Although additive
manufacturing (AM) has attracted considerable attention
in recent years to produce reinforced complex composite
structures as in reinforced carbon fiber composites, it is
difficult to control the fiber content concentration within
the composites to obtain tailored materials properties,
especially at high loads of fibers. In fact, high load of
fibers usually leads to technical issues, such as nozzle
clogging and fiber agglomeration that hinder the 3D
printing process. Therefore, a customized artificial neural
network (ANN) system was developed in this work to
predict the mechanical characteristics of 3D printing ther-
moset carbon fiber composites at any carbon fiber concen-
tration. The developed ANN system was consisting of three
model techniques for predicting the bending stress as well
as the flexural modulus of the thermoset carbon fiber com-
posites, even when handling small experimental datasets.
The system architecture contained connected artificial neu-
rons governed by non-linear activation functions to enhance
precise predictions. Various schemes of ANN models were
utilized namely: 1-4-1, 1-4-8-1, and 1-4-8-12-1 models. The
developed models have revealed various accuracy levels.
However, the 1-4-8-12-1 model has demonstrated a very
high level of predictions for the mechanical performance
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of the AM epoxy/carbon fiber composites. This would
enhance predicting the performance of such composites
in 3D printing with very minimal experimental work to
optimize the fiber content for the desired overall mechan-
ical performance.
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1 Introduction

Additive manufacturing (AM) or 3D printing has received
much attention in recent years by the reason of producing
complex geometries with customizable material attri-
butes [1]. The process of creating 3D objects initiated by
bringing layer upon layer of substance whatever the
fabric material is. The most widely used fabric materials
are metals, polymers, and concrete; however, polymers
are noticed as one of the most famous fabric materials
used in structural applications due to their lightweight,
low cost, and thermal properties [2-5]. Though the con-
siderable interest in polymers, they are not appropriate
for purposes requiring higher mechanical performance as
they possess limited material strength in contrast to other
materials, such as ceramics or metals [6—9]. At this point,
efforts have been expended on enhancing the mechanical
performance of polymers using various types of reinfor-
cements. More recent attention has focused on the provi-
sion of fibers as reinforcements used in composites, for
example, carbon [10,11], glass, and natural [9,12-17].
These fibers can be categorized into short and continuous
[18]. However, short fibers (chopped or milled) have demon-
strated their importance by the fact of ease raw material
preparing. Consequently, this technique can significantly
ease the manufacturing process flexibility in fiber posi-
tioning and material deposition. Furthermore, short fiber
composites have lower material costs and void content,
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Figure 1: ANN architecture.

making them an appealing choice for many researchers
[19-22].
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Recently, considerable literature has grown up around
the theme of using carbon fibers to strengthen the compos-
ites [23,24]. The term carbon fiber refers to a long chain
composed of carbon atoms joined securely to each other
[25]. One reason why carbon fibers have been used extre-
mely is the close mechanical performance to that of some
metals as steel [26]. Another reason is the high strength-to-
weight ratio compared to either steel or plastic [27,28]. This
evidence demonstrates the central role played by carbon
fiber in very popular applications in engineering, aero-
space, and cars, for example [29].

Investigating the constructing of thermoplastic com-
posites is a continuing concern within the fused filament
fabrication (FFF) methodology. This technology allows
the additively embedding short fibers and polymers [30].
In this operation, a continuous filament of a thermoplastic
material is melted in a heating stage and then is solidified
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Figure 2: Comparison between experimental and predicted values of AAN models regarding the bending strength according to the carbon
fiber content: (a) 1-4-1 model, (b) 1-4-8-1 model, and (c) 1-4-8-12-1 model.
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upon the deposition on the print bed [31]. Researchers
have reported improvements in the mechanical perfor-
mance of the created composites corresponding to this
method [32]. Even though thermoplastic composites with
high volumes of short fibers may be effectively produced
and 3D printed, FFF process is suffering from the weak
adhesion between the fibers and the matrix material within
the composites due to low interfacial strength between
printed layers [33]. However, researchers pay the attention
to strengthen the mechanical performance employing a
recently developed direct writing (DW) method. In this tech-
nique, paste-like composite inks can be extruded into 3D
shapes by altering fluid viscosity and yield strength via
rheology modifiers, such as nanoclay or fumed silica [34].
Fiber—polymer matrix adhesion is substantially greater
in thermoset composites, where fibers are covered with a
small coating of surfactant, which chemically links the
thermoset matrix and the fiber, resulting in high adhesion
unlike thermoplastic composites [35]. That the high-volume
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concentration of fibers can be embedded in thermoplastic
composites; it is, however, notably limited in thermoset
composites to less than 5%. A recent technique [34] was
developed for that reason, leading to increasing this
amount to nearly 46% of short, copped carbon fibers.

The high mechanical performance of composites is
obviously of several factors; one of them is the volume
ratio of fibers. While obtaining high mechanical properties
requires high-volume ratio of fibers, there is —as men-
tioned above —a limit in the fiber concentrations used in
composites whatever the fiber type is [36-38]. The ques-
tion here arises, what if researchers still could not conduct
experiments exceeding the recorded percentage limit of
fibers? Is there any approach to predict the behavior of
the thermoset composite if we use 50% of carbon fibers’
volume ratio as example?

Suitable technologies, such as the artificial neural net-
work (ANN), represent a great method to analyze the com-
plexity of such predictions. This method is particularly
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Figure 3: Comparison between experimental and predicted values of AAN models regarding the flexural modulus according to the carbon
fiber content: (a) 1-4-1 model, (b) 1-4-8-1 model, and (c) 1-4-8-12-1 model.
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useful in studying and solving nonlinear problems based
on the nonlinear regression methods used in various
fields, such as structural engineering, composite mate-
rials, and robotics [39-43]. Generally, ANN is built from
a network of linked nodes, known as artificial neurons,
which help in the processing the neurons’ signals at their
connection. Each input signal is treated as a real number,
and the output of each neuron is determined using a non-
linear activation function of the sum of its inputs. Besides,
neurons usually have a weight that changes the intensity
of the signal at a connection. Different layers containing
neurons may apply various modifications to their inputs
where signals pass the first layer input to the last layer (the
output layer) — maybe many times —to achieve the right
answer.

Consequently, this study aims to develop prediction
models for the intrinsic mechanical properties of addi-
tively fabricated short carbon fiber-reinforced thermoset
composites, taking the advantage of ANNs. The developed
models can provide good predictions about the perfor-
mance of carbon fibers without requiring any experimental
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investigation regardless the fiber concentration content.
Thus, the approach used in this work would enhance the
better understanding of the performance of additively
manufactured thermoset carbon fiber composites and
would have a significant influence on the adaption of
these materials at larger scales, opening the door to
their usage in a wide range of technical applications
with high levels of reliability.

2 Materials and methods

The reinforcement was milled carbon fibers with small
lengths, L = 50 pm, and aspect ratios, s = 4.5. The matrix
resin was epoxy 826 from Hexion, a curing agent, and a
nanoclay. The effects of milled carbon fibers on mechan-
ical properties and printability were then studied by gra-
dually adding different amounts of milled carbon fibers to
this mixture. As the concentration at which carbon fiber
is used dramatically affects the mechanical properties of
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Figure 4: Comparison between relative error values of ANN models in bending stress: (a) 1-4-1 model, (b) 1-4-8-1 model, and (c) 1-4-8-12-1

model.
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Table 1: Evaluation and statistical values of mechanical perfor-
mance prediction models

Average bending stress  Average flexural modulus

Model Model Model Model Model Model

A (1- B(14 C@14- AQ1- B (1-4- C (1-4-

1-1) 8-1) 8-12-1) 1-1) 8-1) 8-12-1)
MAPE (%) 19.28 12.97 6.71 17.26 15.83 8.26
R? 0.74 0.86 0.95 0.91 0.90 0.97

the composites, the volume percentages of these chopped
fibers to neat epoxy ranged from 2 to 46%.

To construct the composite item, the method was
carried out utilizing DW-based 3D printing, in which
the reinforcement was filled with the epoxy system through
a nozzle attached to a customized 3D printer. Three-point
bending tests were performed on the printed specimens
using an Instron Universal testing machine in accordance
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with the ASTM D7264/D7264M 07 standard to evaluate
mechanical performance. Each set was subjected to at least
four tests to provide the repeatability and to quantify the
experimental variability. Additional information on the
experimental process can be obtained in [34].

However, it should be noted that the maximum pos-
sible value that can be added to the composite —as
described in [34] —is nearly 46% of carbon fibers as a
volume fraction. Furthermore, this limitation of carbon
fibers amount is due to the difficulty of conducting experi-
ments because of fiber agglomeration and nozzle clogging
observed during the 3D printing process. Given these con-
cerns, the current work involves examining the mechan-
ical performance at higher carbon fiber concentrations
exceeded the recorded values in [34] using the ANN.

ANN’s structure can be divided into three main sub-
groups, including an input layer, one or more hidden
layers, and an output layer. While the input layer accepts
data from external sources, the output layer provides one
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Figure 7: Cross correlation between ANNs and experimental values of bending stress: (a) 1-4-1 model, (b) 1-4-8-1 model, and (c) 1-4-8-12-1
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or more data points based on the function of the network
after the being processed through the hidden layers.
Figure 1 depicts the ANN model. Neurons are the basic
building components of ANNs that are used to determine
output. Moreover, the neuron has the advantage of col-
lecting the inputs from several other neurons, multi-
plying it by the weights supplied to it, and then applying
an activation function to the result before moving to the
next variable.

Although this math operation may be seen simple as
a first impression, stacking tremendous neurons in var-
ious layers may create an ANN capable of doing extre-
mely complex tasks. Three stimuli models in this article
were built using the Matlab environment to predict the
young modulus and the bending stress. The key aspects
of these models can be listed as follows: increasing the
number of hidden layers used, as well as neurons in each
hidden layer.

All models have a common one input (i.e., carbon fiber
content) and a one output (young’s modulus (E) or bending
strength (0y,)). In conjunction with these principals, Model A
has one hidden layer with four neurons. However, the
hidden layers’ number rises in Model B to be two layers
containing four and eight neurons in each hidden layer,
respectively. To assess whether there is any improvement
in the predicted mechanical performance, it was chosen
here to construct a model (i.e., Model C) with three hidden
layers, each containing four, eight, and twelve neurons.
During the simulation, each resulted signal from neurons
is transported to the next layer through the Log-sigmoid
transfer function, which is preferable for connecting the
hidden and output layers. The following equation shows
the mathematical relation used in this function:

1
1+e™m’

logsig(n) = 6]
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Figure 9: Advanced correlation fit between ANNs and experimental values of bending stress (Model C). (a) Polynomial 3rd degree fit;

(b) Gaussian’s fit.

In practice, Log-sigmoid is a popular multi-layer neural
network that is trained to positive infinity using the back-
propagation algorithm. As the neurons’ net input changes
from negative to positive infinity, this function gives out-
puts ranging from O to 1.

A qualitative methodology is employed in this study;
the weights of the connections between neurons in ANNs
are first assigned random values, and then those models
(networks) start training the data, having the ability of
mapping creation between inputs and outputs. However,
providing more training data has had the neural network
gradually changes its weights, mapping each input to the
right outputs.

3 Results and discussion

On the first point, prediction models’ experimental data
were divided into 70% for training data and 30% for

testing in order that the ANN’s models being developed.
On the second point, the method begins by creating input/
output data and then training these data by the networks to
map between inputs and outputs as mentioned in the pre-
vious section. However, the training process was based on
the backpropagation gradient descent method due to its
effectiveness in terms of both simplicity and application,
even in multi-layer networks. To better understand the
back-propagation algorithm, it is divided into three stages:
first, feeding the input training values and computing the
network outputs; second, calculating the difference between
the goal values and the computed results; and third, trans-
mitting the error back to change the weights of the layers.
With regard to analyze the mechanical properties of
fiber material based on the experimental data, the ANN
method is applied. These results aimed to examine the
model prediction and the experimental results of average
bending stress and flexural modulus (Figures 2 and 3,
respectively). Figures clearly demonstrate that Model
A’s prediction model is not capable of accurately
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Table 2: Evaluation comparison (of average bending stress)
between the predicted ANN Model C and the relative error

Table 3: Evaluation comparison (of average flexural modulus)
between the predicted ANN Model C and the relative error

CF (vf%) Average predicted ANN Relative error (%) CF (vf%) Average predicted ANN Relative error (%)
0 76.12 44.67 0 3.24 55.43
2 78.96 35.55 2 3.23 57.88
3 81.53 17.78 3 3.87 51.67
4.7 89.09 20.22 4.7 5.36 0.02
13 233.06 28.22 13 11.54 0.18
20.2 289.68 35.47 20.2 21.34 22.64
27.6 294.89 6.53 27.6 36.16 25.49
36.1 317.92 0.98 36.1 44.5 0.24
44.8 371.80 0.34 44.8 48.99 6.91
46.4 397.56 0.44 46.4 53.22 4.57

predicting values during the training stage. This in fact is
due to using one hidden layer with small number of neu-
rons. Further analysis of the data in Model C reveals that
the ANN results are very close to the experimental results.
Figures 4 and 5 show the relative error of the three
models’ outputs.

Figure 6 depicts the output function fit of a network
spanning the range of inputs as the plotting of targets
and output data points linked with input values.

As can be seen from Figure 6, the discrepancy between
the outputs and the objectives is shown by the error
bars. This difference approved the Model C analyses and
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Figure 11: Validation of the ANN in Model C: (a) bending stress and (b) flexural modulus.

showed how close the ANN outputs from the experimental
data.Additional statistical analysis found that the mean

Table 4: Output of the ANN Model C

absolute percentage errors (MAPEs) of bending strength ~ CF (vf%) Average ANN bending Average ANN flexural
were 19.28, 12.97, and 6.71%, in Models A, B, and C, respec- stress (MPa) modulus (GPa)
tively. Also, MAPEs regarding the flexural modulus are 19 166.18 8.06

identified to be 17.26, 15.83, and 8.26% in Models A, B, 15 263.05 12.75

and C, respectively. Overall, a significant difference was 30 298.01 17.44

found between Model A and Model C with successive “° 330.11 42.23

. . . 50 443.39 51.21

increases in the accuracy of the predicted data as we 55 459.85 51.88

increase the hidden layers. However, MAPE is calculated
as the following:

|Qp,j - Qexp,jl

x 100%,
Qexp,i

1 S
MAPE = §Z )

j=1

where S is the number of samples, Q, denotes the pre-
dicted mechanical property value, and Q.y, denotes the

measure of the experimental mechanical property. In addi-
tion, to compare the reliability of the proposed prediction
model, R-square (correlation coefficient) is presented and
evaluated quantitatively. The correlation coefficient is
used to validate models by comparing the anticipated
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Figure 12: The behavior of the proposed extra validation points of both bending stress and flexural modulus.
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and the experimental data as shown in Table 1. If the
correlation coefficient is close to one, the model’s training
effect improves and the prediction result improves.

The correlation coefficient is expressed by

z;zl(gp,j - Qexp,]’)2

R =
Z?zl(Qp,j)z

G)

Bending stress correlation coefficients averages were
0.74, 0.86, and 0.95 for Models A, B, and C, respectively.
On the other hand, these values were 0.91, 0.90, and 0.97
in flexural modulus property. As a result of these indica-
tions, the suggested model (i.e., Model C) performed very
well for both bending stress and flexural modulus. These
findings suggest that Model C has a good correlation coef-
ficient, and its accuracy rates are about equivalent to 95
and 97% in both average bending stress and flexural
modulus, respectively.

An important concept that emerged from the data is
to find the predicted equations for each model. Figures 7
and 8 depict the linear regression analysis to generate
polynomial ANN equations and curveting. More inspec-
tion to fit the resulted data, a polynomial of higher order
and a Gaussian’s fit curve of model C are shown in
Figures 9 and 10, respectively.

These results validate the equations and the pre-
dicted models of the suggested ANN models. It should
be noted, however, that certain predictions depart from
the experimental data. This is owing to the minimal
quantity of sample data [38], making determining the
most accurate findings difficult. Tables 2 and 3 show
the ANNs’ prediction as well as the relative error of the
obtained mechanical performance in relation to Model C.

The tables (above) proofed the ability of ANN model to
be very suitable for estimating the mechanical performance
of AM thermoset carbon fibers composites. Moreover, the
validity of the predicted equation and the ANN were tested
using some extra points ranging between the experimental
fiber content. Figures 11 and 12 show the precision of the
final developed model, and Table 4 shows its predictions
with extra points exceeded the practical fiber concentra-
tions (i.e., some points exceeded the maximum experi-
mental fiber contents).

4 Conclusions

Neural network models were developed and investigated
to predict and determine the average bending stress
and flexural modulus at various carbon fiber concentra-
tions within 3D-printing manufacturing composites. It was
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demonstrated here that proper design of ANN schemes has
to be selected to perform such good predictions to enhance
the reliability of the model. ANN was properly utilized as a
tool to assess and support predictions via the analysis of
the entire system within a data framework. ANN-devel-
oped models were capable of handling tiny experimental
datasets to find the mechanical performance of AM carbon
fiber composite structures. There was a high level of agree-
ment between the experimental mechanical characteristics
and the derived models. The MAPE and correlation coeffi-
cient were used to assess the accuracy of the three ANN
models. The best MAPEs using ANN system regarding pre-
dicting the young’s modulus of carbon fibers was 8.26%,
and that for bending stress was 6.71%. It can also be con-
cluded that the ANN prediction models can accurately
predict the mechanical characteristics of the fibers as
well as the desired performance to enhance more reliable
utilizations of such AM systems. In terms of future study,
these findings (using the suggested ANN model) add
to a foundation for understanding and predicting the
mechanical performance of any reinforced thermoset com-
posite manufactured utilizing AM technology; so that, the
current implemented approach can be extended to study
and investigate various fiber types of reinforcements in
composites.
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