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Abstract: The identification and stratification of soils
represent an essential step in designing various geotech-
nical structures. The cone penetration test (CPT) mea-
surements are used widely to classify the soil; however,
the soil classification charts such as the Robertson chart
undergo uncertainty from different sources that make
overlapping of soil types. This article aims to develop a
probabilistic approach employing clustering with Gaussian
mixture model, which can deal with the uncertainty and
classify the soil based on CPT. The spatial parameters
were obtained assuming the different types of covar-
iance matrices. The data utilized in this study represent
the results of CPT in four locations in Nasiriyah, Iraq. Both
spatial and feature patterns were produced and used to
classify the soil. This research revealed that the soils
deduced from the Robertson chart were clay, silt, and
sand. No gravelly sand appeared on the chart. The soil
at shallow depth was clay soils, and it changed to be sandy
silt at fairly great depth. They were close to the boundary
curve between the stiff clay and sand zones and relatively
existed at great depth. The probabilistic approach can
detect the soil layers fast without experience-based deci-
sions. Moreover, the type of assumed covariance matrix
may affect the soil profile.

Keywords: Gaussian mixture model, CPT, soil classifica-
tion, Nasiriyah soil

* Corresponding author: Ressol R. Shakir, Department of Civil
Engineering, University of Thi-Qar, Thi-Qar, Iraq,

e-mail: rrshakir@utq.edu.iq

Jawad K. Thajeel: Department of Civil Engineering, University of
Thi-Qar, Thi-Qar, Iraq, e-mail: Jawad.thajeel@utq.edu.iq

Raghad Adel: Department of Civil Engineering, University of Thi-Qar,
Thi-Qar, Iraq, e-mail: raghadadel@utq.edu.iq

Haneen Muhammed Ali: Department of Civil Engineering, University
of Thi-Qar, Thi-Qar, Iraq, e-mail: haneen1994@utg.edu.iq

1 Introduction

Designing geotechnical structures such as pile foundations
based on field tests [1,2], or by numerical methods [3],
require preparing the soil classification profile according
to the site investigation report because the design formulas
or the numerical solutions mainly depend on the type of soil
and the thicknesses of layers. One of the widely used field
test-based soil classification methods was by Robertson
chart, which depends on the cone penetration test (CPT).
The CPT has been used increasingly in Iraq despite its high
cost [4] compared to other tests since it is fast and gives a
continuous reading [5,6]. Two main quantities that can be
measured during CPT are cone resistance (qc) and friction
resistance (fs). The mechanical properties of the soils, such
as strength and compressibility, are estimated due to the
physical response of the investigated soils to cone advance
through the soil, which reveals the idea of CPT-based clas-
sification. The relations between soil composition and
mechanical properties depend on the complicated envir-
onmental condition. Moreover, since the CPT performs no
extracted sample, the soil cannot be visually identified.
Some of the measurements may give soil classes that are
not compatible with the borehole profile. Other uncertain-
ties contain inherent soil variability due to soil’s geological
process, called aleatory uncertainty [7] or actual variabil-
ities. These include the base resistance and friction, which
will be variable and irreducible, mechanical and electrical
features of the device, tolerances, operator error, and trans-
formation uncertainties. In addition to that, the classifi-
cation chart developed by Robertson contains uncertainty
that comes from observation scattered, measurement error,
and transformation uncertainty. The CPT soil classification
charts are generic and may not give accurate results of soil
type [8]. Therefore, the interpretation of the CPT results is
affected by the uncertainty from different sources. The
induced uncertainty cannot be avoided. The CPT-based
classification is used to guide classification [9,10]. The
CPT classification system is not an alternative to the other
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methods. They can serve the knowledge integrity, each
completing the other. The laboratory systems are limited
to the samples while CPT is continuous with depth. We
used this test since it is fast and gives a continuous reading
and also it is computerized and can give the classification
directly.

According to the drawbacks mentioned above, the
probabilistic methods may show a critical approach for
classifying the soil and providing a confident and reason-
able classification, particularly with reliability analysis.
Many researchers have investigated the uncertainty in
CPT-based soil profiling using statistical models such as
statistical criteria [11] and wavelet transform modulus
[12]. Since a set of CPT measurements leads to unob-
served or hidden soil classes, a Hidden Markov Model
was applied to CPT-based classification following the
Bayesian approach by Krogstad et al. [13]. A Bayesian
framework for probabilistic soil stratification has been
developed (e.g., [14-17]). A Bayesian clustering approach
based on the Hidden Markov Random field with multiple
datasets was used by Wang et al. [18] to classify the soils.
The game theory model was used by Optimizer [19] and
sparse modeling by Tsuda and Kagehira [20]. Despite
that all these methods tried to probabilistically classify
the soil, there is still a need to make an accurate classi-
fication without the need to experience-based classifica-
tion functioning the two components measured by CPT:
friction and cone resistance. Besides, an interpretation
of distributions to the statistical clusters on the Robertson
chart is required for more accurate results. Moreover, the
effect of covariance type on soil profile estimating is
required.

The main objective of this article is to explore the soil
type utilizing the probabilistic framework provided by the
Gaussian mixture model (GMM). The GMM is a class of
probabilistic approaches that derives the data points
from a mixture of a finite Gaussian distribution. The
model is applied on four CPTs performed at Nasiriyah
city in Iraq. Different assumed clusters are also studied
to explore the correlation between cone resistance and
friction. The effect of covariance type is studied by using
four cases of covariance matrices to represent the soil
classification. The current study examines the impact
of covariance type on the probabilistic soil classifica-
tion. It states the application of the suggested approach
on CPTs at a site in Nasiriyah, Iraq by developing Matlab
codes.
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2 GMM

This article utilizes the GMM method since it is efficient
and may simulate the data more accurately than other
methods such as k-means clusters. GMM is used to cluster
the points resulted from mapping base and friction resis-
tance on Robertson chart. It considers the variance equal
to the width of the bell-shaped curve of the probability. In
two dimensions, variance (covariance) determines the
shape of the distribution. It is widely used in data mining,
classification, and statistical analysis. The probability den-
sity function of the multivariate Gaussian distribution with
x input vector is given as follows:
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where u is a 2D mean vector and Y is the 2 x 2 covariance
matrix which can be defined as follows:
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The x input vector consists of the friction ratio (F;)
and the normalized cone resistance (Q;)
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The parameters of GMM are estimated by using the expec-
tation—maximization algorithm which utilizes the max-
imum likelihood method.

3 The study area

3.1 Description of the site

The tested site used in this research is situated in Nasiriyah.
It is located South-East of Baghdad City, Iraq. The site was
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Figure 1: Location of the CPTs [4].

explored to build an oil depot project. The site investigation
included four CPTs in addition to boreholes. The model of
soil classification was implemented on this site. Figure 1
shows the location of the four CPTs.

From the geological view, the formation of soil encoun-
tered in the south of Iraq (e.g., at the city of Nasiriyah),
located at the Mesopotamian plain, which contains the allu-
vial sedimentation deposit from the Tigers and Euphrates
rivers. Nasiriyah city is a part of the flood plain region,
representing the recent surface formation of Iraq geology,
since the site is free from the erosion of old rock surface. The
statistical analysis, probability distribution, in addition to
spatial correlation of similar sites in Nasiriyah can be found
in [21,22]. Further, geotechnical mapping and soil charac-
terization for soils in the same city was reported in [23].

3.2 Measured quantities during CPT

Figure 2 shows the distribution of qc and also fs with
depth. The index soil behavior (Ic) distribution with
depth for every point at interval 0.01m is also shown.
The distribution with depth is also provided in Figure 2c,
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Figure 2: Distribution of basic parameters with depth.
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Table 1: Zone of soil based on Ic values (Robertson, 2010)

Zone Ic range Soil behavior type

1 Not appl. Sensitive, fine-grained

2 lc > 3.6 Organic soils-peats

3 2.95<lc< 3.6 Clay, silty clay

4 2.60 < lc < 2.95 Clayey silt to silty clay

5 2.05 < Ic < 2.60 Silty sand to sandy silt

6 1.31<lc < 2.60 Clean sand, silty sand

7 lc<1.31 Gravelly sand to sand

8 Not appl. Very stiff sand to clayey sand
9 Not appl. Very stiff, fine-grained

referring to the soil zone as the region. Figure 2d shows the
soil stratification for CPT1.

It is clear that the clay soil is the master layer in the
profile, and approximately at 11-12m; the profile gives
clean sand and silty sand (Table 1) and between 14 and
15 m silty sand to sandy silt. For CPT4, clay soil also is the
master type of soil.

4 Results and discussions

4.1 Soil classification based on Robertson
chart

CPT measured two main components: cone resistance
(qc) and sleeve friction (fs). The CPT covers a depth of
15m at an interval of 0.01m. The measured stresses
during CPT were distributed with depth as presented in
Figure 2a and b. Figure 3 shows the data pairs (In Q; and
In F,) along with the Robertson chart. Every point repre-
sents an individual representation of the measurements.
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Figure 3: Points of In Q; and In F in the physical space proposed by Robertson, 2010 and the distribution of soil along the depth. (a) CPT1 and (b) CPT2.

The points are presented so that the size of the circle
markers in the plot increases with depth. The data are
mainly located in zones 3, 4, 5, and 6 (clay to silty clay,
clayey silt to silty clay, silt sand to sandy silt, and clean
sand to silty sand) (Table 1). The measured quantities
through performing CPTs at this site did not show any
gravelly sand soil on the classification chart. Practically,
on Robertson chart, the layers’ boundaries with depth are
unknown and are usually based on the borehole or pro-
ject-specific test results. However, making the marker
size of every point may give an overview of the changing
of the layers with depth. The interpretation of Robertson
chart shows that the soil type starts to show sand soil
with depth. Most of the points tend to be close to the stiff
sand and clay curve, especially at relatively great depth.
On the other hand, the small circle symbols displayed on
the classification chart refer to that the soil at shallow
depth is clay soil. Figure 4a and b shows the distribution
of measured points on the feature pattern of soil for CPT3
and 4.

4.2 GMM with one cluster applied to CPT

This section presents the results and discussion of grouping
the CPT data used for soil classification into clusters
utilizing GMM. Since the soil in Nasiriyah is located in
the Mesopotamian region which sedimented for thou-
sand years, the data distributed on the Robertson chart

may be assumed for analysis purpose by a single GMM
component or a few components. Although the CPT data
may be distributed at one cluster on Robertson chart,
the result is dramatically affected by the type of covar-
iance matrix. For diagonal covariance (DC), the ellipse
represents the data with axes parallel to the main and
secondary axes. For the case of DC, the mean value of
(In Qy, InF,) pairs was u = [1.5586, 2.9216] and the covar-
iance was ) = [0.7360, 0; 0, 0.5861]. This case assumes
zero correlation because the minor diagonal of the covar-
iance is zero. The ellipse axes parallel to the coordinate
axes, which means no rotation (Figure 5a). Using a full
covariance matrix for one component GMM reveals the
presented ellipse on the Robertson chart as in Figure 5h.
The mean value equal to y = [1.5586, 2.9216] and ) =
[0.7360, —0.3665; —0.3665, 0.5861].

The correlation between In Q; and In F; is negative
because of the negative values in the covariance matrix.
Here, this correlation means as the InF; increases the
In Q; decreases.

For CPT 2, the mean value of the single cluster was
[1.8448, 2.9204] and the DC was [0.9275 0; O, 1.4331]. It
was found that the center of the ellipse for all covariance
types was in region 3 on the Robertson chart and the soil
type was clay, and silty clay soil; however, it is obvious
that the center of the data cluster is located near the
boundary curve between regions 2 and 3. For the case
of full covariance, the mean value of the single compo-
nent of GMM is [1.8448, 2.9204] and the full covariance is
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Figure 4: Points of In Q; and In F; in the physical space proposed by Robertson, 2010: (a) CPT3 and (b) CPT4.
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Figure 5: (a) Data of CPT1on the Robertson chart simulated by DC matrix, (b) full matrix, (c) data of CPT2 on Robertson chart by DC, (d) full matrix,
(e) data of CPT3 on Robertson chart by diagonal matrix, (f) full matrix, (g) data of CPT4 on Robertson chart by diagonal matrix, and (h) full matrix.
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Figure 6: Feature and physical patterns of the CPT1 using four types of covariance: (a) feature spatial of CPT1, true DC, two clusters; (b) physical
spatial of CPT1; (c) feature spatial of CPT1, false DC, two clusters; (d) physical spatial of CPT1; (e) Feature spatial of CPT1, true full covariance, two
clusters; (f) physical spatial of CPT1; (g) feature spatial of CPT1, false full covariance, two clusters; and (h) physical spatial of CPT1.

[0.9275, —0.8845; —0.8845, 1.4331]. The covariance is negative,
which means the In Q; decreases with an increase in the In F..
Since the components of GMM are assumed to be single, the
shared or non-shared covariance does not affect the result.
Figure 5e shows the distribution of points of CPT3 on
the chart of Robertson. The center of the measured points
represented by the ellipse that appeared on the Robertson
chart occupies region number 3, representing the clay
and silty clay. The correlation was negative since the
top of the ellipse is oriented to the left of the vertical
axis. Figure 7g shows the distribution of points of CPT3
on the chart of Robertson. The mean value of the compo-
nent of the GMM = [1.5922, 3.1258] and the full covariance
was [0.6597, —0.5480; —0.5480, 0.8345]. It is clear that
the center of the points was in region number 3, which
represents the clay, and the correlation was negative

since the rotation of the ellipse is about 150 from the
x-axis clockwise.

Figure 5g shows the distribution of points of CPT4
on the Robertson chart. It is clear that the center of the
points was in region number 3, which represents the clay,
and the correlation was negative because of the rotation
of the ellipse. Figure 5h shows the distribution of points
of CPT4 on the Robertson chart. The center of the points
was in region number 3, which represents clay and silty
clay, and the correlation was negative since the rotation
of the ellipse is greater than 90° from the x-axis clock-
wise. Generally, the DC that is used to represent the data
of CPT4 shows a vertical distribution of the data more
than the horizontal. The points typically extend verti-
cally. For the second case, when the full covariance is
used, the parameters correlate negatively.
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Figure 7: Three cluster model, in three model forms, for four cases of covariance: (a) Robertson chart, true DC, three clusters; (b) physical
patterns; (c) Robertson chart, false full covariance, three clusters; (d) physical patterns; (e) Robertson chart, false DC, three clusters; (f)
physical patterns; (g) Robertson chart, unshared full covariance, three clusters; and (h) physical patterns.

From the above results, the CPTs tested on the site
showed clay and silty clay soil type and the single cluster
extends on the Robertson chart along the boundaries of
soil forms a negative correlation.

4.3 Two clusters with DC

Generally, according to the geological formation of the
region, the soils in Nasiriyah are flood-plain sedimentary
soil that is clay, silt, and sand or a mixture of these com-
ponents. According to several boreholes adjacent to the
CPTs, the soils were clay and silt, which form a high
percentage of soil, while the sand represents the second
level in the classification. According to that, as a case study,
the research considered the two component models of GMM
to explain the soil types. The two clusters distributed over
the feature patterns covered two zones clay, silt, and sand

soil. The mean values for the two GMMs were u1 = [-0.2936,
4.3479] and p2 = [1.6123, 3.0722]. The first mean value refers
to clean sand, silty sand which represents zone 6, and
the second cluster denotes the clay zone to silty clay
(zone 3). For non-shared diagonal the correlation between
the two variables was a positive correlation which means
that the In F; increases as In Q; increases. In the case of two
clusters with full covariance, the GMM simulates the CPT
with two components. The model was fitted by suggesting
a full covariance matrix. It is presented in Figure 6g. Using
DC may be recommended at the first stage of the solution,
and if it provides an inadequate results, full covariance
can be used.

Figure 6g shows the ellipse that bounds the Robertson
chart’s distributed points. The mean of the first ellipse is
[0.7064, 3.7321] which is located in region 3 and the covar-
iance shows a positive correlation [1.8687 2.6267; 1.2400
—0.5511], while the second ellipse extends along regions 4
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and 5 at mean value [-0.5511, 0.7890] with positive corre-
lation [0.1921 0.0434; 0.0434 0.1861].

The distribution with depth indicated that soil was
sandy soil at a range of depth 11-12 and 14-15m. This
results agree with the actual distribution of soil with depth.

It is found that the data points are distributed in zone
3 and zone 5 when the diagonal and full covariance is
used with the unshared type (Figure 6c and g). The two
zones represent clay and silty clay soil and silty sand to
sandy silt. However, the points on every zone do not need
to form the equivalent focusing as deduced by the profile
of clusters (physical spatial) with depth (Figure 7b and d)
which refers to that one cluster taking the most sketch
compared to other. This conclusion is compatible with
the two different types of covariance (Figure 6a and e),
but the soil was in zone 3 and 6. It is evident from the
feature patterns of the Robertson chart represented by
zones between boundary curves that may have more
than one segment in one cluster, but they represent soil
at different depths. Figure 7e shows that the first cluster
on the Robertson chart distributes on more than one
layer, such as the soil between a depth of 11 and 12m
and the soil at the top. This observation confirms the
results reported in [24,25]. Similarly, it was worth noting
that the one statistical cluster does not necessarily repre-
sent the same soil type. It may belong to more than one
zone. The segments in one cluster are statistically the
same as each other, but they may belong to more than
one soil type, and they may have more than one soil
behavior because they are distributed in more than one
zone in the Robertson chart. Robertson and Cabal [5]
constructed the classification chart by directly linking
the feature pattern and soil mechanical behavior, repre-
sented by the cone tip resistance and sleeve friction mea-
sured by CPT. This may form the vital difference between
the statistical and mechanical descriptions of the compo-
nents measured.

5 Three GMM

This section presents the results of using the three cluster
models for the measured data during CPT1 based on four
types of covariance matrices. We can identify the center
of Gaussian distribution for every layer in CPT. Assume
no correlation exists between the probability decay direc-
tions for all Gaussian distributions, which results in a DC
matrix. Figure 7 shows the distribution of the clusters on
the Robertson chart using the four types of covariance
matrices. In most cases, the data are not grouped as

The CPT based stratification of soil in Nasiriyah using the Gaussian mixture model

— 499

circles as in the case of using the k-means technique
[26], and it takes a different shape. In contrast, GMM
appears as one-direction extended clusters. Further, the
GMM becomes complex as the number of k increases.

The DC makes the major and minor axes of the ellipse
parallel or perpendicular to the x and y axes (Figure 7a
and b). The shared covariance indicated that all the com-
ponents of GMM have the same covariance matrix. This
is why all ellipses have the same size and orientation.
Using full covariance (Figure 7e—h) allows for correlated
predictors with no restriction for the size and orientation
of the ellipse relative to the axis y and x. It can cause
overfitting and may capture the correlation structure
among the predictors. The ellipse center representing
the Robertson chart’s data is distributed in zones 3, 4,
and 6. The concentration of data points in zone number
3 on the Robertson chart means that most of the depths of
soil are clay and silty clay (Table 1).

6 Conclusion

Analysis of soil classification based on CPT measurement
at four locations in Nasiriyah using GMM clusters uti-
lizing four types of covariance matrices reveals some con-
clusions. The proposed method is sensitive to detecting
the thin layers. Therefore, a soil profile with more details
can be obtained, giving a chance to understand and inter-
pret the CPT measurements. The thickness of the thin
layers and the location of boundaries depend on the
type of covariance matrix. The non-shared full covariance
matrix reflects more layer boundaries and thin layers
than the shared covariance matrix and DC matrix. It
has also been found that the soil profile can be developed
very fast since the layer boundaries indicated by the
belonging of every soil unit to the corresponding clusters
and no rich computational process were required like the
Bayesian approach. It is concluded that the proposed
method did not require an experience-based decision to
classify the soil and indicate the layer boundaries. Further,
the results are visually expressed and more practical and
familiar for geotechnical engineers. However, this method
may show some restrictions and limitations. It was found
that the layer boundaries developed by the proposed
method do not necessarily mean the existence of different
soil types since they may be located in the same zone on
the Robertson chart. Moreover, detecting the layer bound-
aries may refer to more than one type of soil. Hence, the
probability of returning every point to a cluster is the
required method that can be depended on.
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