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Abstract:
As damage occurs in the context of high stresses that are also related to the presence of plastic strains, it is
natural to investigate the effect of plasticity on damage evolution and to thus achieve a more realistic model.
In this work, the existing and new damage model presented in [Junker P, Schwarz S, Makowski J, Hackl K.
Continuum Mech. Therm. 2017, 29 (1), 291–310] is enhanced with plasticity and isotropic hardening. The dam-
age model is based on a relaxation-based approach and does not require additional complex regularization
techniques besides considering viscous effects. The benefit of the model are mesh-independent results for the
rate-dependent case, even without considering, e.g. gradient terms for mathematical regularization. The en-
hancement with plasticity and isotropic hardening was investigated for a representative volume element that
considerd a damaging matrix material and non-damaging hard precipitates. Two different loading types, pure
tension and pure shear, yielded the homogenized stress/strain response for the material at various loading
rates. Hereto, several finite discretizations in terms of finite-element meshes were used. The results underline
the mesh-independence for physically reasonable loading rates and viscosities.
Keywords: , damage, finite-element-method, isotropic hardening, mesh-independent, plasticity, rate-dependent,
regularization, relaxation-based, viscosity
DOI: 10.1515/jmbm-2018-2001

1 Introduction

Crack and damage processes occur at different length scales and have to be considered for (nearly) all failure
investigations of designed materials, i.e. those which are composed of crystallographic phases that possess
varying material properties, as well as entire construction parts. Distinct cracks result from accumulating dis-
locations that ultimately trigger the material to lose its binding on the inter-atomic scale. This results in the sep-
aration of the material domains and in an increase in the domain surface. Damage, on the other hand, describes
this process in a smeared manner. Due to a local network of cracks, the stiffness of the material is reduced until
no load can be carried at the limit of propagating crack length and number. Damage modeling focuses exactly
on the local evolution of decreasing stiffness without considering the underlying reasons in detail. Regardless
of whether crack or damage processes are investigated, it is nearly impossible to observe cracks without the
evolution of dislocations in metallic materials. Furthermore, the evolution of the movement of dislocations is
associated with irreversible deformations that are usually referred to as plastic deformations. Consequently,
for the modeling and simulation of damage processes, it is essential to take plastic deformations into account
as well.

In this paper, we present the implementation of plasticity with isotropic hardening in the damage model
published in [1], [2]. This model provides a relaxation-based approach to damage modeling without the re-
quirement of any distinct regularization procedures. Such as the use of common field functions, inclusion of
gradients or complex integration techniques. In order to achieve this advantage, slight modifications were ap-
plied to the relaxed (condensed) energy of the undamaged and damaged material and viscous effects were
added to the model. As no additional quantity is needed to consider the spatial behavior, which is something
common for models based on, e.g. gradient-enhanced regularization strategies (cf. [3], [4]), the number of un-
knowns is reduced, which leads to several numerical advantages including a considerably reduced computa-
tional effort and an improved convergence behavior. However, as this paper focuses on the coupling of damage
and plasticity, the interaction phenomena of both material characteristics are of particular importance and, fur-
thermore, the performance and efficiency of this new coupled damage-plasticity model will be presented by
fairly realistic numerical calculations.

Stephan Schwarz is the corresponding author.
©2018 Walter de Gruyter GmbH, Berlin/Boston.
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First, it is important to provide some information about softening effects and the reasons for the need of
regularization techniques. Common material models that take account of softening effects due to damage en-
counter the problem of ill-posed boundary value problems (in the case of no regularization). This condition
leads to a nonunique solution for the resulting algebraic system, and the numerical results exhibit a strong
mesh dependence in a finite-element context. For this reason, regularization techniques can be applied to pre-
vent this problem by taking account of the nonlocal behavior of the damage. This can be achieved, e.g. by using
a field function to couple the local damage parameter to a nonlocal level in which differences between the
local and nonlocal parameter as well as the gradient of the nonlocal parameter are penalized [4]. Due to the
additional field function there are more unknowns at the nodes, and consequently, the calculations are more
expensive. In contrast, the new damage model [1], [2] is a two-phase model in which the transition between the
undamaged and damaged energy states is carefully chosen: the energy is defined between the Reuß bound, a
linear transition between the two energy states which provides a smooth transition between undamaged and
damaged material, and the Voigt bound, a sudden transition in the crossing point of the two energy states. The
Reuß bound provides a convex energy so that the mathematical problem becomes well posed and the results
are mesh-independent; however, it does not allow a stress decrease, which is what we would expect in the con-
text of damage problems. This is why we modified the energy slightly towards the Voigt bound, which allows a
stress decrease and reductions of the mesh-independence are prevented by adding viscous effects to the model.

In order to extend this damage model [1], [2] to further applications, this paper is devoted to the implemen-
tation of plasticity phenomena. It is natural to assume plasticity in a damage model because damage occurs in
the context of high stresses that are also related to the development of plastic strains. In reality, plastic strains
continue to evolve until the material fails, which in turn can be described by a completely damaged configu-
ration. As damage and plasticity phenomena often occur together, they should be considered by means of a
coupled model. Therefore, isotropic plasticity is taken into account and coupled with the existing model. This
is achieved by adding a further internal variable that captures the plastic strains εp and by extending the energy
by an additional term 1/2𝐻̂𝛼2 that describes the isotropic hardening. Essentially, all other equations result from
both extensions and can be determined by applying the principle of the minimum of the dissipation potential
[5], [6], and [7]. The merging of a pure damage model and a pure plastic model to produce a coupled one is
schematically plotted in terms of a force vs. displacement diagram in Figure 1.

Figure 1: Schematic plot of a force vs. displacement diagram for damage (left), plasticity and isotropic hardening (center)
and both (right).

Although this is the first paper that extends the new damage model [1], [2], there are several similar ap-
proaches based on other damage models. Basically, regularized damage models can be separated into three
groups: the gradient type, the integral type and the viscous regularization to which our model belongs.

The integral type introduces nonlocal variables in order to average the local variables of the defined sur-
roundings of a specific point. Due to the definition of the surroundings, the material length is a prescribed
parameter. In the literature, there is a comprehensive discussion of several integral-type damage approaches
with and without consideration of the plasticity [8]. Furthermore, in [9], a coupled damage-plasticity model
has been turned into a nonlocal model by applying integral formulations to energy terms that are associated
with the damage processes. Moreover, in [10], a nonlocal damage model has been coupled with the plasticity,
in which the damage is linked to the evolution of plastic strains and was regularized by a weighted spatial
averaging of the damage-driving variable. Another example of coupling plasticity and nonlocal integral-type
damage is [11], in which plastic-damage dissipation consists of a plastic-independent part and a coupled part.
A recent paper [12], presents a nonlocal coupled damage-plasticity model based on integral regularization tech-
niques with a focus on the determination of model parameters with a novel calibration procedure related to
experimental data.

The gradient-type models apply a gradient formulation on a nonlocal quantity in order to influence or
determine its evolution, which in turn is connected to the local quantity for regularization purposes. A typical
example for gradient-type regularization models with plasticity can be found in the literature in [4]. This model
is enhanced by a nonlocal field function in the energy terms to regularize the damage parameter, whereby the
same procedure is applied to the plasticity. In [13] the plasticity is considered within the framework of nonlocal
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damage by means of the dissipation function and two different yield criteria. In contrast, the work of [14] reg-
ularizes by introducing the second-order gradient of the plastic multiplier in the yield function to achieve the
gradient-dependent softening plasticity. There is also the idea in [15] to build up an over-nonlocal enhancement
of a gradient-type plastic-damage model by considering the weighted sum of local and nonlocal parameters,
which corresponds to the idea of integral-type regularizations. To introduce a crack propagation focused work
with implicit formulation, one can mention [16], in which the long-range interactions of an integral-type model
were combined with the computational efficiency of a gradient formulation by using a nonlocal effective strain
measure. In the context of crack prorogation, it is also interesting to mention the work in [17], in which an
adaptive finite-element algorithm was implemented on a gradient-based, regularized damage-plasticity model.
Borst et al. [18] present several combinations of coupling scalar and gradient damage with gradient and hard-
ening plasticity. A focus on algorithmic aspects is given in [19], which presents gradient-enhanced damage and
plasticity approaches with the ability to model localization phenomena in quasi-brittle and frictional materi-
als. In order to consider the strain delay effect, a rate-dependent model for quasi-brittle materials that includes
damage and multi-variable plasticity under dynamic loading was recently published in [20]. In [21], a coupled
damage-plasticity model, which is implemented within the stress-based variational formulation providing a
very robust behavior, is presented. Furthermore, a robust and consistent model can be found in [22] for finite-
strain elastoplasticity with and without nonlocal damage by using remeshing with a focus on the transfer of
history data from one mesh to another. The concept of effective stress and strain equivalence and the stress
triaxiality for considering ductile failure is shown in the nonlocal damage-plasticity framework in [23]. In the
literature one can also find [24] in order to simulate the failure behavior of concrete, in which a thermody-
namically consistent nonlocal gradient and fracture energy-based plasticity model is used that also realistically
predicts the transition from brittle to ductile post-peak response by the use of two characteristic lengths. Last
but not least, a plastic nonlocal damage model for cementitious materials based on a regularization technique
with use of a damage Laplacian and limit function and on a Drucker-Prager plastic limit function that considers
isotropic hardening is presented in [25].

Viscous models use the fact, that rate-dependent effects delay the evolution of internal variables, which in
the present case of damage modeling can be interpreted as a damage limiter for a certain finite element. This
forces the surrounding elements to evolve damage as well to account for the same amount for dissipated en-
ergy as in an unregularized, mesh-dependent simulation. Consequently, the delaying effect of viscosity acts as a
regularization strategy. In contrast to integral- or gradient-type models, there is no spatial internal length scale
but there is an internal length scale in time which corresponds to a spatial description. Viscous regularization
in the context of damage models originates from the work of Needleman [26] who first showed that mate-
rial rate dependence indirectly introduces a length scale and pathological mesh sensitivity can be eliminated
for quasi-static and dynamic problems. He also encountered numerical instability problems for approaching
the rate-independent limit. Viscous regularization for localization problems was also used in [27] and applied
to a cracked medium. It was also shown that the introduced implicit internal length scale smears the crack
and the width of the localization zone becomes independent from the mesh for high strain rates. In [28], a
rate-independent damage model was transformed into a rate-dependent one in order to catch more effects of
the loading rate for concrete. It was furthermore possible to show the well posedness and mesh objectivity of
numerical investigations. The transformation into a rate-dependent model was inspired from the Perzyna vis-
coplasticity model and they were able to show the same responses with the rate-dependent model as for the
rate-independent one for very small loading rates. Viscoplasticity was also used for regularization in [29] where
further and deeper studies for this kind of regularization were performed with a focus on ductile materials and
the use of two different hardening models. Also plasticity models can be regularized by a viscous term shown
in [30] where the relation between the material length scale and the width of shear bands was examined. In
order to limit the rate dependency for viscous regularization, a new approach was introduced in [31], which
was applied to interface debonding models whereas a damage model including a delay effect was investigated
in [32].

For classification purposes, our new coupled model basically belongs to the third group: damage models
with viscous regularization. Advantages are that such models do not rely on complex regularization proce-
dures and are therefore rather easy to implement. Consequently, the presented model directly provides mesh-
independent results and, due to its good numerical performance, it also does not need any adaptive mesh
techniques such as those mentioned in the literature. One result of being free of gradients is that the model
does not possess an internal length scale, due to the added viscous effects it has rather an internal length scale
in time. A drawback of the model is that such models include a conceptual rate-dependence. More details on the
original model for pure damage without considering plastic effects can be found in [1], [2] whereas a detailed
investigation regarding numerical aspects and further model development can be found in [33].

The following section describes the material model and presents the coupling of plasticity and damage.
The finite-element approximation is given in Section 3 and the numerical results with several examples are
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subsequently given in Section 4. Finally, the coupling of damage and plasticity as well as the numerical results
are discussed in Section 5, which also includes an outlook for possible future work.

2 Coupled material model

2.1 Energies

The damage approach in this model, which is based on [1], [2], is basically a two-phase model with an undam-
aged part and a damaged part. For this reason, we define two Helmholtz free energies, Ψ0 for the undamaged
material and Ψ1 for the damaged material:

Ψ0 (𝜀𝜀𝜀) ∶=
1
2

(𝜀𝜀𝜀 − 𝜀𝜀𝜀p) ∶ 𝔼0 ∶ (𝜀𝜀𝜀 − 𝜀𝜀𝜀p) +
1
2

𝐻̂𝛼2 (1)

Ψ1 (𝜀𝜀𝜀) ∶=
1
2

(𝜀𝜀𝜀 − 𝜀𝜀𝜀p) ∶ 𝔼1 ∶ (𝜀𝜀𝜀 − 𝜀𝜀𝜀p) +
1
2

𝐻̂𝛼2 (2)

where 𝜀𝜀𝜀 is the total strain, 𝜀𝜀𝜀p is the plastic strain, 𝛼 is the hardening variable, and 𝐻̂ is the hardening modulus.
The energies differ only in the elastic constants 𝔼0 and 𝔼1, which relate the material to the undamaged case “0”
and the damaged case “1”. The stiffness of the damaged material is naturally much softer and can be described
with a numerical scalar 𝜅 when assuming isotropic damage by

𝔼1 = 𝜅𝔼0 with ∶ 𝜅 ≪ 1 . (3)

As already implied in the introduction, the key idea is now to establish a mixture rule for both energies Ψ0
and Ψ1 that is between the Reuß energy, which is convex but not appropriate for damage problems due to
the missing drop of stresses, and the Voigt energy, which allows a drop of stresses but is no longer convex.
An “appropriate” choice between these two limit cases and adding viscous effects to the model allow a stress
decrease in conjunction with mesh-independent results. We chose a mixture in the following way, see [1] for
more details:

Ψ𝛽 = inf𝜀𝜀𝜀𝑖
{ �(1 − ̂𝛼𝑑 − 𝑑𝛽) Ψ0 (𝜀𝜀𝜀0) + ( ̂𝛼𝑑 + 𝑑𝛽) Ψ1 (𝜀𝜀𝜀1) ∣ �

�(1 − ̂𝛼𝑑 − 𝑑𝛽) 𝜀𝜀𝜀0 + ( ̂𝛼𝑑 + 𝑑𝛽) 𝜀𝜀𝜀1 = 𝜀𝜀𝜀} .
(4)

Obviously, the damage variable 𝑑 ∈ [0, 1] is actually used as a volume fraction and describes the amount of
undamaged material (𝑑 = 0) and damaged material (𝑑 = 1). The very small parameter ̂𝛼 > 0 serves as a
numerical quantity to ensure nonzero driving forces for 𝜀𝜀𝜀 ≠ 0 and 𝑑 = 0, whereas 𝛽 includes the nonlinear
mixture and allows us to switch between the limit cases of the energies: setting ̂𝛼 = 0 and 𝛽 = 1 leads to the
convex Reuß energy, and setting ̂𝛼 = 0 and 𝛽 → ∞ leads to the non-convex Voigt energy.

Combining both energies by applying the described mixture rule results in an energy Ψ𝛽 containing an
effective elastic tensor 𝔼eff:

Ψ𝛽 =
1
2

(𝜀𝜀𝜀 − 𝜀𝜀𝜀p) ∶ 𝔼eff ∶ (𝜀𝜀𝜀 − 𝜀𝜀𝜀p) +
1
2

𝐻̂𝛼2. (5)

The effective elastic tensor is accordingly defined as

𝔼eff = [(1 − ̂𝛼𝑑 − 𝑑𝛽) 𝔼−1
0 + ( ̂𝛼𝑑 + 𝑑𝛽) 𝔼−1

1 ]−1 =∶ 𝑓 (𝑑) 𝔼0. (6)

This in turn allows the identification of a damage function 𝑓 (𝑑)

𝑓 (𝑑) = [1 + ( ̂𝛼𝑑 + 𝑑𝛽) ( 1
𝜅 − 1)]

−1
(7)
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as well as to calculate its derivative

𝑓 ′ (𝑑) = −
( ̂𝛼 + 𝛽𝑑𝛽−1) ( 1

𝜅 − 1)

(1 + ( ̂𝛼𝑑 + 𝑑𝛽) ( 1
𝜅 − 1))2

(8)

which will be used for the calculation of the thermodynamic driving forces. The combined Helmholtz free
energy can also be written as

Ψ𝛽 =
1
2

(𝜀𝜀𝜀 − 𝜀𝜀𝜀p) ∶ 𝑓 (𝑑) 𝔼0 ∶ (𝜀𝜀𝜀 − 𝜀𝜀𝜀p) +
1
2

𝐻̂𝛼2. (9)

The Gibbs energy 𝒢 is given as

𝒢 ∶= ∫Ω
Ψ d𝑉 − ∫Ω

𝑏𝑏𝑏 ⋅ 𝑢𝑢𝑢 d𝑉 − ∫𝜕Ω
𝑡𝑡𝑡 ⋅ 𝑢𝑢𝑢 d𝐴 → min𝑢𝑢𝑢 (10)

where Ω is the body’s volume and 𝜕Ω its surface, 𝑏𝑏𝑏 denotes the body forces (due to, e.g. gravity), and 𝑡𝑡𝑡 the
external tractions. The energy is minimized with respect to the displacements 𝑢𝑢𝑢, thus the balance of momentum
is achieved.

The Gibbs energy can finally be set up by inserting the previously established Helmholtz free energy, reading

𝒢 = ∫Ω

1
2

(𝜀𝜀𝜀 − 𝜀𝜀𝜀p) ∶ 𝑓 (𝑑) 𝔼0 ∶ (𝜀𝜀𝜀 − 𝜀𝜀𝜀p) d𝑉 + ∫Ω

1
2

𝐻̂𝛼2 d𝑉

− ∫Ω
𝑏𝑏𝑏 ⋅ 𝑢𝑢𝑢 d𝑉 − ∫𝜕Ω

𝑡𝑡𝑡 ⋅ 𝑢𝑢𝑢 d𝐴 → min𝑢𝑢𝑢

(11)

which is minimized with respect to the unknown displacement field𝑢𝑢𝑢 = 𝑢𝑢𝑢 (𝑥𝑥𝑥), where 𝑥𝑥𝑥 is the spatial coordinate.
The necessary condition for 𝒢 being minimal is the stationarity condition 𝛿𝒢 = 0 ∀ 𝛿𝑢𝑢𝑢, where 𝛿𝒢 denotes the
Gatêaux derivative given by

𝛿𝒢 = ∫Ω
𝛿𝜀𝜀𝜀 ∶ 𝑓 (𝑑) 𝔼0 ∶ (𝜀𝜀𝜀 − 𝜀𝜀𝜀p) d𝑉 − ∫Ω

𝑏𝑏𝑏 ⋅ 𝛿𝑢𝑢𝑢 d𝑉 − ∫𝜕Ω
𝑡𝑡𝑡 ⋅ 𝛿𝑢𝑢𝑢 d𝐴 = 0 ∀ 𝛿𝑢𝑢𝑢. (12)

Identifying the stresses to be 𝜎𝜎𝜎 = 𝑓 (𝑑) 𝔼0 ∶ (𝜀𝜀𝜀 − 𝜀𝜀𝜀p), the stationarity condition results, as expected, in the weak
form of the balance of linear momentum

∫Ω
𝛿𝜀𝜀𝜀 ∶ 𝜎𝜎𝜎 d𝑉 − ∫Ω

𝑏𝑏𝑏 ⋅ 𝛿𝑢𝑢𝑢 d𝑉 − ∫𝜕Ω
𝑡𝑡𝑡 ⋅ 𝛿𝑢𝑢𝑢 d𝐴 = 0 ∀ 𝛿𝑢𝑢𝑢 (13)

which can be solved by a finite-element approach in a standard manner. However, the evolution of plastic
strains, the damage variable and the hardening variable remain undetermined until here. Therefore, we apply
a variational concept for the derivation of the associated evolution equations in the next subsection.

2.2 Evolution of internal variables

In order to determine evolution equations for the internal variables, the principle of the minimum of the dissi-
pation potential (see e.g. [5], [6] and [7]) is applied. Therefore, it is necessary to set up the dissipation potential
ℒ first. It consists of three parts and has to be minimized with respect to the rates of all internal variables ̇𝑑, ̇𝜀𝜀𝜀p, ̇𝛼

ℒ ∶= Ψ̇𝛽 + 𝒟 + cons → min
̇𝑑, ̇𝜀𝜀𝜀p, ̇𝛼

. (14)

The first part is the time derivative of the Helmholtz free energy Ψ̇𝛽, which is calculated using the chain rule to
be
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Ψ̇𝛽 = 𝜕Ψ
𝜕𝜀𝜀𝜀 ∶ ̇𝜀𝜀𝜀 + 𝜕Ψ

𝜕𝑑
̇𝑑 + 𝜕Ψ

𝜕𝜀𝜀𝜀p
̇𝜀𝜀𝜀p + 𝜕Ψ

𝜕𝛼 ̇𝛼 (15)

The second part is the dissipation function 𝒟 . At this point, a rate-dependent, elastoviscoplastic ansatz is used
for the damage and a rate-independent ansatz for the plasticity. This demands 𝒟 to be homogeneous of order
one and two in  ̇𝑑 and to be homogeneous of order one in ̇𝜀𝜀𝜀p, viz.

𝒟 = 𝑟1 ∣ ̇𝑑∣ +
𝑟2
2

̇𝑑2 + 𝑟3 ∣ ̇𝜀𝜀𝜀p∣ . (16)

The third part considers the constraints cons, which must be fulfilled. For the present model, three constraints
have to be accounted for: firstly, the damage parameter 𝑑 has to be bounded, i.e. 𝑑 ∈ [0, 1], and may only
increase. Secondly, the plastic deformations evolve in a volume-preserving way. Thirdly, the evolution of the
hardening variable is coupled to the evolution of plastic strains via ̇𝛼 = ∣ ̇𝜀𝜀𝜀p∣.

The first constraint is considered by a Kuhn-Tucker parameter 𝛾 , defined by

𝛾 = {−𝛾̄ ∶ ̇𝑑 < 0 ∨ { ̇𝑑 > 0 ∧ 𝑑 = 1}
0 ∶ else .

� (17)

The second constraint is taken into account by a first Lagrange parameter 𝜆1, which ensures ̇𝜀𝜀𝜀p ∶ 𝐼𝐼𝐼 = 0. Finally,
the third constraint is included by a second Lagrange parameter 𝜆2. Combination of the rate ofΨ, the dissipation
function 𝒟 , and the constraints gives the final dissipation potential

ℒ = 𝜕Ψ
𝜕𝜀𝜀𝜀 ∶ ̇𝜀𝜀𝜀 + 𝜕Ψ

𝜕𝑑
̇𝑑 + 𝜕Ψ

𝜕𝜀𝜀𝜀p
̇𝜀𝜀𝜀p + 𝜕Ψ

𝜕𝛼 ̇𝛼 + 𝑟1| ̇𝑑| +
𝑟2
2

̇𝑑2 + 𝑟3| ̇𝜀𝜀𝜀p|

+ 𝛾 ̇𝑑 + 𝜆1 ̇𝜀𝜀𝜀p ∶ 𝐼𝐼𝐼 + 𝜆2(− ̇𝛼 + | ̇𝜀𝜀𝜀p|) → min
̇𝑑, ̇𝜀𝜀𝜀p, ̇𝛼

.
(18)

The minimization conditions for Equation (18) read

𝜕ℒ
𝜕 ̇𝑑

= 0 =
𝜕Ψ𝛽
𝜕𝑑 + 𝑟1

̇𝑑
∣ ̇𝑑∣

+ 𝑟2 ̇𝑑 + 𝛾 (19)

𝜕ℒ
𝜕 ̇𝜀𝜀𝜀p

= 0 =
𝜕Ψ𝛽
𝜕𝜀𝜀𝜀p

+ 𝑟3
̇𝜀𝜀𝜀p

| ̇𝜀𝜀𝜀p| + 𝜆1 𝐼𝐼𝐼 + 𝜆2
̇𝜀𝜀𝜀p

| ̇𝜀𝜀𝜀p| (20)

𝜕ℒ
𝜕 ̇𝛼 = 0 =

𝜕Ψ𝛽
𝜕𝛼 − 𝜆2. (21)

Introducing 𝑝𝑑 = −𝜕Ψ𝛽/𝜕𝑑 = 1
2 (𝜀𝜀𝜀 − 𝜀𝜀𝜀p) ∶ 𝑓 ′ (𝑑) 𝔼0 ∶ (𝜀𝜀𝜀 − 𝜀𝜀𝜀p) allows us to reformulate Equation (19) to

̇𝑑 = 1
𝑟2

[∣𝑝𝑑∣ − 𝑟1]+ , (22)

whereas [𝑥]+ ∶= (𝑥 + |𝑥|) /2. Details can be found in [1]. The evolution equation for the damage parameter
depends on the elastic strains and thus directly depends on the present inelastic deformation state described
in terms of the plastic strains.

The evolution of the plastic strains is given by Equation (20), which first has to be solved for the unknown first
Lagrange parameter 𝜆1. For this purpose, we double-contract Equation (20) with the identity tensor 𝐼𝐼𝐼, which
yields under consideration of 𝐼𝐼𝐼 ∶ ̇𝜀𝜀𝜀p = 0 and 𝐼𝐼𝐼 ∶ 𝐼𝐼𝐼 = 3

−𝐼𝐼𝐼 ∶ 𝜎𝜎𝜎 + 3𝜆1 = 0 ⇔ 𝜆1 =
1
3
𝐼𝐼𝐼 ∶ 𝜎𝜎𝜎 (23)

as 𝜕Ψ𝛽/𝜕𝜀𝜀𝜀p = −𝑓 (𝑑) 𝔼0 (𝜀𝜀𝜀 − 𝜀𝜀𝜀p) = −𝜎𝜎𝜎 . Consequently, Equation (20) transforms to
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̇𝜀𝜀𝜀p =
| ̇𝜀𝜀𝜀p|

𝑟3 + 𝜆2
[𝜎𝜎𝜎 −

1
3
𝐼𝐼𝐼 ∶ 𝜎𝜎𝜎] =

| ̇𝜀𝜀𝜀p|
𝑟3 + 𝜆2

dev𝜎𝜎𝜎 (24)

with the stress deviator dev𝜎𝜎𝜎 . Equation (24) remains very cumbersome due to the presence of the absolute
value of the plastic strains’ rate. It is thus convenient to perform a Legendre transformation of the dissipation
function 𝒟𝜖 = 𝑟3| ̇𝜀𝜀𝜀p|, resulting in

𝒟 ⋆
𝜀𝜀𝜀 = sup

̇𝜀𝜀𝜀p

{ ̇𝜀𝜀𝜀p ∶ dev𝜎𝜎𝜎 − 𝒟𝜀𝜀𝜀 − 𝜆2(− ̇𝛼 + | ̇𝜀𝜀𝜀p|)}

= sup
̇𝜀𝜀𝜀p

{
| ̇𝜀𝜀𝜀p|

𝑟3 + 𝜆2
dev𝜎𝜎𝜎 ∶ dev𝜎𝜎𝜎 − 𝑟3| ̇𝜀𝜀𝜀p| − 𝜆2| ̇𝜀𝜀𝜀p|)} + 𝜆2 ̇𝛼

= sup
̇𝜀𝜀𝜀p

⎧{
⎨{⎩

| ̇𝜀𝜀𝜀p|
𝑟3 + 𝜆2

(|dev𝜎𝜎𝜎|2 − (𝑟3 + 𝜆2)2⏟⏟⏟⏟⏟⏟⏟⏟⏟
=∶Φ̃

)
⎫}
⎬}⎭

+ 𝜆2 ̇𝛼 .

(25)

Note that the constraint on the relation between the rate of the hardening variable and the plastic strain now
enters with a negative sign due to the supremum we are seeking (instead of the minimum of the dissipation
potential). The result of the Legendre transformation is the function Φ̃ ≤ 0, which indicates whether plastic
strains evolve or not. This enables us to reformulate Φ̃ as

Φ ∶= ∣dev𝜎𝜎𝜎∣ − (𝑟3 + 𝜆2)
!
≤ 0 (26)

which is interpreted as yield function. The function Φ obviously possesses the same roots as Φ̃, but has a form
that is more usual in the context of plasticity. Finally, Equation (21) allows us to calculate the second Lagrange
parameter, which simply reads

𝜆2 =
𝜕Ψ𝛽
𝜕𝛼 = 𝐻̂𝛼. (27)

Defining the consistency parameter 𝜌 ∶= ∣ ̇𝜀𝜀𝜀p∣ / (𝑟3 + 𝜆2) closes the system of material point equations

̇𝑑 = 1
𝑟2

[
1
2

(𝜀𝜀𝜀 − 𝜀𝜀𝜀p) ∶ 𝑓 ′ (𝑑) 𝔼0 ∶ (𝜀𝜀𝜀 − 𝜀𝜀𝜀p) − 𝑟1]
+

(28)

̇𝜀𝜀𝜀p = 𝜌 dev𝜎𝜎𝜎 (29)

̇𝛼 = ∣ ̇𝜀𝜀𝜀p∣ = 𝜌 (𝑟3 + 𝐻̂𝛼) (30)

with the yield function Φ

Φ ∶= ∣dev𝜎𝜎𝜎∣ − (𝑟3 + 𝐻̂𝛼)
!
≤ 0 (31)

and the Kuhn-Tucker conditions

𝜌 ≥ 0, Φ ≤ 0, 𝜌Φ = 0. (32)

The parameter 𝑟1 is identified to give an energetic threshold for damage evolution, which takes place in a rate-
dependent way with viscosity 𝑟2. The parameter 𝑟3 is the deviator-type norm of the yield stress, whereas 𝐻̂ is
the hardening modulus.
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3 Numerical treatment

3.1 Finite-element method

We employ a finite-element approximation to simulate finite bodies. The displacements are approximated by
the usual shape functions 𝑁𝑁𝑁, whereas the strains are calculated using the strain-displacement operator 𝐵𝐵𝐵. De-
termination of the variations is based on the same approximation. Thus:

𝑢𝑢𝑢 = 𝑁𝑁𝑁 ⋅ ̂𝑢𝑢𝑢 , 𝜀𝜀𝜀 = 𝐵𝐵𝐵 ⋅ ̂𝑢𝑢𝑢 , ∇ ⋅ 𝑢𝑢𝑢 = ∇ ⋅ 𝑁𝑁𝑁 ⋅ ̂𝑢𝑢𝑢 , (33)

𝛿𝑢𝑢𝑢 = 𝑁𝑁𝑁 ⋅ 𝛿 ̂𝑢𝑢𝑢 , 𝛿𝜀𝜀𝜀 = 𝐵𝐵𝐵 ⋅ 𝛿 ̂𝑢𝑢𝑢 , ∇ ⋅ 𝛿𝑢𝑢𝑢 = ∇ ⋅ 𝑁𝑁𝑁 ⋅ 𝛿 ̂𝑢𝑢𝑢. (34)

Applying the finite-element approximation to the variation of the Gibbs energy 𝛿𝒢 , Equation (12), leads to the
residual 𝑅𝑅𝑅

𝑅𝑅𝑅 = ∫Ω
𝐵𝐵𝐵𝑇 ⋅ 𝜎𝜎𝜎 d𝑉 − ∫Ω

𝑏𝑏𝑏 ⋅ 𝑁𝑁𝑁 d𝑉 − ∫𝜕Ω
𝑡𝑡𝑡 ⋅ 𝑁𝑁𝑁 d𝐴 = 0 (35)

with the stress written in the usual Voigt notation as

𝜎𝜎𝜎 = 𝑓 (𝑑) 𝔼0 ⋅ (𝜀𝜀𝜀 − 𝜀𝜀𝜀p) . (36)

The roots of 𝑅𝑅𝑅 are found by employing a Newton-Raphson iteration scheme

𝑅𝑅𝑅𝑖+1 = 𝑅𝑅𝑅𝑖 + d𝑅𝑅𝑅
d ̂𝑢𝑢𝑢 ⋅ Δ ̂𝑢𝑢𝑢 != 0 ⇔ Δ ̂𝑢𝑢𝑢 = − [d𝑅𝑅𝑅

d ̂𝑢𝑢𝑢 ]
−1

⋅ 𝑅𝑅𝑅𝑖. (37)

This requires the tangent operator d𝑅𝑅𝑅/d ̂𝑢𝑢𝑢. It can be derived to be

d𝑅𝑅𝑅
d ̂𝑢𝑢𝑢 = ∫Ω

𝐵𝐵𝐵𝑇 ⋅ d𝜎𝜎𝜎
d ̂𝑢𝑢𝑢 d𝑉 = ∫Ω

𝐵𝐵𝐵𝑇 ⋅ d𝜎𝜎𝜎
d𝜀𝜀𝜀 ⋅ 𝐵𝐵𝐵 d𝑉. (38)

The notation is converted with respect to the loading steps:

d𝜎𝜎𝜎
d𝜀𝜀𝜀 ⇒ d𝜎𝜎𝜎𝑛+1

d𝜀𝜀𝜀𝑛+1 . (39)

For the calculation of the tangent operator, let us linearize the stresses 𝜎𝜎𝜎 = 𝜎𝜎𝜎(𝜀𝜀𝜀, 𝑑, 𝜀𝜀𝜀p) by

𝜎𝜎𝜎𝑛+1 = 𝜎𝜎𝜎𝑛 + �𝜕𝜎𝜎𝜎
𝜕𝜀𝜀𝜀 ∣

𝑛
⋅ Δ𝜀𝜀𝜀 + �𝜕𝜎𝜎𝜎

𝜕𝑑 ∣
𝑛
Δ𝑑 + � 𝜕𝜎𝜎𝜎

𝜕𝜀𝜀𝜀𝑝

∣∣∣∣

𝑛
⋅ Δ𝜀𝜀𝜀p

= 𝜎𝜎𝜎𝑛 + �𝜕𝜎𝜎𝜎
𝜕𝜀𝜀𝜀 ∣

𝑛
⋅ (𝜀𝜀𝜀𝑛+1 − 𝜀𝜀𝜀𝑛) + �𝜕𝜎𝜎𝜎

𝜕𝑑 ∣
𝑛

(𝑑𝑛+1 − 𝑑𝑛) + � 𝜕𝜎𝜎𝜎
𝜕𝜀𝜀𝜀𝑝

∣∣∣∣

𝑛
⋅ (𝜀𝜀𝜀𝑛+1

p − 𝜀𝜀𝜀𝑛
p) .

(40)

The differences with respect to the current and the previous load step are denoted by the increments, and the
respective derivatives are calculated as

�𝜕𝜎𝜎𝜎
𝜕𝜀𝜀𝜀 ∣

𝑛
= 𝑓 (𝑑𝑛) 𝔼0 (41)

�𝜕𝜎𝜎𝜎
𝜕𝑑 ∣

𝑛
= 𝑓 ′ (𝑑𝑛) 𝔼0 ⋅ (𝜀𝜀𝜀𝑛 − 𝜀𝜀𝜀𝑛

p) (42)
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� 𝜕𝜎𝜎𝜎
𝜕𝜀𝜀𝜀𝑝

∣∣∣∣

𝑛
= −𝑓 (𝑑𝑛) 𝔼0. (43)

The tangent operator follows straight forwardly from Equation (40)

d𝜎𝜎𝜎𝑛+1

d𝜀𝜀𝜀𝑛+1 = �𝜕𝜎𝜎𝜎
𝜕𝜀𝜀𝜀 ∣

𝑛
+ �𝜕𝜎𝜎𝜎

𝜕𝑑 ∣
𝑛

⊗ 𝜕𝑑𝑛+1

𝜕𝜀𝜀𝜀𝑛+1 + � 𝜕𝜎𝜎𝜎
𝜕𝜀𝜀𝜀𝑝

∣∣∣∣

𝑛
⊗

𝜕𝜀𝜀𝜀𝑛+1
𝑝

𝜕𝜀𝜀𝜀𝑛+1 . (44)

It can be specified only if the evolution equations for the internal variables according to Equations (28)–(30) are
discretized in time.

3.2 Tangent related to damage

To calculate the tangent operator, the damage part requires determination of the derivative of the evolution of
damage with respect to the strains 𝜕𝑑𝑛+1/𝜕𝜀𝜀𝜀𝑛+1. Thus, we have to choose between, e.g. an explicit and implicit
Euler integration scheme. Whereas the later one is unconditionally stable, the first one demands a simpler
numerical implementation and faster computation for each time step. The onset and evolution of damage is
accompanied by distinct and sharp changes of the stress/strain curve. An accurate numerical resolution of this
non-monotonic curve demands the choice of rather small time increments anyways for which the explicit and
implicit Euler integration schemes converge. We consequently choose an explicit Euler integration scheme and
apply it to Equation (28) for simplicity, which yields

𝑑𝑛+1 = 𝑑𝑛 +
⎧{
⎨{⎩

Δ𝑡
𝑟2

[𝑝𝑑(𝜀𝜀𝜀𝑛+1, 𝑑𝑛, 𝜀𝜀𝜀𝑛
p) − 𝑟1] for 𝑝𝑑 > 𝑟1

0 else
� (45)

with the discretized driving force

𝑝𝑑(𝜀𝜀𝜀𝑛+1, 𝑑𝑛, 𝜀𝜀𝜀𝑛
p) = −

1
2

(𝜀𝜀𝜀𝑛+1 − 𝜀𝜀𝜀𝑛
p) ∶ 𝑓 ′(𝑑𝑛)𝔼0 ∶ (𝜀𝜀𝜀𝑛+1 − 𝜀𝜀𝜀𝑛

p) . (46)

Taking the derivative simply leads to

𝜕𝑑𝑛+1

𝜕𝜀𝜀𝜀𝑛+1 = Δ𝑡
𝑟2

𝜕 [𝑝𝑑 (𝜀𝜀𝜀𝑛+1, 𝑑𝑛, 𝜀𝜀𝜀𝑛
p) − 𝑟1]

𝜕𝜀𝜀𝜀𝑛+1 = −Δ𝑡
𝑟2

𝑓 ′ (𝑑𝑛) 𝔼0 ∶ 𝜀𝜀𝜀𝑛+1. (47)

Thus, the damage part in the tangent operator is calculated to be

�𝜕𝜎𝜎𝜎
𝜕𝑑 ∣

𝑛
⊗ 𝜕𝑑𝑛+1

𝜕𝜀𝜀𝜀𝑛+1 = −𝑓 ′ (𝑑𝑛) 𝔼0 ∶ (𝜀𝜀𝜀𝑛 − 𝜀𝜀𝜀𝑛
p) ⊗ Δ𝑡

𝑟2
𝑓 ′ (𝑑𝑛) 𝔼0 ∶ 𝜀𝜀𝜀𝑛+1

= −Δ𝑡
𝑟2

𝑓 ′2 (𝑑𝑛) (𝔼0 ∶ (𝜀𝜀𝜀𝑛 − 𝜀𝜀𝜀𝑛
p)) ⊗ (𝔼0 ∶ 𝜀𝜀𝜀𝑛+1)

(48)

for Δ𝑑 ≠ 0. For Δ𝑑 = 0, it holds 𝜕𝑑𝑛+1/𝜕𝜀𝜀𝜀𝑛+1 = 0.

3.3 Tangent related to plasticity

To calculate the tangent operator, the plasticity part requires determination of the derivative of the evolution
of plastic strains with respect to the strains 𝜕𝜀𝜀𝜀𝑛+1

p /𝜕𝜀𝜀𝜀𝑛+1. Thus, we again first apply an explicit Euler integration
scheme to the Equations (29) and (30), which yields

𝜀𝜀𝜀𝑛+1
p = 𝜀𝜀𝜀𝑛

p + {𝜌 dev [𝜎𝜎𝜎(𝜀𝜀𝜀𝑛+1, 𝑑𝑛, 𝜀𝜀𝜀𝑛
p)] for Φ = 0

0 else
� (49)

and
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𝛼𝑛+1 = 𝛼𝑛 + 𝜌 (𝑟3 + 𝐻̂𝛼𝑛) (50)

where we make use of the discretized stress

𝜎𝜎𝜎(𝜀𝜀𝜀𝑛+1, 𝑑𝑛, 𝜀𝜀𝜀𝑛
p) = 𝑓 (𝑑𝑛)𝔼0 ∶ (𝜀𝜀𝜀𝑛+1 − 𝜀𝜀𝜀𝑛

p) . (51)

Taking the derivative of the updated plastic strains with respect to the current total strains leads to the equation

𝜕𝜀𝜀𝜀𝑛+1
p

𝜕𝜀𝜀𝜀𝑛+1 = 𝜕𝜌
𝜕𝜀𝜀𝜀𝑛+1 ⊗ dev [𝜎𝜎𝜎(𝜀𝜀𝜀𝑛+1, 𝑑𝑛, 𝜀𝜀𝜀𝑛

p)] + 𝜌 dev
𝜕𝜎𝜎𝜎(𝜀𝜀𝜀𝑛+1, 𝑑𝑛, 𝜀𝜀𝜀𝑛

p)
𝜕𝜀𝜀𝜀𝑛+1

= 𝜕𝜌
𝜕𝜀𝜀𝜀𝑛+1 ⊗ dev [𝜎𝜎𝜎(𝜀𝜀𝜀𝑛+1, 𝑑𝑛, 𝜀𝜀𝜀𝑛

p)] + 𝜌 dev [𝑓 (𝑑𝑛) 𝔼0] .
(52)

As the plastic part is based on a rate-independent ansatz, it is not possible to directly achieve the necessary
derivative 𝜕𝜀𝜀𝜀𝑛+1

p /𝜕𝜀𝜀𝜀𝑛+1 owing to the dependence on the consistency parameter 𝜌, or rather its derivative with
respect to the strains 𝜕𝜌/𝜕𝜀𝜀𝜀𝑛+1. To solve this equation, investigations of the yield function Φ = 0 are required

Φ = ∣dev [𝜎𝜎𝜎(𝜀𝜀𝜀𝑛+1, 𝑑𝑛, 𝜀𝜀𝜀𝑛+1
p )]∣ − (𝑟3 + 𝐻̂𝛼𝑛+1) = 0 (53)

for which holds Φ = Φ (𝜀𝜀𝜀𝑛+1, 𝜌 (𝜀𝜀𝜀𝑛+1)) since 𝜀𝜀𝜀𝑛+1
p = 𝜀𝜀𝜀𝑛+1

p (𝜀𝜀𝜀𝑛+1, 𝜌 (𝜀𝜀𝜀𝑛+1)). Thus, the consistency parameter 𝜌 is
given implicitly by Equation (53). Both sides of Equation (53) may be differentiated with respect to the current
total strains, which yields

dΦ
d𝜀𝜀𝜀𝑛+1 = 𝜕Φ

𝜕𝜀𝜀𝜀𝑛+1 + 𝜕Φ
𝜕𝜌

𝜕𝜌
𝜕𝜀𝜀𝜀𝑛+1 = 0. (54)

Consequently, the missing derivative of 𝜌 can be found by

𝜕𝜌
𝜕𝜀𝜀𝜀𝑛+1 = − (𝜕Φ

𝜕𝜌 )
−1 𝜕Φ

𝜕𝜀𝜀𝜀𝑛+1 . (55)

To solve this equation, two further derivatives must be determined: 𝜕Φ/𝜕𝜌 and 𝜕Φ/𝜕𝜀𝜀𝜀𝑛+1. The first one, 𝜕Φ/𝜕𝜌,
is calculated as follows:

𝜕Φ
𝜕𝜌 =

dev [𝜎𝜎𝜎(𝜀𝜀𝜀𝑛+1, 𝑑𝑛, 𝜀𝜀𝜀𝑛+1
p )]

∣dev [𝜎𝜎𝜎(𝜀𝜀𝜀𝑛+1, 𝑑𝑛, 𝜀𝜀𝜀𝑛+1
p )]∣

⋅
𝜕dev [𝜎𝜎𝜎(𝜀𝜀𝜀𝑛+1, 𝑑𝑛, 𝜀𝜀𝜀𝑛+1

p )]
𝜕𝜌 − 𝐻̂ 𝜕𝛼𝑛+1

𝜕𝜌 . (56)

Hereto, the middle part

𝜕dev [𝑝𝑝𝑝𝜀𝜀𝜀𝑝
(𝜀𝜀𝜀𝑛+1, 𝑑𝑛, 𝜀𝜀𝜀𝑛+1

𝑝 )]

𝜕𝜌 = dev [−𝑓 (𝑑𝑛) 𝔼0 ∶ dev [𝜎𝜎𝜎(𝜀𝜀𝜀𝑛+1, 𝑑𝑛, 𝜀𝜀𝜀𝑛
p)]] (57)

and the last part is calculated separately to be

𝜕𝛼𝑛+1

𝜕𝜌 = 𝑟3 + 𝐻̂ 𝛼𝑛+1 (58)

yielding

𝜕Φ
𝜕𝜌 = −

dev [𝑝𝑝𝑝𝜀𝜀𝜀p
(𝜀𝜀𝜀𝑛+1, 𝑑𝑛, 𝜀𝜀𝜀𝑛+1

p )]

∣dev [𝜎𝜎𝜎(𝜀𝜀𝜀𝑛+1, 𝑑𝑛, 𝜀𝜀𝜀𝑛+1
p )]∣

⋅ dev [𝑓 (𝑑𝑛) 𝔼0 ⋅ dev [𝑝𝑝𝑝𝜀𝜀𝜀p
(𝜀𝜀𝜀𝑛+1, 𝑑𝑛, 𝜀𝜀𝜀𝑛

p)]]

− 𝑟3 + 𝐻̂ 𝛼𝑛+1 .

(59)
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The second one, 𝜕Φ/𝜕𝜀𝜀𝜀𝑛+1, is calculated as follows:

𝜕Φ
𝜕𝜀𝜀𝜀𝑛+1 =

dev [𝜎𝜎𝜎(𝜀𝜀𝜀𝑛+1, 𝑑𝑛, 𝜀𝜀𝜀𝑛+1
p )]

∣dev [𝜎𝜎𝜎(𝜀𝜀𝜀𝑛+1, 𝑑𝑛, 𝜀𝜀𝜀𝑛+1
p )]∣

⋅
𝜕dev [𝜎𝜎𝜎(𝜀𝜀𝜀𝑛+1, 𝑑𝑛, 𝜀𝜀𝜀𝑛+1

p )]
𝜕𝜀𝜀𝜀𝑛+1 (60)

with

𝜕dev [𝜎𝜎𝜎(𝜀𝜀𝜀𝑛+1, 𝑑𝑛, 𝜀𝜀𝜀𝑛+1
p )]

𝜕𝜀𝜀𝜀𝑛+1 = dev [𝑓 (𝑑𝑛) 𝔼0 − 𝑓 (𝑑𝑛) 𝔼0 ⋅ 𝜌 dev [𝑓 (𝑑𝑛) 𝔼0]] . (61)

Finally, the derivative of the yield function with respect to the current trains reads

𝜕Φ
𝜕𝜀𝜀𝜀𝑛+1 =

dev [𝜎𝜎𝜎(𝜀𝜀𝜀𝑛+1, 𝑑𝑛, 𝜀𝜀𝜀𝑛+1
p )]

∣dev [𝜎𝜎𝜎(𝜀𝜀𝜀𝑛+1, 𝑑𝑛, 𝜀𝜀𝜀𝑛+1
p )]∣

dev [𝑓 (𝑑𝑛) 𝔼0 − 𝑓 (𝑑𝑛) 𝔼0 ⋅ 𝜌 dev [𝑓 (𝑑𝑛) 𝔼0]] (62)

which, in combination with Equations (59) and (55), closes the necessary equations for the computation of the
tangent operator.

4 Numerical results

This section provides numerical examples that are used to investigate the coupled damage-plasticity model.
The main focus in this work concentrates on the influence of plasticity; investigations regarding the damage
model are given in [1], [2].

We present two different loading types, tension (Section 4.1) and shear (Section 4.2), and use four different
finite-element meshes with 1024, 3136, 6400 and 10,816 elements, respectively, see Figure 2. A linear refine-
ment is employed such that the coarsest and the finest mesh differ by approximately one decade, which allows
to evaluate the quality of the mesh-objectivity. Furthermore, numerical results with different strain rates are
presented in order to show the influences of the rate-dependent formulation of the damage evolution (Section
4.3).

Figure 2: 2D: Meshes with 1024, 3136, 6400 and 10,816 elements (from left to right), inclusion highlighted in dark gray.

In all cases, periodic boundary conditions with fixed corner points are used and the prescribed strains are
applied homogeneously. The presented specimen consists of two materials: surrounding the centered round
inclusion (“inc”) (dark gray) there is a matrix (“mtx”) material (light gray) that is able to undergo damage and
evolve plastic strains, whereas no damage or plastic effects are occurring in the inclusion because it behaves
purely elastically. Furthermore, the matrix material is much softer than the inclusion material and has a slightly
larger Poisson’s ratio. The exact material parameters (i.e. [34]) are shown in Table 1. Here, the viscosity 𝑟mtx

2 is
paramount because of the applied viscous regularization. The chosen viscosity (2 × 106 MPa s) is in a realistic
order of magnitude; it is in a range of the solids bitumen (up to 105 MPa s) and asphalt (up to 107 MPa s)
and much smaller than for granite (about 1013 MPa s) or glass (up to 1015 MPa s). As demonstrated by the
numerical results in the following, this physically sound value for the viscosity allows for the computation
of mesh-independent results even for rather slow loading velocities. Consequently, no numerically motivated
viscosity has to be chosen, which is usually unrealistically high.

Table 1: Parameters for the respective model.
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Einc 104.5 GPa 𝑟mtx
2 2 × 106 MPa s

νinc 0.31 [–] 𝑟mtx
1 5 GPa

Emtx 50.0 GPa αmtx 1 × 10−5 [–]
νmtx 0.36 [–] βmtx 2.2 [–]
κmtx 1 × 10−7 [–] 𝑟mtx

3 20 GPa
Δtmtx 1 s 𝐻̂mtx 0.03 × Emtx

4.1 Tension test

The first numerical example is a tension test in the horizontal direction with a loading rate of ̇𝜀𝜀𝜀tension
11 = 5 ×

10−6 1/s (all other components of averaged ε are zero) that is applied in 270 time steps. The global answer is
plotted in terms of the stresses, which are averaged over the total geometry, see Figure 3. The coarsest mesh
with 1024 elements is represented by the blue line, followed by the finer meshes with 3136 and 6400 elements
in green and red and finally the finest mesh with 10,816 elements is represented by the black line. Specific time
steps at which several contour plots for internal variables are shown subsequently, are highlighted in red.

Figure 3: Tension: global stress response for 1024, 3136, 6400 and 10,816 elements (blue, green, red and black), highlighted
in red at steps 200, 245, 255 and 270 (from left to right).

It is obvious that the results of all meshes are quasi-identical and the global answer of all geometries pro-
vide mesh-independent results. The plot also shows the three characteristics of the model: firstly, there is an
elastically evolving part represented by a linear curve. Afterwards, there is a kink in the curve, which then
continues linearly, this is where the plastic strains start to evolve and isotropic hardening is taking place. And
finally, there is a very strong drop in the stresses, which is caused by the evolving damage. The smooth charac-
teristic of the curve along with the good convergence of the simulations show that the use of an explicit Euler
integration scheme is justified.

The results in Figure 4–Figure 6 compare the damage variable 𝑑, damage function 𝑓 (𝑑), and the norm of the
plastic strains |𝜀𝜀𝜀p| of the different meshes for the case of tension loading.
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Figure 4: Tension: distribution of damage 𝑑 for 1024, 3136, 6400 and 10,816 elements (from left to right) for steps 200, 245,
255 and 270 (downwards).
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Figure 5: Tension: distribution of damage function 𝑓 (𝑑) for 1024, 3136, 6400 and 10,816 elements (from left to right) for
steps 200, 245, 255 and 270 (downwards).
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Figure 6: Tension: distribution of plastic strains 𝜀𝜀𝜀p for 1024, 3136, 6400 and 10,816 elements (from left to right) for steps
200, 245, 255 and 270 (downwards).

Figure 4 shows the evolution of damage during loading steps 200, 245, 255 and 270 (downwards). The scale
goes from 0 (blue, no damage) to 4.5 × 10−3 (red, damage). The results show damage occurring very locally
on the left and right side of the inclusion within the matrix material. This narrow damaged area describes
a localized material failure initiating and propagating at the boundary of the inclusion. However, the local
loss of stiffness, described by the damage function 𝑓 (𝑑), shows a much more smeared distribution, see the
following paragraph. All meshes provide almost the same distributions and similar absolute values. Only the
coarse mesh seems to be too inaccurate for a reasonable resolution of the distribution of the damage variable.
Naturally, with a finer mesh the localization can be characterized in greater detail, but absolute values of the
damage counterbalance its refinement so that the global response stays the same and the results are therefore
mesh-independent. This is confirmed by the smooth transitions between undamaged and damaged material
independently of the element borders.

The results in Figure 5 show the damage function and its evolution during the same loading steps. The scale
goes from 1 (blue, intact material) to 0 (red, failed material). It is obvious that even already very small values of 𝑑
lead to a strong loss of stiffness, which is described by the damage function. That is why the distribution of failed
material is significantly larger than one would expect from the distribution of damage. As these areas of failed
material now possess almost no stiffness, we can assume the properties of ultimately damaged material here. In
addition, the main direction of propagation is oriented horizontally, while there is also a smaller propagation
in the diagonal directions. Again, the results are mesh-independent and there are very nice smooth transition
zones between intact and failed material.

The plastic strains are finally presented in Figure 6. At this point, the same loading steps (200, 245, 255
and 270) are chosen. As the yield stress constitutes a lower energetic barrier for the evolution of plastic effects
than the energetic damage barrier 𝑟1, the evolution of 𝜀𝜀𝜀p starts earlier. The scale for these results goes from 0
(blue, no plastic strains) to 4.3 × 10−3 (red, plastic strains). The distribution of the plastic strains is a little more
homogeneous than the distribution of the damage and is not only limited to the edges of the inclusion. The
plastic strains are evolving much more into the matrix material, especially in the diagonal directions, while there
is almost no evolution in the horizontal direction where most of the damage is taking place. It is also interesting
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that the high plastic strains in diagonal directions obviously have an effect on the evolution of damage: while
damage is mainly evolving in the horizontal direction, the evolution of high plastic strains in diagonal directions
consequently leads to a reduction in the stiffness in the same area. Thus, the plasticity influences the damage
behavior. Once again, the results show a mesh-independent behavior with smooth transition areas.

4.2 Shear test

The second numerical example is a shear test in the x/y direction with a loading rate of ̇𝜀𝜀𝜀shear
12 = 5× 10−5 1/s (all

other components of averaged ε are zero) that is applied in 290 time steps. Again, the global answer is plotted
against the stresses, which are averaged over the total geometry, see Figure 7. Also again, the meshes with 1024,
3136, 6400 and 10,816 elements are represented by the blue, green, red and black line, while specific time steps,
at which several contour plots for internal variables are shown subsequently, are highlighted in red.

Figure 7: Shear: global stress response for 1024, 3136, 6400 and 10,816 elements (blue, green, red and black), highlighted
in red at steps 150, 255, 270 and 290 (from left to right).

In the case of shear loading, the results of all meshes are quasi-identical as well and thus the global answer
of all geometries again provides mesh-independent results. The characteristic of the curve is a little different
from the case of tension loading: the middle part, where plastic strains are evolving and isotropic hardening
is taking place, shows a lower slope as in the tension case. The drop is also slightly weaker at this point (less
steep descent as in tension), but besides that, the characteristic is basically the same: it starts with an elastic
part, followed by the plastic part, and finally the drop due to the damage.

Likewise, the results in Figure 8–Figure 10 compare the damage variable 𝑑, damage function 𝑓 (𝑑), and the
norm of the plastic strains 𝜀𝜀𝜀p of the different meshes now for the case of shear loading.
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Figure 8: Shear: distribution of damage 𝑑 for 1024, 3136, 6400 and 10,816 elements (from left to right) for steps 150, 255,
270, and 290 (downwards).
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Figure 9: Shear: distribution of damage function 𝑓 (𝑑) for 1024, 3136, 6400 and 10,816 elements (from left to right) for steps
150, 255, 270, and 290 (downwards).
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Figure 10: Shear: distribution of plastic strains 𝜀𝜀𝜀p for 1024, 3136, 6400 and 10,816 elements (from left to right) for steps 150,
255, 270 and 290 (downwards).

Firstly, the damage evolution during loading steps 150, 255, 270 and 290 (downwards) is presented in Fig-
ure 8. In this case the scale goes from 0 (blue, no damage) to 4.0 × 10−3 (red, damage), which is only slightly
smaller than in tension. Obviously, there is not as much damage evolved as in the tension case, but instead it
is not only arising at the left and right side, but also at the top and bottom of the inclusion, naturally within
the matrix material. Again, the damage is occurring very locally and is now propagating from the described
locations until it completely circles the inclusion. Besides the damage around the inclusion, there are very ho-
mogeneous damaged areas in diagonal directions, which are a result of homogeneous stress conditions due to
plastic strains shown afterwards. Again, the material failure must be proven by the damage function. Moreover,
mesh-independent results are achieved again; all meshes provide the same distributions and almost the same
absolute values and exhibit smooth transitions between undamaged and damaged material.

Figure 9 shows the evolution of the damage function during the same loading steps. The scale goes from 1
(blue, intact material) to 0 (red, failed material). Basically, the same expectations arise as in the case of tension
loading. The results are mesh-independent. Furthermore, the damage function illustrates a total loss of stiffness
completely around the inclusion, which is corresponding to material failure initiating at the sides as well as at
the top and bottom of the inclusion. These failure zones are propagating until the failed material is separating
the matrix material from the inclusion. Consequently, both areas are no longer connected and can no longer
transfer displacements or cause stresses.

The results in Figure 10 finally present the plastic strains. The same loading steps (150, 255, 270, and 290)
are shown. Again, the evolution of plastic deformations initiates earlier than the evolution of damage. The scale
now goes from 0 (blue, no plastic strains) to 2.5 × 10−2 (red, plastic strains). In the case of shear loading, the
distribution of plastic strains is even more homogeneous and propagated than in the previous tension case and
the amount of plastic strains is also significantly higher. Essentially, all matrix material is influenced by plastic
strains, especially a specific zone around the inclusion with a concentration in the diagonal directions and even
higher values in smaller regions next to it. Also here, the plasticity considerably influences damage evolution:
after high plastic strains are accomplished in diagonal directions, a reduction in stiffness occurs in the same
area. Again, the results are mesh-independent and have smooth transitions.
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4.3 Dependence on the strain rates

As the damage part of this coupled material model is rate-dependent, we present for a full analysis the de-
pendence of the material behavior on the applied strain rates in this section. Hereto, different strain rates were
applied to the tension as well as the shear loading calculations and were compared by the global stress re-
sponses.

For a better comparison the same maximum strain loading was applied to all calculations; the maximum
applied strain for the tension case was 𝜀𝜀𝜀max = 0.00135 and for the shear case it was 𝜀𝜀𝜀max = 0.0145. The results
from the tension loading case are shown in Figure 11 with strain rates increasing from 0.3 to 0.5 and finally to
0.7 × 10−5 1/s (black, blue and green curves) in correspondingly 450, 270 and 193 time steps. Accordingly, the
results from the shear loading case are shown subsequently in Figure 12 with strain rates from 3 to 5 and finally
to 7 × 10−5 1/s (black, blue and green curves) in correspondingly 484, 290 and 208 time steps. In both loading
cases, the calculations were performed with the previously mentioned meshes consisting of 1024, 3136, 6400
and 10,816 elements. Basically, only the coarsest mesh with 1024 elements differs slightly in the tension loading
case and significantly in the shear loading case, for this reason the related curve is presented in a dashed way.

Figure 11: Tension: global stress response for a fast, medium and slow strain rate (green, blue and black), applied to 1024
(dashed), 3136, 6400 and 10,816 elements.

Figure 12: Shear: global stress response for a fast, medium and slow strain rate (green, blue and black), applied to 1024
(dashed), 3136, 6400 and 10,816 elements.

Figure 11 as well as Figure 12 basically show the same influences due to the different strain rates: the faster
the loading is applied the later the drop of stresses occurs, i.e. the material strength is higher at higher loading
velocities. This is caused by the viscous effects of the damage formulation, which delay the evolution processes.
In contrast, the slower the loading is applied the lower the material strength is and the drop of stresses occurs
earlier. Consequently, there is a direct influence of the strain rate to the onset of damage evolution. Interestingly,
the curves run in parallel during damage evolution. Thus, the different strain rates rather affect the initialization
of damage than its evolution.

In addition, the presentation of different meshes also allows to investigate the influence of the loading ve-
locity on the mesh-objectivity. In the case of tension loading presented in Figure 11, the strain rates do not
influence the mesh-objectivity anyhow. It can be assumed that the coarsest mesh is sufficiently converged and
the strain rate is fast enough that viscous effects regularize the mathematical problem. In contrast, the case of
shear loading presented in Figure 12, exhibits a different behavior regarding the coarsest mesh (dashed curve).
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Obviously, the combination of a very coarse mesh with a slower strain rate forces the model to its limit: the
results are no longer mesh-independent, which is well known for damage models based on viscous regulariza-
tion. However, this only applies to the very coarse mesh as the meshes with 3136, 6400 and 10,816 elements still
have a very good agreement. For the two faster strain rates, all meshes supply convincing mesh-independent
results.

5 Conclusions and outlook

This paper presented the plasticity enhancement of the new damage model published in [1], [2]. The result is
a more comprehensive damage model that is characterized by a relaxation-based approach without the need
for complex regularization procedures besides considering viscous effects. The efficient model provides mesh-
independent results and not only softening, but also irreversible as well as hardening effects can be described.
In particular, the model provides mesh-independent numerical results for physically reasonable viscosity.

The detailed implementation and enhancement with plasticity was presented in Section 2 and 3. The nu-
merical examples were presented in Section 4, in which two loading types acting on a representative volume
element consisting of a damaging matrix material and an undamaging, stiff inclusion material were applied.
The results were always mesh-independent for four different finite-element meshes, which were discretized
with element sizes differing by a factor of 10. Smooth transitions between undamaged and damaged mate-
rial were observed, independently of any element borders. Damage evolved rather locally and the evolution of
plastic strains was in agreement with practical experience from material science: firstly, plastic effects are oc-
curring and then damage starts to evolve as loading increases. These characteristics were especially evident in
the global stress response diagrams. For a complete investigation, several loading rates were applied. The nu-
merical results demonstrated that rather the onset of damage than its evolution is influenced by the respective
strain rate and mesh-independence remains for most cases.

Altogether, the numerical results underline the functionality and efficiency of the new coupled damage-
plasticity model. The results are physically sound and mesh-independent. In the future, a comparison with
experimental data for verification purposes as well as further modifications or enhancements are possible.
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