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Abstract: An outline of the modified Mindlin plate theory,
which deals with bending deflection as a single variable,
is presented. Shear deflection and cross-section rotation
angles are functions of bending deflection. A new four-
node rectangular finite element of moderately thick plate
is formulated by utilizing the modified Mindlin theory.
Shape functions of total (bending + shear) deflections are
defined as a product of the Timshenko beam shape func-
tions in the plate longitudinal and transversal direction.
The bending and shear stiffness matrices, and transla-
tional and rotary mass matrices are specified. In this
way conforming and shear-locking-free finite element is
obtained. Numerical examples of plate vibration analysis,
performed for various combinations of boundary condi-
tions, show high level of accuracy and monotonic conver-
gence of natural frequencies to analytical values. The new
finite element is superior to some sophisticated finite ele-
ments incorporated in commercial software.

Keywords: conformity; finite element formulation; modi-
fied Mindlin plate theory; shear-locking.

1 Introduction

Plates are structural elements of many engineering struc-
tures, like bridges, ships, aircrafts, etc. Plates are classi-
fied into three categories depending on thickness-span
ratio: thin plates, h/L<0.01, moderately thick plates,
0.01<h/L<0.2, and thick plates, h/L >0.2. Structural anal-
ysis (strength, vibration, buckling) of thin plates has been
performed within the well-known Kirchhoff plate theory
[1], while moderately thick plates are analysed by the
Mindlin plate theory as a 2D problem [2, 3]. Thick plates
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are considered to be an elastic body analysed by 3D theory
of elasticity.

Dynamic behaviour of moderately thick plates is a
more complex problem than that of thin plates, since influ-
ences of shear and rotary inertia are taken into account.
The Mindlin theory deals with a system of three differen-
tial equations of motion in terms of three independent
variables, i.e. deflection and two angles of cross-section
rotation. A large number of papers has been published on
this challenging problem and a comprehensive literature
survey up to 1994 can be found in [4].

Generally speaking, there are two approaches to
analysis of structural problems of moderately thick
plates, i.e. analytical methods for solving differential
equations of motion and numerical procedures based
on the Rayleigh-Ritz energy method as well as the finite
element method (FEM). Different analytical methods
have been developed depending on which independent
variables are selected as fundamental ones in the reduc-
tion of the system of differential equations of motion.
Some methods operate with three, two or even one vari-
able, as shown in [5-7], respectively. Developed analyti-
cal methods for vibration analysis of simply supported
plates are relatively simple, as well as those for plates
with simply supported two opposite edges. For vibration
analysis of plates with any combination of simply sup-
ported and clamped edges a sophisticated closed-form
solution is presented in [8].

The Rayleigh-Ritz method is widely used for vibra-
tion analysis of plates with arbitrary boundary conditions
(simply supported, clamped and free) as well as with
elastically supported edges. The achieved level of accu-
racy and convergence of solution depend on the chosen
set of coordinate functions for definition of natural
modes. Usually, two dimensional polynomials [9], or
static deflection functions of the Timoshenko beam, [10],
are used. An efficient solution is also achieved by apply-
ing the assumed mode method [11, 12].

The finite element method is a universal numeri-
cal tool for structural analysis of complex engineering
structures concerning both the topology and material
properties. A few triangular, rectangular and quadrilat-
eral finite elements with different number of nodes have
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been developed for Mindlin plate and incorporated in
the library of commercial FEM software. Generally, the
elements deal with three independent displacement
fields, i.e. deflection and two cross-section rotations.
They are prescribed by polynomials of the same order
and in transition from thick to thin plate it is not pos-
sible to capture pure bending modes and zero shear
strain constraints. In order to overcome this shear-lock-
ing problem in the FEM analysis, a few procedures have
been developed, which are referred in [13]: reduced
integration for shear terms [14, 15], which is commonly
used in commercial software; mixed formulation of
hybrid finite elements [16-18]; Assumed Natural Strain
[19-21]; and Discrete Shear Gap (DSG) [22]. Recently, a
new shear-locking-free finite element formulation for
static analysis of moderately thick plates has been pro-
posed, based on an extension of the Kirchhoff thin plate
theory [13].

In order to overcome the above problems, the Mindlin
theory has been modified [23]. The system of three gov-
erning differential equations of motion is reduced to a
single equation with bending deflection as a potential
function for determining shear deflection and cross-sec-
tion rotation angles. By employing the modified Mindlin
theory a new finite element formulation for moderately
thick plates is presented in [24, 25]. Four-node rectan-
gular finite element and three-node triangular finite
element are worked out utilizing polynomial shape
(interpolation) functions. The stiffness matrix, consist-
ing of the bending stiffness matrix and the shear stiff-
ness matrix, as well as the mass matrix, are developed.
In this formulation the shear stiffness matrix of a thin
plate becomes negligible compared to the bending stiff-
ness matrix. Hence, the developed finite elements are
shear-locking-free.

The above two finite elements are non-conforming
since compatibility conditions of displacements are satis-
fied only in the nodes of the adjacent finite elements. As a
result, convergence of natural frequencies is not monoto-
nous. Therefore, in this paper a conforming four-node
rectangular finite element is presented, which satisfies
compatibility conditions along all edges of the adjacent
finite elements. Shape functions of plate defection are
defined as a product of the Timoshenko beam shape
functions in longitudinal and transversal direction. The
bending and shear stiffness matrices, as well as the trans-
versal and rotary mass matrices are derived in a relatively
simple way by employing an ordinary variational formu-
lation [21]. The finite element is shear-locking-free and
values of natural frequencies monotonously converge to
exact solution from above.
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2 Outline of the modified Mindlin
theory

Displacements of a thick plate, i.e. total deflection, w,
and angles of rotations, v, Y, are shown in Figure 1 in
the Cartesian coordinate system. The basic idea of the
modified Mindlin thick plate theory is, like in case of the
modified Timoshenko beam theory [26], decomposition
of the total deflection into bending deflection and shear
deflection

wx, y, )=w,(x, y, ) +w (x, y, t). 1)

Rotations of the plate cross-sections are caused only
by bending, and one can write for rotation angles
oW,

ow,
T

=——". 2

3 @
Bending moments and twist moments are results of plate
curvature and warping, respectively

2 2
M =—p| IVo OV |
X axz ayz
2 2
M =—p| Vo OV |
Y 9y’ ox?
o’w
M =M =-(1-v)D—2,
o =M, =-(1-v) axdy 3)
where
ER’
D=—" |
12(1-v%) “)

is the plate flexural rigidity, and h, E and v is plate thick-
ness, Young’s modulus of elasticity and Poisson’s ratio,
respectively.

7y

Figure 1: Displacements of rectangular plate.
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Shear strain is defined as summation of the plate gen-
eratrix rotation and cross-section rotation, i.e.

ow ow,
’}/X =—+ ’(/)x = s
ox ox
B aiW N 3 8Ws (5)
vy = ay wy - ay :
As a result the shear forces read
ow ow
Q=5—",Q = s (6)

T x Y T oy

where S=k Gh is shear rigidity and k_ is shear correction
coefficient.

Plate natural vibrations are performed under action of
distributed inertia force and bending moments

_o*w
g=m

o’w, @)

3
oIw, m =gV
ayot’

M= e ™

atz 4 X

where m=ph is the plate mass per unit area, J=pI=ph®/12
is the mass moment of inertia of the cross-section per unit
breadth, h is the plate thickness and p is mass density.

Consideration of the equilibrium of vertical forces and
moments around the x and y axis, by applying the above
relations, leads to a single differential equation of motion
in terms of bending deflection

— 2
DAAwb—][HDm)aAw +

SJ Jot> ?
8
o ; ow, ®
my Wb+% atz =qe(X; Y, t),
2 2
where A()= d (;)+8 (;) is the Laplace differential
ox*  ay

operator and g, is distributed excitation load. Once
bending deflection w, is determined the total deflection
(1) is obtained by the following formula [23]
Jo'w, D

w=w, + -—Aw

b S atz S b* (9)

Final plate deformation depends
conditions.

on boundary

3 Formulation of shape functions

The four-node rectangular finite element with three
degrees of freedom (d.o.f.) per node is considered, Figure 2.
The dimensionless coordinates £=x/a and n=y/b are
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Figure 2: Rectangular finite element with nodal displacements.

introduced due to reason of simplicity. The shape (inter-
polation) functions of plate deflection are assumed in the
form of products of thick beam shape functions, based
on the modified Timoshenko beam theory [26], X,(§) and
Y}.(n), i,j=1, 2, 3, 4, in x and y direction respectively

Node 1 Node 2 Node 3 Node 4
q)l = XIYI q)lo = X3Y1 q)7 = X3Y3 (I)IO = X1Y3
(DZ = XIYZ (DS = X3Y2 (DB = X3Y4 (I)ll = X1Y4

Q,=-X)Y, &, =-XY @,=-XY, O,=-XY. (10)

The beam shape functions, which take both shear stiff-
ness and rotary inertia into account, are specified in
Appendix A.

Each of 12 shape functions ®,(&, #) =Xl.(§)Yj(17), where
indexes i and j appear in combinations (10), can be
expanded into beam bending and shear terms, and mixed
bending and shear terms

o, = Xin = (Xib +Xis)(th +Y]'s) =
XY +XY +XY +XY

ib~ jb b~ js is™ jb is”js*

11

The beam bending and shear shape functions are also
given in Appendix A. Hence, each of plate shape functions
consists of four displacement fields, i.e. bending in both x
and y direction, Xl.bY}.b; bending in x and shear in y direc-
tion, Xl.bY].S, and vice versa, Xistb; and shear in both direc-
tions, Xists'

In order to formulate finite element bending and
shear stiffness matrix it is necessary to decompose
bending and shear shape functions (11), as in the case
of non-conforming finite element [24, 25]. Unfortunately,
this is not possible in the considered case. However,
cross-section rotation angles and shear angles, which
are caused by bending and shear respectively, can be
extracted from (11)
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1., 1,4,
‘ka =—EXiij, ‘I—‘yk =—EXinb, (12)
T —1X’Y T —lXY'
xk_E is”j? yk_E itjs® (13)

Hence, for derivation of all finite element properties it is
necessary to operate with the known shape functions of
total deflection (11) and rotation and shear angles (12) and
(13), respectively.

The first two deflection shape functions of the present
conforming and non-conforming finite element of aspect
ratio a/b=1and thickness-span ratio h/b=1.6, Appendix B,
are shown in Figure 3. High value of h/b is a result of plate
thickness-span ratio h/B=0.2 and the finite element mesh
8x 8. The first shape function of non-conforming finite
element is very close to that of conforming element, while
the difference between the second shape functions are
relatively large.

4 Bending and shear stiffness matrix

For derivation of bending and shear stiffness matrix the
ordinary finite element technique is used. Finite element

1.0
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Figure 3: The first two deflection shape functions, a/b=1, h/b=1.6:
red - conforming element, blue — non-conforming element.
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deflection is expressed as product of deflection shape
functions and nodal displacements

w(g, n)=(®, (&, M){d}, k=1,2..12, (14)
where according to Figure 2
Wl
}={{o}), ©},={g,}, 1=1,2,3, 4 (15)
Y,
In a similar way one can write for rotation angles
v, (& =¥, (& M)},
p, (& m=(W¥ (& m){d}, (16)
and shear angles
7. (& m=(T (& o},
y, (& m=(T (& Mo} (17)

According to (3) the finite element bending curvature and
warping can be presented as vector

W,

ox

81/1y

dy
., W,
dy ox

{k}= (18)

By substituting (12) into (16), and taking (18) into account,
yields

(k) =-111, 18}, (19)
where
L
a
L= Y, (20)
(XY, + (X)),
ab ] J

By using a general formulation of stiffness matrix from the
finite element method based on variational principle [21],
one can write for bending stiffness matrix

[K],=ab| [[LT}[D],[L],dEdy, (21)

where
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1 v O
[D]b:D v 1 0 (22)
2

Elements of matrix [K],, after multiplication of the subin-
tegral matrices, can be presented in the form

Dt bY
K’Z:abﬂ{pk{(aj pl+vql}+

2
a 1-
q, |:(bj q, +Vp1:|+ zvrkrl}dgdﬂ,

where, according to (20)

(23)

P =(XY),, 4, =(XY7),,

1

r=(X,Y), +(XY)),.

ib™j i

(24)

Related to the shear stiffness the shear strain vector
according to (5) reads

{y}={y*}.
yy

By substituting (13) into (17), and then into (25), yields

(25)

{y}=I[L] {0}, (26)
where
L)
[L],= ‘1’ 27)
(XD

Analogously to (21) one can write for the shear stiffness
matrix

(K], =ab| [[L[D][L],dédn, (28)

where

10
(D], =S{0 1} (29)

is matrix of the plate shear rigidity. Since [D]_ includes unit
matrix, Eq. (28) is reduced to the form

[K], =Sab [ [ILI'[L],d&dp (30)
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5 Translational and rotary mass
matrix

According to the general formulation [21], mass matrix
depends on deflection shape function ®,, Eq. (11), and one
can write for the translational mass matrix

[M], =mab| [{(X¥)), K(XY,), )dédy. 31)

The beam shape functions X; and Y, are specified in
Appendix A.

Mass matrix due to mass rotation is derived in the fol-
lowing way. According to (2) vector of cross-section rota-

tion reads
_J¥
{y}= { wy} (32)
and taking into account (12) and (16), yields
{y}=-[L] {0}, (33)
where
Ly,
[L] = ‘1’ (34)
RN

Rotary mass matrix is specified similarly to the shear stiff-
ness matrix, Eq. (26)

[M],=abii[L]f[]][L],d§dn, (35)
where
[11:1[(1) ﬂ (6)
Hence, one can write
[M],=Jabii[L]f[L],d§dn- G7)

Finally, the finite element equation for natural vibration
analysis of thick plate reads

((IKT, +[K],) - o*(IM], +[M] )){o}={0}, (38)

where o is natural frequency. Elements of shear stiff-
ness matrix [K], according to (27) and (A3), includes
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parameters ¢ and 3, Eqgs. (A4) and (A5), respectively.
Their values are rapidly reduced for thin plate due to
small thickness-span ratio h/a and h/b. In case of very
thin plate shear stiffness matrix [K] becomes negligible
compared to bending stiffness matrix [KJ in (38). This
fact indicates that the presented finite element is shear-
locking-free. Assembling of the finite element Egs. (38)
is performed in ordinary way of the finite element tech-
nique [20, 21].

6 Illustrative numerical examples

The developed conforming four-node finite element is val-
idated by three numerical examples of natural vibrations
with different boundary conditions: simply supported
square plate (SSSS), rectangular plate clumped on trans-
verse edges and simply supported on longitudinal edges

I. Senjanovic et al.: Conforming shear-locking-free four-node rectangular finite element = 147

(CSCS), and rectangular plate with combined clamped,
free, and simply supported boundaries (CFSS). All plates
are modelled with 8 x 8 =64 finite elements. Value of plate
aspect ratio, a/b, and shear correction factor, k, as well as
formula for dimensionless frequency parameter u or 4, are
given in the title of Tables 1-3. Thin, moderately thick and
thick plate, are considered. Values of frequency parameter
determined by the present conforming finite element
(FEM-PC), and those by non-conforming finite element
(FEM-NC) [24, 25], are compared with analytical solution
for case SSSS and CSCS, Tables 1 and 2. For boundary con-
ditions CFSS, Table 3, solution obtained by the Rayleigh-
Ritz method [9] is used as the referent one. FEM results
agree very well with analytical ones. Between FEM-PC and
FEM-NS results small difference can be noticed for thick
plate.

The same boundary value problems are solved by
commercial software LS-DYNA [27] and NASTRAN [28],
for comparison. In the former case fully integrated shell

Table 3: Frequency parameter A=(wb’/2’)\/ph/D of rectangular plate, case CFSS, a/b=0.4, k. =5/6.

h/b Method 1 2 3 4 5 6 7 8
0.001 RR? 9.874 11.346 14.900 19.539 26.624 31.698 33.397 35.788
FEM-PC 9.924 11.691 15.380 21.184 29.225 31.793 33.830 38.057
FEM-NC 9.896 11.175 14.028 18.772 25.615 31.712 32.677 34.680
LS-DYNA 9.970 11.109 13.592 17.886 24.956 32.849 33.729 34.975
NASTRAN 9.823 10.945 13.363 17.404 23.574 31.402 32.257 32.623
0.1 RR? 7.941 8.970 11.135 14.462 18.761 20.459 21.357 23.112
FEM-PC 7.974 9.054 11.318 14.818 19.481 20.759 21.742 23.696
FEM-NC 7.981 8.849 10.812 14.081 18.657 20.746 21.281 22.542
LS-DYNA 8.123 8.952 10.755 13.690 17.651 21.058 21.439 22.021
NASTRAN 7.985 8.635 10.196 12.825 16.215 19.771 20.457 20.887
0.2 RR? 5.594 6.305 7.752 9.828 12.294 12.679 13.236 14.289
FEM-PC 5.625 6.365 7.877 10.109 12.917 12.949 13.539 14.711
FEM-NC 5.624 6.219 7.592 9.809 12.715 12.948 13.364 14.255
LS-DYNA 5.744 6.358 7.611 9.368 11.288 12.932 13.031 13.124
NASTRAN 5.669 6.126 7.277 8.993 10.839 12.470 12.790 12.945

aRayleigh-Ritz [9].

Table 4: Convergence pattern of frequency parameter p=wa’\/ph/D of square plate, case SSSS, a/b=1, h/a=0.2, k.=0.86667, FEM-PC.

FEM mesh 1/11/ 2/12/ 3/21/ 4/22/ 5/13/ 6/31/ 7/23/ 8/32/
2x2 18.421 50.798 50.798 101.260 101.279 168.984 168.984

4x4 17.761 39.899 39.899 59.206 72.369 72.369 88.744 88.744
6Xx6 17.627 39.072 39.072 57.246 68.812 68.812 83.857 83.857
8x8 17.576 38.775 38.775 56.529 67.465 67.465 81.956 81.956
10x10 17.551 38.636 38.636 56.192 66.836 66.836 81.064 81.064
Analytical® 17.506 38.385 38.385 55.586 65.719 65.719 79.476 79.476

2Appendix C.
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Table 5: Convergence pattern of frequency parameter A1=(wb”/7’)\/ph/D of rectangular plate, case CSCS, a/b=0.5, h/b=0.2,

k,=0.86667, FEM-PC.

FEM mesh 1 2 3 4 5 6 7 8
2x2 5.680 7.242 11.315 16.976 18.050

4x4 5.388 6.577 9.027 11.129 12.263 14.193 15.364 17.927
6x6 5.329 6.470 8.698 10.734 11.776 11.883 13.532 15.734
8x8 5.309 6.431 8.572 10.592 11.514 11.597 13.262 15.094
10x10 5.299 6.413 8.512 10.526 11.332 11.514 13.133 14.675
Analytical® 5.202 6.223 8.261 10.350 10.898 11.209 12.706 13.809
3[8, 25].

Table 6: Convergence pattern of frequency parameter /‘{:(wbz/nz)«/ph/D of rectangular plate, case CFSS, a/b=0.4, h/b=0.2 k =5/6,

FEM-PC.

FEM mesh 1 2 3 4 5 6 7 8
2x2 5.960 6.897 8.869 12.259 18.427 19.526 20.288 22.735
4x4 5.700 6.503 8.154 10.575 13.636 14.347 15.720 16.255
6x6 5.645 6.405 7.959 10.292 13.126 13.288 13.762 15.017
8x8 5.625 6.365 7.877 10.109 12.917 12.949 13.539 14.711
10x10 5.615 6.345 7.835 10.014 12.715 12.850 13.434 14.565
RR? 5.594 6.305 7.752 9.828 12.294 12.679 13.236 14.289

aRayleigh-Ritz [9].

element with four nodes, based on the Reissner-Mind-
lin theory (ELFORM 16) is used, while in the latter case
2D four-node thick plate finite element is applied. The
NASTRAN results are considerably lower than the analyti-
cal values for all three plate thickness, while those deter-
mined by LS-DYNA are somewhat higher for thin plate and
lower for thick plate.

The convergence test is carried out for the thick plate
and all three cases of boundary conditions, Tables 4-6.
The finite element mesh density is increased from 2x2 to
10x10. It can be observed that values of frequency para-
meters in all three examples converge monotonically from
above as the mesh density is increased. Convergence is
faster for lower frequencies, since simple shape of corre-
sponding natural modes can be successfully described by
smaller number of finite elements.

7 Conclusion

An advantage of the modified Mindlin theory, outlined in
Section 2, is dealing with only one variable, i.e. bending

deflection as a potential function for determining total
(bending +shear) deflection, cross-section rotation
angles, strains and sectional forces. This enables a new
finite element formulation for moderately thick plate
by following the ordinary FEM procedure and ensur-
ing in such a way variational consistency. The four-node
rectangular finite element is defined by specifying the
shape functions of the total deflection as a product of the
Timosheko beam shape functions in longitudinal and
transversal direction. In this way conformity of the finite
elements is ensured, while the application of the Modi-
fied Mindlin theory results with shear-locking-free finite
element.

As a result of the above two finite element characteris-
tics, the illustrative numerical examples of thin and mod-
erately thick plate with various boundary conditions show
high level of accuracy and fast monotonous convergence
of natural frequencies to the exact values from above.
Moreover, this relatively simple finite element, in the most
analysed cases, achieves a higher level of accuracy than
the sophisticated finite elements incorporated in the used
commercial software.
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Appendix A

Beam shape functions
Total functions, X, =X, + X

X, = (1-£6-25) +12a(1- )]

X, = E0-8)1-E+60)

X, £lEG-2)+124]

a

X, =~ E1-£)E+60). (A1)

Bending functions, X,

X, :%[1—52(3—25)%0:]
X, = %[5(1 —E) —2a(2+60)+6aE(2—£)]
X, = [£G-20)+6a]

X, == 1E1-8)+20(1-6)-6aE"). (a2)

Shear functions, X

2
X, =7“3(1—2§)

=299 31 6a)

XZ s i

2a
ng = —73(1—25)

X =2%%0_3£46q),

4s 12 (A3)
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where

2

D 1 (h)
o=—=—-| — 5
Sa* 6(1-v)k \a
A=1+12a.
(A4)

Beam shape functions in y-direction, Yj= ij + Yjs’ have the
same form as those in x-direction, X=X, +X.. It is only
necessary to change argument § inton and use parameters
p and u instead of @ and A, where

6_D_1(h)2
Sy 6(1-vk \b)’

Appendix B

Shape functions of the non-conforming finite
element

The four-node thick plate finite element with compat-
ible nodal displacements, based on the modified Mindlin
theory, is presented in [24, 25]. Here, only shape functions
are specified due to comparation to the conforming finite
element.

Bending shape functions, shear shape functions
and total deflection functions are given in matrix
notation

(D&, m),)=(PE, M),lCT",
(D&, M), =(P(&, m),[CT",

(D&, 7)) =(D(E, ), +(DP(E, n),s (B1)

where

(PE),=(1 En & &nw & & &y w & &n),
(PE,m) =(0 0 0 2a 0 28 6aE 2an 2pE 6By

6agn 6pEn). (B2)

Parameters « and 3 are defined by formulae (A4) and
(A5), respectively.
Matrix [C] is of the following form
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1 0 0 -2a 0 -2 0 0 0 0 0 0
0 0 % 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0
a
1 1 0 1-2¢ 0 =28 1-6a 0 =28 0 0 0
1 1 1 1
0 0 — 0 — 0 0 — 0 0 — 0
b b b b
0 1 0 2 0 0 3 0 0 0 0 0
[C]= a a a
1 1 1 1-2a 1 1-28 1-6a 1-2a 1-2f 1-6p 1-6a 1-68
o o Y o Y+ 2 45 1 2 3 1 3
b b b b b b b b
o L o 2 1 45 3 2 1 4, 3 _1
a a a a a a a a
1 0 1 -2a 0 1-28 o0 -2a 0 1-68 O 0
1 2 3
0 0 — 0 0 — 0 0 0 = 0 0
b b b
0 1 0 0 —= 0 0 0 1 0 0 1 (B3)
L a a a a |
Matrix [C] can be inverted in symbolic form by a CAS ,J D
package. Matrix elements are rather complicated to be W =|-o §+§Cmn w,, (C4)
presented in the paper.
and total deflection
Appendix
ppe dix C W:(l—w2£+§cmanb, (C5)

Formulae for natural frequencies of simply
supported plate

1. Equilibrium of forces
Natural vibrations are harmonic and one can write for
bending deflection

w,(x, y, )=W,(x, y)sinwt, (@)

where  is natural frequency. By substituting (C1) into
homogeneous differential equation of motion (8),
yields

DAAWb+w2](1+DmJAWb +w2m(w2£—1)W -0.

SJ b
(C2)
Solution of Eq. (2) can be assumed in the form
. Mmx . nmy
W =sin——sin—=.
b a b (CB)

Shear deflection, according to (9), is

where

)4 (5) s
mn a b * ( )
The above solution satisfy all boundary conditions
for simply supported plate.
By substituting (C3) into (C2) one obtains biquad-

ratic equation for determination of natural frequency
[23]. Its solution reads

2
a a
— mn __ mn _ b s C7
wmn \/ 2 ( 2 ) mn ( )

=——c. (C8)
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Energy balance

Natural frequencies of simply supported plate can
be also determined by the energy approach. Bending
strain energy, according to [1], reads

1 ¢t o'W, a2
py=Loff [ 2.7
00 X y
oW aw (ow Y
2(1- b2 T 7 | L dxdy.
( V){ o’ oy’ [axayj 1 Y (©9)

Substituting (C3) into (C9) one obtains after integration

D
E=—4d,
b 8ab mn (ClO)
where
d =(mn)29+(nn)zg- (Cc11)
mn a b
The shear strain energy is
14% w,
= dxdy.
wle S

By taking into account formulae (6) and (C4), one
obtains after integration

s(p) D
E=22 |l c1
sl e

e =3(mn)(nn)’d, +(mn)° (zj +(nn)° (Z) . (C14)

where

Kinetic energy due to mass translation is,

ab
=L fweaxay. (C15)
2 00

Substituting (6) into (C4), yields after integration

mab

where

f =1+ ﬂdmn (C17)

Kinetic energy due to mass rotation is
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T [EORE |

Substituting (C3) into (C18) and after integration
one can write

ab
Er = %dmn' (C19)

Natural frequency is defined as

E +E,
w = .
m E +E,

(C20)

Substituting corresponding expressions for strain
and kinetic energy, Egs. (C10), (C13), (C16) and (C19)
into (C20) one obtains

=— C21
D= (C21)

Two factors in (C21) can be presented in expanded

form
D_l(h)(h)
Sab  6(1-v)k \a/\b)’

J _1(h)h
nmb_lz(a)(b)' (€22)

Their values grow rapidly with plate thickness.

Formula (C22) for the first natural frequency
(m=n=1) of square plate (a=b) takes quite simple
and transparent form

1+ 277 32
Wy, = w?l D 2 a , (C23)
(1+2n2 2) v2m2 S 5
Sa ma
where
o 27" |D
W, = 7 %, (C24)

is the first natural frequency of thin plate.
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