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Abstract: An outline of the modified Mindlin plate theory, 
which deals with bending deflection as a single variable, 
is presented. Shear deflection and cross-section rotation 
angles are functions of bending deflection. A new four-
node rectangular finite element of moderately thick plate 
is formulated by utilizing the modified Mindlin theory. 
Shape functions of total (bending + shear) deflections are 
defined as a product of the Timshenko beam shape func-
tions in the plate longitudinal and transversal direction. 
The bending and shear stiffness matrices, and transla-
tional and rotary mass matrices are specified. In this 
way conforming and shear-locking-free finite element is 
obtained. Numerical examples of plate vibration analysis, 
performed for various combinations of boundary condi-
tions, show high level of accuracy and monotonic conver-
gence of natural frequencies to analytical values. The new 
finite element is superior to some sophisticated finite ele-
ments incorporated in commercial software.

Keywords: conformity; finite element formulation; modi-
fied Mindlin plate theory; shear-locking.

1  Introduction
Plates are structural elements of many engineering struc-
tures, like bridges, ships, aircrafts, etc. Plates are classi-
fied into three categories depending on thickness-span 
ratio: thin plates, h/L < 0.01, moderately thick plates, 
0.01 < h/L < 0.2, and thick plates, h/L > 0.2. Structural anal
ysis (strength, vibration, buckling) of thin plates has been 
performed within the well-known Kirchhoff plate theory 
[1], while moderately thick plates are analysed by the 
Mindlin plate theory as a 2D problem [2, 3]. Thick plates 

are considered to be an elastic body analysed by 3D theory 
of elasticity.

Dynamic behaviour of moderately thick plates is a 
more complex problem than that of thin plates, since influ-
ences of shear and rotary inertia are taken into account. 
The Mindlin theory deals with a system of three differen-
tial equations of motion in terms of three independent 
variables, i.e. deflection and two angles of cross-section 
rotation. A large number of papers has been published on 
this challenging problem and a comprehensive literature 
survey up to 1994 can be found in [4].

Generally speaking, there are two approaches to 
analysis of structural problems of moderately thick 
plates, i.e. analytical methods for solving differential 
equations of motion and numerical procedures based 
on the Rayleigh-Ritz energy method as well as the finite 
element method (FEM). Different analytical methods 
have been developed depending on which independent 
variables are selected as fundamental ones in the reduc-
tion of the system of differential equations of motion. 
Some methods operate with three, two or even one vari-
able, as shown in [5–7], respectively. Developed analyti-
cal methods for vibration analysis of simply supported 
plates are relatively simple, as well as those for plates 
with simply supported two opposite edges. For vibration 
analysis of plates with any combination of simply sup-
ported and clamped edges a sophisticated closed-form 
solution is presented in [8].

The Rayleigh-Ritz method is widely used for vibra-
tion analysis of plates with arbitrary boundary conditions 
(simply supported, clamped and free) as well as with 
elastically supported edges. The achieved level of accu-
racy and convergence of solution depend on the chosen 
set of coordinate functions for definition of natural 
modes. Usually, two dimensional polynomials [9], or 
static deflection functions of the Timoshenko beam, [10], 
are used. An efficient solution is also achieved by apply-
ing the assumed mode method [11, 12].

The finite element method is a universal numeri-
cal tool for structural analysis of complex engineering 
structures concerning both the topology and material 
properties. A few triangular, rectangular and quadrilat-
eral finite elements with different number of nodes have 
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been developed for Mindlin plate and incorporated in 
the library of commercial FEM software. Generally, the 
elements deal with three independent displacement 
fields, i.e. deflection and two cross-section rotations. 
They are prescribed by polynomials of the same order 
and in transition from thick to thin plate it is not pos-
sible to capture pure bending modes and zero shear 
strain constraints. In order to overcome this shear-lock-
ing problem in the FEM analysis, a few procedures have 
been developed, which are referred in [13]: reduced 
integration for shear terms [14, 15], which is commonly 
used in commercial software; mixed formulation of 
hybrid finite elements [16–18]; Assumed Natural Strain 
[19–21]; and Discrete Shear Gap (DSG) [22]. Recently, a 
new shear-locking-free finite element formulation for 
static analysis of moderately thick plates has been pro-
posed, based on an extension of the Kirchhoff thin plate 
theory [13].

In order to overcome the above problems, the Mindlin 
theory has been modified [23]. The system of three gov-
erning differential equations of motion is reduced to a 
single equation with bending deflection as a potential 
function for determining shear deflection and cross-sec-
tion rotation angles. By employing the modified Mindlin 
theory a new finite element formulation for moderately 
thick plates is presented in [24, 25]. Four-node rectan-
gular finite element and three-node triangular finite 
element are worked out utilizing polynomial shape 
(interpolation) functions. The stiffness matrix, consist-
ing of the bending stiffness matrix and the shear stiff-
ness matrix, as well as the mass matrix, are developed. 
In this formulation the shear stiffness matrix of a thin 
plate becomes negligible compared to the bending stiff-
ness matrix. Hence, the developed finite elements are 
shear-locking-free.

The above two finite elements are non-conforming 
since compatibility conditions of displacements are satis-
fied only in the nodes of the adjacent finite elements. As a 
result, convergence of natural frequencies is not monoto-
nous. Therefore, in this paper a conforming four-node 
rectangular finite element is presented, which satisfies 
compatibility conditions along all edges of the adjacent 
finite elements. Shape functions of plate defection are 
defined as a product of the Timoshenko beam shape 
functions in longitudinal and transversal direction. The 
bending and shear stiffness matrices, as well as the trans-
versal and rotary mass matrices are derived in a relatively 
simple way by employing an ordinary variational formu-
lation [21]. The finite element is shear-locking-free and 
values of natural frequencies monotonously converge to 
exact solution from above.

2  �Outline of the modified Mindlin 
theory

Displacements of a thick plate, i.e. total deflection, w, 
and angles of rotations, ψx, ψy, are shown in Figure 1 in 
the Cartesian coordinate system. The basic idea of the 
modified Mindlin thick plate theory is, like in case of the 
modified Timoshenko beam theory [26], decomposition 
of the total deflection into bending deflection and shear 
deflection

	 = +( , ,  ) ( , ,  ) ( , ,  ).b sw x y t w x y t w x y t � (1)

Rotations of the plate cross-sections are caused only 
by bending, and one can write for rotation angles
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Bending moments and twist moments are results of plate 
curvature and warping, respectively
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is the plate flexural rigidity, and h, E and ν is plate thick-
ness, Young’s modulus of elasticity and Poisson’s ratio, 
respectively.
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Figure 1: Displacements of rectangular plate.
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Shear strain is defined as summation of the plate gen-
eratrix rotation and cross-section rotation, i.e.
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.

s
x x
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y y

ww
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(5)

As a result the shear forces read

	

∂ ∂
= =

∂ ∂
, ,s s

x y

w w
Q S Q S

x y �
(6)

where S = ksGh is shear rigidity and ks is shear correction 
coefficient.

Plate natural vibrations are performed under action of 
distributed inertia force and bending moments
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where m̅ = ρh is the plate mass per unit area, J = ρI = ρh3/12 
is the mass moment of inertia of the cross-section per unit 
breadth, h is the plate thickness and ρ is mass density.

Consideration of the equilibrium of vertical forces and 
moments around the x and y axis, by applying the above 
relations, leads to a single differential equation of motion 
in terms of bending deflection
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where ∆
∂ ∂= +
∂ ∂

2 2

2 2
(.) (.)(.)
x y

 is the Laplace differential 

operator and qe is distributed excitation load. Once 
bending deflection wb is determined the total deflection 
(1) is obtained by the following formula [23]
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Final plate deformation depends on boundary 
conditions.

3  �Formulation of shape functions
The four-node rectangular finite element with three 
degrees of freedom (d.o.f.) per node is considered, Figure 2. 
The dimensionless coordinates ξ = x/a and η = y/b are 

introduced due to reason of simplicity. The shape (inter-
polation) functions of plate deflection are assumed in the 
form of products of thick beam shape functions, based 
on the modified Timoshenko beam theory [26], Xi(ξ) and 
Yj(η), i, j = 1, 2, 3, 4, in x and y direction respectively
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The beam shape functions, which take both shear stiff-
ness and rotary inertia into account, are specified in 
Appendix A.

Each of 12 shape functions Φk(ξ, η) = Xi(ξ)Yj(η), where 
indexes i and j appear in combinations (10), can be 
expanded into beam bending and shear terms, and mixed 
bending and shear terms
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+ + +

( )( )

.
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(11)

The beam bending and shear shape functions are also 
given in Appendix A. Hence, each of plate shape functions 
consists of four displacement fields, i.e. bending in both x 
and y direction, XibYjb; bending in x and shear in y direc-
tion, XibYjs, and vice versa, XisYjb; and shear in both direc-
tions, XisYjs.

In order to formulate finite element bending and 
shear stiffness matrix it is necessary to decompose 
bending and shear shape functions (11), as in the case 
of non-conforming finite element [24, 25]. Unfortunately, 
this is not possible in the considered case. However, 
cross-section rotation angles and shear angles, which 
are caused by bending and shear respectively, can be 
extracted from (11)
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Figure 2: Rectangular finite element with nodal displacements.
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Ψ Ψ= − = −′ ′1 1, ,xk ib j yk i jbX Y X Y
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(12)
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(13)

Hence, for derivation of all finite element properties it is 
necessary to operate with the known shape functions of 
total deflection (11) and rotation and shear angles (12) and 
(13), respectively.

The first two deflection shape functions of the present 
conforming and non-conforming finite element of aspect 
ratio a/b = 1 and thickness-span ratio h/b = 1.6, Appendix B, 
are shown in Figure 3. High value of h/b is a result of plate 
thickness-span ratio h/B = 0.2 and the finite element mesh 
8 × 8. The first shape function of non-conforming finite 
element is very close to that of conforming element, while 
the difference between the second shape functions are 
relatively large.

4  �Bending and shear stiffness matrix

For derivation of bending and shear stiffness matrix the 
ordinary finite element technique is used. Finite element 

deflection is expressed as product of deflection shape 
functions and nodal displacements

	 ξ η Φ ξ η δ= 〈 〉 = …( , ) ( , ) { },   1, 2 12,kw k � (14)

where according to Figure 2
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In a similar way one can write for rotation angles

	

ψ ξ η Ψ ξ η δ

ψ ξ η Ψ ξ η δ

= 〈 〉

= 〈 〉

( , ) ( , ) { },

( , ) ( , ) { },
x xk

y yk �
(16)

and shear angles
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According to (3) the finite element bending curvature and 
warping can be presented as vector

	

ψ

ψ
κ

ψψ

 ∂
 ∂ 

∂ =  ∂ 
∂ ∂

+ ∂ ∂ 

{ }

x

y

yx

x

y

y x �

(18)

By substituting (12) into (16), and taking (18) into account, 
yields

	 κ δ= −{ } [ ] { },bL � (19)

where

	

 
〈 〉′′ 

 
 = 〈 〉′′ 
 
 〈 + 〉′ ′ ′ ′
 

2

2

1 ( )

1[ ] ( ) .

1 ( ) ( )

ib j k

b i jb k

ib j k i jb k

X Y
a

L X Y
b

X Y X Y
ab �

(20)

By using a general formulation of stiffness matrix from the 
finite element method based on variational principle [21], 
one can write for bending stiffness matrix

	
ξ η= ∫ ∫

1 1
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�
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Figure 3: The first two deflection shape functions, a/b = 1, h/b = 1.6: 
red – conforming element, blue – non-conforming element.
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Elements of matrix [K]b, after multiplication of the subin-
tegral matrices, can be presented in the form
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where, according to (20)
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Related to the shear stiffness the shear strain vector 
according to (5) reads
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By substituting (13) into (17), and then into (25), yields

	 γ δ={ } [ ] { },sL � (26)

where
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Analogously to (21) one can write for the shear stiffness 
matrix
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is matrix of the plate shear rigidity. Since [D]s includes unit 
matrix, Eq. (28) is reduced to the form
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5  �Translational and rotary mass 
matrix

According to the general formulation [21], mass matrix 
depends on deflection shape function Φk, Eq. (11), and one 
can write for the translational mass matrix

	
ξ η= 〈 〉∫ ∫

1 1
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�
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The beam shape functions Xi and Yj are specified in 
Appendix A.

Mass matrix due to mass rotation is derived in the fol-
lowing way. According to (2) vector of cross-section rota-
tion reads
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and taking into account (12) and (16), yields

	 ψ δ= −{ } [ ] { },rL � (33)

where

	

 
〈 〉′ 

=  
 〈 〉′  

1 ( )
[ ]

1 ( )

ib j k

r

i jb k

X Y
aL

X Y
b �

(34)

Rotary mass matrix is specified similarly to the shear stiff-
ness matrix, Eq. (26)
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Hence, one can write
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Finally, the finite element equation for natural vibration 
analysis of thick plate reads

	 ω δ+ − + =2(([ ] [ ] ) ([ ] [ ] )){ } {0},b s t rK K M M � (38)

where ω is natural frequency. Elements of shear stiff-
ness matrix [K]s, according to (27) and (A3), includes 
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parameters α and β, Eqs. (A4) and (A5), respectively. 
Their values are rapidly reduced for thin plate due to 
small thickness-span ratio h/a and h/b. In case of very 
thin plate shear stiffness matrix [K]s becomes negligible 
compared to bending stiffness matrix   b

K  in (38). This 
fact indicates that the presented finite element is shear-
locking-free. Assembling of the finite element Eqs. (38) 
is performed in ordinary way of the finite element tech-
nique [20, 21].

6  �Illustrative numerical examples
The developed conforming four-node finite element is val-
idated by three numerical examples of natural vibrations 
with different boundary conditions: simply supported 
square plate (SSSS), rectangular plate clumped on trans-
verse edges and simply supported on longitudinal edges 

(CSCS), and rectangular plate with combined clamped, 
free, and simply supported boundaries (CFSS). All plates 
are modelled with 8 × 8 = 64 finite elements. Value of plate 
aspect ratio, a/b, and shear correction factor, ks, as well as 
formula for dimensionless frequency parameter μ or λ, are 
given in the title of Tables 1–3. Thin, moderately thick and 
thick plate, are considered. Values of frequency parameter 
determined by the present conforming finite element 
(FEM-PC), and those by non-conforming finite element 
(FEM-NC) [24, 25], are compared with analytical solution 
for case SSSS and CSCS, Tables 1 and 2. For boundary con-
ditions CFSS, Table 3, solution obtained by the Rayleigh-
Ritz method [9] is used as the referent one. FEM results 
agree very well with analytical ones. Between FEM-PC and 
FEM-NS results small difference can be noticed for thick 
plate.

The same boundary value problems are solved by 
commercial software LS-DYNA [27] and NASTRAN [28], 
for comparison. In the former case fully integrated shell 

Table 3: Frequency parameter λ ω π ρ= 2 2( / ) /b h D  of rectangular plate, case CFSS, a/b = 0.4, ks = 5/6.

h/b Method 1 2 3 4 5 6 7 8

0.001 RRa 9.874 11.346 14.900 19.539 26.624 31.698 33.397 35.788
FEM-PC 9.924 11.691 15.380 21.184 29.225 31.793 33.830 38.057
FEM-NC 9.896 11.175 14.028 18.772 25.615 31.712 32.677 34.680
LS-DYNA 9.970 11.109 13.592 17.886 24.956 32.849 33.729 34.975
NASTRAN 9.823 10.945 13.363 17.404 23.574 31.402 32.257 32.623

0.1 RRa 7.941 8.970 11.135 14.462 18.761 20.459 21.357 23.112
FEM-PC 7.974 9.054 11.318 14.818 19.481 20.759 21.742 23.696
FEM-NC 7.981 8.849 10.812 14.081 18.657 20.746 21.281 22.542
LS-DYNA 8.123 8.952 10.755 13.690 17.651 21.058 21.439 22.021
NASTRAN 7.985 8.635 10.196 12.825 16.215 19.771 20.457 20.887

0.2 RRa 5.594 6.305 7.752 9.828 12.294 12.679 13.236 14.289
FEM-PC 5.625 6.365 7.877 10.109 12.917 12.949 13.539 14.711
FEM-NC 5.624 6.219 7.592 9.809 12.715 12.948 13.364 14.255
LS-DYNA 5.744 6.358 7.611 9.368 11.288 12.932 13.031 13.124
NASTRAN 5.669 6.126 7.277 8.993 10.839 12.470 12.790 12.945

aRayleigh-Ritz [9].

Table 4: Convergence pattern of frequency parameter µ ω ρ= 2 /a h D  of square plate, case SSSS, a/b = 1, h/a = 0.2, ks = 0.86667, FEM-PC.

FEM mesh 1/11/ 2/12/ 3/21/ 4/22/ 5/13/ 6/31/ 7/23/ 8/32/

2 × 2 18.421 50.798 50.798 101.260 101.279 168.984 168.984
4 × 4 17.761 39.899 39.899 59.206 72.369 72.369 88.744 88.744
6 × 6 17.627 39.072 39.072 57.246 68.812 68.812 83.857 83.857
8 × 8 17.576 38.775 38.775 56.529 67.465 67.465 81.956 81.956
10 × 10 17.551 38.636 38.636 56.192 66.836 66.836 81.064 81.064
Analyticala 17.506 38.385 38.385 55.586 65.719 65.719 79.476 79.476

aAppendix C.
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element with four nodes, based on the Reissner-Mind-
lin theory (ELFORM 16) is used, while in the latter case 
2D four-node thick plate finite element is applied. The 
NASTRAN results are considerably lower than the analyti-
cal values for all three plate thickness, while those deter-
mined by LS-DYNA are somewhat higher for thin plate and 
lower for thick plate.

The convergence test is carried out for the thick plate 
and all three cases of boundary conditions, Tables 4–6. 
The finite element mesh density is increased from 2 × 2 to 
10 × 10. It can be observed that values of frequency para-
meters in all three examples converge monotonically from 
above as the mesh density is increased. Convergence is 
faster for lower frequencies, since simple shape of corre-
sponding natural modes can be successfully described by 
smaller number of finite elements.

7  �Conclusion
An advantage of the modified Mindlin theory, outlined in 
Section 2, is dealing with only one variable, i.e. bending 

deflection as a potential function for determining total 
(bending + shear) deflection, cross-section rotation 
angles, strains and sectional forces. This enables a new 
finite element formulation for moderately thick plate 
by following the ordinary FEM procedure and ensur-
ing in such a way variational consistency. The four-node 
rectangular finite element is defined by specifying the 
shape functions of the total deflection as a product of the 
Timosheko beam shape functions in longitudinal and 
transversal direction. In this way conformity of the finite 
elements is ensured, while the application of the Modi-
fied Mindlin theory results with shear-locking-free finite 
element.

As a result of the above two finite element characteris-
tics, the illustrative numerical examples of thin and mod-
erately thick plate with various boundary conditions show 
high level of accuracy and fast monotonous convergence 
of natural frequencies to the exact values from above. 
Moreover, this relatively simple finite element, in the most 
analysed cases, achieves a higher level of accuracy than 
the sophisticated finite elements incorporated in the used 
commercial software.

Table 5: Convergence pattern of frequency parameter λ ω π ρ= 2 2( / ) /b h D  of rectangular plate, case CSCS, a/b = 0.5, h/b = 0.2, 
ks = 0.86667, FEM-PC.

FEM mesh 1 2 3 4 5 6 7 8

2 × 2 5.680 7.242 11.315 16.976 18.050
4 × 4 5.388 6.577 9.027 11.129 12.263 14.193 15.364 17.927
6 × 6 5.329 6.470 8.698 10.734 11.776 11.883 13.532 15.734
8 × 8 5.309 6.431 8.572 10.592 11.514 11.597 13.262 15.094
10 × 10 5.299 6.413 8.512 10.526 11.332 11.514 13.133 14.675
Analyticala 5.202 6.223 8.261 10.350 10.898 11.209 12.706 13.809

a[8, 25].

Table 6: Convergence pattern of frequency parameter λ ω π ρ= 2 2( ) /b h D  of rectangular plate, case CFSS, a/b = 0.4, h/b = 0.2 ks = 5/6, 
FEM-PC.

FEM mesh   1  2  3  4  5  6  7  8

2 × 2   5.960  6.897  8.869  12.259  18.427  19.526  20.288  22.735
4 × 4   5.700  6.503  8.154  10.575  13.636  14.347  15.720  16.255
6 × 6   5.645  6.405  7.959  10.292  13.126  13.288  13.762  15.017
8 × 8   5.625  6.365  7.877  10.109  12.917  12.949  13.539  14.711
10 × 10   5.615  6.345  7.835  10.014  12.715  12.850  13.434  14.565
RRa   5.594  6.305  7.752  9.828  12.294  12.679  13.236  14.289

aRayleigh-Ritz [9].
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Appendix A

Beam shape functions

Total functions, Xi = Xib + Xis
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Bending functions, Xib
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Shear functions, Xis
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where
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Beam shape functions in y-direction, Yj = Yjb + Yjs, have the 
same form as those in x-direction, Xi = Xib + Xis. It is only 
necessary to change argument ξ into η and use parameters 
β and μ instead of α and λ, where

	

β
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Appendix B

Shape functions of the non-conforming finite 
element

The four-node thick plate finite element with compat-
ible nodal displacements, based on the modified Mindlin 
theory, is presented in [24, 25]. Here, only shape functions 
are specified due to comparation to the conforming finite 
element.

Bending shape functions, shear shape functions 
and  total deflection functions are given in matrix 
notation

	

Φ ξ η ξ η
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where
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Parameters α and β are defined by formulae (A4) and 
(A5), respectively.

Matrix [C] is of the following form
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Matrix [C] can be inverted in symbolic form by a CAS 
package. Matrix elements are rather complicated to be 
presented in the paper.

Appendix C

Formulae for natural frequencies of simply 
supported plate

1.	 Equilibrium of forces
Natural vibrations are harmonic and one can write for 
bending deflection

	 ω=( , ,  ) ( , )sin ,b bw x y t W x y t � (C1)

where ω is natural frequency. By substituting (C1) into 
homogeneous differential equation of motion (8), 
yields
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Solution of Eq. (2) can be assumed in the form

	

π π= sin sin .b
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Shear deflection, according to (9), is
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The above solution satisfy all boundary conditions 
for simply supported plate.

By substituting (C3) into (C2) one obtains biquad-
ratic equation for determination of natural frequency 
[23]. Its solution reads
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2.	 Energy balance
Natural frequencies of simply supported plate can 
be also determined by the energy approach. Bending 
strain energy, according to [1], reads
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Substituting (C3) into (C9) one obtains after integration
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The shear strain energy is
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By taking into account formulae (6) and (C4), one 
obtains after integration
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Kinetic energy due to mass translation is,
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Substituting (6) into (C4), yields after integration
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Kinetic energy due to mass rotation is
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Substituting (C3) into (C18) and after integration 
one can write
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Natural frequency is defined as
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Substituting corresponding expressions for strain 
and kinetic energy, Eqs. (C10), (C13), (C16) and (C19) 
into (C20) one obtains
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Two factors in (C21) can be presented in expanded 
form
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Their values grow rapidly with plate thickness.
Formula (C22) for the first natural frequency 

(m = n = 1) of square plate (a = b) takes quite simple 
and transparent form
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is the first natural frequency of thin plate.
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