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Abstract: In this paper, we perform statistical analysis
of time series deriving from four neurodegenerative dis-
orders, namely epilepsy, amyotrophic lateral sclerosis
(ALS), Parkinson’s disease (PD), Huntington’s disease
(HD). The time series are concerned with electroencepha-
lograms (EEGs) of healthy and epileptic states, as well as
gait dynamics (in particular stride intervals) of the ALS,
PD and HDs. We study data concerning one subject for
each neurodegenerative disorder and one healthy control.
The analysis is based on Tsallis non-extensive statistical
mechanics and in particular on the estimation of Tsallis
g-triplet, namely {q__, q_., q,,}- The deviation of Tsallis
g-triplet from unity indicates non-Gaussian statistics and
long-range dependencies for all time series considered. In
addition, the results reveal the efficiency of Tsallis statis-
tics in capturing differences in brain dynamics between
healthy and epileptic states, as well as differences between
ALS, PD, HDs from healthy control subjects. The results
indicate that estimations of Tsallis g-indices could be used
as possible biomarkers, along with others, for improving
classification and prediction of epileptic seizures, as well
as for studying the gait complex dynamics of various dis-
eases providing new insights into severity, medications
and fall risk, improving therapeutic interventions.

Keywords: EEGs; gait dynamics; neurodegenerative disor-
ders; stride intervals; Tsallis g-triplet.

1 Introduction

Neurological disorders are major public health problems
(e.g. around 50 million people suffer from epilepsy [1]).
These disorders include diseases such as Alzheimer’s
disease and other dementias, brain cancer, degenerative
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nerve diseases, encephalitis, epilepsy, genetic brain dis-
orders, head and brain malformations, hydrocephalus,
stroke, Parkinson’s disease (PD), multiple sclerosis, amyo-
trophic lateral sclerosis (ALS or Lou Gehrig’s disease),
Huntington’s disease (HD) and others. They afflict the
nervous system resulting in progressive nervous system
dysfunction, associated with atrophy of the affected
central or peripheral structures of the nervous system [1].

In this paper we are concerned with four neurodegen-
erative disorders, namely epilepsy, ALS, PD, HD: Epilepsy
is a sudden paroxysmal and temporary disturbance of the
brain’s functioning during which the brain’s nerve cells
send out excessive electrical impulses causing episodes
called seizures, which can be focal or generalized [2, 3]; ALS
is generated by the destruction of motoneurons of the cere-
bral cortex, brain stem and spinal cord; HD is caused by the
mutation of Huntington’s gene; PD is caused by the mal-
function of a neurotransmitter called dopamine that trans-
ports signals to the parts of the brain that control movement
initiation and coordination ([4] and refs. therein).

Any information concerning the dynamics of neuro-
degenerative disorders can be very useful for decision-
support tools for early detection and diagnosis, as well
as the development of new biomarkers, etc. One way to
provide such information is to study time series which
can represent the neurodegenerative disorders’ complex
dynamics. Epilepsy can be studied using electroencepha-
lograms (EEGs) which reflect the mean electrical activity of
the brain, as measured with electrodes at different places
on the head, yielding evidence regarding the underlying
associated neural dynamics and the dynamical changes in
the brain’s electrical activity [5]. However, ALS, PD and HD
affect the ability to move, creating serious gait abnormali-
ties, characterized by loss or dysfunction of neurons in
the motor, sensory, or cognitive systems [4]. Therefore, the
analysis of temporal gait parameters (e.g. stride, stance or
swing intervals) can be very useful for providing informa-
tion of the mechanisms of movement disorders [6].

Indeed, various studies concerning EEGs and gait
time series non-linear statistical analysis revealed the
complex, non-linear and non-stationary nature of these
signals. In particular, the spatiotemporal complex-
ity of brain activity during health or seizure periods is
characterized by various dynamical states (chaos, self-
organized criticality, etc), while human gait also exhibits
multifractal dynamics (e.g. [2, 7-12]). In this paper, we
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analyze EEGs and gait time series using statistical analysis
based on Tsallis non-extensive statistical mechanics [13].
Recent studies showed the efficiency of Tsallis statistics
in characterizing non-linear, non-Gaussian, multifractal
statistics of complex signals such as the EEG recordings of
patients with epilepsy [14-16]. In particular, we exploit the
Tsallis g-triplet [17, 18], which can provide information not
only for the statistical features of the time series but also
for the rate of entropy production, the relaxation dynam-
ics and non-equilibrium meta-stable stationary states of
the neurodegenerative disease complex dynamics.

The paper is organized as follows: Section 2 presents the
mathematical and theoretical framework concerning Tsallis
non-extensive statistics. Section 3 contains the results of the
statistical analysis of the experimental medical time series.
Finally, Section 4 contains a summary of the present results,
conclusions and a discussion on future directions.

2 Theoretical framework and
methodology of data analysis

2.1 Tsallis non-extensive statistics

The dynamics of far-from-equilibrium non-linear complex
systems are characterized by multifractality, long-range
correlations and power law scaling. In order to efficiently
describe such behavior, Tsallis developed a consistent and
effective theoretical framework, named non-extensive sta-
tistical thermodynamics, which is based on a generaliza-
tion of Boltzmann-Gibbs (BG) entropy.

In particular, the generalization of BG entropy is given
by the relation [13]

Ly p

5,k (g€, 5,=5,,), (1)

q

where k is the Boltzmann’s constant, W is a set of discrete
states and g the degree of non-extensivity. The Tsallis
entropy S, measures the complexity of the system, while
the parameter g measures the degree of non-extensivity
of the system. For example, for two probabilistically inde-
pendent systems A and B, Eq. (1) becomes

S,(A+B)=S,(A)+S, (B)+(1-q)S,(A)S,(B). ©)

The first part of Eq. (2) is additive while the second
part is multiplicative, describing the long-range interac-
tions between the two systems. For ¢g>1 and g<1 Eq. (2)
holds for sub-additivity and super-additivity, respectively
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[14]. When g=1, Eq. (2) corresponds to the entropy of the
usual BG statistical mechanics, which is additive.

2.1.1 Tsallis g-triplet

Tsallis g-indices can describe features of the dynamics
of the complex system in our study, such as sensitivity to
the initial conditions, relaxation towards equilibrium of
correlation functions, equilibrium distribution of ener-
gies, entropy production, etc. Here, we are interested
in the indices Deensitivity Tretaxation’ Lstationary? known also as
the Tsallis g-triplet [17], which also constitutes the best
empirical quantifier of non-extensivity. In the following
we describe briefly the underlying mathematical frame-
work concerning the Tsallis g-triplet (for an extensive
review, see [19]):

2.1.1.1 Tsallis g-sensitivity index (q_, )
According to [20] the power law sensitivity to initial condi-
tions at the edge of chaos provides a natural link between
the entropic index g and the attractor’s multifractal or
singularity spectrum f(a). Therefore, we can use the mul-
tifractal spectrum to determine the entropic index g

which is given by

en’
— amaxamin
qsen _1- a * (3)

The a_,, a_ values correspond to the extremes of
multifractal spectrum for which f(a)=0. The knowledge of
the Tsallis g_ index is very important since it can be used
to calculate the sensitivity to initial conditions &(t) and the
g-generalized Lyapunov exponent lqm. In particular, in
the non-extensive scenario &(t) is given by

EO=[1+(1-q,,)A, """, (4)

min

Then we can use the extension of Pesin’s theorem to
make the important connection between the loss of infor-
mation measure, via entropy production [17]

S
K =lim—, 5)

Gent  t—oeo f

and the sensitivity to initial conditions. This result can
be expressed by the g-generalized Pesin-like identity
K =1 withg

Qe sen ent™ sen
We followed Pavlos’s [19, and refs. therein] for the
estimation of the multifractal spectrum f(a) from an exper-

imental time series. In particular, if the experimental time
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series is denoted by x(t), we define a new scalar stationary
variable Ax(t) denoting the small-scale differences

Ax(t)=x(t,+At)-x(t,), (6)

where At is the sampling interval. Then, we assign an
appropriate probability measure du to the time series,
which should scale with the resolution length, equal to

Ax(t)

du(t)=——= X

dt, (7)

where T is the total time length. The coarse-grained prob-
ability is given by

p@=[, dul®)= Y, Ault"), (8)

tst'st+v

where 7=2"is the size of the segments A, with i=1, 2, ..,
N(r), and N(r) is the number of segments necessary to
“cover” the time series. Consequently, the estimation of
the “mass” moment scaling takes place captured by the
function I'(g, 7) according to

I'(g, r)=;pi(r)‘7z(r)y@, ©)

where the “mass” exponent y(c_])z(cj-l)D(7 and D, are the
generalized (Renyi) dimensions given by
1, logZp

D =— 10
1 quO logt (10)

which are estimated by a non-linear regression algorithm.

The Renyi dimensions can be connected with the fractal

dimensions f(a) through the Legendre transformation
dy(q)

d_ s Cja‘f(a)

a= y(q) = (11)

from which the singularity or multifractal spectrum f(a)
is estimated.

2.1.1.2 Tsallis g-relaxation index (g, )

The Tsallis g, , index is related with the relaxation process
of a macroscopic quantity O of a complex system. This
process represents the system’s exploration in its full
dynamical space, searching for possible metastable sta-
tionary state(s). The relaxation process can be described
by the quantity [21]

O(t)-O(<)

Q(t)=——7-—-—=.
0= 50rom)

(12)
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The differential equation which relates the relaxation
process to the Tsallis g , entropic index is

rel

aQ_ 1 o,
dat 1

el

, (13)

is the relaxation time and yields a solution of

where T,
Q(O)=[1-(-q)(t /7, I,

(14)

As candidate observables Q(t) for estimation of g,
one can use the autocorrelation function or the average
auto-mutual information. Here we use the latter, due to
its efficiency to capture non-linear-linear features in con-
trast with the autocorrelation function which accounts
only for linear characteristics. In particular, the g, index
is given by g _,=(b-1)/b, where b is the slope of the log-log
plotting of auto-mutual information I, given in [22] by
the relation: '

p(x(t), x(t+7))

I= Y pkx®, X(t+T))10gzm,

x(t),x(t+1)

(15)

Auto-mutual information provides information gained
about one measurement of a time series from the measure-
ment of another. If the two measurements are completely
independent, the auto-mutual information, is zero.

2.1.1.3 Tsallis g-stationary (q,,_)

This index is connected with heavy-tail distributions,
named the Tsallis g-Gaussian distributions. The estima-
tion of the Tsallis g index, referred to as stationary g=q__,
is related to the size of these distribution tails and can
describe metastable stationary states of the system. The
Tsallis g-Gaussian distribution [23] is given by:

G,(B; X)=@eq ’

q

(16)

where e =[1+(1-g)x]'*? is the g-exponential, 3 is a posi-
tive number and C, is a normalization constant, namely
—_[ e, “dx. Depending on the g- value, C, has the fol-

lowing forms:
2@r( ! ]
1-q
C,= , o< g<l, 17)
ENT F(zu )
¢, =V, g=1, (18)
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3-q
\/;r(Z(q-l)]

C =——F—"75, 1<g<3,

()

(19)

For g<1, the support of Gq(ﬂ; x) is compact since this

density vanishes for |x[>1/+/(1-¢)8.

The Tsallis g entropic index can be estimated by using
the probability density function (PDF) computed from
the experimental data X={x; t=1, 2, ..., N}. The statisti-
cal analysis is based on the algorithm described in [19,
and refs. therein]. We construct the PDF of the input time
series as follows: The interval {min(X), max(X)} range is
subdivided into bins of width Js, centered at s, so that we
can assess the frequency with which the X-values will fall
within each bin. The resultant histogram is properly nor-
malized (the sum of all probabilities is equal to unity) and
yields the stationary PDF {p(x,)}\ . Thus, p, is the prob-
ability of an X-value to fall into the ith-bin centered at x.. For
the estimation of g-value, we vary g within the interval {1,
3} with a step dg=0.005 and the best g-value corresponds
to the best linear fit [maximum correlation coefficients
(cc)] of the graph lnq(p(xi)) vs. xf, where the function

Xl corresponds to the g-logarithm (inverse of

1

Iq
the g-exponential). Then, with the obtained g-value=q__,
we compute the g__ -Gaussian given by the equation above

lnq ()=

G,(B; x):@eq’ﬁ” (20)

q

for different f-values. After selecting the f-value, mini-
mizing the quantity 2 [qun (Bs x.)-p(x, )I’, we compare the
experimental distribuition with the theoretical g-Gaussian
and with the normal Gaussian PDFs, in a log[p(x)] vs. x,
graph.

3 Signal analysis from
neurodegenerative disorders

In this section, we present results concerning the esti-
mation of the Tsallis g-triplet in EEGs corresponding to
healthy and epileptic seizure dynamics, as well as in time
series concerning gait dynamics related to ALS, PD and
HD. For the estimation of the Tsallis g-triplet a first differ-
ence filter was used in all time series, namely the original
values were replaced by Ax=x,-x,,.
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3.1 Epilepsy

We analyzed an EEG time series of a person suffering from
epilepsy. In particular, we used data from the database,
http://physionet.org/pn6/chbmit/ [24, 25], collected at the
Children’s Hospital Boston, MA, USA which consisted of
EEG recordings from pediatric subjects with intractable
seizures. The subjects were monitored for up to several
days following the withdrawal of anti-seizure medication
in order to characterize their seizures and assess their can-
didacy for surgical intervention. As a first case, a 11-year-
old female was chosen. The records were taken for a total
of 1 h, while the seizure lasted for 40 s.

Two time series were analyzed, one contained one
seizure episode, while the other did not. Figure 1A shows
the whole EEG time series including an epileptic episode
(denoted between red lines, x4 segment), while Figure 1B
shows an EEG time series of the same patient in which no
episode was recorded. As it can be seen in Figure 1A,B the
time series including the seizure episode is more erratic and
irregular than the one without. We estimated the Tsallis
g-triplet for the epileptic episode (x4-segment in Figure 1A)
and for the time series with no episode (Figure 1B).

The results concerning the two time series are shown
in Figure 2 (for comparison we show results concerning
the second half of the time series in Figure 1B, but it must
be noted that the results for the first half are very similar).

600 y v . . . .
A Start of
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B 300 T T
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€
-200}
-300 ! !
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Figure 1: Tsallis g-triplet of two EEG time series concerning epileptic
and healthy states.

(A) EEG time series including an epileptic episode. The initiation of
the episode and its end is denoted by the red vertical lines. (B) EEG
time series of the same patient with no episode.
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Figure 2: Results concerning the two time series.

(A) The singularity spectra f(a) as a function of singularity strength a for the EEG time series with no episode. (B) Double logarithmic plot of
auto-mutual Information /(z) vs. 7. for the EEG time series with no episode. (C) log(p(x) vs. x, graph for the EEG time series with no episode.
(D) The singularity spectra f(a) as a function of singularity strength a for the EEG episode time series. (E) Double logarithmic plot of auto-
mutual information /(r) vs. 7. for the EEG episode time series. (F) log(p(x) vs. x. graph for the EEG episode time series.

In particular, in Figure 2A,D we show the results con-
cerning the estimation of singularity spectrum f(a) along
with error bars and consequently for the Tsallis g index
(as described in paragraph 2.1.1.1). As it is shown, both
time series have multifractal characteristics, but the EEG
episode time series clearly exhibits a far richer and wider
multifractal spectrum than the one with no episode,
indicating that the former time series is more erratic and
intermittent than the latter and is a result of an intense
complex self-similar behavior which manifests in many
scales. This is clearly depicted by the estimation of the

Tsallis g index. According to [21], when g is esti-
mated below unity through Eq. (3), then a power law
behavior (instead of exponential) is valid for sensitiv-
ity of initial conditions, namely Eoct " =¢/0%) (¢ —s00).
The results concerning the Tsallis g index for the two
time series showed that the Tsallis g is below unity
for both time series, q_ ;. qopz="1-038+£0.00155>
.. noppisops="6-9761£0.128. Therefore, according to the
values of the Tsallis g and using the g-generalized
Pesin-like identity (qumsllqsen with q_=q_ ) the time
series connected with a greater loss of information

sen
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in phase space is the EEG episode time series, since
—10.49 — 10.1253 i
& emsope=t">E vommsope=t"""> and with a greater rate of

entropy production since Ko, > K, opoisops:

In Figure 2B,E we present results concerning the Tsallis
q,,index. In particular, in these figures we present the best
logl(r) vs. log(z) fitting of the auto-mutual information
function for the two time series. With the red-dashed lines
we emphasize the power law fitting, while with the blue-
dashed line we show the exponential fitting. For a classi-
cal BG-process the mutual information should decay in an
exponential fashion. However, for the two time series we
do not find any such behavior. In particular, the mutual
information decays in a g-exponential manner (power
law) for lags 7=1-5 for the time series with no episode and
lags 7=3-20 for the EEG episode time series. The coefficient
of determination for the power law fitting (R-squared)
was found to be R?>0.89 for the EEG time series with no
episode and R?>0.78 for the EEG episode time series, while
for the exponential fitting the corresponding values were
R?<0.81 and R%*<0.65, respectively. Thus, we can use the
slope b of the power law fitting to estimate g, index, as
described in Section 2.1.1.2. The results showed that the
q,, index was found to be g >1 for all cases, namely
4, onorpisope=1422%0.05<q . 0copp=18-24%2.47,  indicating
similar g -exponential decay relaxation times to meta-
equilibrium non-extensive stationary states for the time
series, but also significant differences since the Tsallis g
index is much higher for the EEG episode time series.

Finally, we also estimated the Tsallis g index for the
two time series. In Figure 2C,F, we present the results con-
cerning Tsallis g-Gaussians depicted by the solid red line
in a log[p(x)] vs. x, graph, where the difference between
the g-Gaussian and the Gaussian PDF (green line) in
long tails is clearly visible. The open blue circles corre-
spond to the EEG time series. The Tsallis g-Gaussians cor-
respond to the best linear correlation between lnq[p(xi)]
and (x)i2 (not shown here) and the Tsallis g, index was
found to be above unity in both cases and particularly
Qonorpsope=1-19210.023<q__ .0icop=1:470.07.  The  corre-
sponding cc are: 0.95+0.034 and 0.935+0.023, respectively.
The high value of the Tsallis ¢, index corresponding to
the EEG episode time series indicates that the presence of
long-range interactions, characterized by non-Gaussian
(g-Gaussian) distributions, are much more significant in
seizure dynamics than in dynamics with no episode.

In addition, we estimated the Tsallis g-triplet indices
for five segments of the time series including the episode
shown in Figure 1A, in order to unravel possible varia-
tions of Tsallis indices connected to significant shifts of
the underlying dynamics. Figure 3 shows the results of
the Tsallis g-triplet estimation along with the error bars
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concerning the five segments of Figure 1A. As shown in
Figure 3A for Tsallis g, Figure 3B for Tsallis g and
Figure 3C for Tsallis g, Tsallis g-triplet indices of the x4
segment (epileptic episode) attain much higher values com-
pared to the corresponding of the other segments, indicat-
ing a shift in the underlying dynamics and a strengthening
in the non-extensive character of the system. In addition,
Tsallis g and q__ indices show a gradual increase in their
values as the time of epileptic episode approaches. This
result could be related to the significant changes of the
brain dynamics from healthy to epileptic states.

Overall, the results showed that the brain system in
epileptic dynamics is in an off-equilibrium stationary state
whose physics is properly described by the g-statistical
mechanics since the Tsallis g-triplet indices adopted the
values: {q_; q,,, q.,=1-1.038; 4.34; 141}, verifying a pos-
sible general scheme, g <l1<q,<q, as noted in [13].
The results also indicate that the estimation of the Tsallis
g-indices could be used as possible biomarkers, along with
others, for improving prediction of epileptic seizures, since
the Tsallis indices capture efficiently the difference between
healthy and epileptic dynamics (the Tsallis g-triplet is much
smaller for no episode dynamics, compared to the epileptic
dynamics).

3.2 Gait dynamics in degenerative diseases

In this section, gait dynamics are analyzed in terms of
Tsallis statistics. Gait dynamics are related to neurode-
generative diseases since the latter often affect gait and
mobility. In particular, we estimate the Tsallis g, index
using the methods described previously corresponding to
ALS, PD, HD and healthy controls [26, 27].

The time series analyzed are constructed from the
records of the Physionet’s database (http://physionet.org/
physiobank/database/gaitndd/). They are concerned with
stride-to-stride measures of footfall contact times and
their analysis could help to understand better the patho-
physiology and dynamics of the aforementioned diseases.
The analyzed time series are shown in Figure 4A-H and
correspond to left and right stride intervals (s). As the plots
show, the stride intervals are irregular and non-periodic.

In the following, we present four tables with the
results concerning Tsallis g-triplet indices estimation for
ALS, PD and HD and a healthy control subject.

3.2.1 Amyotrophic lateral sclerosis

For the study of gait dynamics in ALS we chose a female
subject of age 40 years, height 1.7 m and weight 61.24 kg.


http://physionet.org/physiobank/database/gaitndd/)
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DE GRUYTER

A. lliopoulos et al.: Tsallis statistics and neurodegenerative disorders = 135

A 1.5 I I

x4-Episode

1.4

-
w
1

qsiaiionary
Grelaxation

1.2+

x4-Episode

Segments

B ' T | T T

x4-Episode

Qsensitivity

x5

Segments

Figure 3: Tsallis indices.
(M) Tsallis g,
g, index estimated for the five segments of Figure 1A.

The time series consisted of 245 stride intervals. The results
are presented in Table 1 along with the fitting parameters.
In particular, the Tsallis g-triplet was found to be {g_ ;
4. 4.,)=10.1945; 4.24; 1.22} for left stride intervals and
{a...; q. 4.,)=10.113; 4.16; 1.78} for right stride intervals,
respectively. Therefore, in both cases, the indices attained
values different from unity denoting non-Gaussian statis-
tics described efficiently by Tsallis non-extensive statistics.
In addition, the Tsallis g, index is higher for right stride
intervals indicating a possible asymmetry in the subject’s
movement and especially more correlated right strides.

3.2.2 Parkinson’s disease

For the study of gait dynamics of PD we chose a data set
of a male subject of age 77 years, height 2 m and weight
86 kg. The time series consisted of 245 stride intervals.
The results are presented in Table 2 along with the fitting
parameters. In particular, the Tsallis g-triplet was found

index estimated for the five segments of Figure 1A. (B) Tsallis g

Segments

index estimated for the five segments of Figure 1A. (C) Tsallis

sen

to be {q_; q..; 4.,}=10.18; 3.76; 1.6} for left stride inter-
valsand {q__; q.; q,,.}={0.352; 2.32; 1.395} for right stride
intervals, respectively. Therefore, in both cases, the
indices attained values different from unity, denoting
non-Gaussian, which can be described faithfully within
Tsallis non-extensive statistics framework. In addition,
the Tsallis indices values were different for left and right
stride intervals indicating a possible asymmetry in the
subject’s movement.

3.2.3 Huntington’s disease

For the study of Huntington’s gait dynamics we chose a
data set of a male subject of age 42 years, height 1.86 m
and weight 72 kg. The time series consisted of 310 stride
intervals. The results are presented in Table 3 along with
fitting parameters. In particular, Tsallis g-triplet was
found to be {q_; q.; q,.}={0.613; 2.3; 0.8625} for left
stride intervals and {q__; q }={0.226; 3.253; 1.385}

rel; qstat
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Figure 4: Examples of gait time series.
(A) Left stride intervals for a patient with ALS. (B) Left stride intervals for a patient with Parkinson’s disease. (C) Left stride intervals for
a patient with Huntington’s disease. (D) Left stride intervals for a healthy control subject. (E) Right stride intervals for a patient with ALS.
(F) Right stride intervals for a patient with Parkinson’s disease. (G) Right stride intervals for a patient with Huntington’s disease. (H) Right
stride intervals for a healthy control subject.
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Table 1: Tsallis g-triplet for stride intervals corresponding to a
female subject with amyotrophic lateral sclerosis (ALS).

Stride interval gq__, [ R

(s)

Left 1.2240.0606 0.1945+0.015 4.24+0.22
¢cc=0.92740.01 R?=0.92+0.08

Right 1.78+0.23 0.113£0.05 4.16+0.6
¢cc=0.95+0.02 R?=0.89+0.05

Table 2: Tsallis g-triplet for stride intervals corresponding to a
subject with Parkinson’s disease (PD).

Stride interval q_ Gen G

O]

Left 1.610.12, 0.182+0.0577 3.7565%0.244
cc=0.95+0.04 R?=0.77310.07

Right 1.395+0.055, 0.3524+0.02 2.32+0.04

cc=0.815+0.015 R?=0.738+0.18

Table 3: Tsallis g-triplet for stride intervals corresponding to a
subject with Huntington’s disease (HD).

Stride interval gq_, 4. q.
(s)
Left 0.8625%0.017, 0.613+0.0106 2.3+0.2

€c=0.915+£0.01
1.385+0.2,
€c=0.9586+0.044

R?=0.83610.11
0.226+0.013 3.253+0.25
R?=0.838+0.14

Right

Table 4: Tsallis g-triplet for stride intervals corresponding to a
healthy control subject.

Stride interval  q__, 9 Gt

(s)

Left 2.2+0.37, 0.48740.025 3.14610.6
¢c=0.73%£0.07 R?=0.843+0.08

Right 2.0410.38, 0.49+0.01 3.392+0.95
¢cc=0.79+0.05 R*=0.78+0.15

for right stride intervals, respectively. Therefore, in both
cases, the indices attained values different from unity
denoting non-Gaussian, non-extensive Tsallis statistics.
In addition, the Tsallis indices values were significantly
different for left and right stride intervals indicating
strong asymmetry in the subject’s movement result-
ing in unsteady-jerky gaits. For example, the Tsallis q_,
index for the left strides is below unity, while for the right
strides it is above unity.
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3.2.4 Healthy control

For the study of gait dynamics of a healthy control subject
we chose a data set of a female subject of age 57 years,
height 1.94 m and weight 95 kg. The time series consisted
of 259 stride intervals. The results are presented in Table 4
along with the fitting parameters. In particular, the Tsallis
g-triplet was found to be {q__; q; q.,,}=10.487; 3.146; 2.2}
for left stride intervals and {q_; g ; q.,}={0.49; 3.392;
2.04} for right stride intervals, respectively. Therefore,
in both cases, the indices attained values different from
unity denoting non-Gaussian, Tsallis non-extensive sta-
tistics. In addition, the Tsallis indices values were very
similar for left and right stride intervals, indicating strong
symmetry in the subject’s movement resulting in steady-
correlated gaits, as expected from a healthy person.

4 Summary and conclusions

In this paper, we analyzed the statistical features of six
time series concerning neurodegenerative disorders. In
particular, we studied two EEG time series concerning
healthy and epileptic states, as well as time series con-
cerning gait dynamics of ALS, PD and HD and a healthy
control. The methodology adopted is based on Tsallis
non-extensive statistics and in particular on the Tsallis
g-triplet. In particular, we established:

EEG time series

— The strong multifractal character of EEG episode time
series compared to the EEG time series which did not
include an episode.

— Thenon-extensive and non-Gaussian character of both
EEG time series, based on the estimation of the Tsallis
q.., index which was found different from unity in
both cases. However, the comparison of the Tsallis g__
index showed that the EEG episode time series is con-
nected with a greater loss of information and entropy
production, than the EEG time series with no episode.

— The non-extensive and non-Gaussian character of
both EEG time series based on the estimation of Tsallis
q,, index, since g >1, indicating a g -exponential
decay relaxation of the system to meta-equilibrium
non-extensive stationary states. However, the Tsallis
q,, index is higher for the EEG episode time series.

— The non-extensive and non-Gaussian (Tsallis g-Gauss-
ian) character of both EEG time series, since the PDFs
are efficiently described by Tsallis g-Gaussian distribu-
tions characterized by the parameter q__. In all cases,

stat®
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the Tsallis index g >1, indicating super-g-Gaussian
statistics, but g__ for EEG episode time series is signifi-
cantly higher, indicating more correlated dynamics.

— The study of the Tsallis g-triplet concerning the five
segments of the EEG time series including the seizure,
showed that Tsallis indices corresponding to the epi-
leptic episode attain much higher values compared
to the other segments, as well as a gradual increase
of the indices (especially of g and g_ ) as the time
of epileptic episode approaches. This result could be
related to significant changes (e.g. phase transitions)
of the brain dynamics from healthy to epileptic states.

Gait time series

— ALS: The Tsallis g-triplet was found different from
unity in all cases indicating non-extensive, non-
Gaussian dynamics. However, differences in the Tsal-
lis g, index concerning left and right stride intervals
indicate possible weak asymmetry in the subject’s
movement, which could be due to weakness, fatigue,
loss of balance and coordination of the subject.

— PD: Tsallis g-triplet was found different from unity
in all cases indicating non-extensive, non-Gaussian
dynamics. However, differences in all Tsallis indices
concerning left and right stride intervals indicate an
asymmetry in the subject’s movement, a result which
is in accordance with the Parkinsonian gait dynamics,
which is characterized by small shuffling steps and a
general slowness of movement.

— HD: The Tsallis g-triplet was found different from unity
in all cases indicating non-extensive, non-Gaussian
dynamics. A very significant difference was found con-
cerning the Tsallis g, index. In particular, the Tsal-
lis g, index for left strides is below unity, while for
right strides is above unity. In addition, the other Tsal-
lis indices are also different. These results indicate a
strong asymmetry in the subject’s movement resulting
in from uncoordinated, unsteady-jerky gaits.

- Healthy control: The Tsallis g-triplet was found dif-
ferent from unity in all cases indicating non-exten-
sive, non-Gaussian dynamics. However, all indices
were found similar for left and right stride intervals,
a result which indicates strong symmetry in the sub-
ject’s movement resulting in steady-correlated gaits,
as expected from a healthy person.

Overall, the results showed that the brain system in epi-
leptic dynamics is in an off-equilibrium stationary state
whose physics is properly described by the g-statistical
mechanics since the Tsallis g-triplet indices adopted
the values: {q__; q }={-1.038; 4.34; 1.41}, verifying a

rel; qstat
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possible general scheme, g <1<q,_<q,, as noted in [13].
The results also indicate that the estimation of Tsallis
g-indices could be used as possible biomarkers, along
with others, for improving the prediction of epileptic
seizures, since Tsallis indices capture efficiently the dif-
ference between healthy and epileptic dynamics (the
Tsallis g-triplet is much smaller for no episode dynamics,
compared to the epileptic dynamics), as well as possible
phase transitions of the brain dynamics as the seizure
time approaches. In addition, the results concerning
gait dynamics of ALS, PD and HD and healthy control,
show that the Tsallis g-triplet is different from unity in all
cases considered, thus indicating that the temporal fluc-
tuations in the stride interval are not random but there
is hidden information connected with Tsallis g-Gaussians
distributions, characterized by the presence of long-
range dependence. In addition, differences in Tsallis
indices concerning the left and right stride intervals pos-
sible, which were more intense in HD (no differences
were found in the healthy control subject) represent the
subject’s gait asymmetry. Therefore the aforementioned
results can provide valuable information, indicating dif-
ferent effects of each disease on gait asymmetry and non-
linearity on stride dynamics, changing with each disease
providing new insights in disease severity, medication
utility and falls in order to improve therapeutic inter-
ventions. These results are also in accordance with [8,
28], who found fractal correlations in gait dynamics. Of
course, in order to draw safer conclusions more subjects
should be examined both for EEGs concerning epilepsy,
as well as for gait time series of the aforementioned neu-
rodegenerative diseases.

Finally, the estimation of the Tsallis g-triplet could
also be helpful for the discrimination of different types
of epileptic seizures and/or provide valuable information
concerning EEGs of other neurodegenerative disorders,
such as the Alzheimer’s disease. Moreover, Tsallis statis-
tics could help to clarify the differences and the similari-
ties between the gait dynamics of the same disease as well
as between the diseases, since the temporal fluctuations
in the stride interval change with age and disease [12]. In
addition, other time series corresponding to sub-phases
of the stride (e.g. stance and swing) could be examined.
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