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Abstract: In this paper, we perform statistical analysis 
of time series deriving from four neurodegenerative dis-
orders, namely epilepsy, amyotrophic lateral sclerosis 
(ALS), Parkinson’s disease (PD), Huntington’s disease 
(HD). The time series are concerned with electroencepha-
lograms (EEGs) of healthy and epileptic states, as well as 
gait dynamics (in particular stride intervals) of the ALS, 
PD and HDs. We study data concerning one subject for 
each neurodegenerative disorder and one healthy control. 
The analysis is based on Tsallis non-extensive statistical 
mechanics and in particular on the estimation of Tsallis 
q-triplet, namely {qstat, qsen, qrel}. The deviation of Tsallis 
q-triplet from unity indicates non-Gaussian statistics and 
long-range dependencies for all time series considered. In 
addition, the results reveal the efficiency of Tsallis statis-
tics in capturing differences in brain dynamics between 
healthy and epileptic states, as well as differences between 
ALS, PD, HDs from healthy control subjects. The results 
indicate that estimations of Tsallis q-indices could be used 
as possible biomarkers, along with others, for improving 
classification and prediction of epileptic seizures, as well 
as for studying the gait complex dynamics of various dis-
eases providing new insights into severity, medications 
and fall risk, improving therapeutic interventions.

Keywords: EEGs; gait dynamics; neurodegenerative disor-
ders; stride intervals; Tsallis q-triplet.

1  Introduction
Neurological disorders are major public health problems 
(e.g. around 50 million people suffer from epilepsy [1]). 
These disorders include diseases such as Alzheimer’s 
disease and other dementias, brain cancer, degenerative 

nerve diseases, encephalitis, epilepsy, genetic brain dis-
orders, head and brain malformations, hydrocephalus, 
stroke, Parkinson’s disease (PD), multiple sclerosis, amyo-
trophic lateral sclerosis (ALS or Lou Gehrig’s disease), 
Huntington’s disease (HD) and others. They afflict the 
nervous system resulting in progressive nervous system 
dysfunction, associated with atrophy of the affected 
central or peripheral structures of the nervous system [1].

In this paper we are concerned with four neurodegen-
erative disorders, namely epilepsy, ALS, PD, HD: Epilepsy 
is a sudden paroxysmal and temporary disturbance of the 
brain’s functioning during which the brain’s nerve cells 
send out excessive electrical impulses causing episodes 
called seizures, which can be focal or generalized [2, 3]; ALS 
is generated by the destruction of motoneurons of the cere-
bral cortex, brain stem and spinal cord; HD is caused by the 
mutation of Huntington’s gene; PD is caused by the mal-
function of a neurotransmitter called dopamine that trans-
ports signals to the parts of the brain that control movement 
initiation and coordination ([4] and refs. therein).

Any information concerning the dynamics of neuro-
degenerative disorders can be very useful for decision-
support tools for early detection and diagnosis, as well 
as the development of new biomarkers, etc. One way to 
provide such information is to study time series which 
can represent the neurodegenerative disorders’ complex 
dynamics. Epilepsy can be studied using electroencepha-
lograms (EEGs) which reflect the mean electrical activity of 
the brain, as measured with electrodes at different places 
on the head, yielding evidence regarding the underlying 
associated neural dynamics and the dynamical changes in 
the brain’s electrical activity [5]. However, ALS, PD and HD 
affect the ability to move, creating serious gait abnormali-
ties, characterized by loss or dysfunction of neurons in 
the motor, sensory, or cognitive systems [4]. Therefore, the 
analysis of temporal gait parameters (e.g. stride, stance or 
swing intervals) can be very useful for providing informa-
tion of the mechanisms of movement disorders [6].

Indeed, various studies concerning EEGs and gait 
time series non-linear statistical analysis revealed the 
complex, non-linear and non-stationary nature of these 
signals. In particular, the spatiotemporal complex-
ity of brain activity during health or seizure periods is 
characterized by various dynamical states (chaos, self-
organized criticality, etc), while human gait also exhibits 
multifractal dynamics (e.g. [2, 7–12]). In this paper, we 
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analyze EEGs and gait time series using statistical analysis 
based on Tsallis non-extensive statistical mechanics [13]. 
Recent studies showed the efficiency of Tsallis statistics 
in characterizing non-linear, non-Gaussian, multifractal 
statistics of complex signals such as the EEG recordings of 
patients with epilepsy [14–16]. In particular, we exploit the 
Tsallis q-triplet [17, 18], which can provide information not 
only for the statistical features of the time series but also 
for the rate of entropy production, the relaxation dynam-
ics and non-equilibrium meta-stable stationary states of 
the neurodegenerative disease complex dynamics.

The paper is organized as follows: Section 2 presents the 
mathematical and theoretical framework concerning Tsallis 
non-extensive statistics. Section 3 contains the results of the 
statistical analysis of the experimental medical time series. 
Finally, Section 4 contains a summary of the present results, 
conclusions and a discussion on future directions.

2  �Theoretical framework and 
methodology of data analysis

2.1  Tsallis non-extensive statistics

The dynamics of far-from-equilibrium non-linear complex 
systems are characterized by multifractality, long-range 
correlations and power law scaling. In order to efficiently 
describe such behavior, Tsallis developed a consistent and 
effective theoretical framework, named non-extensive sta-
tistical thermodynamics, which is based on a generaliza-
tion of Boltzmann-Gibbs (BG) entropy.

In particular, the generalization of BG entropy is given 
by the relation [13]
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where k is the Boltzmann’s constant, W is a set of discrete 
states and q the degree of non-extensivity. The Tsallis 
entropy Sq measures the complexity of the system, while 
the parameter q measures the degree of non-extensivity 
of the system. For example, for two probabilistically inde-
pendent systems A and B, Eq. (1) becomes

	 ( ) ( ) ( ) (1- ) ( ) ( ).q q q q qS A B S A S B q S A S B+ = + + � (2)

The first part of Eq. (2) is additive while the second 
part is multiplicative, describing the long-range interac-
tions between the two systems. For q > 1 and q < 1 Eq. (2) 
holds for sub-additivity and super-additivity, respectively 

[14]. When q = 1, Eq. (2) corresponds to the entropy of the 
usual BG statistical mechanics, which is additive.

2.1.1  Tsallis q-triplet

Tsallis q-indices can describe features of the dynamics 
of the complex system in our study, such as sensitivity to 
the initial conditions, relaxation towards equilibrium of 
correlation functions, equilibrium distribution of ener-
gies, entropy production, etc. Here, we are interested 
in the indices qsensitivity, qrelaxation, qstationary, known also as 
the Tsallis q-triplet [17], which also constitutes the best 
empirical quantifier of non-extensivity. In the following 
we describe briefly the underlying mathematical frame-
work concerning the Tsallis q-triplet (for an extensive 
review, see [19]):

2.1.1.1  Tsallis q-sensitivity index (qsen)
According to [20] the power law sensitivity to initial condi-
tions at the edge of chaos provides a natural link between 
the entropic index q and the attractor’s multifractal or 
singularity spectrum f(a). Therefore, we can use the mul-
tifractal spectrum to determine the entropic index qsen, 
which is given by

	
= max min
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The amax, amin values correspond to the extremes of 
multifractal spectrum for which f(a) = 0. The knowledge of 
the Tsallis qsen index is very important since it can be used 
to calculate the sensitivity to initial conditions ξ(t) and the 
q-generalized Lyapunov exponent λ

sen
.q  In particular, in 

the non-extensive scenario ξ(t) is given by

	 ξ λ= + sen

sen
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Then we can use the extension of Pesin’s theorem to 
make the important connection between the loss of infor-
mation measure, via entropy production [17]
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and the sensitivity to initial conditions. This result can 
be expressed by the q-generalized Pesin-like identity 

λ≡
ent senq qK  with qent = qsen.

We followed Pavlos’s [19, and refs. therein] for the 
estimation of the multifractal spectrum f(a) from an exper-
imental time series. In particular, if the experimental time 
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series is denoted by x(ti), we define a new scalar stationary 
variable Δx(ti) denoting the small-scale differences

	 ( ) ( )- ( ),i ix t x t t x t∆ ∆= + � (6)

where Δt is the sampling interval. Then, we assign an 
appropriate probability measure dμ to the time series, 
which should scale with the resolution length, equal to
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where T is the total time length. The coarse-grained prob-
ability is given by
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where τ = 2n is the size of the segments Λi with i = 1, 2, …, 
N(τ), and N(τ) is the number of segments necessary to 
“cover” the time series. Consequently, the estimation of 
the “mass” moment scaling takes place captured by the 
function Γ(q̅, τ) according to
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where the “mass” exponent γ(q̅) = (q̅-1)Dq ̅ and Dq ̅ are the 
generalized (Renyi) dimensions given by
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which are estimated by a non-linear regression algorithm. 
The Renyi dimensions can be connected with the fractal 
dimensions f(a) through the Legendre transformation
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from which the singularity or multifractal spectrum f(a)
is estimated.

2.1.1.2  Tsallis q-relaxation index (qrel)
The Tsallis qrel index is related with the relaxation process 
of a macroscopic quantity O of a complex system. This 
process represents the system’s exploration in its full 
dynamical space, searching for possible metastable sta-
tionary state(s). The relaxation process can be described 
by the quantity [21]
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The differential equation which relates the relaxation 
process to the Tsallis qrel entropic index is
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where τ
relq  is the relaxation time and yields a solution of
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As candidate observables Ω(t) for estimation of qrel, 
one can use the autocorrelation function or the average 
auto-mutual information. Here we use the latter, due to 
its efficiency to capture non-linear-linear features in con-
trast with the autocorrelation function which accounts 
only for linear characteristics. In particular, the qrel index 
is given by qrel = (b-1)/b, where b is the slope of the log-log 
plotting of auto-mutual information KKI τ

 given in [22] by 
the relation:
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Auto-mutual information provides information gained 
about one measurement of a time series from the measure-
ment of another. If the two measurements are completely 
independent, the auto-mutual information, is zero.

2.1.1.3  Tsallis q-stationary (qstat)
This index is connected with heavy-tail distributions, 
named the Tsallis q-Gaussian distributions. The estima-
tion of the Tsallis q index, referred to as stationary q = qstat, 
is related to the size of these distribution tails and can 
describe metastable stationary states of the system. The 
Tsallis q-Gaussian distribution [23] is given by:
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where eq = [1+(1-q)x]1/(1-q) is the q-exponential, β is a posi-
tive number and Cq is a normalization constant, namely 
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For q < 1, the support of Gq(β; x) is compact since this 

density vanishes for | | 1/ (1- ) .x q β>

The Tsallis q entropic index can be estimated by using 
the probability density function (PDF) computed from 
the experimental data X = {xt; t = 1, 2, …, N}. The statisti-
cal analysis is based on the algorithm described in [19, 
and refs. therein]. We construct the PDF of the input time 
series as follows: The interval {min(X), max(X)} range is 
subdivided into bins of width δs, centered at si so that we 
can assess the frequency with which the X-values will fall 
within each bin. The resultant histogram is properly nor-
malized (the sum of all probabilities is equal to unity) and 
yields the stationary PDF 1{ }( .) N

iip x =  Thus, pi is the prob-
ability of an X-value to fall into the ith-bin centered at xi. For 
the estimation of q-value, we vary q within the interval {1, 
3} with a step δq = 0.005 and the best q-value corresponds 
to the best linear fit [maximum correlation coefficients 
(cc)] of the graph lnq(p(xi)) vs. 2 ,ix  where the function 

1- -1ln ( )
1-

q

q
xx
q

=  corresponds to the q-logarithm (inverse of 

the q-exponential). Then, with the obtained q-value = qstat, 
we compute the qstat -Gaussian given by the equation above
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for different β-values. After selecting the β-value, mini-
mizing the quantity β∑

stat

2[ ( ; )- ( )] ,q i i
i
G x p x  we compare the 

experimental distribution with the theoretical q-Gaussian 
and with the normal Gaussian PDFs, in a log[p(xi)] vs. xi 
graph.

3  �Signal analysis from 
neurodegenerative disorders

In this section, we present results concerning the esti-
mation of the Tsallis q-triplet in EEGs corresponding to 
healthy and epileptic seizure dynamics, as well as in time 
series concerning gait dynamics related to ALS, PD and 
HD. For the estimation of the Tsallis q-triplet a first differ-
ence filter was used in all time series, namely the original 
values were replaced by Δxt = xt - xt-1.
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Figure 1: Tsallis q-triplet of two EEG time series concerning epileptic 
and healthy states.
(A) EEG time series including an epileptic episode. The initiation of 
the episode and its end is denoted by the red vertical lines. (B) EEG 
time series of the same patient with no episode.

3.1  Epilepsy

We analyzed an EEG time series of a person suffering from 
epilepsy. In particular, we used data from the database, 
http://physionet.org/pn6/chbmit/ [24, 25], collected at the 
Children’s Hospital Boston, MA, USA which consisted of 
EEG recordings from pediatric subjects with intractable 
seizures. The subjects were monitored for up to several 
days following the withdrawal of anti-seizure medication 
in order to characterize their seizures and assess their can-
didacy for surgical intervention. As a first case, a 11-year-
old female was chosen. The records were taken for a total 
of 1 h, while the seizure lasted for 40 s.

Two time series were analyzed, one contained one 
seizure episode, while the other did not. Figure 1A shows 
the whole EEG time series including an epileptic episode 
(denoted between red lines, x4 segment), while Figure 1B 
shows an EEG time series of the same patient in which no 
episode was recorded. As it can be seen in Figure 1A,B the 
time series including the seizure episode is more erratic and 
irregular than the one without. We estimated the Tsallis 
q-triplet for the epileptic episode (x4-segment in Figure 1A) 
and for the time series with no episode (Figure 1B).

The results concerning the two time series are shown 
in Figure 2 (for comparison we show results concerning 
the second half of the time series in Figure 1B, but it must 
be noted that the results for the first half are very similar). 

http://physionet.org/pn6/chbmit/
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Figure 2: Results concerning the two time series.
(A) The singularity spectra f(a) as a function of singularity strength a for the EEG time series with no episode. (B) Double logarithmic plot of 
auto-mutual Information I(τ) vs. τ. for the EEG time series with no episode. (C) log(p(xi) vs. xi graph for the EEG time series with no episode. 
(D) The singularity spectra f(a) as a function of singularity strength a for the EEG episode time series. (E) Double logarithmic plot of auto-
mutual information I(τ) vs. τ. for the EEG episode time series. (F) log(p(xi) vs. xi graph for the EEG episode time series.

In particular, in Figure 2A,D we show the results con-
cerning the estimation of singularity spectrum f(a) along 
with error bars and consequently for the Tsallis qsen index 
(as described in paragraph 2.1.1.1). As it is shown, both 
time series have multifractal characteristics, but the EEG 
episode time series clearly exhibits a far richer and wider 
multifractal spectrum than the one with no episode, 
indicating that the former time series is more erratic and 
intermittent than the latter and is a result of an intense 
complex self-similar behavior which manifests in many 
scales. This is clearly depicted by the estimation of the 

Tsallis qsen index. According to [21], when qsen is esti-
mated below unity through Eq. (3), then a power law 
behavior (instead of exponential) is valid for sensitiv-
ity of initial conditions, namely λ

ξ∝ = →∞qsen sen1/(1- )( ).qt t t  
The results concerning the Tsallis qsen index for the two 
time series showed that the Tsallis qsen is below unity 
for both time series, qsenEPISODE =  -1.038±0.00155 >   
qsenNOEPISODE = -6.976±0.128. Therefore, according to the 
values of the Tsallis qsen and using the q-generalized 
Pesin-like identity ( λ≡

ent senq qK  with qent = qsen) the time 
series connected with a greater loss of information 
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in phase space is the EEG episode time series, since  
ξEPISODE = t0.49 > ξNOEPISODE = t0.1253, and with a greater rate of 
entropy production since KEPISODE > KNOEPISODE.

In Figure 2B,E we present results concerning the Tsallis 
qrel index. In particular, in these figures we present the best 
logI(τ) vs. log(τ) fitting of the auto-mutual information 
function for the two time series. With the red-dashed lines 
we emphasize the power law fitting, while with the blue-
dashed line we show the exponential fitting. For a classi-
cal BG-process the mutual information should decay in an 
exponential fashion. However, for the two time series we 
do not find any such behavior. In particular, the mutual 
information decays in a q-exponential manner (power 
law) for lags τ = 1–5 for the time series with no episode and 
lags τ = 3–20 for the EEG episode time series. The coefficient 
of determination for the power law fitting (R-squared) 
was found to be R2 > 0.89 for the EEG time series with no 
episode and R2 > 0.78 for the EEG episode time series, while 
for the exponential fitting the corresponding values were 
R2 < 0.81 and R2 < 0.65, respectively. Thus, we can use the 
slope b of the power law fitting to estimate qrel index, as 
described in Section 2.1.1.2. The results showed that the 
qrel index was found to be qrel > 1 for all cases, namely  
qrelNOEPISODE = 1.422±0.05 < qrelEPISODE = 18.24±2.47, indicating 
similar qrel-exponential decay relaxation times to meta-
equilibrium non-extensive stationary states for the time 
series, but also significant differences since the Tsallis qrel 
index is much higher for the EEG episode time series.

Finally, we also estimated the Tsallis qstat index for the 
two time series. In Figure 2C,F, we present the results con-
cerning Tsallis q-Gaussians depicted by the solid red line 
in a log[p(xi)] vs. xi graph, where the difference between 
the q-Gaussian and the Gaussian PDF (green line) in 
long tails is clearly visible. The open blue circles corre-
spond to the EEG time series. The Tsallis q-Gaussians cor-
respond to the best linear correlation between lnq[p(xi)] 
and 2

i( )x  (not shown here) and the Tsallis qstat index was 
found to be above unity in both cases and particularly  
qstatNOEPISODE = 1.192±0.023 < qstatEPISODE = 1.4±0.07. The corre-
sponding cc are: 0.95±0.034 and 0.935±0.023, respectively. 
The high value of the Tsallis qstat index corresponding to 
the EEG episode time series indicates that the presence of 
long-range interactions, characterized by non-Gaussian 
(q-Gaussian) distributions, are much more significant in 
seizure dynamics than in dynamics with no episode.

In addition, we estimated the Tsallis q-triplet indices 
for five segments of the time series including the episode 
shown in Figure 1A, in order to unravel possible varia-
tions of Tsallis indices connected to significant shifts of 
the underlying dynamics. Figure 3 shows the results of 
the Tsallis q-triplet estimation along with the error bars 

concerning the five segments of Figure 1A. As shown in 
Figure 3A for Tsallis qstat, Figure 3B for Tsallis qsen and 
Figure 3C for Tsallis qrel, Tsallis q-triplet indices of the x4 
segment (epileptic episode) attain much higher values com-
pared to the corresponding of the other segments, indicat-
ing a shift in the underlying dynamics and a strengthening 
in the non-extensive character of the system. In addition, 
Tsallis qstat and qsen indices show a gradual increase in their 
values as the time of epileptic episode approaches. This 
result could be related to the significant changes of the 
brain dynamics from healthy to epileptic states.

Overall, the results showed that the brain system in 
epileptic dynamics is in an off-equilibrium stationary state 
whose physics is properly described by the q-statistical 
mechanics since the Tsallis q-triplet indices adopted the 
values: {qsen; qrel, qstat} = {-1.038; 4.34; 1.41}, verifying a pos-
sible general scheme, qsen < 1 < qstat < qrel as noted in [13]. 
The results also indicate that the estimation of the Tsallis 
q-indices could be used as possible biomarkers, along with 
others, for improving prediction of epileptic seizures, since 
the Tsallis indices capture efficiently the difference between 
healthy and epileptic dynamics (the Tsallis q-triplet is much 
smaller for no episode dynamics, compared to the epileptic 
dynamics).

3.2  Gait dynamics in degenerative diseases

In this section, gait dynamics are analyzed in terms of 
Tsallis statistics. Gait dynamics are related to neurode-
generative diseases since the latter often affect gait and 
mobility. In particular, we estimate the Tsallis qstat index 
using the methods described previously corresponding to 
ALS, PD, HD and healthy controls [26, 27].

The time series analyzed are constructed from the 
records of the Physionet’s database (http://physionet.org/
physiobank/database/gaitndd/). They are concerned with 
stride-to-stride measures of footfall contact times and 
their analysis could help to understand better the patho-
physiology and dynamics of the aforementioned diseases. 
The analyzed time series are shown in Figure 4A–H and 
correspond to left and right stride intervals (s). As the plots 
show, the stride intervals are irregular and non-periodic.

In the following, we present four tables with the 
results concerning Tsallis q-triplet indices estimation for 
ALS, PD and HD and a healthy control subject.

3.2.1  Amyotrophic lateral sclerosis

For the study of gait dynamics in ALS we chose a female 
subject of age 40 years, height 1.7 m and weight 61.24 kg. 

http://physionet.org/physiobank/database/gaitndd/)
http://physionet.org/physiobank/database/gaitndd/)
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Figure 3: Tsallis indices.
(A) Tsallis qstat index estimated for the five segments of Figure 1A. (B) Tsallis qsen index estimated for the five segments of Figure 1A. (C) Tsallis 
qrel index estimated for the five segments of Figure 1A.

The time series consisted of 245 stride intervals. The results 
are presented in Table 1 along with the fitting parameters. 
In particular, the Tsallis q-triplet was found to be {qsen; 
qrel; qstat} = {0.1945; 4.24; 1.22} for left stride intervals and 
{qsen; qrel; qstat} = {0.113; 4.16; 1.78} for right stride intervals, 
respectively. Therefore, in both cases, the indices attained 
values different from unity denoting non-Gaussian statis-
tics described efficiently by Tsallis non-extensive statistics. 
In addition, the Tsallis qstat index is higher for right stride 
intervals indicating a possible asymmetry in the subject’s 
movement and especially more correlated right strides.

3.2.2  Parkinson’s disease

For the study of gait dynamics of PD we chose a data set 
of a male subject of age 77 years, height 2 m and weight 
86 kg. The time series consisted of 245 stride intervals. 
The results are presented in Table 2 along with the fitting 
parameters. In particular, the Tsallis q-triplet was found 

to be {qsen; qrel; qstat} = {0.18; 3.76; 1.6} for left stride inter-
vals and {qsen; qrel; qstat} = {0.352; 2.32; 1.395} for right stride 
intervals, respectively. Therefore, in both cases, the 
indices attained values different from unity, denoting 
non-Gaussian, which can be described faithfully within 
Tsallis non-extensive statistics framework. In addition, 
the Tsallis indices values were different for left and right 
stride intervals indicating a possible asymmetry in the 
subject’s movement.

3.2.3  Huntington’s disease

For the study of Huntington’s gait dynamics we chose a 
data set of a male subject of age 42 years, height 1.86 m 
and weight 72 kg. The time series consisted of 310 stride 
intervals. The results are presented in Table 3 along with 
fitting parameters. In particular, Tsallis q-triplet was 
found to be {qsen; qrel; qstat} = {0.613; 2.3; 0.8625} for left 
stride intervals and {qsen; qrel; qstat} = {0.226; 3.253; 1.385} 
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Figure 4: Examples of gait time series.
(A) Left stride intervals for a patient with ALS. (B)  Left stride intervals for a patient with Parkinson’s disease. (C) Left stride intervals for 
a patient with Huntington’s disease. (D) Left stride intervals for a healthy control subject. (E) Right stride intervals for a patient with ALS. 
(F) Right stride intervals for a patient with Parkinson’s disease. (G) Right stride intervals for a patient with Huntington’s disease. (H) Right 
stride intervals for a healthy control subject.
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3.2.4  Healthy control

For the study of gait dynamics of a healthy control subject 
we chose a data set of a female subject of age 57 years, 
height 1.94 m and weight 95 kg. The time series consisted 
of 259 stride intervals. The results are presented in Table 4 
along with the fitting parameters. In particular, the Tsallis 
q-triplet was found to be {qsen; qrel; qstat} = {0.487; 3.146; 2.2} 
for left stride intervals and {qsen; qrel; qstat} = {0.49; 3.392; 
2.04} for right stride intervals, respectively. Therefore, 
in both cases, the indices attained values different from 
unity denoting non-Gaussian, Tsallis non-extensive sta-
tistics. In addition, the Tsallis indices values were very 
similar for left and right stride intervals, indicating strong 
symmetry in the subject’s movement resulting in steady-
correlated gaits, as expected from a healthy person.

4  Summary and conclusions
In this paper, we analyzed the statistical features of six 
time series concerning neurodegenerative disorders. In 
particular, we studied two EEG time series concerning 
healthy and epileptic states, as well as time series con-
cerning gait dynamics of ALS, PD and HD and a healthy 
control. The methodology adopted is based on Tsallis 
non-extensive statistics and in particular on the Tsallis 
q-triplet. In particular, we established:

EEG time series
–– The strong multifractal character of EEG episode time 

series compared to the EEG time series which did not 
include an episode.

–– The non-extensive and non-Gaussian character of both 
EEG time series, based on the estimation of the Tsallis 
qsen index which was found different from unity in 
both cases. However, the comparison of the Tsallis qsen 
index showed that the EEG episode time series is con-
nected with a greater loss of information and entropy 
production, than the EEG time series with no episode.

–– The non-extensive and non-Gaussian character of 
both EEG time series based on the estimation of Tsallis 
qrel index, since qrel > 1, indicating a qrel-exponential 
decay relaxation of the system to meta-equilibrium 
non-extensive stationary states. However, the Tsallis 
qrel index is higher for the EEG episode time series.

–– The non-extensive and non-Gaussian (Tsallis q-Gauss-
ian) character of both EEG time series, since the PDFs 
are efficiently described by Tsallis q-Gaussian distribu-
tions characterized by the parameter qstat. In all cases, 

Table 1: Tsallis q-triplet for stride intervals corresponding to a 
female subject with amyotrophic lateral sclerosis (ALS).

Stride interval 
(s)

qstat qsen qrel

Left 1.22±0.0606
cc = 0.927±0.01

0.1945±0.015 4.24±0.22
R2 = 0.92±0.08

Right 1.78±0.23
cc = 0.95±0.02

0.113±0.05 4.16±0.6
R2 = 0.89±0.05

Table 2: Tsallis q-triplet for stride intervals corresponding to a 
subject with Parkinson’s disease (PD).

Stride interval 
(s)

qstat qsen qrel

Left 1.6±0.12,
cc = 0.95±0.04

0.182±0.0577 3.7565±0.244
R2 = 0.773±0.07

Right 1.395±0.055,
cc = 0.815±0.015

0.352±0.02 2.32±0.04
R2 = 0.738±0.18

Table 3: Tsallis q-triplet for stride intervals corresponding to a 
subject with Huntington’s disease (HD).

Stride interval 
(s)

qstat qsen qrel

Left 0.8625±0.017,
cc = 0.915±0.01

0.613±0.0106 2.3±0.2
R2 = 0.836±0.11

Right 1.385±0.2, 
cc = 0.9586±0.044

0.226±0.013 3.253±0.25
R2 = 0.838±0.14

Table 4: Tsallis q-triplet for stride intervals corresponding to a 
healthy control subject.

Stride interval 
(s)

qstat qsen qrel

Left 2.2±0.37,
cc = 0.73±0.07

0.487±0.025 3.146±0.6 
R2 = 0.843±0.08

Right 2.04±0.38,
cc = 0.79±0.05

0.49±0.01 3.392±0.95
R2 = 0.78±0.15

for right stride intervals, respectively. Therefore, in both 
cases, the indices attained values different from unity 
denoting non-Gaussian, non-extensive Tsallis statistics. 
In addition, the Tsallis indices values were significantly 
different for left and right stride intervals indicating 
strong asymmetry in the subject’s movement result-
ing in unsteady-jerky gaits. For example, the Tsallis qstat 
index for the left strides is below unity, while for the right 
strides it is above unity.
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the Tsallis index qstat > 1, indicating super-q-Gaussian 
statistics, but qstat for EEG episode time series is signifi-
cantly higher, indicating more correlated dynamics.

–– The study of the Tsallis q-triplet concerning the five 
segments of the EEG time series including the seizure, 
showed that Tsallis indices corresponding to the epi-
leptic episode attain much higher values compared 
to the other segments, as well as a gradual increase 
of the indices (especially of qstat and qsen) as the time 
of epileptic episode approaches. This result could be 
related to significant changes (e.g. phase transitions) 
of the brain dynamics from healthy to epileptic states.

Gait time series
–– ALS: The Tsallis q-triplet was found different from 

unity in all cases indicating non-extensive, non-
Gaussian dynamics. However, differences in the Tsal-
lis qstat index concerning left and right stride intervals 
indicate possible weak asymmetry in the subject’s 
movement, which could be due to weakness, fatigue, 
loss of balance and coordination of the subject.

–– PD: Tsallis q-triplet was found different from unity 
in all cases indicating non-extensive, non-Gaussian 
dynamics. However, differences in all Tsallis indices 
concerning left and right stride intervals indicate an 
asymmetry in the subject’s movement, a result which 
is in accordance with the Parkinsonian gait dynamics, 
which is characterized by small shuffling steps and a 
general slowness of movement.

–– HD: The Tsallis q-triplet was found different from unity 
in all cases indicating non-extensive, non-Gaussian 
dynamics. A very significant difference was found con-
cerning the Tsallis qstat index. In particular, the Tsal-
lis qstat index for left strides is below unity, while for 
right strides is above unity. In addition, the other Tsal-
lis indices are also different. These results indicate a 
strong asymmetry in the subject’s movement resulting 
in from uncoordinated, unsteady-jerky gaits.

–– Healthy control: The Tsallis q-triplet was found dif-
ferent from unity in all cases indicating non-exten-
sive, non-Gaussian dynamics. However, all indices 
were found similar for left and right stride intervals, 
a result which indicates strong symmetry in the sub-
ject’s movement resulting in steady-correlated gaits, 
as expected from a healthy person.

Overall, the results showed that the brain system in epi-
leptic dynamics is in an off-equilibrium stationary state 
whose physics is properly described by the q-statistical 
mechanics since the Tsallis q-triplet indices adopted 
the values: {qsen; qrel; qstat} = {-1.038; 4.34; 1.41}, verifying a 

possible general scheme, qsen < 1 < qstat < qrel as noted in [13]. 
The results also indicate that the estimation of Tsallis 
q-indices could be used as possible biomarkers, along 
with others, for improving the prediction of epileptic 
seizures, since Tsallis indices capture efficiently the dif-
ference between healthy and epileptic dynamics (the 
Tsallis q-triplet is much smaller for no episode dynamics, 
compared to the epileptic dynamics), as well as possible 
phase transitions of the brain dynamics as the seizure 
time approaches. In addition, the results concerning 
gait dynamics of ALS, PD and HD and healthy control, 
show that the Tsallis q-triplet is different from unity in all 
cases considered, thus indicating that the temporal fluc-
tuations in the stride interval are not random but there 
is hidden information connected with Tsallis q-Gaussians 
distributions, characterized by the presence of long-
range dependence. In addition, differences in Tsallis 
indices concerning the left and right stride intervals pos-
sible, which were more intense in HD (no differences 
were found in the healthy control subject) represent the 
subject’s gait asymmetry. Therefore the aforementioned 
results can provide valuable information, indicating dif-
ferent effects of each disease on gait asymmetry and non-
linearity on stride dynamics, changing with each disease 
providing new insights in disease severity, medication 
utility and falls in order to improve therapeutic inter-
ventions. These results are also in accordance with [8, 
28], who found fractal correlations in gait dynamics. Of 
course, in order to draw safer conclusions more subjects 
should be examined both for EEGs concerning epilepsy, 
as well as for gait time series of the aforementioned neu-
rodegenerative diseases.

Finally, the estimation of the Tsallis q-triplet could 
also be helpful for the discrimination of different types 
of epileptic seizures and/or provide valuable information 
concerning EEGs of other neurodegenerative disorders, 
such as the Alzheimer’s disease. Moreover, Tsallis statis-
tics could help to clarify the differences and the similari-
ties between the gait dynamics of the same disease as well 
as between the diseases, since the temporal fluctuations 
in the stride interval change with age and disease [12]. In 
addition, other time series corresponding to sub-phases 
of the stride (e.g. stance and swing) could be examined.
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