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Abstract: This study discusses the dispersion equation 
for SH waves in a non-homogeneous monoclinic layer 
over a semi-infinite isotropic medium. The wave velocity 
equation has been obtained. In the isotropic case, when 
the non-homogeneity is absent, the dispersion equation 
reduces to a standard SH wave equation. The dispersion 
curves are depicted by means of graphs for different val-
ues of non-homogeneity parameters for the layer and 
semi-infinite medium.
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1  Introduction
The formulations and solutions of many problems of linear 
wave propagation for homogeneous media are available in 
the literature of continuum mechanics of solids. In recent 
years, however, sufficient interest has risen in the problem 
connected with bodies whose mechanical properties are 
functions of space, i.e. non-homogeneous bodies. This 
interest is mainly due to the advent of solid rocket propel-
lants, polymeric materials and growing demand for engi-
neering and industrial applications.

The propagation of surface waves in elastic media is 
of considerable importance in earthquake engineering 
and seismology on account of the occurrence of stratifi-
cation in the earth’s crust, as the earth is made up of dif-
ferent layers. As a result, the theory of surface waves has 

been developed by Stoneley [1], Bullen [2], Ewing et al. [3], 
Hunter [4] and Jeffreys [5].

Many results of theoretical and experimental studies 
revealed that the real earth is considerably more com-
plicated than the models presented earlier. This has led 
to a need for more realistic representation as a medium 
through which the seismic waves propagate. The wave 
propagation in crystalline media plays a very interest-
ing role in geophysics and also in ultrasonic and signal 
processing. Monoclinic medium is an example of a body 
where the non-homogeneity characteristic is one of the 
most important features. Many authors have studied the 
propagation of different waves in different media with 
non-homogeneity.

Sezawa [6] studied the dispersion of elastic waves 
propagating on curved surfaces. The transmission of 
elastic waves through a stratified solid medium was first 
studied by Thomson [7]. Haskell [8] examined the dis-
persion of surface waves in multilayered media. Biot [9] 
studied the influence of gravity on Rayleigh waves, assum-
ing that the force of gravity creates a type of initial stress 
of a hydrostatic nature and the medium is incompressible.

Propagation of Love waves in a non-homogeneous 
stratum of finite depth sandwiched between two semi-
infinite isotropic media had been studied earlier by Sinha 
[10]. Roy [11] studied wave propagation in a thin two-lay-
ered laminated medium with couple stress under initial 
stress, while Datta [12] studied the effect of gravity on 
Rayleigh wave propagation in a homogeneous, isotropic 
elastic solid medium. The effects of irregularities on the 
propagation of guided SH waves was studied by Chatto-
padhyay et al. [13]. Goda [14] examined the effect of non-
homogeneity and anisotropy on Stoneley waves, while 
Gupta et  al. [15] investigated the influence of linearly 
varying density and rigidity on torsional surface waves in 
an inhomogeneous crustal layer.

Some of the recent notable works on the propagation 
of seismic waves in various media with different geom-
etries are due to Chattopadhyay et al. [16–18].

Recently, Sethi et  al. [19] investigated the surface 
waves in homogeneous viscoelastic media of a higher 
order under the influence of surface stresses.

mailto:munish_sethi26@yahoo.co.in
mailto:munishsethi76@gmail.com


122      M. Sethi et al.: Propagation of SH waves in a regular non-homogeneous monoclinic crustal layer

In this study, we consider the propagation of SH waves 
in a regular monoclinic crustal layer over an isotropic 
semi-infinite medium. The dispersion relation is found 
in closed form and matched with the classical Love wave 
equation as a particular case. The dispersion curves are 
depicted by means of graphs for different values of the 
non-homogeneity parameters. The influence of non-homo-
geneity parameters, wave number and layer thickness on 
the dimensionless phase velocity has been studied.

2  Formulation of the problem
Let us denote by ρi, ui (i = 1, 2), the densities and displace-
ments in a monoclinic layer (of thickness H) and semi-
infinite isotropic medium, respectively. The z-axis is taken 
along the interface between the layer and the semi-infinite 
medium, while the y-axis is taken vertically downwards as 
shown in Figure 1.

First, we will deduce the equation of motion for the 
propagation of SH waves in the monoclinic layer. We have 
the following strain-displacement relations:

	

1 2 3 4 5

6

u v w w v u wS , S , S , S , S , 
x y z y z z x
v uS ,
x y

∂ ∂ ∂ ∂ ∂ ∂ ∂= = = = + = +
∂ ∂ ∂ ∂ ∂ ∂ ∂
∂ ∂= +
∂ ∂ �

(1)

where u, v, w are displacements along the x, y, z axes, respec-
tively and Si (i = 1, 2,…, 6) denote the strain components.

The stress-strain relations for a rotated y-cut quartz 
plate, which exhibits monoclinic symmetry with x being 
the diagonal axis are as follows:

	

= + + +

= + + +

= + + +

= + + +

= +

= +

1 11 1 12 2 13 3 14 4

2 12 1 22 2 13 3 14 4

3 13 1 23 2 33 3 34 4

4 14 1 24 2 34 3 44 4

5 55 5 56 6

6 56 5 66 6

T C S C S C S C S ,

T C S C S C S C S ,

T C S C S C S C S ,

T C S C S C S C S ,

T C S C S ,

T C S C S ,
� (2)

where Ti (i = 1, 2,…, 6) are stress components and 
Cij = Cji (i, j = 1, 2,…, 6) are the elastic constants.

The equations of motion in the absence of body forces 
are as follows:

2
561

2

2
46 2

2

TTT u ,
x y z t

TT T v ,
x y z t

ρ

ρ

∂∂∂ ∂+ + =
∂ ∂ ∂ ∂

∂∂ ∂ ∂+ + =
∂ ∂ ∂ ∂

and

	

2
5 4 3

2

T T T w ,
x y z t

ρ
∂ ∂ ∂ ∂+ + =
∂ ∂ ∂ ∂ �

(3)

where ρ is the density of the upper monoclinic layer.
For SH waves propagating in the z-direction with the 

displacement only in the x-direction, we have

	 u u(y, z, t), v 0, w 0.= = = � (4)

Introducing Eq. (4) to Eq. (1), we obtain

	
1 2 3 4 5 6

u uS 0, S 0, S 0, S 0, S , S ,
z y

∂ ∂= = = = = =
∂ ∂ �

(5)

Introducing Eq. (5) to Eq. (2), we obtain

	

1 2 3 4 5 55 56

6 56 66

u uT T T T 0, T C C
z y

u uand T C C
z y

∂ ∂= = = = = +
∂ ∂

∂ ∂= +
∂ ∂ �

(6)

3  Solution for monoclinic layer
Let the non-homogeneities for the monoclinic layer be 
considered as

	 my my my my
66 66 56 56 55 55 1C C e , C C e , C C e , e .ρ ρ= = = =′ ′ ′ � (7)

y=-H

O

y

z

Non-homogeneous
mono-clinic layer

µ

ρ ρ

µ

Isotropic Semi-infinite
medium

 =   2(1+ny)2 and

 =   2(1+ny)2

H

Figure 1: The geometry of the problem.
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Introducing Eqs. (4), (6) and (7) into Eq. (3), we obtain 
the non-vanishing equation of motion as follows:

	

2 2 2
1 1 1 1

66 56 55 562 2

2
1 1

66 1 2

u u u u
C 2C C mC

y z zy z
u u

mC .
y t

ρ

∂ ∂ ∂ ∂
+ + +′ ′ ′ ′

∂ ∂ ∂∂ ∂
∂ ∂

+ =′
∂ ∂ �

(8)

We seek a solution of Eq. (8) is of the following form:

	 iK(z-ct)
1 1u (y, z, t) U (y)e ,= � (9)

where K is the wave number and c is the velocity of SH 
waves.

By inserting Eq. (9) into Eq. (8), we obtain

	

2 22
56 55 56 11 1

12
66 66

C C (-k ) ikmCd U dU
2iK m U 0

C dy Cdy
ρ ω   + +′ ′ ′

+ + + =  ′ ′    

� (10)

Using 1-a y/2
1U V(y)e ,=  where 56

1
56

C
a 2iK m

C
 ′

= + ′ 
 in Eq. (10), 

we obtain

	

ρ ω ′ ′
+ + + = 

′ ′ ′  

2 22
255 561 1

2
66 66 66

C C-ad V - K iKm V 0.
4 C C Cdy

�
(11)

The solution of Eq. (11) is given by following expression:

V(y) (A cos Ty B sin Ty),= +

where
22 2

2 2 56 55
2 2

66 66 1

C Cm cT K - -
C C4K β

  ′ ′ = + +  ′ ′  

with

2 66
1

1

C
.β

ρ

′
=

Hence, for the upper monoclinic layer, the desired 
solution is given by the following expression:

	 1-a y/2 i(Kz- t)
1u (y, z, t) [A cos Ty B sin Ty]e e ω= + � (12)

4  �Solution for semi-infinite half 
space

For propagation of Love waves, we have

	 u w 0 and v v(y, z, t).= = = � (13)

The equation governing the propagation of Love 
waves in homogeneous isotropic elastic medium in the 
absence of body forces are as follows:

	

2

xx yx zx 2

2

xy yy zy 2

2

xz yz zz

u ,
x y z t

v ,
x y z t

w ,
x y z t

τ τ τ ρ

τ τ τ ρ

τ τ τ ρ 2

∂ ∂ ∂ ∂+ + =
∂ ∂ ∂ ∂
∂ ∂ ∂ ∂+ + =

∂ ∂ ∂ ∂
∂ ∂ ∂ ∂+ + =

∂ ∂ ∂ ∂ �
(14)

The stress-strain relations for general isotropic, elastic 
medium are

	 ij ij ij2 ,τ λ∆δ µε= + � (15)

where (λ, μ) are the Lame’s constants and Δ is the 
dilatation.

	

ji
ij

j i

uu1 .
2 x x

ε
 ∂∂

= + 
∂ ∂   �

(16)

Introducing Eqs. (4), (15) and (16) into Eq. (14), we obtain

	

2
2 2 2u u u

y y z z t
µ µ ρ

   ∂ ∂ ∂∂ ∂+ =    ∂  ∂  ∂ ∂ ∂ �
(17)

For a wave propagating in the z-direction, we seek a solu-
tion of Eq. (17) in the form

	
i(kz-wt)

2u W(y) e= � (18)

By inserting Eq. (18) into Eq. (17), we obtain

	

2 2
2

2
d W 1 d dW K -1 W 0

dy dydy
cµ ρ

µ µ

 
+ + =   �

(19)

To eliminate dW ,
dy

 we introduce 
µ

= 1W
W  in Eq. (19), to 

obtain:

	

µ µ ρ
µ µµ

  
+ + =      

22 2 2
21

1 1 12 2 2

d W 1 d 1 d c- W W k -1 W 0
2 dydy dy 4 �

(20)

We assume variations in rigidity and density as follows:

	 2 2
2 2(1 ny) ; (1 ny)µ µ ρ ρ= + = + � (21)

Introducing Eq. (21) in Eq. (20), we obtain

	

2
21

1 12

2
2 2 2

1 22
22

d W
-T W 0;

dy
cwhere T K 1- , 

µ
β

ρβ

=

 
= =   �

(22)
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Thus, the solution of Eq. (22) is given by the following 
expression:

1 1T y -T y
1W e e .= +

Hence, the desired displacement component for the 
non-homogenous half space is given by the following 
expression:

	

1-T y
i(Kz-wt)

2
Ceu (y, z, t) e
1 ny

=
+ �

(23)

5  Boundary conditions
The boundary conditions are as follows:
(i)	 The upper monoclinic layer is stress-free, i.e. T6 = 0, at 

y = -H;

	
1 1

56 66

u u
C C 0   at y -H,

z y
∂ ∂

+ = =
∂ ∂ �

(24)

(ii)	 The stresses are continuous at the common interface;

	
1 1 2

56 66 2

u u u
C C    at y 0,

z y y
µ

∂ ∂ ∂
+ = =

∂ ∂ ∂ �
(25)

(iii)	 �The displacements are continuous at the common 
interface;

	 1 2u u    at y 0,= = � (26)

Applying boundary conditions (24), (25) and (26) to 
Eqs. (12) and (23), the following system of equations is 
obtained:

	

1
66 56 66

1
56 66 66

a
A C T sin TH C ik- C cos TH

2
a

B -ikC C sin TH C T cos TH 0
2

  
+′ ′ ′    

  
+ + + =′ ′ ′     �

(27)

	
1

56 66 66 2 1A C ik- C BC T - (T n)C,
2
a

µ
 

+ = +′ ′ ′   �
(28)

	 A C,= � (29)

Finally, eliminating the constants A, B, C from Eqs. 
(27), (28) and (29), we obtain

	 ijDet D 0, where i, j 1, 3( ) 2, ,= = � (30)

where

µ

= ′ ′

= + =′ ′

= = = +′ ′

= = =

11 66 56

12 56 66 13

21 56 22 66 23 1 2

31 32 33

mD C  TsinTH- C cosTH;
2

mD C sinTH C TcosTH; D 0;
2

-mD C ; D C T; D (T n) ;
2

D 1; D 0; D -1.

After simplification, Eq. (30) takes the form

	

1

2

A
tan(TH)

A
=

�
(31)

where

2
1 1

66
2

2 2
2 1

66

A T(T n)
C

m mA T -(T n)
4 C 2

µ

µ

= +
′

= + +
′

Finally, introducing the values of T and T1 in Eq. (31), 
we obtain

	

22 2
56 55 1

2 2
66 66 21

C C Am ctan KH - -
C C A4K β

   ′ ′  + + =   ′ ′    �

(32)

where

22 2 2
56 552

1 2 2 2
66 66 662 1

2 2 2
56 55 2

2 2 2
66 66 661 2

C Cc n m cA 1- - -
C k C C4K

C C c m c nA - - 1-
C C C 2K K

µ

β β

µ

β β

    ′ ′ =  +  + +  ′ ′ ′     
  ′ ′

= +  +  ′ ′ ′    

Here, Eq. (32) represents the dispersion equation for 
the propagation of SH waves in a non-homogeneous mon-
oclinic layer lying over an isotropic non-homogeneous 
semi-infinite medium.

6  Particular cases
Case (I): When 66 55 1 56C C , C 0,µ= = =′ ′ ′

Eq. (32) reduces to the form

	

2
3

2
41

Actan KH -1 ,
Aβ

 
+ = 

  �
(33)

where
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2
2

3 2
1 2

2

4 2
1

c nA 1- ,
K

cA -1 .

µ

µ β

β

 
=  + 

  

= +

Here, Eq. (33) represents the wave velocity equation 
for propagation of SH waves in a non-homogeneous iso-
tropic layer lying over an isotropic non-homogeneous 
semi-infinite medium.

Case (II): When m = 0, 66 55 1C C ,µ= =′ ′

56C 0,=′  Eq. (32) takes the following form:

	

2
5

2
61

Actan KH -1 ,
Aβ

 
= 

 
�

(34)

where

2
2

5 2
1 2

2

6 2
1

c nA 1- ,
K

cA -1.

µ

µ β

β

 
=  + 

  

=

Here, Eq. (34) represents the dispersion relation for 
the propagation of SH waves in an isotropic homogene-
ous layer lying over an isotropic non-homogeneous semi-
infinite medium.

Case (III): When m = 0, n = 0,

66 55 1 56C C , C 0,µ= = =′ ′ ′

Eq. (32) takes the following form:

	

2
7

2
81

Actan KH -1 ,
Aβ

 
= 

  �
(35)

where

2
2

7 2
1 2

2

8 2
1

cA 1- ,

cA -1

µ

µ β

β

 
=  

  

=

Here, Eq. (35) represents the dispersion equation for 
propagation of SH waves in an isotropic homogeneous 
layer lying over an isotropic homogeneous semi-infinite 
medium, which is in complete agreement with the corre-
sponding classical result for Love waves.

Case (IV): When m = 0, Eq. (32) takes the following form:

	

22
56 55 9

2
66 66 101

C C Actan KH -
C C Aβ

  ′ ′ + =  ′ ′   �

(36)

where

2
2

9 2
66 2

2 2
56 55

10 2
66 66 1

c nA 1- ,
C K

C C cA - .
C C

µ

β

β

 
=  + 

′   
  ′ ′ = +  ′ ′  

Here, Eq. (36) represents the dispersion relation for 
the propagation of SH waves in a homogeneous mono-
clinic layer lying over an isotropic non-homogeneous 
semi-infinite medium.

Case (V): When m = 0, n = 0, Eq. (32) takes the following 
form:

	

22
56 55 11

2
66 66 121

C C Actan KH - ,
C C Aβ

  ′ ′ + =  ′ ′   �

(37)

where

µ

β

β

 
=  

′   
  ′ ′ = +  ′ ′  

2
2

11 2
66 2

2 2
56 55

12 2
66 66 1

cA 1- ,
C

C C cA - .
C C

Here, Eq. (37) represents the wave velocity equation 
for propagation of SH waves in a homogeneous mono-
clinic layer lying over an isotropic homogeneous semi-
infinite medium, which is in complete agreement with the 
corresponding classical result given by Chattopadhyay 
et al. [13].

7  �Numerical computations and 
discussion

To study the effects of various dispersion non-homoge-
neities on the propagation of SH waves propagating in 
a non-homogeneous monoclinic layer lying over a non-
homogeneous semi-infinite media, the phase velocity 
is calculated numerically with the help of MATLAB for 
Eq. (32). We assume the following values for the constants:

For the monoclinic layer (Tierstein [20])
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ρ

= × = ×′ ′
= × =′

9 2 9 2
55 56

9 2 3
66 1

C 94 10 N/m , C -11 10 N/m ,
C 93 10 N/m , 7450 Kg/m .

For the semi-infinite medium (Gubbins [21])

µ ρ= × =10 2 3
2 26.54 10 N/m , 3409 Kg/m .

The effect of exponentially varying elastic parameters 
and density on SH waves in a non-homogeneous mono-
clinic crustal layer over a non-homogeneous half space is 
discussed in the following way by means of the respective 
graphs.

Figure 2 shows the effect of the non-homogeneity 
parameter m/2K measuring the rigidity of the monoclinic 
crustal layer when the non-homogeneity of the half space 
(i.e. rigidity and density varying quadratically with depth) 
is taken into consideration. The following observations 
and effects are notable and discussed below.
(a)	 For a particular dimensionless wave number KH and a 

fixed value of the non-homogeneity of the half space, 
i.e. n/K = 0.1, the dimensionless phase velocity (c/β1)2 
of SH waves increases, as the value of m/2K increases 
from 0.1 to 0.5.

(b)	 For various values of m/2K and a fixed value of n/K, 
the phase velocity (c/β1)2 increases as the wave num-
ber decreases in all curves 1–3.

(c)	 Curve 1 (for m/2K = 0.1) is steeper than curve 2 (for 
m/2K = 0.3) which, in turn, is steeper than curve 3 (for 
m/2K = 0.5). This reveals that the dimensionless non-
homogeneity factor m/2K has a prominent effect on 
SH wave propagation.

(d)	 Curve 1 (m/2K = 1.0, n/K = 0.1), Curve 2 (m/2K = 0.3, 
n/K = 0.1) and Curve 3 (m/2K = 0.5, n/K = 0.1) coincide as 
the wave number approaches 0.4.
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c2 /
β 

2 1

Figure 2: Variation of the dimensionless phase velocity (c/β1)2 
against the dimensionless wave number KH, demonstrating the 
influence of non-homogeneity associated with the monoclinic 
crustal layer.
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c2 /
β 
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Figure 3: Variation of the dimensionless phase velocity (c/β1)2 
against the dimensionless wave number KH, demonstrating the 
influence of non-homogeneity associated with the half-space.

Figure 3 shows the effect of the non-homogeneity para-
meter n/K accounting for the rigidity and density of the 
non-homogeneous half-space when the elastic parameters 
and density vary exponentially with depth. The following 
observations and effects are notable and discussed below.
(a)	 For a particular dimensionless wave number KH and 

a fixed value of the non-homogeneity of the layer, i.e. 
m/2K = 0.5, the dimensionless phase velocity (c/β1)2 
of SH waves increases, as the value of n/K increases 
from 0.1 to 0.5.

(b)	 For various values of n/K and a fixed value of m/2K, 
the phase velocity increases as the wave number 
decreases in all curves 1–3.

(c)	 Curve 1 (for n/K = 0.1) is steeper than the curve 2 (for 
n/K = 0.3) which, in turn, is steeper than curve 3 (for 
n/K = 0.5). This reveals that the dimensionless non-
homogeneity factor n/K has a prominent effect on SH 
wave propagation.

8  Conclusions
Here, we have studied the propagation of SH waves in a non-
homogeneous monoclinic crustal layer lying over a non-
homogeneous semi-infinite medium. Closed form solutions 
have been derived separately for the displacements in the 
monoclinic layer and the half-space. By using the asymp-
totic expansion of Whittaker’s function, we have derived 
the wave velocity equation for SH waves in a compact form. 
The dimensionless phase velocity is calculated numerically 
with the help of MATLAB. The effect of various dimension-
less elastic parameters and non-homogeneity factors on 
the dimensionless phase velocity (c/β1)2 have been shown 
graphically. Our main observations are listed below:
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1.	 For various values of m/2K and fixed value of n/K, the 
phase velocity (c/β1)2 increases as the wave number 
decreases.

2.	 For a particular dimensionless wave number KH and a 
fixed value of the non-homogeneity parameter of half 
space, i.e. n/K, the dimensionless phase velocity (c/β1)2 
of SH waves increases, as the value of m/2K increases.

3.	 For a particular dimensionless wave number KH and 
a fixed value of the non-homogeneity parameter of 
the layer, i.e. m/2K, the dimensionless phase veloc-
ity (c/β1)2 of SH waves increases, as the value of n/K 
increases.

4.	 In the absence of all non-homogeneities (in the den-
sity and rigidity of the monoclinic layer, as well as in 
the semi-infinite/half-space), the dispersion equation 
for the propagation of SH waves in a homogeneous 
monoclinic layer lying over an isotropic homogene-
ous semi-infinite medium is in complete agreement 
with the classical dispersion equation.

5.	 In the absence of all non-homogeneities (in density and 
rigidity and µ= = =′ ′ ′66 55 1 56C C , C 0),  the dispersion equa-
tion for the propagation of SH waves in an isotropic 
homogeneous layer lying over an isotropic homogene-
ous semi-infinite medium is in complete agreement 
with the classical dispersion equation of Love waves.

The wave propagation in crystalline media (monoclinic 
media) plays a very important role in geophysics and 
also in ultrasonic and signal processing. This study may 
be helpful in understanding the cause and estimate the 
damage due to earthquakes. This study may help in pre-
dicting the behavior of SH waves in non-homogeneous 
crystalline geological media.
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