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Abstract: The modest goal of this short note is to shed some 
light on the correct interpretation of micro/nanopillar 
compression experiments. We propose a modification of 
the way the stress-strain response in such experiments is 
calculated, aiming at answering open questions pertaining 
to discrepancies between the elastic moduli values calcu-
lated through micropillar compression experiments with 
those of the bulk materials, as well as the brittle-to-ductile 
transition in bulk metallic glasses (BMGs) when the size of 
the pillars is reduced below a certain threshold value.

Keywords: pillar compression; size effects; stress-strain 
response.

1  Introduction
Miniaturization of machines and components has 
rendered understanding the mechanical behavior of small 
material volumes crucial for their design and operation. 
Quantifying the stress-strain behavior of small material 
volumes that is usually intermittent and jerky is quite a 
challenge. Initially, indentation techniques were used for 
determining the mechanical properties of small volumes 
[1]. But the rather complex stress and strain fields involved 
in the indentation tests made even more necessary the 
development of a novel test for determining material 
behavior at small volumes. This test is the micro/nanopil-
lar compression test. During this test, a nanoindenter with 
a flat punch tip is used for compressing cylindrical pillars 
with diameters in the nano or micro regime that are pro-
duced with the focused ion beam (FIB) technique in single 

crystal [2–9], nanocrystalline [10], and nanoporous [11, 12] 
metals.

Although the micropillar compression test was devel-
oped as a counterpart of nanoindentation for measuring 
elastic constants such as the modulus of elasticity, there 
are a number of experimental works in the literature that 
report stress-strain curves of micropillar compression 
tests of various materials showing a discrepancy between 
the initial slope of the compressive stress-strain graphs 
and the Young’s modulus value of their bulk counterparts. 
These discrepancies have been attributed to the taper of 
the pillars due to the FIB process, misalignment between 
the pillar and the indenter flat punch, sink-in phenom-
ena, etc [13].

The modest aim of this short note is to provide an 
alternative interpretation of the micropillar compres-
sion measurements. It will be shown that it is not the 
way the compression measurements were conducted, 
but rather the way the reported stress-strain graphs were 
calculated that caused the aforementioned discrepancies 
between the measured slopes in the initial elastic region 
and the values of the elastic moduli of the respective bulk 
materials.

2  �Formulation of the proposed 
pillar compression interpretation

2.1  Motivation

In order to model for the first time, qualitatively as well 
as quantitatively, the intermittent plastic behavior during 
nickel (Ni) micropillar compression experiments [6], a 
stochasticity-enhanced gradient plasticity model was 
implemented with a cellular automaton [13], with the 
simulation results being in very close agreement to the 
experimental ones. In this work [13], in order for the simu-
lation results to model the experimental ones, instead of 
the Young’s modulus of Ni (~200 GPa) for the elastic part 
of the stress-strain graphs, a much lower value was used, 
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corresponding to the initial slope depicted in the reported 
experimental stress-strain graphs. It should also be noted 
here that the slopes of the elastic part of all the experi-
mental measurements in [6] should be the same, irrespec-
tive of the pillar’s size. The authors of [6] do not present an 
explanation for this difference of the slopes of the elastic 
regions with the actual modulus of elasticity of Ni other 
than misalignment between the pillar and the indenter 
flat punch.

The aforementioned discrepancy provided motiva-
tion to propose a new interpretation of the compression 
measurements. It is thought that in the aforementioned 
works [2–12], the differences between the measured and 
the actual modulus values are not caused by errors in 
the respective measurements, but the main cause is the 
way that the reported stress-strain curves are calcu-
lated from the load-displacement measurements during 
micropillar compression. This new interpretation of 
pillar compression measurements is described in the 
next section.

It should be also noted, however, that this discrep-
ancy between elastic moduli and the slopes of the elastic 
part in the stress-strain curves has concerned research-
ers before. Greer et  al. [14] employed the Sneddon cor-
rection to account for sink-in effects, assuming that the 
pillar is pushing as a nanoindenter into the substrate, 
by also satisfying the criterion of having an initial slope 
equal to the elastic modulus. The pillar and substrate 
were treated like two distinct materials and a compari-
son between measured stiffness of FIB-produced pillars 
and the theoretically predicted values showed satisfac-
tory agreement.

Fei et al. [15] state that issues of tapering, misalign-
ment, and sink-in phenomena affect measurements, 
and to this cause, produce a finite element method to 
assess the accuracy of the microcompression measuring 
technique, taking into account the Sneddon correction. 
The total displacement was measured by microcompres-
sion experiments as the combined effect of the indenter, 
pillar, and substrate strain. It was concluded that the 
Sneddon correction can tackle sink-in phenomena, even 
for thick substrates, regardless of the substrate mate-
rial, as the finite element method (FEM) produces neg-
ligible substrate strains. Still, the microcompression 
method is not deemed suitable for measuring the elastic 
modulus. This is attributed to the stress state not being 
uniform because of tapering angles. Another issue men-
tioned was that the Sneddon correction requires a half-
space, which is not always valid for microcompression  
tests.
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Figure 1: Schematic of a micropillar compression test.

2.2  Theoretical stress-strain calculation

In every micropillar compression experiment, the meas-
ured quantities are the load P, with which the flat punch 
indenter pushes the upper surface of the pillar, and the 
deformation h of the pillar, while the stress and strain 
quantities are calculated from P and h, respectively. In 
Figure  1, a pillar compression configuration is depicted. 
A small material volume of thickness H is used for pro-
ducing micropillars of varying sizes through the FIB tech-
nique. The region marked as Ac is the specimen part that 
is cut-off by the FIB in order for pillars with different diam-
eters and heights, e.g. the ones marked with A1 and A2 in 
Figure 1, to be left protruding from the volume marked as 
As, which is acting as a “substrate” to the pillars.

In all the aforementioned works [2–12], the stress is 
calculated by dividing the load P exerted on the pillar’s 
upper surface by this surface, while the strain is calcu-
lated by dividing h with the respective pillar height, e.g. 
Hp. It should be noted that this calculation provides the 
local strain and stress values at each point of the “pillar” 
protruding from the specimen’s surface.

As can be seen from Figure 1, the material volume 
being compressed by the indenter flat punch is not the 
pillar of height Hp, but a pillar of height Hp+Hs, marked 
with dashed lines. It can also be seen that the load P is 
exerted at the upper surface of the material on an area 
equal to the pillar’s surface, but at the bottom of the 
material on an area equal to the surface area of the whole 
sample. This means that there is a distribution of local 
stresses along the sample height, as there are two very dif-
ferent areas of load application, i.e. the area 2

pDπ  at the 
top, with DP denoting the diameter of the pillar at hand, 
and at the bottom of the sample the area A of the “sub-
strate”. In addition, there is a distribution of local strains 
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along the compressed specimen height. This comes from 
the fact that the elastic moduli of the “pillar” and the “sub-
strate” are the same; thus, at least during elastic loading, 
one should expect that
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with εp denoting the local strain at each point of the 
“pillar” (the strain calculated and reported in the afore-
mentioned works) [2–12] and εs denoting the local strain at 
each point of the “substrate”, while σp and σs are the local 
stress values at the “pillar” and “substrate”, respectively, 
calculated as
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In the next section, two examples of applying the pro-
posed formulation when calculating the stress-strain 
response of micropillars under compression are given.

3  �Examples of “corrected” 
mechanical response

In this section, some examples of the correct interpreta-
tion of pillar compression measurements as described 
in Section 2.2 are given. It is noted that although the pro-
posed “correction” can be applied in all reported stress-
strain curves which show a difference between the slope 
of the initial elastic part and the value of the modulus of 
elasticity, the thickness of the material undergoing FIB 
treatment for the construction of the pillars is needed 
herein. Thus, the examples below concern experimental 
works where apart from the stress-strain curves, an indi-
cation of the thickness H of the material acting as a “sub-
strate” to the pillars is reported.

3.1  Compression of Ni micropillars

A number of pure Ni micropillars were subjected to micro-
compression tests using a flat diamond indenter tip in [6]. 
All of them were derived from a single crystal Ni specimen 
using FIB and featured diameters between 1 and 40 μm 
and aspect ratios between 2:1 and 3:1. Figure 2 shows the 
resulting engineering stress-strain graphs from [6].

The initial slope of the curves (defined by a straight 
line) has a value of 50 GPa, which is significantly lower 
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Figure 2: Engineering stress-strain graphs of pure Ni micropillar 
compression [6]. The slope of the straight line provides a modulus 
value of 50 GPa.
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Figure 3: Recalculated engineering stress-strain graphs of pure Ni 
micropillar compression using Eq. 3. The slope of the straight line 
provides a modulus value of 200 GPa.

than the elastic modulus of bulk Ni (~78  GPa [6]). It is 
also evident that specimens of different diameters exhibit 
different initial slopes. While the authors include a 
detailed analysis on the form of the elicited curves, there 
is no comment on the slope of the graph at the elastic part. 
However, misalignment issues can be excluded due to the 
inclusion of a goniometer sample stage.

To this cause, these curves are recalculated using  
Eq. (3), thus, taking into account not only the contact area 
between the indenter tip and micropillar but also the area 
on the bottom of the substrate where load is also applied 
(3 × 3  mm [6]). The height of the pillar is also taken into 
account (7.4  mm substrate height plus specimen height 
[6]). The corrected graph is presented in Figure  3. It is 
noted that the same color code was used for the differently 
sized specimens as in the original paper [6].

The recalculated graph exhibits stress-strain 
responses with initial slopes of about 200 GPa, a value 
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very close to the elastic modulus of bulk Ni. Also, the 
slopes no longer exhibit divergence initially.

It should be noted that the corrected graph presents 
the curves in reverse order, i.e. pillars of greater size 
exhibit higher yield stresses, a fact that, at first glance, 
contradicts the “smaller is stronger” concept. But this 
is not the case actually. In order to understand this, one 
should take into account that the FIB method produces 
pillars by removing the substrate material around a des-
ignated area, instead of depositing on it. As a result, in 
order to produce larger pillars, the “effective” volume of 
the “substrate” material, i.e. HsAs in Figure 1, is getting 
smaller. Thus, it is actually the specimen with the larger 
pillars that include a smaller “effective” volume, and not 
vice versa, as it can be mistakenly thought at first glance.

3.2  �Compression of metallic glasses 
micropillars

Stress-strain curves have been reported for size-depend-
ent microcompression tests on palladium-silicon (PdSi) 
metallic glass columns [16]. More specifically, a 5.5 μm-
thick Pd77Si23 metallic glass thin film was fabricated by 
Argon ion-beam sputtering onto a Si-(100) substrate. 
Micro and nanocolumns were cut with FIB, with diam-
eters ranging between 200  nm and 2000  nm at a fixed 
aspect ratio of height/diameter ~3 [16].

In their experimental measurements, shown in 
Figure 4, the authors attribute the low slope of the initial 
part of the stress-strain curves for very small samples to the 
inevitable top-rounding originating from the FIB-milling 
procedure [17], having, as a result, small samples ( < 300 
nm) deform plastically at lower engineering stress. The 
authors also note an unexpected change of elastic slope as 
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Figure 4: Engineering stress-strain graphs during Pd77Si23 metallic 
glass micropillar compression [16]. The slope of the straight line 
provides a modulus value of 50 GPa.
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Figure 5: Recalculated engineering stress-strain graphs during 
Pd77Si23 metallic glass micropillar compression using Eq. (3). The 
slope of the straight line provides a modulus value of 90 GPa.

a function of sample size, not due to size-dependent elas-
ticity, as well as an intermittent-to-smooth flow behavior.

We apply below the proposed formulation to the 
experiments of [16]. Using Eq. (3) with H = 5.5 μm and 
various values for Hp, the stress-strain graph of Figure 4 is 
now transformed to the one shown in Figure 5.

Comparing the graphs shown in Figures 4 and 5, it can 
clearly be seen that in contrast to the reported results [16], 
the recalculated results show that all pillars, irrespective 
of diameter, have the same initial slope, calculated as 90 
GPa, which is very close to the modulus of elasticity of the 
metallic glass measured as 86 GPa using nanoindentation 
[16].

Another study conducted by Dubach et  al. [18] 
included microcompression of 0.3, 1, and 3 μm diam-
eter samples made of a zirconium (Zr)-based metallic 
glass (Zr41.2Ti13.8Cu12.5-Ni10Be22.5). The total specimen height 
that was taken into account for the correction was 3 mm 
and the aspect ratios (height/diameter) varied from 2 to 
2.5. Slight tapering of 2°–4° is mentioned. The obtained 
results are presented in Figure 6.

Taking into account the height of the substrate and 
Eq. 3, the recalculated graph is presented in Figure  7. It 
is evident that now the initial slopes are very similar and 
feature values of 90 GPa. The bulk elastic modulus of the 
above-mentioned metallic glass is considered to be 96 GPa 
by the authors of [18], as mentioned in [19].

4  Conclusions
This work aims at presenting the issues involved with 
the calculation of stresses and strains in compression 
experiments of FIB-manufactured micropillars. The cor-
rections proposed are based on the consideration that 
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the pillar and substrate are not two different materials in 
contact but, in fact, are one that is subject to deformation 
as a whole. As a result, the calculation of strain involves 
taking into account the total thickness of the pillar and 
substrate. The application of the above correction to 
experimental data eliminates two previously unexplained 
discrepancies. The first is the difference observed in the 
initial slopes of the stress-strain graphs. This fact should 
point to different elastic moduli for specimens of the same 
material but different sizes, which contradicts the elastic 
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Figure 6: Engineering stress-strain graphs during Zr-based metallic 
glass micropillar compression [18]. The slope of the straight line 
provides a modulus value of 40–46 GPa.
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Figure 7: Recalculated engineering stress-strain graphs during 
Zr-based metallic glass micropillar compression using Eq. (3). The 
slope of the straight line provides a modulus value of 90 GPa.

modulus being a material constant. Second, the meas-
ured elastic moduli were significantly lower than the bulk 
values. Future experiments should provide more inputs to 
better facilitate corrections to the calculation of strains.
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