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Abstract: The modest goal of this short note is to shed some
light on the correct interpretation of micro/nanopillar
compression experiments. We propose a modification of
the way the stress-strain response in such experiments is
calculated, aiming at answering open questions pertaining
to discrepancies between the elastic moduli values calcu-
lated through micropillar compression experiments with
those of the bulk materials, as well as the brittle-to-ductile
transition in bulk metallic glasses (BMGs) when the size of
the pillars is reduced below a certain threshold value.
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1 Introduction

Miniaturization of machines and components has
rendered understanding the mechanical behavior of small
material volumes crucial for their design and operation.
Quantifying the stress-strain behavior of small material
volumes that is usually intermittent and jerky is quite a
challenge. Initially, indentation techniques were used for
determining the mechanical properties of small volumes
[1]. But the rather complex stress and strain fields involved
in the indentation tests made even more necessary the
development of a novel test for determining material
behavior at small volumes. This test is the micro/nanopil-
lar compression test. During this test, a nanoindenter with
a flat punch tip is used for compressing cylindrical pillars
with diameters in the nano or micro regime that are pro-
duced with the focused ion beam (FIB) technique in single
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crystal [2-9], nanocrystalline [10], and nanoporous [11, 12]
metals.

Although the micropillar compression test was devel-
oped as a counterpart of nanoindentation for measuring
elastic constants such as the modulus of elasticity, there
are a number of experimental works in the literature that
report stress-strain curves of micropillar compression
tests of various materials showing a discrepancy between
the initial slope of the compressive stress-strain graphs
and the Young’s modulus value of their bulk counterparts.
These discrepancies have been attributed to the taper of
the pillars due to the FIB process, misalignment between
the pillar and the indenter flat punch, sink-in phenom-
ena, etc [13].

The modest aim of this short note is to provide an
alternative interpretation of the micropillar compres-
sion measurements. It will be shown that it is not the
way the compression measurements were conducted,
but rather the way the reported stress-strain graphs were
calculated that caused the aforementioned discrepancies
between the measured slopes in the initial elastic region
and the values of the elastic moduli of the respective bulk
materials.

2 Formulation of the proposed
pillar compression interpretation

2.1 Motivation

In order to model for the first time, qualitatively as well
as quantitatively, the intermittent plastic behavior during
nickel (Ni) micropillar compression experiments [6], a
stochasticity-enhanced gradient plasticity model was
implemented with a cellular automaton [13], with the
simulation results being in very close agreement to the
experimental ones. In this work [13], in order for the simu-
lation results to model the experimental ones, instead of
the Young’s modulus of Ni (~200 GPa) for the elastic part
of the stress-strain graphs, a much lower value was used,
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corresponding to the initial slope depicted in the reported
experimental stress-strain graphs. It should also be noted
here that the slopes of the elastic part of all the experi-
mental measurements in [6] should be the same, irrespec-
tive of the pillar’s size. The authors of [6] do not present an
explanation for this difference of the slopes of the elastic
regions with the actual modulus of elasticity of Ni other
than misalignment between the pillar and the indenter
flat punch.

The aforementioned discrepancy provided motiva-
tion to propose a new interpretation of the compression
measurements. It is thought that in the aforementioned
works [2-12], the differences between the measured and
the actual modulus values are not caused by errors in
the respective measurements, but the main cause is the
way that the reported stress-strain curves are calcu-
lated from the load-displacement measurements during
micropillar compression. This new interpretation of
pillar compression measurements is described in the
next section.

It should be also noted, however, that this discrep-
ancy between elastic moduli and the slopes of the elastic
part in the stress-strain curves has concerned research-
ers before. Greer et al. [14] employed the Sneddon cor-
rection to account for sink-in effects, assuming that the
pillar is pushing as a nanoindenter into the substrate,
by also satisfying the criterion of having an initial slope
equal to the elastic modulus. The pillar and substrate
were treated like two distinct materials and a compari-
son between measured stiffness of FIB-produced pillars
and the theoretically predicted values showed satisfac-
tory agreement.

Fei et al. [15] state that issues of tapering, misalign-
ment, and sink-in phenomena affect measurements,
and to this cause, produce a finite element method to
assess the accuracy of the microcompression measuring
technique, taking into account the Sneddon correction.
The total displacement was measured by microcompres-
sion experiments as the combined effect of the indenter,
pillar, and substrate strain. It was concluded that the
Sneddon correction can tackle sink-in phenomena, even
for thick substrates, regardless of the substrate mate-
rial, as the finite element method (FEM) produces neg-
ligible substrate strains. Still, the microcompression
method is not deemed suitable for measuring the elastic
modulus. This is attributed to the stress state not being
uniform because of tapering angles. Another issue men-
tioned was that the Sneddon correction requires a half-
space, which is not always valid for microcompression
tests.

DE GRUYTER

2.2 Theoretical stress-strain calculation

In every micropillar compression experiment, the meas-
ured quantities are the load P, with which the flat punch
indenter pushes the upper surface of the pillar, and the
deformation h of the pillar, while the stress and strain
quantities are calculated from P and h, respectively. In
Figure 1, a pillar compression configuration is depicted.
A small material volume of thickness H is used for pro-
ducing micropillars of varying sizes through the FIB tech-
nique. The region marked as A_is the specimen part that
is cut-off by the FIB in order for pillars with different diam-
eters and heights, e.g. the ones marked with A and A, in
Figure 1, to be left protruding from the volume marked as
A, which is acting as a “substrate” to the pillars.

In all the aforementioned works [2-12], the stress is
calculated by dividing the load P exerted on the pillar’s
upper surface by this surface, while the strain is calcu-
lated by dividing h with the respective pillar height, e.g.
H. It should be noted that this calculation provides the
local strain and stress values at each point of the “pillar”
protruding from the specimen’s surface.

As can be seen from Figure 1, the material volume
being compressed by the indenter flat punch is not the
pillar of height H, but a pillar of height H+H, marked
with dashed lines. It can also be seen that the load P is
exerted at the upper surface of the material on an area
equal to the pillar’s surface, but at the bottom of the
material on an area equal to the surface area of the whole
sample. This means that there is a distribution of local
stresses along the sample height, as there are two very dif-
ferent areas of load application, i.e. the area nD}i at the
top, with D, denoting the diameter of the pillar at hand,
and at the bottom of the sample the area A of the “sub-
strate”. In addition, there is a distribution of local strains
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Figure 1: Schematic of a micropillar compression test.
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along the compressed specimen height. This comes from
the fact that the elastic moduli of the “pillar” and the “sub-
strate” are the same; thus, at least during elastic loading,
one should expect that

=—S=g =¢ %, )

with €, denoting the local strain at each point of the
“pillar” (the strain calculated and reported in the afore-
mentioned works) [2-12] and _ denoting the local strain at
each point of the “substrate”, while o, and c_are the local
stress values at the “pillar” and “substrate”, respectively,
calculated as
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In the next section, two examples of applying the pro-
posed formulation when calculating the stress-strain
response of micropillars under compression are given.

3 Examples of “corrected”
mechanical response

In this section, some examples of the correct interpreta-
tion of pillar compression measurements as described
in Section 2.2 are given. It is noted that although the pro-
posed “correction” can be applied in all reported stress-
strain curves which show a difference between the slope
of the initial elastic part and the value of the modulus of
elasticity, the thickness of the material undergoing FIB
treatment for the construction of the pillars is needed
herein. Thus, the examples below concern experimental
works where apart from the stress-strain curves, an indi-
cation of the thickness H of the material acting as a “sub-
strate” to the pillars is reported.

3.1 Compression of Ni micropillars

A number of pure Ni micropillars were subjected to micro-
compression tests using a flat diamond indenter tip in [6].
All of them were derived from a single crystal Ni specimen
using FIB and featured diameters between 1 and 40 um
and aspect ratios between 2:1 and 3:1. Figure 2 shows the
resulting engineering stress-strain graphs from [6].

The initial slope of the curves (defined by a straight
line) has a value of 50 GPa, which is significantly lower
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Figure 2: Engineering stress-strain graphs of pure Ni micropillar
compression [6]. The slope of the straight line provides a modulus
value of 50 GPa.
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Figure 3: Recalculated engineering stress-strain graphs of pure Ni
micropillar compression using Eq. 3. The slope of the straight line
provides a modulus value of 200 GPa.

than the elastic modulus of bulk Ni (~78 GPa [6]). It is
also evident that specimens of different diameters exhibit
different initial slopes. While the authors include a
detailed analysis on the form of the elicited curves, there
is no comment on the slope of the graph at the elastic part.
However, misalignment issues can be excluded due to the
inclusion of a goniometer sample stage.

To this cause, these curves are recalculated using
Eq. (3), thus, taking into account not only the contact area
between the indenter tip and micropillar but also the area
on the bottom of the substrate where load is also applied
(3%x3 mm [6]). The height of the pillar is also taken into
account (74 mm substrate height plus specimen height
[6]). The corrected graph is presented in Figure 3. It is
noted that the same color code was used for the differently
sized specimens as in the original paper [6].

The recalculated graph exhibits stress-strain
responses with initial slopes of about 200 GPa, a value
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very close to the elastic modulus of bulk Ni. Also, the
slopes no longer exhibit divergence initially.

It should be noted that the corrected graph presents
the curves in reverse order, i.e. pillars of greater size
exhibit higher yield stresses, a fact that, at first glance,
contradicts the “smaller is stronger” concept. But this
is not the case actually. In order to understand this, one
should take into account that the FIB method produces
pillars by removing the substrate material around a des-
ignated area, instead of depositing on it. As a result, in
order to produce larger pillars, the “effective” volume of
the “substrate” material, i.e. HA_in Figure 1, is getting
smaller. Thus, it is actually the specimen with the larger
pillars that include a smaller “effective” volume, and not
vice versa, as it can be mistakenly thought at first glance.

3.2 Compression of metallic glasses
micropillars

Stress-strain curves have been reported for size-depend-
ent microcompression tests on palladium-silicon (PdSi)
metallic glass columns [16]. More specifically, a 5.5 um-
thick Pd_Si,, metallic glass thin film was fabricated by
Argon ion-beam sputtering onto a Si-(100) substrate.
Micro and nanocolumns were cut with FIB, with diam-
eters ranging between 200 nm and 2000 nm at a fixed
aspect ratio of height/diameter ~3 [16].

In their experimental measurements, shown in
Figure 4, the authors attribute the low slope of the initial
part of the stress-strain curves for very small samples to the
inevitable top-rounding originating from the FIB-milling
procedure [17], having, as a result, small samples (<300
nm) deform plastically at lower engineering stress. The
authors also note an unexpected change of elastic slope as
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Figure 4: Engineering stress-strain graphs during Pd_ Si,, metallic
glass micropillar compression [16]. The slope of the straight line
provides a modulus value of 50 GPa.
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a function of sample size, not due to size-dependent elas-
ticity, as well as an intermittent-to-smooth flow behavior.

We apply below the proposed formulation to the
experiments of [16]. Using Eq. (3) with H=5.5 um and
various values for H, the stress-strain graph of Figure 4 is
now transformed to the one shown in Figure 5.

Comparing the graphs shown in Figures 4 and 5, it can
clearly be seen that in contrast to the reported results [16],
the recalculated results show that all pillars, irrespective
of diameter, have the same initial slope, calculated as 90
GPa, which is very close to the modulus of elasticity of the
metallic glass measured as 86 GPa using nanoindentation
[16].

Another study conducted by Dubach et al. [18]
included microcompression of 0.3, 1, and 3 um diam-
eter samples made of a zirconium (Zr)-based metallic
glass (Zr,, ,Ti,, Cu,-Ni Be, ). The total specimen height
that was taken into account for the correction was 3 mm
and the aspect ratios (height/diameter) varied from 2 to
2.5. Slight tapering of 2°-4° is mentioned. The obtained
results are presented in Figure 6.

Taking into account the height of the substrate and
Eq. 3, the recalculated graph is presented in Figure 7. It
is evident that now the initial slopes are very similar and
feature values of 90 GPa. The bulk elastic modulus of the
above-mentioned metallic glass is considered to be 96 GPa
by the authors of [18], as mentioned in [19].

4 Conclusions

This work aims at presenting the issues involved with
the calculation of stresses and strains in compression
experiments of FIB-manufactured micropillars. The cor-
rections proposed are based on the consideration that
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Figure 5: Recalculated engineering stress-strain graphs during
Pd_Si . metallic glass micropillar compression using Eq. (3). The
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slope of the straight line provides a modulus value of 90 GPa.
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Figure 6: Engineering stress-strain graphs during Zr-based metallic
glass micropillar compression [18]. The slope of the straight line
provides a modulus value of 40-46 GPa.

1x107 / g
8x10° R
=
& 6x100F E
g
@ 4x100F :
d=3 um
2%10°0 F d=1 um ]
d=0.3 um
0 -I 1 1 1 1 1 |-
0.0000  0.0001  0.0002  0.0003  0.0004  0.0005  0.0006

Strain

Figure 7: Recalculated engineering stress-strain graphs during
Zr-based metallic glass micropillar compression using Eq. (3). The
slope of the straight line provides a modulus value of 90 GPa.

the pillar and substrate are not two different materials in
contact but, in fact, are one that is subject to deformation
as a whole. As a result, the calculation of strain involves
taking into account the total thickness of the pillar and
substrate. The application of the above correction to
experimental data eliminates two previously unexplained
discrepancies. The first is the difference observed in the
initial slopes of the stress-strain graphs. This fact should
point to different elastic moduli for specimens of the same
material but different sizes, which contradicts the elastic

A.A. Konstantinidis et al.: On the correct interpretation of compression experiments of micropillars =——— 87

modulus being a material constant. Second, the meas-
ured elastic moduli were significantly lower than the bulk
values. Future experiments should provide more inputs to
better facilitate corrections to the calculation of strains.
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