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Abstract: An exact expression is obtained for a path-
dependent J-integral for finite strains of an elliptical
hole subject to remote tensile tractions under the Tresca
deformation theory for a thin plate composed of non-work
hardening material. Possible applications include an ana-
lytical resistance curve for the initial stage of crack propa-
gation due to crack tip blunting.
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1 Introduction

Many finite element schemes of simulated crack problems
have demonstrated the path dependence of the J-integral
[1] as a result of non-proportional loading. This type of
behavior may occur because of finite deformations of
an elastic-plastic material [2] or through the use of flow
theories of plasticity with small strains in elastic-plastic
analyses [3, 4]. In general [5], any nonlinear elastic mate-
rial for finite deformations will exhibit path-dependent
J-integrals for crack problems.

However, no exact mathematical evaluation of a
path-dependent integral has been derived to date from
which one may draw more general conclusions about
how parameters affect these integrals. Here, exact
expressions are derived for J-integrals of finite deforma-
tions of a nonlinear elastic material satisfying the Tresca
yield condition. A traction-free elliptical hole subject
to remote tensile tractions for a non-strain hardening
material is used to represent a crack under plane stress
loading conditions.

The closed J-integral, as defined in [1] for a plane
problem, is

J.=|wdy-T 3—uds 0, 1)
T
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where W is the strain-energy density, x and y are Cartesian
coordinates, and T is the path of integration, on which ds
is the differential arc length, u is the displacement, and T
is the traction. For cases where the integral becomes path-
dependent, its evaluation around T is no longer zero as
indicated in Eq. (1).

In [6, 7], an explicit analytical solution for an elliptic
hole in a non-work hardening material was derived. In [8],
the analogous problem was solved for large deformations.
A pair of superposed coordinates was defined in [8], where
the uppercase letters represent the initial undeformed
state of the material and the lowercase letters represent
the deformed configuration, as indicated in Figure 1.

The natural or logarithmic strain rate was determined
there as
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u,=v,t, p=R+u,.

In Egs. (2) and (3), R is the distance along a normal
or slip line from the elliptical hole to a particular point
in the undeformed configuration (Figure 1). The angle o
measures the inclination of an arbitrary slip line orthonor-
mal to the elliptical boundary in both the (X, Y) and (x,
y) systems. The magnitude of displacement u is uniform
for all slip lines and acts in the direction of the slip line.
The parameter v, is the constant rate of displacement with
respect to the loading parameter 7.

The nonlinear strain energy density may be deter-
mined from the following integral, assuming the material
is nonlinear elastic.

J- v, dt
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where k is the yield strength in pure shear. No other
strain component contributes to W. The coordinate Y in
differential form in the initial configuration notation [8] is
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Uniform
displacement

Deformed contour

Figure 1: Path of integration in both the initial coordinates (X, ¥)
and in the deformed state (x, y).

dY =sina dR+(R+F(a))cosa da. (5)

The J-integral (1) is now divided into two distinct parts

ou
1) _ ) _
]Fl_Jr.WdY, J, _-lT-ade. (6)

As in the case of small deformation theory [7], the
traction T and Jdu/0X vectors remain orthogonal to one
another during deformation and, consequently, they
provide no contribution to J, . Because of this, the only
nontrivial component of J reduces to that of the first inte-
gral of (6), i.e. J.".

Now there are two distinct paths to be analyzed sepa-
rately for ], as shown in Figure 1. One particular class
is along the Y-axis, i.e. BC (¢=x/2) and DA («=-7/2), such
that

RZ
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This integral has the elementary solution
2 R
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Provided one keeps the paths BC and DA of equal
length, the two contributions from Eq. (8) cancel each
other over the closed path I and consequently do not
contribute to the path dependence of J."".
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A much more challenging integral to evaluate analyti-
cally occurs along path AFB of Figure 1, whose form for a
constant but arbitrary value of R is

]:](l)

R=const
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](R+F(a))cos a da, 9)

where F(c) is given in Eq. (3). Initial attempts at evaluating
this integral directly, using a symbolic mathematical com-
puter program, failed to produce meaningful results. Nev-
ertheless, under the specified sequence of transformation
of variables to follow, an exact expression can be found.

Making the following substitutions in Eq. (9), where
several functions are identified as standard Jacobian ellip-
tic functions [9],

a=am(z\m)—=da=dn z dz

cosa=cos(am(z\m))=cn z, m=1-(b/a)’,

sina=sin(am(z\m))=sn z, F(a)=(b’/a) nd’z, (10)
one obtains
K(m) u
]=2k J‘ 11’1[14’203]
K{n) R+(b?*/a) nd’z
x(R+(b*/a) nd’z) dnz cnz dz, (11)

where the modulus of the elliptic functions is m. The com-
plete elliptic integral of the first kind that is found in the
limits of integration in Eq. (11) is defined by

a0

2[ \/1-msin? 6

One should be aware that a common alternative repre-
sentation for parameter m is k? as in [10]. If this notation is
employed, then it also carries over to the related Jacobian
elliptic functions modulus in (10).

An additional transform of z to ¢ in Eq. (11) of the form

K(m)= (12)

¢:Jcn z dz

dnz)—dn z:cos\/a o, (13)

L cos™(
Jm
will simplify this integral to

cos'l(b/\/ﬁ)ln " u, ]
0 R+(b*/a) sec’ \/;gb
x(R+(b*/a)sec’ \/;q))COS\/; ¢ do,

J=4k

(14)

where an additional factor of 2 ahead of this integral
accounts for the symmetry of the integrand with respect
to the X-axis that was used.
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Further, use of the transformation

¢=(1//m)cos” 2, (15)
reduces the integral in Eq. (14) to
! 3
J= :z’sz Jaln(H RZZfisz
xw. (16)

PN1A?

The following and the last of the transformations (see
[11]) reduces the algebraic function outside of the argu-
ment of the log function in Eq. (16) to a rational function
of t while leaving the argument of the log a rational func-
tion, albeit of a higher order

=2
1+t

17)

Consequently, upon substitution of 1 in Eq. (16), one
finds that
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where various parameters appearing in Eq. (18) are
defined by

0 bZ
U,=p=R+u,.

13
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(19)

Symbolic mathematical computer programs can gen-
erally integrate a logarithm of the linear function of the
integration variable multiplied by a rational function of
the same variable outside the argument. Similarly, stand-
ard integral tables such as [12] typically list entries having
the same mathematical construct.

By factoring the numerator and denominator of the
argument of the log function in Eq. (18), a general repre-
sentation of the integral assumes the following form

2k 1 8(R)t
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where t represents a root of either the numerator or
denominator of the argument of the log function. Subse-
quently, using standard properties of logarithms, one can
expand the integrand of Eq. (20) into 12 distinct integrals,
all of which have a linear dependence of t in the argument
of the log function. Hardy [13] provides criteria from which
one can predict that the integral in Eq. (20) should contain
only elementary transcendental functions and rational
functions in its evaluation. This surprising prediction
proved true.

Although both the numerator and denominator of the
argument of the log function in Eq. (18) are of sixth order,
exact roots of these reduced polynomials can be readily
found algebraically. The exact evaluation of Eq. (20) was
obtained in this fashion using Mathematica® 1.0 (Wolfram
Research Champaign, IL, USA); however, its length pre-
cludes the entire solution being reproduced here.

Representative behavior using the entire solution is
plotted in Figure 2 for a specific value of displacement
u,/a=0.02. Note the symbol J, appearing in the figure, as a
normalizing parameter, is the value of J obtained in [7] for
small displacements and strains, i.e.

J,=4ku,. (21)

For the Tresca yield condition, the yield strength in
tension o, is equal to twice the yield strength in shear k.
The crack opening displacement 6 can be defined as the
change in separation between points C and C’ plus D and
D’ of Figure 1, which is equal to 2u, . Therefore, Eq. (21) can
be rewritten as

/

|

i

:‘o
(YN

i

i

i

‘0’0’""

o

i

\

i
i
i
i
i
|
)
3
)
\

i
)
4
W
X
i
o

3

uy/a=0.02 05

Jdy

0.0

Figure 2: Normalized J-integral as a function of elliptical axes
aspect ratio and normalized distance from the internal boundary.
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J,=0,5, (22)

which is reminiscent of the form of the crack tip opening
displacement 0, defined in [1], for the Barenblatt-Dugale
model of crack tip plasticity.

A special and important case (R=0) of the complete
analytical solution will now be given explicitly. Its length
is considerably shorter than the general result, making
it possible to present it here. This formula applies to the
evaluation of the integral in Eq. (20) along a path follow-
ing one half of the elliptical hole, i.e. as AFB approaches
DEC in Figure 1. This path produces the smallest value of
the J-integral possible for a fixed aspect ratio b/a and dis-
placement uo/a. It assumes the mathematical form

J

J

=(b/u0)ln(1+u"ZbJ
a

R=0
2b?

1-d
———1-d*tan’| ¢,/ |-37/4
+auo 1-(b/a)2{ an [c 1+d] 7/
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+\/m tan™ [Cm]

(23)

1+(-1)*d

1(-1*d® tan? 1+(-1)""d ,
++/1-(-1) an [c\/m

where the two parameters ¢ and d found in Eq. (23) are
defined by
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Figure 3: Normalized J-integral along the elliptical hole boundary
versus axes aspect ratio and normalized displacement.
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In Figure 3, one finds relationship in Eq. (23) plotted
versus the aspect ratio b/a for various values of u /a. One
observes that as the elliptical hole geometry approaches
a line crack (b—0) the J-integral evaluation approaches
zero for all values of displacement.

In Figure 4, the normalized J-integral from the com-
plete solution is plotted as a function of the normalized
distance from the elliptical hole (R/a) for the range of per-
missible aspect ratios (O<b/a<1) at a fixed value of dis-
placement u /a=0.02. As b approaches zero in Figure 4,
the inside envelope of curves approaches the locus of the
asymptotic expansion of the complete solution, i.e.

J~4kR ln(1+';§] as b—0. (25)

The limit of J in the asymptotic expansion of Eq. (25)
as R goes to zero is zero.

2 Discussion

There exist no finite element analyses for large deforma-
tion crack or notch problems involving the Tresca yield
condition. Should there be any in the future, the solution
obtained here can serve as a benchmark for comparison.

However, if one compares how the value of the nor-
malized J-integral changes with distance from the notch
boundary in Figure 4 to the elastic-perfectly plastic data
(n=0) plotted in Figure 9 of [2], the two loci qualitatively
resemble one another despite several differences that
exist between the two analyses.

For example, both analyses indicate that for finite
deformations, the J-integral tends toward zero as the paths
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Figure 4: Envelope of normalized J-Integral values versus normalized
distance from elliptical boundary at a fixed displacement.
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of integration approach the notch boundary. McMeek-
ing [2] attributes this effect due to crack tip blunting. In
contrast, in an elastic-perfectly plastic analysis performed
in [3] for a sharp crack, a normalized J-integral in their
Figure 3 approaches a non-zero value of J as the path of
integration approaches the crack tip. No blunting of the
crack tip was incorporated into this particular analysis.
Both analyses [2] and [3], however, use a flow theory of
plasticity under the von Mises yield condition.

Lastly, it should be pointed out that for a value of
b/a equal to zero, the analytical solution employed here
degenerates [6, 7]. However, one may approach a line
crack to any degree of accuracy desired as long as b
remains finite.

For the case b=0, a statically admissible solution is
proposed in [6]; however, it requires the formation of a
stress discontinuity. A stress discontinuity is also encoun-
tered in the plane stress perfectly plastic analysis [14]
using the von Mises yield condition for a semi-infinite line
crack.

If this J-integral is interpreted as an energy dissipa-
tion rate instead of an energy release rate, then a theoreti-
cal resistance curve (R-curve) is obtained in closed form
for the initial stage of crack extension due to crack tip
blunting, e.g. in Eq. (25) as b—0 with u =Aa. Previously
[15], modeling of this region was limited to relationships

having the form
J=Mo Aa, (26)

which is an offshoot of Eq. (22), where the change of crack
length due to blunting Aa is approximated by 0/2 [16] and
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M is taken as 2 [16] or higher [15]. The flow stress o, may
also be substituted into Eq. (26) in place of o, in order to
incorporate effects due to strain hardening [15].
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