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Abstract: An exact expression is obtained for a path-
dependent J-integral for finite strains of an elliptical 
hole subject to remote tensile tractions under the Tresca 
deformation theory for a thin plate composed of non-work 
hardening material. Possible applications include an ana-
lytical resistance curve for the initial stage of crack propa-
gation due to crack tip blunting.
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1  Introduction
Many finite element schemes of simulated crack problems 
have demonstrated the path dependence of the J-integral 
[1] as a result of non-proportional loading. This type of 
behavior may occur because of finite deformations of 
an elastic-plastic material [2] or through the use of flow 
theories of plasticity with small strains in elastic-plastic 
analyses [3, 4]. In general [5], any nonlinear elastic mate-
rial for finite deformations will exhibit path-dependent 
J-integrals for crack problems.

However, no exact mathematical evaluation of a 
path-dependent integral has been derived to date from 
which one may draw more general conclusions about 
how parameters affect these integrals. Here, exact 
expressions are derived for J-integrals of finite deforma-
tions of a nonlinear elastic material satisfying the Tresca 
yield condition. A traction-free elliptical hole subject 
to remote tensile tractions for a non-strain hardening 
material is used to represent a crack under plane stress 
loading conditions.

The closed J-integral, as defined in [1] for a plane 
problem, is
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where W is the strain-energy density, x and y are Cartesian 
coordinates, and Γ is the path of integration, on which ds 
is the differential arc length, u is the displacement, and T 
is the traction. For cases where the integral becomes path-
dependent, its evaluation around Γ is no longer zero as 
indicated in Eq. (1).

In [6, 7], an explicit analytical solution for an elliptic 
hole in a non-work hardening material was derived. In [8], 
the analogous problem was solved for large deformations. 
A pair of superposed coordinates was defined in [8], where 
the uppercase letters represent the initial undeformed 
state of the material and the lowercase letters represent 
the deformed configuration, as indicated in Figure 1.

The natural or logarithmic strain rate was determined 
there as
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In Eqs. (2) and (3), R is the distance along a normal 
or slip line from the elliptical hole to a particular point 
in the undeformed configuration (Figure 1). The angle α 
measures the inclination of an arbitrary slip line orthonor-
mal to the elliptical boundary in both the (X, Y) and (x, 
y) systems. The magnitude of displacement u0 is uniform 
for all slip lines and acts in the direction of the slip line. 
The parameter v0 is the constant rate of displacement with 
respect to the loading parameter τ.

The nonlinear strain energy density may be deter-
mined from the following integral, assuming the material 
is nonlinear elastic.
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where k is the yield strength in pure shear. No other 
strain component contributes to W. The coordinate Y in 
differential form in the initial configuration notation [8] is
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The J-integral (1) is now divided into two distinct parts
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As in the case of small deformation theory [7], the 
traction T and ∂u/∂X vectors remain orthogonal to one 
another during deformation and, consequently, they 
provide no contribution to 

Γ
(2).J  Because of this, the only 

nontrivial component of JΓ reduces to that of the first inte-
gral of (6), i.e. 

Γ
(1).J

Now there are two distinct paths to be analyzed sepa-
rately for 

Γ
(1) ,J  as shown in Figure 1. One particular class 

is along the Y-axis, i.e. BC (α = π/2) and DA (α = -π/2), such 
that
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This integral has the elementary solution
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Provided one keeps the paths BC and DA of equal 
length, the two contributions from Eq. (8) cancel each 
other over the closed path Γ and consequently do not 
contribute to the path dependence of 

Γ
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Figure 1: Path of integration in both the initial coordinates (X, Y) 
and in the deformed state (x, y).

A much more challenging integral to evaluate analyti-
cally occurs along path AFB of Figure 1, whose form for a 
constant but arbitrary value of R is
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where F(α) is given in Eq. (3). Initial attempts at evaluating 
this integral directly, using a symbolic mathematical com-
puter program, failed to produce meaningful results. Nev-
ertheless, under the specified sequence of transformation 
of variables to follow, an exact expression can be found.

Making the following substitutions in Eq. (9), where 
several functions are identified as standard Jacobian ellip-
tic functions [9],
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one obtains
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where the modulus of the elliptic functions is m. The com-
plete elliptic integral of the first kind that is found in the 
limits of integration in Eq. (11) is defined by
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One should be aware that a common alternative repre-
sentation for parameter m is k2 as in [10]. If this notation is 
employed, then it also carries over to the related Jacobian 
elliptic functions modulus in (10).

An additional transform of z to φ in Eq. (11) of the form
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will simplify this integral to
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where an additional factor of 2 ahead of this integral 
accounts for the symmetry of the integrand with respect 
to the X-axis that was used.
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Further, use of the transformation

	 φ λ= -1(1/ )cos ,m � (15)

reduces the integral in Eq. (14) to
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The following and the last of the transformations (see 
[11]) reduces the algebraic function outside of the argu-
ment of the log function in Eq. (16) to a rational function 
of t while leaving the argument of the log a rational func-
tion, albeit of a higher order
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Consequently, upon substitution of λ in Eq. (16), one 
finds that
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where various parameters appearing in Eq. (18) are 
defined by
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Symbolic mathematical computer programs can gen-
erally integrate a logarithm of the linear function of the 
integration variable multiplied by a rational function of 
the same variable outside the argument. Similarly, stand-
ard integral tables such as [12] typically list entries having 
the same mathematical construct.

By factoring the numerator and denominator of the 
argument of the log function in Eq. (18), a general repre-
sentation of the integral assumes the following form
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Figure 2: Normalized J-integral as a function of elliptical axes 
aspect ratio and normalized distance from the internal boundary.

where tn represents a root of either the numerator or 
denominator of the argument of the log function. Subse-
quently, using standard properties of logarithms, one can 
expand the integrand of Eq. (20) into 12 distinct integrals, 
all of which have a linear dependence of t in the argument 
of the log function. Hardy [13] provides criteria from which 
one can predict that the integral in Eq. (20) should contain 
only elementary transcendental functions and rational 
functions in its evaluation. This surprising prediction 
proved true.

Although both the numerator and denominator of the 
argument of the log function in Eq. (18) are of sixth order, 
exact roots of these reduced polynomials can be readily 
found algebraically. The exact evaluation of Eq. (20) was 
obtained in this fashion using Mathematica® 1.0 (Wolfram 
Research Champaign, IL, USA); however, its length pre-
cludes the entire solution being reproduced here.

Representative behavior using the entire solution is 
plotted in Figure 2 for a specific value of displacement 
u0/a = 0.02. Note the symbol J0 appearing in the figure, as a 
normalizing parameter, is the value of J obtained in [7] for 
small displacements and strains, i.e.

	 =0 04 .J ku � (21)

For the Tresca yield condition, the yield strength in 
tension σ0 is equal to twice the yield strength in shear k. 
The crack opening displacement δ can be defined as the 
change in separation between points C and C′ plus D and 
D′ of Figure 1, which is equal to 2u0. Therefore, Eq. (21) can 
be rewritten as
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	 σ δ=0 0 ,J � (22)

which is reminiscent of the form of the crack tip opening 
displacement δt, defined in [1], for the Barenblatt-Dugale 
model of crack tip plasticity.

A special and important case (R = 0) of the complete 
analytical solution will now be given explicitly. Its length 
is considerably shorter than the general result, making 
it possible to present it here. This formula applies to the 
evaluation of the integral in Eq. (20) along a path follow-
ing one half of the elliptical hole, i.e. as AFB approaches 
DEC in Figure 1. This path produces the smallest value of 
the J-integral possible for a fixed aspect ratio b/a and dis-
placement u0/a. It assumes the mathematical form
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where the two parameters c and d found in Eq. (23) are 
defined by
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Figure 3: Normalized J-integral along the elliptical hole boundary 
versus axes aspect ratio and normalized displacement.
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In Figure 3, one finds relationship in Eq. (23) plotted 
versus the aspect ratio b/a for various values of u0/a. One 
observes that as the elliptical hole geometry approaches 
a line crack (b→0) the J-integral evaluation approaches 
zero for all values of displacement.

In Figure 4, the normalized J-integral from the com-
plete solution is plotted as a function of the normalized 
distance from the elliptical hole (R/a) for the range of per-
missible aspect ratios (0 < b/a < 1) at a fixed value of dis-
placement u0/a = 0.02. As b approaches zero in Figure 4, 
the inside envelope of curves approaches the locus of the 
asymptotic expansion of the complete solution, i.e.
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The limit of J in the asymptotic expansion of Eq. (25) 
as R goes to zero is zero.

2  Discussion
There exist no finite element analyses for large deforma-
tion crack or notch problems involving the Tresca yield 
condition. Should there be any in the future, the solution 
obtained here can serve as a benchmark for comparison.

However, if one compares how the value of the nor-
malized J-integral changes with distance from the notch 
boundary in Figure 4 to the elastic-perfectly plastic data 
(n = 0) plotted in Figure 9 of [2], the two loci qualitatively 
resemble one another despite several differences that 
exist between the two analyses.

For example, both analyses indicate that for finite 
deformations, the J-integral tends toward zero as the paths 
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of integration approach the notch boundary. McMeek-
ing [2] attributes this effect due to crack tip blunting. In 
contrast, in an elastic-perfectly plastic analysis performed 
in [3] for a sharp crack, a normalized J-integral in their 
Figure 3 approaches a non-zero value of J as the path of 
integration approaches the crack tip. No blunting of the 
crack tip was incorporated into this particular analysis. 
Both analyses [2] and [3], however, use a flow theory of 
plasticity under the von Mises yield condition.

Lastly, it should be pointed out that for a value of 
b/a equal to zero, the analytical solution employed here 
degenerates [6, 7]. However, one may approach a line 
crack to any degree of accuracy desired as long as b 
remains finite.

For the case b = 0, a statically admissible solution is 
proposed in [6]; however, it requires the formation of a 
stress discontinuity. A stress discontinuity is also encoun-
tered in the plane stress perfectly plastic analysis [14] 
using the von Mises yield condition for a semi-infinite line 
crack.

If this J-integral is interpreted as an energy dissipa-
tion rate instead of an energy release rate, then a theoreti-
cal resistance curve (R-curve) is obtained in closed form 
for the initial stage of crack extension due to crack tip 
blunting, e.g. in Eq. (25) as b→0 with u0 = Δa. Previously 
[15], modeling of this region was limited to relationships 
having the form

	 σ= ∆0 ,J M a � (26)

which is an offshoot of Eq. (22), where the change of crack 
length due to blunting Δa is approximated by δ/2 [16] and 

M is taken as 2 [16] or higher [15]. The flow stress σflow may 
also be substituted into Eq. (26) in place of σ0 in order to 
incorporate effects due to strain hardening [15].
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