DE GRUYTER

J Mech Behav Mater 2016; 25(3-4): 69-76

S. Moeini-Ardakani, M.T. Kamali and H.M. Shodja*
Eccentric annular crack under general nonuniform

internal pressure

DOI 10.1515/jmbm-2016-0007

Abstract: For a better approximation of ring-shaped and
toroidal cracks, a new eccentric annular crack model is
proposed and an analytical approach for determination
of the corresponding stress intensity factors is given. The
crack is subjected to arbitrary mode I loading. A rigorous
solution is provided by mapping the eccentric annular
crack to a concentric annular crack. The analysis leads to
two decoupled Fredholm integral equations of the second
kind. For the sake of verification, the problem of a con-
ventional annular crack is examined. Furthermore, for
various crack configurations of an eccentric annular crack
under uniform tension, the stress intensity factors per-
taining to the inner and outer crack edges are delineated
in dimensionless plots.

Keywords: annular crack; integral equations; three-part
mixed boundary value problem.

1 Introduction

An annular crack consists of two concentric circular edges
that are coplanar; such a crack is the simplest idealization
of a toroidal crack, which is frequently observed at mate-
rial interfaces or in homogeneous media after fabrication.
For this reason, many researchers considered an annular
crack inside isotropic materials under uniform far-field
loading by employing the asymptotic and approximate
methods used by Smetanin [1], Moss and Kobayashi [2],
and Shibuya etal. [3]. Perhaps, the most significant attempt
that has been made in this area belongs to Fabrikant [4],
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who reduced the problem of a mode I annular crack with
non-axisymmteric loading over the faces of the crack to
a pair of non-singular Fredholm integral equations of
the second kind. Saxena and Dhaliwal [5] examined the
problem of an annular crack surrounding an elastic fiber
in a transversely isotropic matrix. They reduced the mixed-
boundary value problem to a singular integral equation.
Shindo et al. [6] considered the problem of a permeable
annular crack in a piezoelectric fiber enclosed by an infi-
nite isotropic solid subjected to mode I far-field loading.
Their formulation lead to a pair of coupled singular inte-
gral equations. Recently, Shodja et al. [7] considered a
concentric set of energetically consistent annular and
penny-shaped cracks in an infinite, transversely isotropic
piezoelectric medium under a uniform far-field electrome-
chanical loading parallel to the poled direction and per-
pendicular to the crack faces. They reduced the problem
to a Fredholm integral equation of the second kind.

Amorerealistic idealization of a toroidal crack encoun-
tered in materials is inferred by considering the angular
dependence of crack size, that is the inner and outer crack
edges, generally, consist of two eccentric circles. It is pro-
posed to give an accurate analytical solution for such an
eccentric annular crack within an isotropic infinite body
under nonuniform (non-axisymmetric) internal pressure.
The solution of the problem is expressed in the form of a
set of two decoupled Fredholm integral equations of the
second kind. Subsequently, by employing a numerical
scheme suggested by Atkinson [8], the algorithm for the
solution of these equations is provided. The solution of the
eccentric annular crack under uniform mode I loading is
readily obtained as a limiting case and presented in this
work. Furthermore, the stress intensity factors are delin-
eated in dimensionless plots for different values corre-
sponding to (1) ratio of the inner to the outer radius and (2)
ratio of the eccentricity to inner or outer radius.

2 Governing equations and
statement of the problem

The equilibrium equations in the absence of body forces
can be expressed as


mailto:shodja@sharif.edu

70 —— S. Moeini-Ardakani et al.: Eccentric annular crack under general nonuniform internal pressure

V.0=0, o)

where o denotes the stress tensor. The corresponding con-
stitutive relations for isotropic materials may be written as
follows:

o= u{Vu+(Vu)T+2”(v.u)1}, %)
1-2v

where u is the displacement vector; I, the identity matrix;
u, the shear modulus; and v, the Poisson’s ratio.

Consider an eccentric annular crack with eccentricity
e embodied by an isotropic matrix. Let r, and r, denote the
inner and the outer radii of the crack edges, respectively.
The origin of the Cartesian coordinate system O(x,, x,, x,)
is set in such a way that the crack lies in the x,x,-plane and
the center of the inner circle is located at (cl, 0, 0), where

J1+4r*a-1
c="—1 (3)

! 2a

and a is a constant depending on r, r, and e which will be
introduced shortly. The faces of the crack are subjected to
an arbitrary pressure, p(xl, xz), as elucidated in Figure 1.

Suppose that the crack plane lies in R? coinciding
with the x x,-plane. Let I, be the domain bounded by the
inner crack edge, and D,, the complement of the domain
enclosed by the outer crack edge. It can easily be under-
stood that the crack occupies the region R*(D UD,) in the
xx,-plane, where

D, ={(x,, x,)eR?|(x,-¢,)* +x;<r’}, (4)

D,={(x,, x,)eR?|(x,-c,-e)*+x;>1, }. (5)

y The eccentric

y annular crack

Figure 1: The geometry of the eccentric annular crack.
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Due to symmetry of the problem with respect to x,=0,
the mixed-boundary conditions may be written as

u,(x, x,, 0)=0 (x,, x,)eb,, (6)
o,(x,, x,, 0)=-p(x,, x,) (x,, x,)eR*(D,UD,), )
u,(x,, x,, 0)=0 (x,, x,)eD,, (8)
0,(x,,x,, 00=0 (x,, x,)eR?, ©

0,(x,, x,, 0)=0 (x,, x,)eR?, (10)

where u, and o, (i, j=1, 2, 3) denote the components of dis-
placement and stress fields, respectively.

3 The Papkovich-Neuber solution
and three-dimensional mapping
In order to solve the mixed boundary value problem stated

in Section 2, the well-known Papkovich-Neuber potential
function is employed:

(1)

where 9 and ¢ are the harmonic functions with respect to
(x,» X, x,). One can conventionally take

2uu=4(1-v)yY-V(x.p+p),

1 dp

PO T o
3

(12)

In view of Egs. (11), (2) and (6)—(8), it can be shown

that
¥,=0, (x,,x,)eD,, (13)
aw;_ 2
3 =-p(x,, x,), (x,, x,)eR*<(D,UD,), (14)
X3
¥,=0, (x,, x,)eD, (15)

on x,=0. Thus, the original problem has been reduced to
a three-part mixed boundary value problem for .. The
eccentricity of the annular crack has lead to the above
conditions, which are difficult to work with. Therefore,
a three-dimensional mapping similar to that of the two-
dimensional case introduced by Muskhelishvili [9] is
defined, which transforms the set of eccentric circles to a
set of concentric circles, as follows:

z 4

=, Z=—"
1+az 1-al

g , §=&+iE,, z=x +ix,, (16)
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X3 e
2 2N2 9 202 4 2y b
\/(rl 1)) -2e*(r +1))+e

=, a=
> (ax,+1)’+a’x: (17)

These relations are expressible in a compact form as

X, +0,a(x;+x3)

9 .:1’ 2) 3’
(ax +1)2+a2 2

(18)

where 6,7 (i, j=1, 2, 3) denotes the Kronecker delta. The
details of the mapping are shown in Figure 2.

As is shown in the Appendix, in the transformed
space, ¥, is a harmonic function:

N S
7+7 -
[aé—z aEZ agz)wis
A cylindrical coordinate system (p, ¢, &) is defined in

the transformed space. Therefore, boundary conditions
(13)—(15) are transformed to

(19)

Y,=0, p<p,, (20)
aw3 -p(p’ ¢)
e T oo Pi<pP<p,
05, 1+a’p’-2apcos¢ Pr=P=p, 1)
¥,=0, p,<p 22)

on £,=0 and 0<¢<2m, where p, and p, are the respective
radii of the inner and outer crack-tips in the transformed

space,
J1+ara’-1
=1 i=1,2.

= (23)
pl 2ria2

At this point, by the well-known method proposed
by Fabrikant [4], the three-part mixed boundary value
problem defined by (20)-(22) reduces to

&, (o, %5, %3)

X

Figure 2: Top view of the three-dimensional mapping given by Eq. (18).
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E(o 12 [ " K(ppys 69, (5,2 #,)d0,86,=G.(p. 9)

p
0 -1
<p<ﬁ (24)
with
G.(p, #)=8,(p,p,ps P)£8,(\/p.p, 1 p, D) p, (25)
1 1 pY 1
k(p, p)=—12R t —
(P 9) nz{ elyﬂ an J?} pw} (26)
where ¥ is the complex conjugate of y:
ig _
=L, @7)
e’p
g1(p’ ¢)=
27 ¢ p, Z' ZP(PO’ (p )dp d¢o
o] s + (28)
e 27l p*+py-2pp, cos(q) - )1+a’p’-2ap cose, ]
gz(,D’ ¢)=
Izn [ P PPy P(Pys D,)dp dg, . (29)

27[p*+p-2pp, cos(p-¢ l1+a’ p;-2ap cose, ]

F (p,¢)and F (p, ¢) can be interpreted through the fol-
lowing equations:

E(pl\p.p,s +E(pI\p.Pys ) _
2

J‘P1 Py9P,

E[ )ag (Pys @5 0)s p<p,s (30)

" PP
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E(pp,Ip OV ECpip, 1P #) _

20/\/p,p,

r PP, A Py | 0¥
oFo ol Fo |%5(, 0 0), ,
LZW (p]8§3 (,00 ¢, 0) P,<p (31)
or
ap, 2 d o p,dp 1
5% rip)— [ FoHFo pl 2
ags n’p (p)d'OJ.p p(z)_pz (poj
F(py/\p.pys DI+E(py/\p.p,s $)
" (po /PP ¢2 Pyl PP ¢’ p<p, 2)
dp, 2 [1Jd » pyap,
SB="L = || ==
o0&, mp \p dp'[pza/pz-pé (P)
F+(\ plpz/po’ ¢)-F(\ plpz/po’ ¢)
s Py<p (33)
2,/\/p.p,
on £,=0, and £ is an integral operator defined as
27 1-k2 N d
LUOF(p, $)=—— WEOT(p: 9,)0, (34)

2790 1+k*-2k cos(¢-p,)”

If (r,, 6) and (r,, ,) denote the polar coordinates with
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1+a’p*-2
K2(9,)=Y "+ ﬁp ‘/zji)ﬁos"’z (E (p./ s &) F (.l s )1

(38)

where

1+ap.
¢ =2cot’ [‘0’
1-a

6.
]cotz', 0<0.<2m, i=1, 2. (39)

For the sake of completeness, a brief discussion on
the numerical methodology for the two-dimensional Fred-
holm integral equations (24) is given in the remainder of
this section.

By virtue of the numerical method introduced by
Atkinson [8], the governing Fredholm integral equations
can be converted to a set of linear algebraic equations. The
intervals [0, \/p,/p,] and [0, 27] are divided into N, and
N, equal segments, respectively, so that
2j-1

A:E Py =0
2N

i , o i=1, 2, -
2N1 P,

N, j=1,2, N,

2
2

(40)

In view of these definitions, the unknown functions
F.4, a)}.) are obtained from

origins at the center of the inner and outer crack edges in [A*){B*}={C"}, (41)
the untransformed space, then the stress intensity factors
can be written as where
27 Py
* = Py kKA A ,0 -w.)
A[(il’l)NzJ'jl’ (5" DN, +j,] - i, gy T NN i L’
172
C(;l-l)Nz+11:Gi(/li1’ wil)’ i,,=1,2 N,
B(_iz'l]Ner}';:Fi(}'i; ’ wjz)’ Jio 5= 2, o N “2)

Kﬁ”(@l):lrigp [27(r-1)o,(c,+rcosb,, rsing,), (35)
K}Z)(Gz)zlirr}« |27(r-r))o (¢, +e+rcos,, rsind,), 36)

r—n

where superscripts 1 and 2 pertain to the inner and outer
borders of the crack, respectively. Alternatively,

I<;l)(01)= +a pi/ipl COS¢1 [E_( pl/pz s ¢1)+F( p1/p2 ’ ¢1)]’
T

Py

(7)

4 Results and discussion

At first, for the sake of verification, two problems of a
concentric annular crack subjected to uniform (Section
4.1) and non-axisymmetric (Section 4.2) internal pres-
sures that are available in the literature are readily
re-examined as the special cases of the current work.
Subsequently, the problem of an eccentric annular
crack under uniform far-field tension is addressed in
Section 4.3.
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Table 1: Comparison of the values of the inner and outer stress intensity factors for various ratios of ¢/r, for the case of a concentric annular

crack with those of Noda et al. [11] and Tada et al. [10].

c/r, K® /(0 ) K? (o ,mc)
Current study Ref. [11] Ref. [10] Current study Ref. [11] Ref. [10]

0.1 1.030 1.030 1.031 0.979 0.979 0.979
0.2 1.068 1.068 1.069 0.963 0.963 0.963
0.3 1.118 1.118 1.117 0.950 0.950 0.950
0.4 1.182 1.182 1.180 0.939 0.939 0.939
0.5 1.269 1.269 1.265 0.930 0.930 0.930
0.6 1.390 1.390 1.385 0.922 0.922 0.922
0.7 1.572 1.573 1.567 0.916 0.916 0.915
0.8 1.887 1.885 1.881 0.910 0.910 0.910
0.9 2.616 2.577 2.610 0.905 0.903 0.904
4.1 Concentric annular crack under uniform A 6

tension S T

L ——Current study

The numerical values of the stress intensity factors per- 4 ~o-Tada et al. [10]
tinent to the concentric annular crack under uniform = |k \
tension are available in the Handbook by Tada et al. [10] 3 & 3
as well as in the work of Noda et al. [11]. As it is evident 5 Xﬂ&
from Table 1, the numerical values of the normalized \MM
stress intensity factors K" /(00\/;6) and K" /(00\/;) 1
reproduced for different ratios of c/r_ via the present
theory with zero eccentricity (e=0) are in good agree- 00 0.2 0.4 0.6 0.8 1
ment with their results; note that c=(r,r)/2 and B n/r
rC:(r2+rl)/2. Furthermore, the stress intensity factors for 1.04
the special cases of center crack and penny-shaped crack —+ Current study
can readily be calculated in the limits as r,/r,—1(c/r.—0) i ~=-Tadaetal. [10] .
and r,/r,—0(c/r—1), respectively. For the center crack,
the current theory yields K; M [(o, \/7 )=1.004 and |
K /(o, J7c)=1.002, which are in reasonable agree- = 'i 0.96
ment with the exact values of 1. For the case of the °
penny-shaped crack, the current theory results in
K /(00@)=0.9OI as compared to the exact value of 0.92 M-‘"
22 /7~0.900.

Figure 3A and B compare, respectively, the vari- 0.88
ations of the normalized stress intensity factors 0 0.2 04 0.6 038 1

K/(o \/7 ), i=1, 2 in terms of r /r, obtained using the
current theory with those from the Handbook by Tada et al.
[10]. The results are in good agreement, and moreover,
for the above-mentioned limiting cases of a center crack
(r/r,—1) and a penny-shaped crack (r,/r,—0), the results
converge to the exact values of 1 [both K‘“ /(o \/7 ) and
K?/(o, Jae)] and 12 [n(K? (o, \/> )), respectively.
It is evident that the normalized stress intensity factor
KV /(00\/;) along the inner crack-tip (i=1) decreases
with increasing r /r,, while the trend for that of the outer
crack-tip (i=2) is reversed.

ri/ry

Figure 3: Comparison of the variations of the (A) inner and (B) outer
stress intensity factors in terms of r,/r, for the case of concentric
annular crack with those of Tada et al. [10].

4.2 Concentric annular crack under
non-axisymmetric loading

The represented solution is verified by examination of the
reduced conventional concentric annular crack for which
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e=0. For this special case, p =r, and p,=r, and the right-
hand side of (24) degenerates so that

R PP Py 8,00,

2 2 ’ (43)
# 2[p*+p;-2pp, cos(¢-¢,)]

gl(p’ ¢)=J'02”

[Pl PP(Py> ¢,)d0,0, (44)

AN N 20"+ 2pp, COS(-,)]

It is seen that (43) and (44) are in complete agree-
ment with the solution of an annular crack represented
by Fabrikant [4].

4.3 Eccentric annular crack under uniform
far-field tension

In Sections 2 and 3, the problem of an eccentric annular
crack under arbitrary pressure over the faces of the crack
was formulated in terms of two decoupled Fredholm
integral equations. One of the most practical cases is the
case of an eccentric annular crack under uniform far-field
loading which is equivalent to uniform pressure over the
crack faces; therefore, the stress intensity factors corre-
sponding to this problem are examined for various crack
configurations.

On setting p(x,, x,)=0,, the right-hand side of the
Fredholm integral equations (24) degenerate, so that

-1 1_ 2 2 1_ 2 2
gl(p’ ¢)Z% z tanh‘1@-21 tanh'1@ ,
a'p(z,z,) z, z,
(45)
-2 1_ 2 2
g,(p, ¢)=%Re z, tanh'1@
a‘p(z,z,) z,
102/ p>
-z, tanh™ \@]+igl(p, ?), (46)
2
where
1 e
le\/l'azz’ Zzz\/l'ap 47)

Figure 4A-C which correspond, respectively, to
rl/r2:O.1, 0.2, 0.4 show the variation of the normalized
stress intensity factor associated with the inner crack
edge, K\ /(oo\/yrir2 ),, with an angle 6; each figure dis-
plays four curves which are pertinent to e/r,=0, 0.1, 0.2, 0.4.
Similar sets of plots are provided for the outer crack edge
in Figure 5A-C. It is observed that for all cases the stress
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Figure 4: Effect of the eccentricity on the inner stress intensity
factor for the cases: (A) r,/r,=0.1, (B) r,/r,=0.2, and (C) r,/r,=0.4.

intensity factors decrease with increasing r,/r,. For a given
value of rl/ r, and e/ r,, the stress intensity factor for the
inner crack edge is larger than that of the outer crack edge.
From comparison of the figures pertinent to the outer crack
edge, it is seen that a curve for a given value e/ r,#0 crosses
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Figure 5: Effect of the eccentricity on the outer stress intensity
factor for the cases: (A) r,/r,=0.1, (B) r,/r,=0.2, and (C) r,/r,=0.4.

the line e/r,=0 at an angle 52, which remains unchanged as
r,/r, varies. In other words for an annular crack with eccen-
tricity, e/r#0, there exists an angle, 0°<6,=0.(e/r,)<180°
independent of the ratio r,/r, along the outer crack edge at
which K /(o \/JTr2 ) becomes equal to the stress intensity
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factor pertinent to the outer crack edge of the concentric
annular crack for which r, and r, are kept the same as those
of the eccentric annular crack but e/ r,=0.

From Figure 4A-C, it is seen that for e>0 the maximum
and minimum values of the stress intensity factor associ-
ated with the inner crack edge occur at 6,=0 and 7z, respec-
tively. Figure 5A-C reveal that similar observation holds
for the outer crack edge.

Figure 6 shows the variation of the normalized value
of the maximum stress intensity factor, Kf” / ((IO\/:Tr2 ),
pertinent to the inner crack edge as a function of the nor-
malized eccentricity, e/r,, for different values of r,/r,=0.1,
0.2, 0.4. Similarly, K /((70\/7172 ) versus e/r, pertinent
to the outer crack edge for r,/r,=0.1, 0.2, 0.4 has been
plotted in Figure 7. From Figure 6, it is observed that

135, ______
1.25 T~a
~ ~ -
115
I, . 105
5?@
S| D ) g Lt — = n/r=0.1
S 095+ e r,/ry=0.2
rlry=0.4
0.85 |
0.75 |
0.65 /_\ ‘ ‘ ‘ ‘
0 1 2 3 4 5

elr,

Figure 6: Variation of the maximum inner stress intensity factor in
terms of eccentricity for the three cases of r1/r2=0.1, 0.2, and 0.4.

0.74

0.70 | _-

I — — n/r,=0.1
if g 062 _- . ryfry=0.2
© r/ry=0.4
3 4 5

elr

Figure 7: Variation of the maximum outer stress intensity factor in
terms of eccentricity for the three cases of r,/r,=0.1, 0.2, and 0.4.
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K"/ ((IO\/JTr2 ) follows an increasing trend with the nor-
malized eccentricity and reaches its peak value at about
e/r=1. K /(a, \/:Trz ), then decreases with further increase
in e/r. However, Figure 7 shows that K;Z)/ (00\/:17)’2 )
increases monotonically with e/ r,; for larger values of rl/ T,
there is a greater sensitivity to the change in the value of
the normalized eccentricity, e/r,.

Appendix

From Eq. (16), we have

%z% aé+ al[b iz 1 % (48)
0z 0o 9z 9 9z (l+az)’ o’

0Z O 0z OC 0z (1+az)® OC
Using the above equations, we can write

ORI S N

020z (1+az)? 3| (1+az)* oC | (1+az)’ o o

_(agy oy, 1 Xy, 1 0y,

" (1+az)? 060C  (1+az)*(1+az)’ 9oC |(1+az)|* 9GO’
(50)

which can be combined with the following equations:

oY, 'y, Y,

4 = + ,
0z0z 0x; ox;

(51)

Iy, 'y, Iy,
oot og " oel 62

to give

Iy, Py, 1 [a W, 0 1/)3} -

A (a2 98 0F
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Moreover, from Eq. (18) we have
Wy O, 95, Iy, 95, Iy, 05, 1 9y
ox, 0§ ox, 9, dx, & ox, (ax,+1)+a’x] d&,
_ 1 oy,
ey % (54)
and similarly,
0’ 1 9
wg_ 1/)3 (55)

ax |(+az)l* 98

3

Therefore, we have

321/}3_'_821/)3 azws 1 [azw3 82w3 azw3]. (56)

o0& 0E  0E

2 2 2
ox; dx; 0x;

This relation shows that if a function is harmonic
with respect to the (x, x,, x,) coordinates, it will also be
harmonic with respect to the transformed coordinates

€58, 8).
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