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Abstract: For a better approximation of ring-shaped and 
toroidal cracks, a new eccentric annular crack model is 
proposed and an analytical approach for determination 
of the corresponding stress intensity factors is given. The 
crack is subjected to arbitrary mode I loading. A rigorous 
solution is provided by mapping the eccentric annular 
crack to a concentric annular crack. The analysis leads to 
two decoupled Fredholm integral equations of the second 
kind. For the sake of verification, the problem of a con-
ventional annular crack is examined. Furthermore, for 
various crack configurations of an eccentric annular crack 
under uniform tension, the stress intensity factors per-
taining to the inner and outer crack edges are delineated 
in dimensionless plots.

Keywords: annular crack; integral equations; three-part 
mixed boundary value problem.

1  Introduction
An annular crack consists of two concentric circular edges 
that are coplanar; such a crack is the simplest idealization 
of a toroidal crack, which is frequently observed at mate-
rial interfaces or in homogeneous media after fabrication. 
For this reason, many researchers considered an annular 
crack inside isotropic materials under uniform far-field 
loading by employing the asymptotic and approximate 
methods used by Smetanin [1], Moss and Kobayashi [2], 
and Shibuya et al. [3]. Perhaps, the most significant attempt 
that has been made in this area belongs to Fabrikant [4], 

who reduced the problem of a mode I annular crack with 
non-axisymmteric loading over the faces of the crack to 
a pair of non-singular Fredholm integral equations of 
the second kind. Saxena and Dhaliwal [5] examined the 
problem of an annular crack surrounding an elastic fiber 
in a transversely isotropic matrix. They reduced the mixed-
boundary value problem to a singular integral equation. 
Shindo et al. [6] considered the problem of a permeable 
annular crack in a piezoelectric fiber enclosed by an infi-
nite isotropic solid subjected to mode I far-field loading. 
Their formulation lead to a pair of coupled singular inte-
gral equations. Recently, Shodja et  al. [7] considered a 
concentric set of energetically consistent annular and 
penny-shaped cracks in an infinite, transversely isotropic 
piezoelectric medium under a uniform far-field electrome-
chanical loading parallel to the poled direction and per-
pendicular to the crack faces. They reduced the problem 
to a Fredholm integral equation of the second kind.

A more realistic idealization of a toroidal crack encoun-
tered in materials is inferred by considering the angular 
dependence of crack size, that is the inner and outer crack 
edges, generally, consist of two eccentric circles. It is pro-
posed to give an accurate analytical solution for such an 
eccentric annular crack within an isotropic infinite body 
under nonuniform (non-axisymmetric) internal pressure. 
The solution of the problem is expressed in the form of a 
set of two decoupled Fredholm integral equations of the 
second kind. Subsequently, by employing a numerical 
scheme suggested by Atkinson [8], the algorithm for the 
solution of these equations is provided. The solution of the 
eccentric annular crack under uniform mode I loading is 
readily obtained as a limiting case and presented in this 
work. Furthermore, the stress intensity factors are delin-
eated in dimensionless plots for different values corre-
sponding to (1) ratio of the inner to the outer radius and (2) 
ratio of the eccentricity to inner or outer radius.

2  �Governing equations and 
statement of the problem

The equilibrium equations in the absence of body forces 
can be expressed as
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	 . ,∇ =0σ � (1)

where σ denotes the stress tensor. The corresponding con-
stitutive relations for isotropic materials may be written as 
follows:
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where u is the displacement vector; I, the identity matrix; 
μ, the shear modulus; and ν, the Poisson’s ratio.

Consider an eccentric annular crack with eccentricity 
e embodied by an isotropic matrix. Let r1 and r2 denote the 
inner and the outer radii of the crack edges, respectively. 
The origin of the Cartesian coordinate system O(x1, x2, x3) 
is set in such a way that the crack lies in the x1x2-plane and 
the center of the inner circle is located at (c1, 0, 0), where
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and a is a constant depending on r1, r2 and e which will be 
introduced shortly. The faces of the crack are subjected to 
an arbitrary pressure, p(x1, x2), as elucidated in Figure 1.

Suppose that the crack plane lies in ℝ2, coinciding 
with the x1x2-plane. Let D1 be the domain bounded by the 
inner crack edge, and D2, the complement of the domain 
enclosed by the outer crack edge. It can easily be under-
stood that the crack occupies the region ℝ2-(D1∪D2) in the 
x1x2-plane, where

	 2 2 2 2
1 1 2 1 1 2 1{( , ) |( - ) },x x x c x r= ∈ + <D R � (4)
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Figure 1: The geometry of the eccentric annular crack.

Due to symmetry of the problem with respect to x3 = 0, 
the mixed-boundary conditions may be written as

	 3 1 2 1 2 1( , , 0) 0   ( , ) ,u x x x x= ∈D � (6)

	 2
33 1 2 1 2 1 2 1 2( , , 0) - ( , )   ( , ) -( ),x x p x x x xσ = ∈ ∪R D D � (7)

	 3 1 2 1 2 2( , , 0) 0   ( , ) ,u x x x x= ∈D � (8)

	 2
13 1 2 1 2( , , 0) 0   ( , ) ,x x x xσ = ∈R � (9)

	 σ = ∈ 2
23 1 2 1 2( ,  ,  0) 0 ( , ) ,x x x x R � (10)

where ui and σij (i, j = 1, 2, 3) denote the components of dis-
placement and stress fields, respectively.

3  �The Papkovich-Neuber solution 
and three-dimensional mapping

In order to solve the mixed boundary value problem stated 
in Section 2, the well-known Papkovich-Neuber potential 
function is employed:

	 2 4(1- ) - ( . ),µ ν ϕ= ∇ +u xψ ψ � (11)

where ψ and ϕ are the harmonic functions with respect to 
(x1, x2, x3). One can conventionally take
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In view of Eqs. (11), (2) and (6)–(8), it can be shown 
that

	 3 1 2 10,   ( , ) ,x xψ = ∈D � (13)
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	 ψ = ∈3 1 2 20,   ( ,  )x x D � (15)

on x3 = 0. Thus, the original problem has been reduced to 
a three-part mixed boundary value problem for ψ3. The 
eccentricity of the annular crack has lead to the above 
conditions, which are difficult to work with. Therefore, 
a three-dimensional mapping similar to that of the two-
dimensional case introduced by Muskhelishvili [9] is 
defined, which transforms the set of eccentric circles to a 
set of concentric circles, as follows:
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These relations are expressible in a compact form as
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where δij (i, j = 1, 2, 3) denotes the Kronecker delta. The 
details of the mapping are shown in Figure 2.

As is shown in the Appendix, in the transformed 
space, ψ3 is a harmonic function:
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A cylindrical coordinate system (ρ, φ, ξ3) is defined in 
the transformed space. Therefore, boundary conditions 
(13)–(15) are transformed to

	 3 10,   ,ψ ρ ρ= < � (20)
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	 ψ ρ ρ= <3 20,   � (22)

on ξ3 = 0 and 0 < φ < 2π, where ρ1 and ρ2 are the respective 
radii of the inner and outer crack-tips in the transformed 
space,
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At this point, by the well-known method proposed 
by Fabrikant [4], the three-part mixed boundary value 
problem defined by (20)–(22) reduces to

	

1 22 /

0 0 0 0 0 00 0

1

2

( , ) ( , - ) ( , )d d ( , ),

0 ,

F k F G
π ρ ρ

ρ φ ρρ φ φ ρ φ ρ φ ρ φ

ρ
ρ

ρ

± ± ±± =

< <

∫ ∫

� (24)

with
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where γ̅ is the complex conjugate of γ:
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F+(ρ, φ) and F-(ρ, φ) can be interpreted through the fol-
lowing equations:
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Figure 2: Top view of the three-dimensional mapping given by Eq. (18).
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or
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on ξ3 = 0, and L is an integral operator defined as
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If (r1, θ1) and (r2, θ2) denote the polar coordinates with 
origins at the center of the inner and outer crack edges in 
the untransformed space, then the stress intensity factors 
can be written as
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For the sake of completeness, a brief discussion on 
the numerical methodology for the two-dimensional Fred-
holm integral equations (24) is given in the remainder of 
this section.

By virtue of the numerical method introduced by 
Atkinson [8], the governing Fredholm integral equations 
can be converted to a set of linear algebraic equations. The 
intervals 1 2[0, / ]ρ ρ  and [0, 2π] are divided into N1 and 
N2 equal segments, respectively, so that
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In view of these definitions, the unknown functions 
F±(λi, ωj) are obtained from

	 [ ]{ } { },± ± ±=A B C � (41)

where

	
θ π σ θ θ

→
= +

-
1

(1)
1 1 33 1 1 1( ) lim 2 ( - ) ( cos , sin ),I r r

K r r c r r
�

(35)

	
θ π σ θ θ

→
= + +

+
2

(2)
2 2 33 1 2 2( ) lim 2 ( - ) ( cos , sin ),I r r

K r r c e r r
�

(36)

where superscripts 1 and 2 pertain to the inner and outer 
borders of the crack, respectively. Alternatively,
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4  Results and discussion

At first, for the sake of verification, two problems of a 
concentric annular crack subjected to uniform (Section 
4.1) and non-axisymmetric (Section 4.2) internal pres-
sures that are available in the literature are readily 
re-examined as the special cases of the current work. 
Subsequently, the problem of an eccentric annular 
crack under uniform far-field tension is addressed in 
Section 4.3.
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4.1  �Concentric annular crack under uniform 
tension

The numerical values of the stress intensity factors per-
tinent to the concentric annular crack under uniform 
tension are available in the Handbook by Tada et al. [10] 
as well as in the work of Noda et al. [11]. As it is evident 
from Table  1, the numerical values of the normalized 
stress intensity factors (1)

0/( )IK cσ π  and (2)
0/( )IK cσ π  

reproduced for different ratios of c/rc via the present 
theory with zero eccentricity (e = 0) are in good agree-
ment with their results; note that c = (r2-r1)/2 and 
rc = (r2+r1)/2. Furthermore, the stress intensity factors for 
the special cases of center crack and penny-shaped crack 
can readily be calculated in the limits as r1/r2→1(c/rc→0) 
and r1/r2→0(c/rc→1), respectively. For the center crack, 
the current theory yields (1)

0/( ) 1.004IK cσ π =  and 
σ π =(2)

0/( ) 1.002,IK c  which are in reasonable agree-
ment with the exact values of 1. For the case of the 
penny-shaped crack, the current theory results in 

(2)
0/( ) 0.901IK cσ π =  as compared to the exact value of 

2 2 / 0.900.π∼
Figure  3A and B compare, respectively, the vari-

ations of the normalized stress intensity factors 
( )

0/( ), 1, 2i
IK c iσ π =  in terms of r1/r2 obtained using the 

current theory with those from the Handbook by Tada et al. 
[10]. The results are in good agreement, and moreover, 
for the above-mentioned limiting cases of a center crack 
(r1/r2→1) and a penny-shaped crack (r1/r2→0), the results 
converge to the exact values of 1 [both (1)

0/( )IK cσ π  and 
σ π(2)

0/( )]IK c  and (2)
02 2 / ( /( )),IK cπ σ π  respectively. 

It is evident that the normalized stress intensity factor 
( )

0/( )i
IK cσ π  along the inner crack-tip (i = 1) decreases 

with increasing r1/r2, while the trend for that of the outer 
crack-tip (i = 2) is reversed.

Table 1: Comparison of the values of the inner and outer stress intensity factors for various ratios of c/rc for the case of a concentric annular 
crack with those of Noda et al. [11] and Tada et al. [10].

c/rc    ( 1 )
0/( )σ πIK c  

 

(2)
0/( )σ πIK c

Current study  Ref. [11]  Ref. [10] Current study  Ref. [11]  Ref. [10]

0.1   1.030  1.030  1.031  0.979  0.979  0.979
0.2   1.068  1.068  1.069  0.963  0.963  0.963
0.3   1.118  1.118  1.117  0.950  0.950  0.950
0.4   1.182  1.182  1.180  0.939  0.939  0.939
0.5   1.269  1.269  1.265  0.930  0.930  0.930
0.6   1.390  1.390  1.385  0.922  0.922  0.922
0.7   1.572  1.573  1.567  0.916  0.916  0.915
0.8   1.887  1.885  1.881  0.910  0.910  0.910
0.9   2.616  2.577  2.610  0.905  0.903  0.904
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Figure 3: Comparison of the variations of the (A) inner and (B) outer 
stress intensity factors in terms of r1/r2 for the case of concentric 
annular crack with those of Tada et al. [10].

4.2  �Concentric annular crack under  
non-axisymmetric loading

The represented solution is verified by examination of the 
reduced conventional concentric annular crack for which 
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e = 0. For this special case, ρ1 = r1 and ρ2 = r2 and the right-
hand side of (24) degenerates so that
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It is seen that (43) and (44) are in complete agree-
ment with the solution of an annular crack represented 
by Fabrikant [4].

4.3  �Eccentric annular crack under uniform 
far-field tension

In Sections 2 and 3, the problem of an eccentric annular 
crack under arbitrary pressure over the faces of the crack 
was formulated in terms of two decoupled Fredholm 
integral equations. One of the most practical cases is the 
case of an eccentric annular crack under uniform far-field 
loading which is equivalent to uniform pressure over the 
crack faces; therefore, the stress intensity factors corre-
sponding to this problem are examined for various crack 
configurations.

On setting p(x1, x2) = σ0, the right-hand side of the 
Fredholm integral equations (24) degenerate, so that
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Figure  4A–C which correspond, respectively, to 
r1/r2 = 0.1, 0.2, 0.4 show the variation of the normalized 
stress intensity factor associated with the inner crack 
edge, (1)

0 2/( ),IK rσ π , with an angle θ1; each figure dis-
plays four curves which are pertinent to e/r2 = 0, 0.1, 0.2, 0.4. 
Similar sets of plots are provided for the outer crack edge 
in Figure 5A–C. It is observed that for all cases the stress 
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Figure 4: Effect of the eccentricity on the inner stress intensity 
factor for the cases: (A) r1/r2 = 0.1, (B) r1/r2 = 0.2, and (C) r1/r2 = 0.4.

intensity factors decrease with increasing r1/r2. For a given 
value of r1/r2 and e/r2, the stress intensity factor for the 
inner crack edge is larger than that of the outer crack edge. 
From comparison of the figures pertinent to the outer crack 
edge, it is seen that a curve for a given value e/r2≠0 crosses 
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the line e/r2 = 0 at an angle θ̅2, which remains unchanged as 
r1/r2 varies. In other words for an annular crack with eccen-
tricity, e/r2≠0, there exists an angle, 0° < θ̅2 = θ̅2(e/r2) < 180° 
independent of the ratio r1/r2 along the outer crack edge at 
which (2)

0 2/( )IK rσ π  becomes equal to the stress intensity 
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Figure 5: Effect of the eccentricity on the outer stress intensity 
factor for the cases: (A) r1/r2 = 0.1, (B) r1/r2 = 0.2, and (C) r1/r2 = 0.4.

factor pertinent to the outer crack edge of the concentric 
annular crack for which r1 and r2 are kept the same as those 
of the eccentric annular crack but e/r2 = 0.

From Figure 4A–C, it is seen that for e > 0 the maximum 
and minimum values of the stress intensity factor associ-
ated with the inner crack edge occur at θ1 = 0 and π, respec-
tively. Figure 5A–C reveal that similar observation holds 
for the outer crack edge.

Figure 6 shows the variation of the normalized value 
of the maximum stress intensity factor, (1)

0 2/( ),IK rσ π  
pertinent to the inner crack edge as a function of the nor-
malized eccentricity, e/r1, for different values of r1/r2 = 0.1, 
0.2, 0.4. Similarly, (2)

0 2/( )IK rσ π  versus e/r1 pertinent 
to the outer crack edge for r1/r2 = 0.1, 0.2, 0.4 has been 
plotted in Figure  7. From Figure 6, it is observed that 
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Figure 6: Variation of the maximum inner stress intensity factor in 
terms of eccentricity for the three cases of r1/r2 = 0.1, 0.2, and 0.4.
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Figure 7: Variation of the maximum outer stress intensity factor in 
terms of eccentricity for the three cases of r1/r2 = 0.1, 0.2, and 0.4.
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(1)
0 2/( )IK rσ π  follows an increasing trend with the nor-

malized eccentricity and reaches its peak value at about 
e/r1≈1. (1)

0 2/( ),IK rσ π  then decreases with further increase 
in e/r1. However, Figure 7 shows that (2)

0 2/( )IK rσ π  
increases monotonically with e/r1; for larger values of r1/r2, 
there is a greater sensitivity to the change in the value of 
the normalized eccentricity, e/r1.

Appendix
From Eq. (16), we have

	

3 3 3 3
2

1 ,
(1 )z z z az

ψ ψ ψ ψζ ζ
ζ ζ ζ

∂ ∂ ∂ ∂∂ ∂= + =
∂ ∂ ∂ ∂ ∂ ∂+ �

(48)

	

3 3 3 3
2

1 .
(1 )z z z az

ψ ψ ψ ψζ ζ
ζ ζ ζ

∂ ∂ ∂ ∂∂ ∂= + =
∂ ∂ ∂ ∂ ∂ ∂+ �

(49)

Using the above equations, we can write
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which can be combined with the following equations:
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to give
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Moreover, from Eq. (18) we have
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and similarly,
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Therefore, we have
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This relation shows that if a function is harmonic 
with respect to the (x1, x2, x3) coordinates, it will also be 
harmonic with respect to the transformed coordinates 
(ξ1, ξ2, ξ3).
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