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Abstract: The present paper deals with the study of reflec-
tion waves in an initially stressed transversely isotropic 
medium, in the context of Green and Naghdi (GN) ther-
moelasticity theory type II and III. The components of 
displacement, stresses and temperature distributions 
are determined through the solution of the wave equa-
tion by imposing the appropriate boundary conditions. 
Numerically simulated results are plotted graphically 
with respect to frequency in order to show the effect of 
anisotropy.
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1  Introduction
Several efforts are made to remove the “so-called 
paradox”, inherent in the classical coupled dynamical 
theory of thermoelasticity [1]: that the thermal signal 
propagates with an infinite speed. An extended thermo
elasticity theory introducing one thermal relaxation time 
in the thermoelastic process was proposed by Lord and 
Shulman [2] and the temperature-rate dependent theory 
of thermoelasticity – which takes into account two relax-
ation times – was developed by Green and Lindsay [3]. 
Chandrasekharaiah [4], Hetnarski and Iganazack [5] in 
their recent surveys, reviewed the theory proposed by 
Green and Naghdi [6–9] as an alternate way for formu-
lating the propagation of heat. This theory is capable of 
incorporating thermal pulse transmission in a consist-
ent manner and makes use of general entropy law rather 
than the usual entropy inequality. The characterization 
of thermoelastic material response is based on three 
types of constitutive functions: type I, type II, and type 

III. When the theory of type I is linearized, a parabolic 
equation of heat conduction arises. Here, we focus on 
the theory of type II (a limiting case of type III), which 
does not admit energy dissipation. Following the Green-
Naghdi (GN) theory of thermoelasticity without energy 
dissipation, further research work was conducted on the 
wave propagation in isotropic generalized thermoelastic 
solids (e.g., Quintanilla [10]; Taheri et  al. [11]; Puri and 
Jordan [12]; Roychoudhuri and Byopadhyay [13]; Lazzari 
and Nibbi [14]; Quintanilla [15]).

Initial stresses may develop in a medium for several 
reasons, e.g., temperature variation during process-
ing, rapid quenching, slow creep processes, differential 
external forces, gravity variations, etc. The Earth, in 
particular, is assumed to be under high initial stresses. 
Dey et  al. [16, 17] studied the propagation of waves in 
a thermoelastic medium under initial stresses. Gupta 
and Gupta [18] discussed the reflection of waves in an 
initially stressed fiber-reinforced transversely isotropic 
medium. Based on this, the present paper deals with the 
propagation of waves in an initially stressed transversely 
isotropic medium in the context of the GN thermoelas-
ticity theory of types II and III. This study may have 
applications in various fields of science and technology, 
including atomic physics, aerospace and industrial engi-
neering (thermal power plants, submarine structures, 
pressure vessels, chemical pipes).

2  Basic equations
The constitutive relations and balance laws for a general 
anisotropic (with a center of symmetry) initially stressed 
thermoelastic medium, in the absence of body forces, 
are given by Green and Naghdi [9] and Montanaro [19] as 
follows:

–– Constitutive relation:

	
- ,ij ijkl kl ijt C e Tβ=

� (1)

–– Balance law:

	 , ,-ij j ij j it P uω ρ= ��
� (2)
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–– Equation of heat conduction:

	
* *

, , 0 ,( ), , 1, 2, 3,ij ij ij ij ij i jK T K T T u c T i jβ ρ+ = + =� ����
�

(3)

where ρ is the mass density, tij are the components of 
stress tensor, ui is the mechanical displacement vector,  

, ,( )
2

i j j i
ij

u u
e

+
=  are the components of the infinitesimal 

strain, T is the temperature change of a material parti-
cle, T0 is the reference uniform temperature of the body, 
P = -t11 is the normal initial stress and ωij = (uj,i-ui,j)/2 is the 
rotation tensor. Moreover, Kij is the thermal conductiv-
ity tensor, *

ijK  denotes a characteristic material constant 
tensor, βij = Cijklαkl denotes the thermal elastic coupling 
tensor, αkl denotes the coefficient of linear thermal 
expansion, c* is the specific heat at constant strain and 
Cijkl is the elasticity matrix. The various material tensors 
introduced obey the following symmetry properties 

* *, , , .ijkl klij jikl ij ji ij ji ij jiC C C K K K K β β= = = = =  A comma nota-
tion is used for spatial derivatives and a superimposed dot 
denotes time differentiation.

3  Problem formulation
Following Slaughter [20], an appropriate transforma-
tion is applied to Eq. (1), in order to derive the gov-
erning equations for an initially stressed transversely 
isotropic medium, when our analysis is restricted to two 
dimensions. The origin of the coordinate system (x1, x2, 
x3) is taken at the free surface of the half-space. The  
x1–x2 plane is chosen to coincide with the free surface 
and the x3 axis is then normal to the half-space (x3  ≥  0). 
We consider plane waves such that all particles on a 
line parallel to x2-axis are equally displaced. Therefore, 
all field quantities will be independent of the x2 coordi-
nate. Then, the component of the displacement vector 
is of the form

	 1 3( , 0, ),u u u=
�

� (4)

and the solutions are independent of x2, i.e., ∂/∂x2≡0. 
Thus, the governing differential equations for such a 
medium reduce to:
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where β1 = C11α1+C13α3, β3 = C31α1+C33α3 and we have also 
used the notation 11→1,13→5,33→3 for the material 
constants.

To proceed further, it is convenient to introduce the 
non-dimensional quantities defined by

	 11

, , , , ,iji i
i i ij

o o

tx u t Tx u t t T
L L C t T

= = = = =′ ′ ′ ′ ′
�

(8)

where L, to, To are parameters having dimension of length, 
time and temperature, respectively.

4  Solution of the problem
Let 1 3( , 0, )p p p=

�  denote the unit propagation vector, 
with c and ξ denoting respectively the phase velocity and 
the wave number of plane waves propagating in the x1–x3 
plane. Then by seeking for plane wave solutions of the 
equations of motion of the form

	
1 1 3 3( - )

1 3 1 3( , , ) ( , , ) .i p x p x ctu u T u u T e ξ +=
� (9)

We introduced Eqs. (8) and (9) into Eqs. (5)–(7) to 
obtain three homogeneous equations in three unknowns. 
Non-trivial solutions of the resulting system of equations 
can be derived when the following condition is fulfilled

	
6 4 2 0,Ac Bc Cc D+ + + = � (10)

where

10 5 10 1 10 6 8 3 7 9 1 5 9 2 4 9, - - , - ,A f B f f f f f f f f f D f f f f f f= = + + + =
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The roots of this equation give three values of c2. The 
corresponding three positive values of c will then be the 
propagation velocities of the three possible waves. The 
waves with velocities c1, c2, c3 correspond to three types of 
quasi waves. We name these waves as quasi-longitudinal 
displacement (qLD) wave, quasi thermal wave (qT), and 
quasi transverse displacement (qTD) wave.

5  Reflection waves
Consider a homogeneous initially stressed transversely 
isotropic half-space, in the context of G-N thermoelas-
ticitytheory of types II and III, occupying the region x3 > 0. 
Incident qLD or qT or qTD waves at the interface will gen-
erate reflected qLD, qT and qTD waves in the half-space 
x3 > 0. The displacements and temperature distributions 
are given by

	

6

1 3
1
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�

(11)

where
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with ω denoting the angular frequency. Here the subscripts 
1, 2, 3 denote, respectively, the quantities corresponding to 
incident qLD, qT and qTD waves, whereas the subscripts 4, 
5 and 6 denote, respectively, the corresponding reflected 
waves, with
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For incident waves:

–– qLD-wave:	 p1 = sin e1, p3 = cos e1,

–– qT-wave:	 p1 = sin e2, p3 = cos e2,

–– qTD-wave: 	 p1 = sin e3, p3 = cos e3,

For reflected waves:

–– qLD-wave: 	 p1 = sin e4, p3 = cos e4,

–– qT-wave: 	 p1 = sin e5, p3 = cos e5,

–– qTD-wave: 	 p1 = sin e6, p3 = cos e6.

It is further noted that e1 = e4, e2 = e5, e3 = e6, that is, the 
angle of incidence is equal to the angle of reflection in 
generalized thermoelastic transversely isotropic media, 
so that the velocities of reflected waves are equal to 
their corresponding incident waves, i.e., c1 = c4, c2 = c5, 
c3 = c6.

6  Boundary conditions
The boundary conditions at the thermally insulated 
surface x3 = 0 are given by

	
33 31

3

0, 0, 0,Tt t
x

∂
= = =

∂
�

(13)

where
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The wave numbers ξj, j = 1,2,…,6, and the apparent 
velocity cj, j = 1,2,…,6, are connected through the relation

	 1 1 2 2 6 6 ,c c cξ ξ ξ ω= = = =…
� (15)

at the surface x3 = 0. In order to satisfy the boundary condi-
tions given by Eqs. (3), (15) may also be re-written as

	
61 2

1 2 6

sinsin sin 1 .
ee e

c c c c
= = = =…  � (16)

Making use of Eqs. (8), (14), (15) and (16), along with 
the thermally insulated boundary conditions given by Eq. 
(3), we obtain
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–– Incident qLD-wave:

In the case of incident qLD-wave, A2 = A3 = 0. Dividing the set 
of Eqs. (17) throughout by A1, we obtain a system of three 
non-homogeneous equations in three unknowns which can 
be solved by using the Gauss elimination method to obtain
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–– Incident qT-wave:

In the case of incident qT-wave, A1 = A2 = 0, and thus we 
have
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–– Incident qTD-wave:

In the case of incident qTD-wave, A1 = A2 = 0, and thus we have
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where 3 3 3i iA∆ + ×=   and ( 1,2,3, 1,2,3)p
i i p∆ = =  can be 

obtained by replacing, respectively, the first, second and 
third column of Δ by 1 2 3[ - - - ]Tp p pA A A , where [ ]T denotes 
the transpose of the matrix.

7  Numerical results and discussion
In order to illustrate the theoretical analysis given in 
the preceding sections, we now present some numeri-
cal results. The following relevant physical constants for 
Cobalt material are taken from Dhaliwal and Singh [21] for 
a thermoelastic transversely isotopic material:
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11 12
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13 33

11 -2 6 -2
55 1
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1

2 -1 2 -1
1 3
* 2 *
1 3
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C C
C C
C

K K
K K

β

β ρ

= × = ×
= × = ×
= × = ×

= × = ×
= × = ×
= × 2
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= × =

The variations of amplitude ratio of the reflected qLD, 
qTD and qT waves, for incident qLD, qTD and qT waves at 
the free surface are shown graphically in order to compare 
the results obtained in the two cases: i.e., incident waves 
for a transversely isotropic medium in the context of ther-
moelasticity with energy dissipation (ISTIWED) and the 
standard case for isotropic thermoelastic (ISIWED) waves. 
In Figure 1, the graphical representation is given for the 
variation of amplitude ratios |Z1|, |Z2| and |Z3| for incident 
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Figure 1 The variation of amplitude ratios of |Zi| (i = 1, 2, 3) with frequency for incident qLD-wave.
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Figure 2 The variation of amplitude ratios of |Zi| (i = 1, 2, 3) with frequency for incident qT-wave.
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Figure 3 The variation of amplitude ratios of |Zi| (i = 1, 2, 3) with frequency for incident qTD-wave.

qLD-wave. Figures 2 and 3, respectively, represent similar 
situations, when qTD and qT waves are incident.

Here |Z1|, |Z2| and |Z3| are the amplitude ratios of 
reflected qLD, qTD and qT waves, respectively. These varia-
tions are shown for two angles of incidence viz, θ = 30°, 45°. 
In these figures the solid curves lines correspond to the 
case of ISTIWED, while broken curves correspond to the 
case of ISIWED. Moreover, the curves without the center 
symbol correspond to the case when θ = 30°, and those with 
the center symbol (–o–o–) correspond to the case of θ = 45°.

8  Conclusion
Reflection of waves from the free surface of an initially 
stressed transversely isotropic medium in the context of 
the G-N thermoelasticity theory of types II and III has been 
discussed. The appreciable effect of anisotropy and angle 
of incidence is depicted on amplitude ratios for various 

reflected waves. It can be concluded from the graphs that 
the amplitude ratio |Z1| exhibits higher values because of 
anisotropy for all three types of incident waves (viz., qLD, 
qTD, qT), whereas the amplitude ratios |Z2|, |Z3| shows 
oscillating behavior.
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