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Wave propagation in an initially stressed
transversely isotropic thermoelastic half-space

Abstract: The present paper deals with the study of reflec-
tion waves in an initially stressed transversely isotropic
medium, in the context of Green and Naghdi (GN) ther-
moelasticity theory type II and III. The components of
displacement, stresses and temperature distributions
are determined through the solution of the wave equa-
tion by imposing the appropriate boundary conditions.
Numerically simulated results are plotted graphically
with respect to frequency in order to show the effect of
anisotropy.
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1 Introduction

Several efforts are made to remove the “so-called
paradox”, inherent in the classical coupled dynamical
theory of thermoelasticity [1]: that the thermal signal
propagates with an infinite speed. An extended thermo-
elasticity theory introducing one thermal relaxation time
in the thermoelastic process was proposed by Lord and
Shulman [2] and the temperature-rate dependent theory
of thermoelasticity — which takes into account two relax-
ation times — was developed by Green and Lindsay [3].
Chandrasekharaiah [4], Hetnarski and Iganazack [5] in
their recent surveys, reviewed the theory proposed by
Green and Naghdi [6-9] as an alternate way for formu-
lating the propagation of heat. This theory is capable of
incorporating thermal pulse transmission in a consist-
ent manner and makes use of general entropy law rather
than the usual entropy inequality. The characterization
of thermoelastic material response is based on three
types of constitutive functions: type I, type II, and type
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III. When the theory of type I is linearized, a parabolic
equation of heat conduction arises. Here, we focus on
the theory of type II (a limiting case of type III), which
does not admit energy dissipation. Following the Green-
Naghdi (GN) theory of thermoelasticity without energy
dissipation, further research work was conducted on the
wave propagation in isotropic generalized thermoelastic
solids (e.g., Quintanilla [10]; Taheri et al. [11]; Puri and
Jordan [12]; Roychoudhuri and Byopadhyay [13]; Lazzari
and Nibbi [14]; Quintanilla [15]).

Initial stresses may develop in a medium for several
reasons, e.g., temperature variation during process-
ing, rapid quenching, slow creep processes, differential
external forces, gravity variations, etc. The Earth, in
particular, is assumed to be under high initial stresses.
Dey et al. [16, 17] studied the propagation of waves in
a thermoelastic medium under initial stresses. Gupta
and Gupta [18] discussed the reflection of waves in an
initially stressed fiber-reinforced transversely isotropic
medium. Based on this, the present paper deals with the
propagation of waves in an initially stressed transversely
isotropic medium in the context of the GN thermoelas-
ticity theory of types II and III. This study may have
applications in various fields of science and technology,
including atomic physics, aerospace and industrial engi-
neering (thermal power plants, submarine structures,
pressure vessels, chemical pipes).

2 Basic equations

The constitutive relations and balance laws for a general
anisotropic (with a center of symmetry) initially stressed
thermoelastic medium, in the absence of body forces,
are given by Green and Naghdi [9] and Montanaro [19] as
follows:

- Constitutive relation:

t;=Cyulu Pyl > @

— Balance law:

t;,-Po, ,=pl, )
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- Equation of heat conduction:

K,T,+K.T,=(TBii +pc'T), i,j=1,2,3, 3

UARD)

where p is the mass density, ¢, are the components of
stress tensor, u, is the mechanical displacement vector,

)

(ui tu P
= are the components of the infinitesimal
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ij
strain, T is the temperature change of a material parti-
cle, T, is the reference uniform temperature of the body,
P=-t is the normal initial stress and wij=(ui’i-ui,}.)/2 is the
rotation tensor. Moreover, Kij is the thermal conductiv-
ity tensor, KU denotes a characteristic material constant
tensor, ﬁij:Cijk,akl denotes the thermal elastic coupling
tensor, a,, denotes the coefficient of linear thermal
expansion, c" is the specific heat at constant strain and
C,, is the elasticity matrix. The various material tensors
introduced obey the following symmetry properties
C=Ci=Ciw> KU =K}fi, K;=K;,,=f; A comma nota-
tion is used for spatial derivatives and a superimposed dot
denotes time differentiation.

3 Problem formulation

Following Slaughter [20], an appropriate transforma-
tion is applied to Eq. (1), in order to derive the gov-
erning equations for an initially stressed transversely
isotropic medium, when our analysis is restricted to two
dimensions. The origin of the coordinate system (x,, x,,
x3) is taken at the free surface of the half-space. The
X,~x, plane is chosen to coincide with the free surface
and the x, axis is then normal to the half-space (x,>0).
We consider plane waves such that all particles on a
line parallel to x_-axis are equally displaced. Therefore,
all field quantities will be independent of the x, coordi-
nate. Then, the component of the displacement vector
is of the form

u=(u,, 0, u,), (4)

and the solutions are independent of x,, i.e., d/0x=0.
Thus, the governing differential equations for such a
medium reduce to:
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where 8,=C a+C.a, f,=C a+C a, and we have also
used the notation 11—1,13—5,33—3 for the material
constants.

To proceed further, it is convenient to introduce the

non-dimensional quantities defined by
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where L, t , T are parameters having dimension of length,
time and temperature, respectively.

4 Solution of the problem

Let p=(p,, 0, p,) denote the unit propagation vector,
with ¢ and & denoting respectively the phase velocity and
the wave number of plane waves propagating in the x,—x,
plane. Then by seeking for plane wave solutions of the
equations of motion of the form

(s u,, T)=(1, &, T)eE P, ©
We introduced Egs. (8) and (9) into Egs. (5)-(7) to
obtain three homogeneous equations in three unknowns.

Non-trivial solutions of the resulting system of equations
can be derived when the following condition is fulfilled

Ac®+Bc"*+Cc*+D=0, (10)

where

A:fw’ B:'fsf;o']clflo+f5f3+f3f7 +f9’ D:f1f5f9_f2f4f9’
C:_f5(f9+flf10-f3f7)_fl(fs:_fefs)-fz(fz‘flo—’_fef;)+f3f4f8’

fl=p12d1+p§d3-d13pp§/2’ f2=p1p3d3_dnpp1p3/2’
f3=ip1d4, f4=p1p3d2-duPp1p3/2,

f5=p3d3+p§d5+dBPp12/2, fszip3iis’ f7:ip7d11’ fszip3dlz’
f,=iwp:-d,p; +iwkp}-d,p:
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The roots of this equation give three values of c2 The
corresponding three positive values of ¢ will then be the
propagation velocities of the three possible waves. The
waves with velocities c,, ¢,, ¢, correspond to three types of
quasi waves. We name these waves as quasi-longitudinal
displacement (qLD) wave, quasi thermal wave (qT), and
quasi transverse displacement (qTD) wave.

5 Reflection waves

Consider a homogeneous initially stressed transversely
isotropic half-space, in the context of G-N thermoelas-
ticitytheory of types II and III, occupying the region x,>O0.
Incident qLD or qT or qTD waves at the interface will gen-
erate reflected qLD, qT and qTD waves in the half-space
x;>0. The displacements and temperature distributions
are given by

6
iB;
(u,u,, M=) A(L1,5)e”,

j=1

(1)

where

12)

{w( t-x, sine).-x3 cose).)/c]., j=1,2, 3,
j=

o(t-x, sine}.+x3 cosej)/cj, j=4,5,6,

with w denoting the angular frequency. Here the subscripts
1, 2, 3 denote, respectively, the quantities corresponding to
incident LD, T and qTD waves, whereas the subscripts 4,
5 and 6 denote, respectively, the corresponding reflected
waves, with

Ay Ny
N A
&(f,c)) &, £f, &f,
N= ’ /\11': 253 2 23°
TleEs, B4 CEf,  E(f,+fyc)
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For incident waves:

gLD-wave: p=sine,p.=cose,
- qT-wave: p,=sine,, p.=cos e,,
- (TD-wave: p=sine, p.=cose,
For reflected waves:
- gLD-wave: p=sine, p,=cose,
- qT-wave: p,=sine, p.=cos e,
- (TD-wave: p=sine, p,=cose,.

Itis further noted that e, =e,, e,=e,, e,=¢,, that s, the
angle of incidence is equal to the angle of reflection in
generalized thermoelastic transversely isotropic media,
so that the velocities of reflected waves are equal to
their corresponding incident waves, i.e., ¢,=c,, C,=C,
c,=C,.

6 Boundary conditions

The boundary conditions at the thermally insulated
surface x,=0 are given by

oT
t,,=0, t,=0, s =0, 13)
where
ou ou C.. ou du
t.=C.—+C_—2-B.T, t =—=(—2+—2).
7o Pox, P ox, 2 2 (8x3 Bxl) (14)

The wave numbers 5}., j=1,2,...,6, and the apparent
velocity cp j=1,2,...,6, are connected through the relation

c§ =ct,=.=ck =, (15)

at the surface x,=0. In order to satisfy the boundary condi-
tions given by Egs. (3), (15) may also be re-written as

sine, sine sine, 1
1_ 2 _ 6 (16)

¢ c, c, “c

Making use of Egs. (8), (14), (15) and (16), along with

the thermally insulated boundary conditions given by Eq.
(3), we obtain

£f, &)
N, = .
Tlees e,
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6
Y AA=0, i=1,2,3, (17)
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- Incident gLD-wave:

In the case of incident qLD-wave, A=A =0. Dividing the set
of Egs. (17) throughout by A,, we obtain a system of three
non-homogeneous equations in three unknowns which can
be solved by using the Gauss elimination method to obtain

Ao A 1,23 (18)
= =, 1= ) &y .
A A
— Incident qT-wave:

In the case of incident qT-wave, A =A,=0, and thus we
have

Z="oT0 e 2, 3. 19)

=~
g

— Incident qTD-wave:

In the case of incident gTD-wave, A,=A,=0, and thus we have
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A’
X’, i=1, 2, 3, (20)

where A:|Al.i+3|3X3 and A?(i=1,2,3, p=1,2,3) can be
obtained by replacing, respectively, the first, second and
third column of Aby [-A, -A, -A, 1", where [ 1" denotes

the transpose of the matrix.

7 Numerical results and discussion

In order to illustrate the theoretical analysis given in
the preceding sections, we now present some numeri-
cal results. The following relevant physical constants for
Cobalt material are taken from Dhaliwal and Singh [21] for
a thermoelastic transversely isotopic material:

C,=3.071x10"Nm"?, C,=1.650x10"Nm?,
C,=1.027x10"Nm?, C,,=3.581x10" Nm?,
C,,=151x10"Nm?, §,=7.04x10°Nm*K,
B,=6.98x10°Nm’K, p=8.836x10’Kgm”,
K,=6.90x10° Wm'K, K,=7.01x10* Wm'K,
K;=1313x10° W sec, K;=1.54x10" W sec,
c'=4.27x10"] Kg K, T=298 K.

The variations of amplitude ratio of the reflected qLD,
qTD and T waves, for incident qLD, qTD and qT waves at
the free surface are shown graphically in order to compare
the results obtained in the two cases: i.e., incident waves
for a transversely isotropic medium in the context of ther-
moelasticity with energy dissipation (ISTIWED) and the
standard case for isotropic thermoelastic (ISIWED) waves.
In Figure 1, the graphical representation is given for the
variation of amplitude ratios |Z|, |Z| and |Z| for incident
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Figure1 The variation of amplitude ratios of |Z| (i=1, 2, 3) with frequency for incident qLD-wave.
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Figure 2 The variation of amplitude ratios of |Z| (i=1, 2, 3) with frequency for incident qT-wave.
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Figure 3 The variation of amplitude ratios of |Z| (i=1, 2, 3) with frequency for incident qTD-wave.

gLD-wave. Figures 2 and 3, respectively, represent similar
situations, when qTD and T waves are incident.

Here |Z|, |Z| and |Z| are the amplitude ratios of
reflected qLD, qTD and qT waves, respectively. These varia-
tions are shown for two angles of incidence viz, §=30°, 45°.
In these figures the solid curves lines correspond to the
case of ISTIWED, while broken curves correspond to the
case of ISIWED. Moreover, the curves without the center
symbol correspond to the case when 6=30°, and those with
the center symbol (—o—o0-) correspond to the case of 6=45°.

8 Conclusion

Reflection of waves from the free surface of an initially
stressed transversely isotropic medium in the context of
the G-N thermoelasticity theory of types Il and IIl has been
discussed. The appreciable effect of anisotropy and angle
of incidence is depicted on amplitude ratios for various

reflected waves. It can be concluded from the graphs that
the amplitude ratio |Z| exhibits higher values because of
anisotropy for all three types of incident waves (viz., qLD,
qTD, qT), whereas the amplitude ratios |Z|, |Z,| shows
oscillating behavior.
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