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Abstract: A filtration model for plastic flow based on the
idea of a deformed material considered as a two-phase het-
erogeneous medium has been suggested. In this approach,
the wave displacement is regarded as a shock transition in
the medium. One of the phases (the excited one) is respon-
sible for system restructuring, and the other phase (the
normal one) is unrelated to structural transformations.
The plastic wave is the result of the interaction of these two
phases. The governing equations for the filtration model are
obtained. They include the laws of momentum and mass
conservation, as well as the filtration ratio of the phases.
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1 Introduction

One of the major issues in the physics of strength and plas-
ticity is the explanation of the observed inhomogeneities of
plastic flow in materials, as well as its evolution and cor-
responding stages observed during experiments [1, 2]. To
date, methods used in modern physical materials science
such as scanning and transmission electron microscopy,
as well as double-exposure speckle-interferometry, have
shown that the process of plastic deformation is of wave
nature [3-5]. This is supported by observed strain-stress
distributions at the boundary “surface layer-substrate” in
a “staggered” order (the “checkerboard” effect) [3, 4], along
with the observed nonuniform distribution of displacement
fields and deformation [5]. These facts indicate that there
are regimes or zones in the material that are not involved in
the evolving plastic deformation. The characteristic micro-
and macro-scales of these inhomogeneities according
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to Ref. [5] can range from ~1 um to ~1 mm. The observed
corresponding stages of plastic deformation are due to the
changing nature of deformation localization and increase
in the number of equidistant localization sites at the stages
of linear and parabolic hardening, whereas at the stage of
prefracture the collapse of plasticity wave occurs.

Studies of the dislocation substructures [6, 7] at
various stages of plastic deformation indicated that the
transition from one stage to another is accompanied by the
transformation of one type of substructure to another and
during the transition process two types of substructures
can exist simultaneously. The combination of these experi-
mental facts leads to the conclusion that the cause of the
observed regularities of plastic flow is the collective nature
of the changes of the internal structure [8-12]. To describe
this type of plastic deformation, ideas from the mechan-
ics of heterogeneous media can be applied [13]. Such an
approach was also independently adopted in Ref. [14] for
the study of phase transitions, plastic deformation, and
other structural transformations in solids. The peculiarity
of this approach is the split of the entire ensemble of the
structural elements of the medium (atoms, defects, etc.)
into two subsystems: the excited one, responsible for the
system restructuring and the normal one which remains
unexcited and not related to structural transformations.
After such splitting, the resulting heterogeneous mixture
is represented by a set of several continua (phases), each
of which is described by the respective conservation laws
and constitutive equations. The proposed model in this
article provides an explanation of nonuniform distribution
of displacements under uniaxial deformation [5] using the
laws of momentum and mass conservation. As discussed
in Ref. [15], plastic deformation of polycrystals occurs
due to “microshifts” and “macroshifts” that emerge as a
current of a fast-moving phase in between weakly deform-
able and inactive blocks. This can be viewed as a current in
a two-phase heterogeneous mixture. The first component
is identified with the microshifts, and the second one with
the macroshifts. Balance laws and constitutive equations
can then be mathematically expressed by the following set
of conservation laws for the mass and momentum of the
two phases.
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where p =ap _, p,=(-a)p, and 6,=a0, 6,=(1-a)c. The quan-
tities p, and p_ are the true densities of phases; « is the
volume fraction of the first phase; ¢ is the total tensor
stress of the whole mixture; p,=-p,, and I =-1, denote the
exchange intensities of momentum and mass; whereas w
and u are the velocities of the first and the second phases,
respectively. The intensity of the pulse exchange between
the phases can be represented as p,=R,+I, u,, where R,
is the interphase force associated with friction and other
interaction forces, and Lu, is another force associated
with flow and phase transformations. We assume that the
intensity of mass transfer is small compared to the inten-
sity of the momentum exchange and the mixture compo-

nents interact according to Rakhmatulin’s scheme [16].

Consequently, p,=R, and R,=-pVa+F,, where the force

21°
F, =%ape( 1-a)(u-w) is associated with the high-speed

nonequilibrium phases, with K being a constant. In view of
all the above facts, the system of Egs. (1)-(4) takes the form:

d
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dw
In Eq. (5) we assume that the inertia term p, (11t =0;

then adding Egs. (5) and (7) leads to the following relation:

adive=-a(1-a)p,(u-w)/K. 9)

Equation (9) is a consequence of the law of momentum
conservation for the first phase and may be viewed as being
analogous to Darcy’s law in the filtration theory [13]. The
meaning of the constant 1/K is that it is a factor of resist-
ance to movement of the first phase within the second.
The system of Egs. (5)-(8) must be closed by the
equation of state. As the second phase consists of weakly
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deformable blocks, we may take p =constant. For the first
phase, we assume that p =F(P) with P denoting pressure.
Now let us consider the problem within a one-dimen-
sional setting, by also assuming that the overall stress in
a heterogeneous mixture depends on the pressure o=—P.
Then Egs. (5)-(8) along with Eq. (9) and the respective
equations of state will give:

ou du_ 1 0P

% o Gap, o (10)
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2 Results and discussion

We seek a solution in the form of a traveling wave a(x-uot),
u(x-u t), wix-uyt), p,(x-u.t), P(x-u,t). Then

’ _ I 1 ’
u'(u-u,)= (ta)p, (13)
o' (u-u))=(1-a)w (14)
-u pi+( p,w)’=0 (15)

where the prime denotes derivative with respect to corre-
sponding traveling wave variables.
The first integrals of Egs. (13)-(15) are:

Cl
a=1- (16)
u-u
0
P=(C,-C,p.u) (17)
KP’
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Transforming Eq. (18) with the help of Egs. (16) and
(17) and using the variable u=u-u,, we obtain the follow-
ing equation containing the rate of the second phase:

E=C3-( H_Cl)pe (19)
dn u-C,

d
where d17=K—§. Next, we consider the case p,=AP [17], for
p

S

which
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du_(u-4,)(#-1,)

4 ac, (20)

where u,, and u, denote the velocities of the second

phase on the boundary of the localized zone. Integration

of this equation leads to:
C,-u,

[9-?2}111(&-172)-[_ _1]ln(ﬂ-ﬂl):d;7+c
u-u,

u,-u,

(1)

To determine the constants involved in Egs. (20) and (21),
the following boundary conditions are used:

(0)=it,, u(L)=1,, w'(0)=0, w(L)=0, a(0)=cr,,

a(L)=a, (22)

Then, by Eq. (22), the first integrals will take the form:
(1-a)u,=C,
P=C,-Cpy,
0C p+(C?p+C,)u,-C,-C,C,=0
(1-a,)u,=C,
P,=C,-Cp Y,
-u;C p+(C;p+C,)u,-C,-C,C,=0

(23)

Returning to Egs. (21) and (23) by using the variable u,
we construct the speed plotted for the second phase for
the case u>u, and a,<a, with respect to coordinate x at
various times (Figure 1). This clearly shows that a kind of
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Figure1 Velocity of the second phase with respect to the spatial
coordinates at various points of time (1-t=0, 2-t=1, 3-t=2).
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“shock transition” occurs. Consequently, there are areas
of the deformable material, which are not involved in the
plastic deformation. This is confirmed by experimental
observation [5]. The speed of the containment chamber

-Du, +(1-
may be defined as uoz(al u+(1-a,)u,

. If u=0 and
a,-a,

u,=u,, where u_is the velocity of the traverse beam, the
values of the marginal rate of localization exceeds the rate
of the traverse beam in the testing machine, which is also
consistent with the experiment. The case u,<u, and ¢ >,
also allows the existence of shock transition. Note that
similar relationships were obtained in Ref. [18] for fixed
dynamical structures, and in Ref. [19] for a shock wave in
an ideal gas.

We define the width of the shock transition with a

u-u
relation having the following form: lzl—;. The
max( j

dx

evaluation of this magnitude shows that it has the value
of ~10 um, which coincides with the characteristic length
scales of heterogeneity observed in the experiment. Also
note that the free path of dislocation motion in materials
is of the same order of magnitude [20].

3 Conclusions

1. The system of governing equations of the filtration
plasticity model is provided. A solution is obtained in
the form of shock transition. Its width coincides with
the characteristic values of the scale of the inhomoge-
neity of deformation.

2. Itis shown that the maximum speed localization front
exceeds the rate of crosshead of the testing machine,
which corresponds to the experimental observations.

3. In this article, emphasis has been placed mainly
on Russian literature on the topic as this is not well
known in the West. It is noted, in thin connection,
that excessive literature on this topic of considering
a generalized continuum medium as a superposition
of “normal” and “excited” states was advanced by the
last author and his coworkers in a series of publica-
tion [21-32].
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