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Filtration model of plastic flow

Abstract: A filtration model for plastic flow based on the 
idea of a deformed material considered as a two-phase het-
erogeneous medium has been suggested. In this approach, 
the wave displacement is regarded as a shock transition in 
the medium. One of the phases (the excited one) is respon-
sible for system restructuring, and the other phase (the 
normal one) is unrelated to structural transformations. 
The plastic wave is the result of the interaction of these two 
phases. The governing equations for the filtration model are 
obtained. They include the laws of momentum and mass 
conservation, as well as the filtration ratio of the phases.
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1  Introduction
One of the major issues in the physics of strength and plas-
ticity is the explanation of the observed inhomogeneities of 
plastic flow in materials, as well as its evolution and cor-
responding stages observed during experiments [1, 2]. To 
date, methods used in modern physical materials science 
such as scanning and transmission electron microscopy, 
as well as double-exposure speckle-interferometry, have 
shown that the process of plastic deformation is of wave 
nature [3–5]. This is supported by observed strain-stress 
distributions at the boundary “surface layer-substrate” in 
a “staggered” order (the “checkerboard” effect) [3, 4], along 
with the observed nonuniform distribution of displacement 
fields and deformation [5]. These facts indicate that there 
are regimes or zones in the material that are not involved in 
the evolving plastic deformation. The characteristic micro- 
and macro-scales of these inhomogeneities according 

to Ref. [5] can range from ∼1 μm to ∼1 mm. The observed 
corresponding stages of plastic deformation are due to the 
changing nature of deformation localization and increase 
in the number of equidistant localization sites at the stages 
of linear and parabolic hardening, whereas at the stage of 
prefracture the collapse of plasticity wave occurs.

Studies of the dislocation substructures [6, 7] at 
various stages of plastic deformation indicated that the 
transition from one stage to another is accompanied by the 
transformation of one type of substructure to another and 
during the transition process two types of substructures 
can exist simultaneously. The combination of these experi-
mental facts leads to the conclusion that the cause of the 
observed regularities of plastic flow is the collective nature 
of the changes of the internal structure [8–12]. To describe 
this type of plastic deformation, ideas from the mechan-
ics of heterogeneous media can be applied [13]. Such an 
approach was also independently adopted in Ref. [14] for 
the study of phase transitions, plastic deformation, and 
other structural transformations in solids. The peculiarity 
of this approach is the split of the entire ensemble of the 
structural elements of the medium (atoms, defects, etc.) 
into two subsystems: the excited one, responsible for the 
system restructuring and the normal one which remains 
unexcited and not related to structural transformations. 
After such splitting, the resulting heterogeneous mixture 
is represented by a set of several continua (phases), each 
of which is described by the respective conservation laws 
and constitutive equations. The proposed model in this 
article provides an explanation of nonuniform distribution 
of displacements under uniaxial deformation [5] using the 
laws of momentum and mass conservation. As discussed 
in Ref. [15], plastic deformation of polycrystals occurs 
due to “microshifts” and “macroshifts” that emerge as a 
current of a fast-moving phase in between weakly deform-
able and inactive blocks. This can be viewed as a current in 
a two-phase heterogeneous mixture. The first component 
is identified with the microshifts, and the second one with 
the macroshifts. Balance laws and constitutive equations 
can then be mathematically expressed by the following set 
of conservation laws for the mass and momentum of the 
two phases.

	
1

1 21div ;I
t
ρ

ρ
∂

+ =
∂

w
�

(1)



178      V.D. Sarychev et al.: Filtration model of plastic flow

	
1 1

1 1 21div - ;  
d d

I
dt dt t

ρ
∂= + = + ⋅∇
∂21

w
p w wσ

�
(2)

	
2

2 12div ;I
t

ρ
ρ

∂
+ =

∂
u

�
(3)

	
2 2

2 2 12 12div - ;  
d d

I
dt dt t

ρ
∂= + = + ⋅∇
∂

u
p u uσ

�
(4)

where ρ1 = αρe, ρ2 = (1-α)ρs and σ1 = ασ, σ2 = (1-α)σ. The quan-
tities ρe and ρs are the true densities of phases; α is the 
volume fraction of the first phase; σ is the total tensor 
stress of the whole mixture; p21 = -p12 and I21 = -I12 denote the 
exchange intensities of momentum and mass; whereas w 
and u are the velocities of the first and the second phases, 
respectively. The intensity of the pulse exchange between 
the phases can be represented as p21 = R21+I21u21, where R21 
is the interphase force associated with friction and other 
interaction forces, and I21u21 is another force associated 
with flow and phase transformations. We assume that the 
intensity of mass transfer is small compared to the inten-
sity of the momentum exchange and the mixture compo-
nents interact according to Rakhmatulin’s scheme [16]. 

Consequently, p21 = R21 and R21 = -p∇α+F21, where the force 

21
1 ( 1- )( - )eK

αρ α=F u w  is associated with the high-speed 

nonequilibrium phases, with K being a constant. In view of 
all the above facts, the system of Eqs. (1)–(4) takes the form:
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In Eq. (5) we assume that the inertia term 1
1 0
d
dt

ρ ≈
w

; 

then adding Eqs. (5) and (7) leads to the following relation:
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Equation (9) is a consequence of the law of momentum 
conservation for the first phase and may be viewed as being 
analogous to Darcy’s law in the filtration theory [13]. The 
meaning of the constant 1/K is that it is a factor of resist-
ance to movement of the first phase within the second.

The system of Eqs. (5)–(8) must be closed by the 
equation of state. As the second phase consists of weakly 

deformable blocks, we may take ρs = constant. For the first 
phase, we assume that ρe = F(P) with P denoting pressure. 
Now let us consider the problem within a one-dimen-
sional setting, by also assuming that the overall stress in 
a heterogeneous mixture depends on the pressure σ = –P. 
Then Eqs. (5)–(8) along with Eq. (9) and the respective 
equations of state will give:
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2  Results and discussion
We seek a solution in the form of a traveling wave α(x-u0t), 
u(x-u0t), w(x-u0t), ρ1(x-u0t), P(x-u0t). Then
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where the prime denotes derivative with respect to corre-
sponding traveling wave variables.

The first integrals of Eqs. (13)–(15) are:
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Transforming Eq. (18) with the help of Eqs. (16) and 
(17) and using the variable 0-u u u= , we obtain the follow-
ing equation containing the rate of the second phase:
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where 1 ,u  and 2u  denote the velocities of the second 
phase on the boundary of the localized zone. Integration 
of this equation leads to:
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To determine the constants involved in Eqs. (20) and (21), 
the following boundary conditions are used:

	

1 2 1

2

( 0) , ( ) , ( 0) 0, ( ) 0, ( 0) , 
( )

u u u L u u u L
L

α α

α α

= = = = =′ ′
=

� (22)

Then, by Eq. (22), the first integrals will take the form:
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Returning to Eqs. (21) and (23) by using the variable u, 
we construct the speed plotted for the second phase for 
the case u1 > u2 and α1 < α2 with respect to coordinate x at 
various times (Figure 1). This clearly shows that a kind of 
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Figure 1 Velocity of the second phase with respect to the spatial 
coordinates at various points of time (1–t = 0, 2–t = 1, 3–t = 2).

“shock transition” occurs. Consequently, there are areas 
of the deformable material, which are not involved in the 
plastic deformation. This is confirmed by experimental 
observation [5]. The speed of the containment chamber 

may be defined as 1 1 2 2
0
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u2 = u*, where u* is the velocity of the traverse beam, the 
values of the marginal rate of localization exceeds the rate 
of the traverse beam in the testing machine, which is also 
consistent with the experiment. The case u1 < u2 and α1 > α2 
also allows the existence of shock transition. Note that 
similar relationships were obtained in Ref. [18] for fixed 
dynamical structures, and in Ref. [19] for a shock wave in 
an ideal gas.

We define the width of the shock transition with a 

relation having the following form: 1 2-
.
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evaluation of this magnitude shows that it has the value 
of ∼10 μm, which coincides with the characteristic length 
scales of heterogeneity observed in the experiment. Also 
note that the free path of dislocation motion in materials 
is of the same order of magnitude [20].

3  Conclusions
1.	 The system of governing equations of the filtration 

plasticity model is provided. A solution is obtained in 
the form of shock transition. Its width coincides with 
the characteristic values of the scale of the inhomoge-
neity of deformation.

2.	 It is shown that the maximum speed localization front 
exceeds the rate of crosshead of the testing machine, 
which corresponds to the experimental observations.

3.	 In this article, emphasis has been placed mainly 
on Russian literature on the topic as this is not well 
known in the West. It is noted, in thin connection, 
that excessive literature on this topic of considering 
a generalized continuum medium as a superposition 
of “normal” and “excited” states was advanced by the 
last author and his coworkers in a series of publica-
tion [21–32].
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