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Abstract: The main objectives of the paper are to (1) present
an overview of nonlocal integral elasticity and Aifantis
gradient elasticity theory and (2) discuss the application
of partition of unity methods to study the response of low-
dimensional structures. We present different choices of
approximation functions for gradient elasticity, namely
Lagrange intepolants, moving least-squares approxim-
ants and non-uniform rational B-splines. Next, we employ
these approximation functions to study the response of
nanobeams based on Euler-Bernoulli and Timoshenko
theories as well as to study nanoplates based on first-
order shear deformation theory. The response of nanobe-
ams and nanoplates is studied using Eringen’s nonlocal
elasticity theory. The influence of the nonlocal parameter,
the beam and the plate aspect ratio and the boundary con-
ditions on the global response is numerically studied. The
influence of a crack on the axial vibration and buckling
characteristics of nanobeams is also numerically studied.
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1 Introduction

The mechanical behavior of solids can be studied at three
different length scales: (i) atomic/lattice scale, (ii) micro-
structure/grain scale and (iii) the continuum scale. The
lattice theory takes into account a finite range of the inter-
atomic forces, whereas the macroscopic (or local) theory
of elasticity is based on the concept that the response
forces of the body are contact forces, i.e., the forces have
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the zero range. Here, the material constants are estimated
under bulk situation or similar continuum large scale and
time scale. When there is an additional activity in the
material (i.e., when small-scale effects become important,
e.g., atomic cohesive force, surface and interface energy,
non-equilibrium transport, defect formulation, etc.), then
it is important to modify the continuum model with the
help of atomic/lattice-scale and microstructure/grain-
scale considerations.

In the atomic theory of lattices, the existence of long-
range cohesive forces is well recognized and their effect on
the dispersion of elastic waves is well documented [1]. The
classical theory of elasticity being the long-wavelength
limit of the atomic theory excludes these effects. The local
theory can successfully describe a physical phenomenon
by considering a very large number of molecules under
equilibrium, but it fails when the physics is governed by
the microstructure (dislocations and grain boundaries in
crystals or network morphology in polymers and atomic
cluster motion). The inherent assumption in local elastic-
ity is that the dimensions of engineering structures are
much larger than the characteristic dimensions of the
microstructure. Thus, the classical continuum theories
lack the capability of representing the size effects since
they do not include any internal length scale [2]. Conse-
quently, these theories fail when the specimen size or the
wavelength becomes comparable with the internal length
scales of the material.

In order to improve the local theory of elasticity,
several modifications of the classical elasticity formu-
lation have been proposed, such as the strain gradient
theory [3], modified couple stress theory [4-9] and non-
local elasticity theory [10-12]. A common feature of these
theories is that they include one or several intrinsic length
scales. The predictions of these theories reduce to those
of local continuum theories when the specimen size is
much larger than the internal length scale. The key idea
of the nonlocal elastic approaches is that within a non-
local elastic medium, the particles influence one another
not simply by contact forces and heat diffusion but also by
long-range cohesive forces. In this way, the internal length
scale can be considered in the constitutive equations
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simply as a material parameter as gradient coefficient
or commonly known as the nonlocal parameter. One
approach to estimate these nonlocal material parameters
is by matching the phonon dispersion relation computed
by these theories with the lattice dynamics dispersion
relation [13-15].

Sun and Zhang [16] investigated the in-plane Young’s
modulus and in-plane and out-of-plane Poisson’s ratio
for ultra-thin films. Their result showed that the values
of Young’s modulus and Poisson’s ratio depend on the
number of atomic layers considered in the thickness
direction and they approach the respective bulk proper-
ties as the number of atomic layers increases. Thus, the
local continuum theories cannot be readily applied to
study small-scale effects, since at small sizes the material
microstructure, such as the lattice spacing between the
individual atoms, cannot be neglected and, moreover, the
discrete structure of the material can no longer be homog-
enized as done in local continuum theories. It is seen from
the recent literature that the amount of work carried out
on the application of nonlocal and/or gradient elasticity
theories to study the response of nanobeams and nano-
structures is considerably increasing. The following sub-
section outlines some of most recent contributions.

1.1 Background
1.1.1 Vibration of nanostructures

Eringen’s nonlocal elasticity theory has been applied by
several authors to study axial vibrations and free trans-
verse vibrations of nanostructures [17-19]. Recently, the
nonlocal beam models have been applied to investigate
the static and vibration properties of single- and multi-
walled carbon nanotubes (CNTs) [20-24]. As the small-
scale effects have to be accounted for and the nonlocal
theory seamlessly connects atomic lattice theory and con-
tinuum theory, via nonlocal moduli, there has been an
increasing use of nonlocal elasticity theory to study the
stability characteristics of CNTs [25-28]. It is also evident
from the explicit solutions derived by Wang and Liew [21]
for static deformation of micro- and nanostructures that
the small-scale effects cannot be neglected. Duan et al.
[29] derived exact solutions for axisymmetric bending of
circular plates based on nonlocal plate theory. Duan et al.
[30] calibrated the small scaling parameter e, for the non-
local Timoshenko beam theory from molecular dynamics.
Their results showed that the calibrated values of e, are
different from published results. The parameter is a func-
tion of the length-to-diameter ratio, mode shapes and

DE GRUYTER

boundary conditions associated with single-walled CNTs
(SWCNTSs). Lu et al. [31] studied the dynamic characteris-
tics of beams using the nonlocal elasticity model.

Reddy and Pang [32] derived the governing equations
of motion for Euler-Bernoulli beams and Timoshenko
beams using the nonlocal differential equations of Eringen
[10] and presented closed-form solutions for beam static
bending, vibration and buckling response with various
boundary conditions. Recently, Reddy [33], based on von
Karman nonlinear strains and Eringen’s nonlocal theory,
derived governing equations of equilibrium for beams.
Phadikar and Pradhan [19] developed a variational for-
mulation for Euler-Bernoulli beams and Kirchoff plates
employing Hermite and Lagrange polynomials to study the
response of beams and plates within the nonlocal elastic-
ity framework. Roque et al. [34] studied bending, buckling
and vibration of Timonshenko nanobeams using colloca-
tion techniques. Civalek and Demir [35] applied nonlocal
Euler-Bernoulli beam theory to study static bending and
vibration of microtubules using the differential quadra-
ture method (DQM). The nonlocal linear elasticity theory
of Eringen has been applied to study free in-plane vibra-
tion and flexural vibration of plates [36-38]. Reddy [33]
and Aghababaei and Reddy [39] extended the classical,
first- and third-order shear deformation theory using the
nonlocal linear theory of elasticity and presented analyti-
cal solutions of bending and vibration of plates. The free
vibration of single-layered and multi-layered graphene
sheets has been studied using the first-order shear defor-
mation nonlocal plate theory [37, 40].

1.1.2 Buckling of nanostructures

Wang et al. [25] based on the differential version of Erin-
gen’s nonlocal elastic model showed that the buckling
solutions for CNTs via local continuum mechanics overes-
timate the response and the scale effect is indispensable.
Murmu and Pradhan [41, 42] for the first time studied the
buckling of SWCNTs embedded in an elastic medium using
nonlocal elasticity and Timoshenko beam theory. Both
Wrinkler-type and Pasternak-type models are employed
to simulate the interaction of nanotubes with the sur-
rounding elastic medium. The critical buckling loads are
numerically obtained by using a DQM. Their study sug-
gested that the buckling loads of SWCNTSs strongly depend
on the small-scale coefficients and on the stiffness of the
surrounding medium. Pradhan [43] studied the buckling
of nanoplates such as graphene sheets using a modified
higher order shear deformation theory employing the non-
local differential constitutive relations of Eringen. Zhang
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et al. [27] proposed a nonlocal Donnell multi-shell model
for the axial buckling of multi-walled carbon nanotubes
(MWCNTs) with hinge ends under axial compression.
Their results showed that the buckling modes and length
of the tubes influence the small-scale effects on the axial
buckling strain. By including both van der Waals forces
and the effects of small length scales, Sudak [28] studied
the buckling characteristics of MWCNTSs. In a recent work,
Pradhan and Murmu [44] have studied the buckling char-
acteristics of a single-layer graphene sheet under biaxial
compression. Their results showed that biaxially com-
pressed graphene sheets showed a lower influence of non-
local effects for the case of smaller side lengths and large
nonlocal parameter values.

1.2 Obijective

As seen earlier, the study of the response of low-dimen-
sional structures relied on analytical approaches or
numerical techniques. To the best of the author’s knowl-
edge, the existing numerical approaches are limited to
using the DQM (35, 45] and radial basis functions [34]. In
this paper, we use Lagrange basis functions, moving least-
squares (MLS) approximants and non-uniform rational
B-splines (NURBS) to approximate the unknown field var-
iables. The response of such low-dimensional structures
is studied with the framework of the Galerkin method.
The influence of the nonlocal parameter, boundary con-
ditions, the aspect ratio and the plate dimensions on the
fundamental frequency and the critical buckling load
is numerically studied. The longitudinal vibration of a
nanorod with a crack is also studied within the framework
of the extended finite element method (XFEM).

1.3 Outline

The paper commences with a brief overview of Eringen’s
nonlocal elasticity theory and Aifantis’ gradient elastic-
ity theory. Section 3 presents the governing equations for
nanobeams and nanoplates based on Eringen’s gradient
elasticity theory. The weak form of the corresponding
equations is also described. The section also discusses
the application of the partition of unity methods (PUMs)
and the choice of various basis functions to describe the
unknown field variables within nonlocal elasticity theory.
Section 4 presents numerical results for longitudinal and
free flexural vibration of nanobeams and nanoplates. The
critical buckling load of a nanobeam is also studied. Con-
cluding remarks are presented in the last section.
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2 Overview of Eringen’s nonlocal
elasticity theory and Aifantis’
gradient elasticity theory

Consider a region Q in three-dimensional Euclidean space
occupied by a continuum body. The body can be envi-
sioned as a collection of a large number of deformable
particles. If the internal motion of the particle is neglected
and if a single typical material particle is assumed to inter-
act with its neighbors with short-range elastic forces, the
resulting theory is the “local elasticity theory”, whereas
in the “nonlocal elasticity theory”, all the particles which
influence one another are considered to write out the
stress-strain relations. In this section, we discuss two
types of nonlocal elasticity theory, namely Eringen’s non-
local elasticity theory and Aifantis’ gradient elasticity
theory. Both theories require only one additional param-
eter to be calibrated.

2.1 Eringen’s nonlocal elasticity theory

Eringen [11, 12] by accounting for long-range cohesive
forces proposed a nonlocal theory in which the stress
at a point depends on the strains of an extended region
around that point in the body. Thus, the nonlocal stress
tensor G at a point x is expressed as

0=fa(|X’—X|)t(X')dX', )

where t(x) is the classical, macroscopic stress tensor at
a point x and the kernel function is called the nonlocal
modulus, also referred to as the attenuation or influence
function. The nonlocality effects at a reference point x
produced by the strains at x and x’ are included in the
constitutive law by this function. The kernel weights the
effects of the surrounding stress states. From the structure
of the nonlocal constitutive equation, given by Eq. (1), it
can be seen that the nonlocal modulus has the dimension
of (length)> [11, 12]. Typically, the kernel is a function of
the Euclidean distance between the points x and x’. The
kernel in Eq. (1) has the following properties:
1. Thekernel is maximum at x’=x and decays with |x’-x].
2. The classical elasticity limit is recovered in the
limit of the vanishing internal characteristic length
lima(|x’'-x[)=0(|x"~x]).

3. For small internal characteristic lengths, the nonlocal
theory approximates the atomic lattice dynamics.

4. The kernel is a Green’s function of a linear differential
operator L, La(] x’—x|)=40(| x"—x|).
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The nonlocal modulus has a very important role in
describing nonlocal effects. Of course, ultimately, the
accurate estimation of a(|x’-x|) would dictate the overall
reliability of the nonlocal model. Eringen [11, 12] numeri-
cally determined the functional form of the kernel. This is
feasible due to the Cauchy-Born rule [46-48], which states
that in a medium subjected to a small strain, the position
of the atoms follows the overall strain of the medium. This
rule, in general, can be applied directly to face-centered
and body-centered cubic systems and, with slight modifi-
cation, also to more complex lattices such as the diamond.
Eringen [10] showed that a stress gradient theory can be
derived by assuming that the nonlocal kernel is a special
form that satisfies the differential equation

[1-uV’]a(lx’-x])=5(x"-x]), 2

where ,u=(eoa/L)2 is a material-specific parameter, called
the nonlocal parameter, a is an internal characteristic
parameter, L is the macroscopic length and e, is a con-
stant. In such a stress gradient type of nonlocal elasticity
theory, the relevant constitutive equation is given by

[1-uV’]o=De, 3)

where D is the fourth-order elasticity tensor and ¢ is the
local strain tensor.

2.2 Aifantis’ gradient elasticity theory

In gradient-type nonlocal elasticity theory, the stress is
expressed as a function of strain and its gradients at the
same point [3]. In this category, there are two classes of
strain gradient elasticity models:

Gradient theory type I: The gradient elasticity model
in which the higher order term has been postulated and
which is used to smoothen heterogeneity. The constitutive
equation in this type is given by [3]

o=D[1-uV?]e. 4)

Gradient theory type II: The gradient elasticity model
derived from a discrete lattice structure and which is used
to introduce heterogeneity. The constitutive equation is
given by

o=D[1+uV’]e. (5)

Remark 1: The only difference between these two classes
of the gradient elasticity model is the “sign” of the higher
order terms.

More details on Aifantis’ strain gradient elasticity
model and its use to interpret size effects eliminate stress/
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strain singularities from dislocation lines and crack tips
can be found in a series of articles by Aifantis and co-
workers [49-61], as well as references quoted therein. In
these references, a comparison of fundamental differ-
ences between Eringen’s stress gradient theory and Aifan-
tis’ strain gradient theory can be found. In the following,
we mainly apply Eringen’s model to study the static and
dynamic behavior of low-dimensional structures. Aifan-
tis’ theory for such structures is considered separately
elsewhere.

3 Governing equations based on
Eringen’s nonlocal elasticity and
choice of basis functions

3.1 Governing equations

In this section, we present the governing equations for
nanorods, nanobeams and nanoplates based on Eringen’s
differential stress gradient elasticity. For more information
and detailed derivation, interested readers are referred to
the literature [17, 39] and references therein.

3.1.1 Nanorods

For nanorods, the constitutive relation is given by

2
N
ON_ppdu ©)

N_
“ ox? ox

where N is the stress resultant, EA is the effective axial
rigidity and u is the axial displacement. The equation of
motion for the axial vibration of the nanorod is given by

J Ju 9?
At |z 1=
8x[ 8x] [ #E)xzj

3.1.2 Timoshenko beam theory

o’u
—_— 7
Y )

Consider a straight uniform beam of length L and thick-
ness h. The displacement field is given by

u(x, z, t)=u (x, t)+zo(x, t); w(x, z, t)=w,(x,t), (8)

where u, and w, are the axial and the transverse displace-
ments of the point on the mid-plane (i.e., z=0) of the
beam and ¢ is the rotation of the mid-plane. The non-zero
strains are
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The Timoshenko beam theory requires shear correc-
tion factors to compensate for the error due to the con-
stant shear stress assumption. The governing equations of
motion in this case are given by

[GAk,(¢+w )] +q—(Nw ) —ulg—(Nw ) ],
=y (W= ) (10a)

(Elg ), ~GAx (p+w )=m(d-up ), (10b)
where the subscript “comma” denotes partial derivative
with respect to the spatial coordinate succeeding it, G is
the shear modulus, «_ is the shear correction factor, g is
the externally applied load, m and m, are the mass den-
sities, EI is the flexural rigidity and N is the externally
applied axial load. The boundary conditions involve spec-
ifying one of each of the following at x=0 and at x=L: w
or Q and ¢ or M, where Q is the shear force and M is the
bending moment.

3.1.3 Reissner-Mindlin plates

Consider a rectangular Cartesian coordinate system (x,
y, z) with the xy-plane coinciding with the undeformed
middle plane of the plate and the z-coordinate taken posi-
tive downwards. The displacement field based on the first-
order shear deformation theory, also referred to as the
Reissner-Mindlin plate theory, is given by

u(x, y, z, t)=u(x, y, t)+z0 (x,y, t)
v(X,y, 2, )=v, (X, y, t)+26 (X, y, t)
w(x, y, z, t)=w (x, y, t),

(11)

where u, v, and w, are the mid-plane displacements and
6_and 0, are the rotations of the mid-plane. The strains are

given by
e=) 7 4%,
of |e,

The mid-plane strains, the bending strains and the
shear strains in Eq. (12) are written as

(12)

(13a)
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X, X

€,= oy (13b)
0 +0
X,y V. X
0 +tw,
€ = b
S 160 +w (13¢)
y 0,y
The equations of motion are given by
ON_ oN .
= +_8ny =1 ii+1,0, (14a)
oN, ON .
= +_ax =L V+1,0, (14b)
ON_ OoN
S et I l4c
ox ox M Wic)
oM L
P +—X”y=112u+1220X (14d)
oM oM L
—E+—2=I V+1,0 (14e)

ox X

h/2

where  (I,I,,1,)= J p(1,z,z°)dz.  The relation
—h/2

between the nonlocal stress and moment resultants to its

local counterpart is given by

N_| [N}
o

The local stress and moment resultants are related to

the strains by
N| [A, B, ||g,
M| |B, D, ||«

where A, B, and D, are the extensional, the bending-
extensional coupling and the bending stiffness coeffi-
cients, respectively. The equations of motion in terms of
the mid-plane displacements and rotations are obtained
by substituting the nonlocal (strictly speaking gradient)
constitutive relations given by Eq. (16) into the equa-
tions of motion given by Eq. (14) along with Eq. (15). For a
detailed derivation, interested readers are referred to the
literature [33, 36, 38].

(15)

(16)

Remark 2: The governing equations of motion for classical
elasticity can be obtained by setting the nonlocal para-
meter u equal to zero.
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3.2 Discretized form

The standard Galerkin procedure can be adopted to derive
the following discretized form of the governing equations
of motion for nanorods, nanobeams and nanoplates.

vibration: K8+8(M+M™)=0 (17)

Buckling: (K+A[K,+K])3=0, (18)

where 8 is the vector of unknown field variables, A is the
critical buckling load, K is the stiffness matrix, K is the
geometric stiffness matrix, M is the mass matrix and the
superscript “NL” refers to the contribution from the nonlo-
cal part. Note that when Eringen’s stress gradient elastic-
ity theory is employed, the nonlocal parameter influences
only the mass matrix in the case of free vibration and the
geometric stiffness matrix in the case of buckling. The stiff-
ness matrix is unaltered. It is also noted that, for the free
vibration problem, the approximation functions require
only C° continuity, whereas the approximation functions
need to be C' continuous for the buckling problem. The
stiffness matrix and the mass matrix for nanobeams and
nanoplates are given below.

3.2.1 Timoshenko beam

The elemental stiffness, the geometric stiffness and the
elemental mass matrix for the nonlocal Timoshenko beam
are given by

El 0
K°= j BT{ (19a)
Q}

BdQ
0 GAx,

N, dQ.  (19b)

A 0 A 0
M= [N P NdQ+uN' | ?
270 pr o pI

ON? ) ON?
K= NT( ] (1+
o

u) dQ. (19¢)

) ox*

Remark 3: It is seen from the above equations that the
computation of the geometric stiffness matrix involves the
second derivative of the approximation functions, i.e., the
approximation functions should be C' continuous.

3.2.2 Reissner-Mindlin plate

The elemental stiffness and mass matrix for the nonlocal
stress gradient Reissner-Mindlin plate are given by

A B
K'=[,.|B"| * ' |B+B'EB|dQ
*|” B D s+

be b

(20a)
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ho o 0 0 |
Oh O 0 0
M=[ N'p|0 O K/12 0 0 |NdQ (20b)
00 O HK/12 0
00 O 0 hK/12
ho o 0 0 |
. lon o 0 0
Wl Gyeo 0wz 0 o S,
T loo o w/2 o |
00 O 0 RK/12
(20¢)

where 7=x, y and B and B_ are the strain-displacement
matrices corresponding to bending-extensional coupling
and shear terms, respectively.

3.3 Choice of basis functions

As noted earlier, the numerical implementation of the
nonlocal or the gradient elasticity theory requires at least
C' continuous functions in some cases, for example, buck-
ling. For this, the conventional finite element approach
with Lagrange polynomials is not suitable. In this section,
we discuss the different choices of basis functions.

3.3.1 C* finite elements

The higher order gradients of strain and stresses in Aifan-
tis’ gradient elasticity and Eringen’s gradient elasticity
theory, respectively, lead to partial differential equations
of higher order. Employing Galerkin’s method for numeri-
cal solution requires a high regularity of the interpolation
scheme. For the first-order strain gradient theory, C' con-
tinuity has to be ensured. There are only a limited number
of C' continuous finite elements. The Argyris element,
the bicubic element and the HCT element have been used
in the literature for gradient elasticity problems. All these
elements satisfy C'continuity requirement imposed by
the gradient elasticity formulation. Figure 1 shows the
first six shape functions for a triangular element with
three nodes. Each node has six degrees of freedom, i.e., u,
Uy Uy U, U and u, The explicit form of the shape func-
tions is given in [62]. These elements have many degrees
of freedom per node and are difficult to implement. Papa-
constantopoulos et al. [63] developed a three-dimensional
hexahedral element with C' continuity. In [19], Hermite
interpolation functions and Hermite cubic elements were
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Figure 1 C! shape functions for a triangular finite element. Only the first six shape functions corresponding to a node are shown. The other

shape functions can be constructed by permutation [62].

employed for studying static and dynamic characteristics
of nonlocal Euler-Bernoulli beams and nonlocal Kirchoff
plates, respectively. The Hermite cubic element involves a

N
ox’ 9y

the nodal degrees of freedom, where w is the transverse
displacement.

12-term approximation polynomial with (w,

3.3.2 Non-uniform rational B-splines

NURBS is a short form for non-uniform rational B-splines.
We give here only a brief introduction to NURBS. More
details on their use in FEM are given in [64, 65]. The key
ingredients in the construction of NURBS basis functions
are the knot vector (a non-decreasing sequence of param-
eter values, § <&, ,1=0, 1, .., m-1), the control points, P,
the degree of the curve p and the weight associated with a
control point, w. The i, B-spline basis function of degree
p, denoted by N, _ is defined as [66]

1 ifE <E<E
N (&) ={O else (212)

5_5' §i+ +l_§
N. =—LN. —P _~ N, . b
(&) i ,,p,l(é§)+§i+p+l_§i+1 wpa(E) (21b)

The B-spline basis functions have the following prop-

erties: (i) non-negativity, (i) partition of unity, ZNi,pzl

and (iii) interpolatory at the end points. As the same
function is also used to represent the geometry, the exact
representation of the geometry is preserved. It should be
noted that the continuity of the spline functions can be
tailored to the needs of the problem. Moreover, the spline
function has limited support. When employed to approxi-
mate the FE solution space, the resulting stiffness matrix
has similar properties to the stiffness matrix computed by
employing Lagrange shape functions. Given n+l1 control
points (p,, p,, ... P,) and a knot vector Z={y, #,, ..., 7, },
the piecewise polynomial B-spline curve of degree p is
defined as

C(n)=il’iNi,p(n), (22)

where P, are the control points. A B-spline curve has the
following information: n+1 control points, m+1 knots and a
degree p. It is noted that n, m and p must satisfy m=n+p+1.
The B-spline functions also provide a variety of refinement
algorithms, which are essential when employing B-spline
functions to discretize the unknown fields. The analogous
h and p refinement can be done by the process of “knot
insertion” and “order elevation”. The B-spline surfaces
are defined by the tensor product of basis functions in two
parametric dimensions & and # with two knot vectors, one
in each dimension as

& =33 N, (M (P,

i=1 j=1

(23)
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where P, . is the bidirectional control net and N, , and
M, , are the B-spline basis functions defined on the knot
vectors over an mxn net of control points P,  Despite the
flexibility offered by the B-splines, they lack the ability
to exactly represent some shapes such as circles and
ellipsoids. To improve this, NURBS are formed through
rational functions of B-splines. The NURBS thus form the
superset of B-splines. The key ingredients in the construc-
tion of NURBS basis functions are the knot vector (a non-
decreasing sequence of parameter values, 7,<»9, ,, i=0, 1,
..., m-1), the degree of the curve p and the weight associ-
ated with a control point, w. A pth degree NURBS basis
function is defined as follows:
ROp=NestM Ny (W,

Ww(n) iN,-,p(’?)Wi

>

(24)

where w, are the weights for the ith basis function Ni,,,(ﬂ)-
Figure 2 shows the third-order NURBS for an open knot
vector £={0, 0, 0, 0, 1/3,1/3, 1, /3,1/2,2/3,1, 1, 1, 1}.

The NURBS surface is then defined by

2?:12:;1\,1&17(E)Mj,q(n)Pi,iWiwi
w(é, n)

where w(g, ) is the weighting function. The displacement
field, u (x, y) within the control mesh is approximated by

R(&, n)= (25)

>

u (x, y)=R(& n)q.(x, y), (26)

where q (x, y) are the nodal variables and R(¢, ) are the
basis functions given by Eq. (25).

Basis functions

=

Figure 2 Non-uniform rational B-splines. Order of the basis func-
tion is 3 with the open knot vector.
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3.3.3 MLS approximants

The unknown field variables can be approximated by the
MLS approximation as

u"(x)=p' (x)a(x), 7)

where p(x) is a vector of basis functions and a(x) are
unknown coefficients. The unknown coefficients a(x) are
obtained by minimizing a weighted least-squares sum
of the difference between the local approximation u(x)
and the field function nodal parameters u,. The weighted
least-squares sum L(x) can be written in the quadratic
form as

L(x)=) w(x-x,)[p'(x)a(x)-u,]’, (28)

i=1

where u, is the nodal parameter associated with node
I at x,, w(x—x)) is the weight function having a compact
support associated with node I and n is the total number
of nodes with the domain of influence containing the
points X where w(x-x)=0. By setting 0L/da=0, we obtain
the following set of linear equations:

A(x)a(x)=B(x)u. (29)

Upon substituting Eq. (26) into Eq. (24), we obtain the
approximation function as

uh(X)EiCD,(X)U,. (30)

Figure 3 shows a typical MLS function with a quartic
spline weight function. Note that the MLS shape functions

0.7
0.6
0.5
0.4

AR

0.2 /’ \

\

0 1 2 3 4 5 6
Nodal coordinates

Figure 3 Moving least-squares basis function with the quartic
spline weight function.
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do not satisfy the Kronecker delta property, and hence
imposing boundary conditions requires an additional
step. However, the MLS shape functions satisfy the parti-
tion of unity property, which makes them a candidate as
basis functions within the Galerkin procedure. Moreover,
the higher order continuity of the shape functions can be
constructed.

Remark 4: When applying the NURBS or MLS approxima-
tions for gradient elasticity, the inherent higher order con-
tinuity of the shape functions is utilized.

3.3.4 Field-consistent Q4 and Q8 elements

In order to study the free vibration of Reissner-Mindlin
plates, we employ four-noded and eight-noded shear flex-
ible quadrilateral elements. These plate elements are C°
continuous elements with five degrees of freedom per
node. The same element can be used within the nonlocal
elasticity framework to study the free vibration of nano-
plates, because the weak form (Eq. 21) does not involve
higher order derivatives of the shape functions. However,
if the interpolation functions for Q4/Q8 are used directly to
interpolate the five variables in deriving the shear strains
and membrane strains, the element will lock and show
oscillations in the shear and membrane stresses. Field
consistency requires that the transverse shear strains
and membrane strains must be interpolated in a consist-
ent manner. Thus, the 6 and Gy terms in the expressions
for shear strains ¢_ have to be consistent with the deriva-
tives of the field functions w,, and w, . This is achieved
by using field redistributed substitute shape functions
to interpolate these specific terms, which must be con-
sistent as described in [66, 67]. These elements are free
from locking and have good convergence properties. For
a complete description of the element, interested readers
are referred to the literature [66, 67], where the element
behavior is discussed in great detail. Since the element is
based on the field consistency approach, exact integra-
tion is applied for calculating various strain energy terms.

4 Numerical results and
discussion
In this section, we study the nonlocal response of low-

dimensional structures using the PUMs. For all the study,
consistent units are used for the material properties.
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4.1 Axial vibration of nanorods

In this section, we study the influence of the internal
length u, boundary conditions and the presence of a crack
on the fundamental frequency of a nanorod. The nanorod
with length L has Young’s modulus E and uniform cross-
section A. The crack is located at a distance C from the
left end and it is simulated by an equivalent spring with
stiffness k. In this work, the influence of a single crack on
the longitudinal vibration is studied. In this example, we
represent the discontinuity (i.e., crack) independently of
the mesh within the framework of the XFEM. Within this
framework, the generic form of the displacement approxi-
mation is given by

u'= 3 N(x)q,+ Y N(x)e(x)a,

JeN fem Jenem

€3y

where N, N/ are the standard finite element shape func-
tions, NV®™ is the set of nodes in the finite element mesh
and N is the set of nodes whose nodal support is cut
by the discontinuity. Interested readers are referred to [68]
for more details. The weak form is given by

[V:edQ+ [t Udr=[twdr,
Q T,

l-\coh t

(32)

where U=u-n,t_=t_-n and t =ku; k is the spring stiffness.

Before proceeding further with the numerical study,
the results from the present formulation are compared
with results available in the literature for the case when
the nonlocal parameter 4=0. Based on a progressive mesh
refinement, 100 elements were found to be adequate for
the study. Figure 4 shows the convergence of the first three
modes with mesh size with and without nonlocal effects.
It can be seen that with decreasing mesh size, the analyti-
cal solution is approached.

Tables 1 and 2 give a comparison of computed fre-
quencies for the clamped-free (CF) and clamped-clamped
(CC) nanobeam with a single crack, respectively [69, 70].
It can be seen that the numerical results from the present
formulation are found to be in good agreement with the
existing previous solutions. The effect of the nonlocal
parameter on the fundamental frequencies is shown in
Figure 5 for a fixed value of the nonlocal parameter (e a=1
nm). In this case, the length of the beam is varied. It can
be seen that as the length of the beam increases with
respect to the characteristic internal length, the nonlocal
effect decreases, and for very large beams, the nonlocal
effect is negligible.

Figure 6 depicts the influence of boundary condi-
tions and nonlocal parameter on the first three models
of the CF and CC beam with a single crack. The crack is
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Figure 4 Convergence of the first three modes of frequencies
with mesh size.
Table1 Comparison of natural frequencies of the clamped-
free beam with a single crack at C/L=0.2002, crack parameter
K=EA/kL=0.1144 and nonlocal parameter e a/L=0.
Mode XFEM Ref. [69] Ref. [70]
1 1.4228 1.4278 1.4278
2 4.4429 4.5579 4.5576
3 7.8559 7.8540 7.8540
4 10.4289 10.4471 10.4486

Table 2 Comparison of natural frequencies for the clamped-
clamped beam with a single crack located at C/L=0.25 for various
internal lengths and crack parameters.

u=(e,a/L) K=0.065 K=0.35 K=2

XFEM Ref.[69] XFEM Ref.[69] XFEM Ref.[69]
0.2 2.6144 2.6173 2.4649 2.4668 2.1503 2.1506
0.4 1.9455 1.9467 1.9060 1.9071 1.7660 1.7663

located at C/L=0.4 from the left end. It can be seen that
the frequencies are higher for the beam with no crack, and
with increasing crack parameter K=EA/kL, the frequency
decreases. The presence of crack introduces local flexibil-
ity, and the effect of the crack parameter on the frequencies
is significant for lower values of the nonlocal parameter u.
This observation is consistent with the existing previous
results [69]. The effect of crack local along the length of
the beam and the boundary conditions on the frequency
is shown in Figure 7. In both cases, the natural frequency
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——Mode 1
--- Mode 2
—e—Mode 3

Frequency ratio (Q 1./Q NL)
S

0 5 10 15 20 25 30
L (nm)
Clamped-free

——Mode 1
--- Mode 2
—e—Mode 3

Frequency ratio (Q1/QNL)
W

L (nm)
Clamped-clamped

Figure5 Frequency ratiof as a function of the beam length with a
fixed nonlocal parameter e a=1 nm. It can be seen that as the length
of the beam increases with respect to the characteristic internal
length, the nonlocal effect decreases, and for very long beams, the
nonlocal effect is negligible.

of the beam is influenced by the location of the crack. In
the case of the CF boundary condition, the crack near the
free end shows a stronger influence than the crack at the
fixed end, whereas in the case of the CC boundary condi-
tion, the crack in the middle of the beam has a stronger
influence. Due to the CC boundary condition, a symmet-
ric distribution of the frequency is observed. This again is
consistent with the results available in the literature [69].
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Figure 6 The dimensionless frequency for different crack para-
meters for the first three vibration modes. The crack is located at a
distance 0.4 from the left end.

4.2 Flexural vibration and buckling of beams

In this section, we present the influence of the internal
length on the fundamental frequencies and on the criti-
cal buckling load for nanobeams based on both Euler-
Bernoulli beam and Timoshenko beam theories. In all
cases, we present the non-dimensionalized fundamental
frequencies as (unless specified otherwise)

Q=0 |2,
EI

where EI is the flexural rigidity, p is the mass density and
L is the length of the beam.

(33)
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Figure 7 Influence of the crack location on the fundamental
frequency for clamped-free and clamped-clamped nanorods for
various internal lengths u.

4.2.1 Vibration of beams

Consider a beam of length L=10 with Young’s modulus
E=30x10°, Poisson’s ratio »=0.3 and mass density p=1. The
influence of the beam thickness h, the nonlocal parameter
u and the boundary conditions [namely simply supported
(SS) ends, CC and CF] on the fundamental frequency is
numerically studied. The efficiency and accuracy of dif-
ferent basis functions, namely Lagrange interpolants, MLS
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Table 3 Comparison of natural frequencies for the simply sup-
ported Timoshenko beam.

alh pu Timoshenko beam
Ref. [17] Ref. [34] NURBS MLS FEM

100 0 9.8683 9.8283 9.8680 9.8645 9.8630
1 9.4147 9.3766 9.4144 9.4112 9.4096

2 8.0750 8.0423 8.0748 8.0725 8.0706

20 0 9.8381 9.8059 9.8281 9.8258 9.7955
1 9.3858 9.3551 9.3763 9.3742 9.3452

2 8.0503 8.0239 8.0421 8.0407 8.0154

10 0 9.7454 9.7792 9.7075 9.7034 9.5886
1 9.2973 9.3294 9.2612 9.2538 9.1460

2 7.9744 8.0014 7.9434 7.9385 7.8445

approximants and NURBS basis functions, are critically
studied. The numerical results for free vibration of beams
based on the Timoshenko beam theory are given in Table 3.
The results from the present study are compared with the
available analytical solution [17] and with radial basis func-
tions [34]. It can be seen that the numerical results from the
present study are in very good agreement with the existing
solutions. The influence of the internal length x4 and the
thickness is also shown in Table 3. The combined effect of
increasing the plate thickness and the nonlocal parameter
u is to decrease the fundamental frequency. The influence
of the beam aspect ratio and the nonlocal parameter on
the frequency ratio f=Q, /Q, and on the fundamental fre-
quency Q is shown in Figure 8. It can be observed that
increasing the nonlocal parameter, for a fixed aspect ratio,
decreases the frequency ratio. The nonlocal parameter has
a greater influence on the higher modes. The variation of
the frequency ratio for mode 1 is almost linear, whilst for
higher modes, the frequency ratio is nonlinear. The effect
of increasing the aspect ratio is to increase the frequency,
whilst increasing the nonlocal parameter decreases the
frequency. This is because increasing the aspect ratio
increases the flexibility of the structure, and on the other
hand, the nonlocal parameter decreases the flexibility. The
effect of various boundary conditions on the fundamen-
tal frequency is presented in Table 4. For this example, a
NURBS basis function of order 3 is employed. It is observed
that the frequency decreases with increasing nonlocal
parameter. The CC boundary condition increases the fun-
damental frequency, whilst the CF lowers the frequency
compared to the SS boundary condition.

4.2.2 Buckling of beams

In this section, we present the critical buckling load for SS
nanobeams based on the Timoshenko beam theory. For
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Figure 8 Timoshenko beam theory: (A) frequency ratio 3 as a
function of the nonlocal parameter for a simply supported beam
with a/h=100 and L=10 and (B) non-dimensionalized mode 1
frequency as a function of the aspect ratio L/h for various nonlocal
parameters.

comparison purposes, we have included the results for

nanobeams based on the Euler-Bernoulli beam theory. The

non-dimensionalized critical buckling load is given by
_I?

Z=N—-

TR (34)

Consider a beam of length L=10 with Young’s modulus
E=30x10° and Poisson’s ratio v=0.3. The weak form of the
governing equations for nanobeam buckling requires C'
continuity, and hence we employ the element-free Galer-
kin method based on MLS approximants. The beam is
discretized with 100 nodes with a quadratic polynomial
basis and a quartic spline as a weight function. The non-
dimensionalized critical buckling loads are presented in
Table 5. From this table, it is observed that the buckling
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Table 4 Non-dimensionalized frequency for the Timoshenko beam
under various boundary conditions. Influence of the internal length
and the aspect ratio is also shown.

alh u NURBS, p=3
SS cc CF

100 0 9.8680 22.3892 3.5178
1 9.4144 21.1228 3.4385

2 9.0180 20.0450 3.3639

5 8.0748 17.5791 3.1646

20 0 9.8281 21.9967 3.5091
1 9.3763 20.7595 3.4303

2 8.9816 19.7049 3.3561

5 8.0421 17.2877 3.1577

10 0 9.7075 20.9726 3.4884
1 9.2612 19.8083 3.4107

2 8.8713 18.8124 3.3375

5 7.9434 16.5200 3.1415

load decreases with increasing nonlocal parameter u.
Similar to free vibration, for the shorter beam length L,
the nonlocal effect is important, and this effect is negli-
gible for longer beam lengths. The numerical results from
the present study are compared with the results of Reddy
[17] and very good agreement is observed. Moreover, it is
noted that the influence of the nonlocal parameter does
not depend on the beam theory used.

4.3 Free vibration of plates

In this section, we study the influence of the nonlocal
parameter u and the plate dimensions on the fundamental
frequencies of rectangular and circular plates.

Table 5 Comparison of the critical buckling load for simply
supported nanobeams.
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4.3.1 Flat rectangular plate

Consider a plate of uniform thickness h, length a and
width b. The following material properties are used:
Young’s modulus E=30x10°, Poisson’s ratio »=0.3 and
mass density p=1. In all cases, we present the non-dimen-
sionalized free flexural frequency

Q:wh4/£,
D
3

where Dsz is the plate rigidity. In this case, the
12(1-v*)

displacement field is approximated by Lagrange elements
(Q4 and Q8) and with NURBS basis functions with each
node having five degrees of freedom (8=u,, v,, w,, 0, ey). In
this study, we employ a structured mesh size of 40x40 with
Q4 elements, 8x8 with Q8 elements and cubic NURBS func-
tions. The computed non-dimensionalized fundamental fre-
quencies for a rectangular SS plate are given in Table 6. It can
be seen that the numerical results from the present study are
found to be in good agreement with the existing solutions.
Table 6 gives the results of non-dimensional frequencies
for a first-order nonlocal plate theory for different values
of nonlocal parameters and aspect ratios for various basis
functions. Again, it can be seen that the nonlocal theory
predicts smaller values of natural frequencies than the local
elasticity theory. The nonlocal frequency-to-local frequency
ratio Q /Q, is computed for an SS isotropic square plate
and the results are compared with those available in the lit-
erature [38]. Frequency ratios for different values of the non-
local parameter are presented in Table 7. It can be seen that
the results from the present formulation are in good agree-
ment with the existing previous results [38, 39].

(35)

Table 6 Comparison of the non-dimensionalized fundamental
frequency for a simply supported rectangular plate.

a/b a/h )/ Ref. [39] Method

Boundary un Euler-Bernoulli beam Timoshenko beam Q4 Q8 NURBS
condition

Ref. [17] MLS Ref. [17] MLS 1 10 0 0.0930 0.0927 0.0926 0.0929

1 0.0850 0.0847 0.0846 0.0849

SS 0.0 4.8458 4.8447 4.7670 4.7670 5 0.0660 0.0657 0.0657 0.0659

0.5 4.7290 4.7281 4.6540 4.6540 20 0 0.0239 0.0240 0.0238 0.0239

1.0 4.4105 4.4095 4.3450 4.3450 1 0.0218 0.0219 0.0218 0.0219

1.5 3.9651 3.9644 3.9122 3.9121 5 0.0169 0.0170 0.0169 0.0170

2.0 3.4741 3.4735 3.4333 3.4333 2 10 0 0.0589 0.0588 0.0587 0.0590

CF 0.0 1.2542 1.2112 1.2063 1.2063 1 0.0556 0.0554 0.0554 0.0556

0.5 1.2062 1.2037 1.1989 1.1989 5 0.0463 0.0462 0.0462 0.0464

1.0 1.1829 1.1820 1.1773 1.1773 20 0 0.0150 0.0150 0.0150 0.0151

1.5 1.1593 1.1475 1.1431 1.1431 1 0.0141 0.0141 0.0141 0.0141

2.0 1.1134 1.1024 1.0983 1.0983 5 0.0118 0.0118 0.0118 0.0118
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Table 7 Comparison of the frequency ratio § for a simply supported
square plate with a=10 and h=0.34. Consistent units are used for

the study.

n Ref. [39] Ref. [38] Method
Q4 Q8 NURBS

0 1.0000 1.0000 1.0000 1.0000 1.0000

1 0.9139 0.9139 0.9099 0.9107 0.9107

2 0.8467 0.8467 0.8393 0.8468 0.8468

3 0.7925 0.7925 0.7857 0.7928 0.7928

Figure 9 shows the influence of plate dimensions and
the influence of the internal length u« on the frequency
ratio for an SS isotropic plate. The value of the nonlocal

A L1
1
S 09
2
o]
o 08
.2
g
> 0.7
Q
g
=
g 0.6
‘u: .
0.5
0.4
0 5 10 15 20 25 30 35 40 45 50
Length of the plate
B L1
2
S
3 g
CI"[: N
@ 0.8
2 N
= 0.7
Q SS
]
= RS
g 0.6 \“\
---a=5 R
——a=15
0.5 ,_ 4=25
—a=50
0.4
0 0.5 1 1.5 2 2.5 3

Nonlocal parameter ()

Figure 9 Frequency ratio f for a simply supported isotropic plate:
(A) influence of the length of the plate for various internal lengths and
(B) influence of the nonlocal parameter for various lengths of the plate.
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parameter is assumed to vary between =0 (local elastic-
ity) and #=3 nm? (nonlocal or stress gradient elasticity). It
is seen that as the length of the plate increases for a fixed
internal length u, the frequency ratio tends to increase
monotonically and approach the local elasticity solution
for a considerably larger plate length, irrespective of the
nonlocal parameter. The influence of the nonlocal param-
eter is significant for smaller plate dimensions. The influ-
ence of the nonlocal parameter on the frequency ratio
for various plate dimensions is also shown in Figure 9. It
can be seen that the nonlocal parameter has a stronger
influence for small plate dimensions. The influence of
the nonlocal parameter on the frequency ratio is nonlin-
ear for small plate dimensions and the frequency ratio
decreases with increasing nonlocal parameter. To study
the influence of the nonlocal parameter and the boundary
condition on the natural frequency of an isotropic plate, a
square plate of length 10 nm is considered with a/h=100.
The frequency ratio corresponding to two different bound-
ary conditions, namely all edges SS and all edges clamped
boundary conditions, is plotted in Figure 10. It can be
seen that both the boundary condition and the nonlocal
parameter have an influence on the frequency ratio. The
higher the nonlocal parameter, the larger is the influence,
irrespective of the boundary condition.

4.3.2 Circular plate

In this example, we consider a circular plate with fully
clamped boundary conditions. The following material

1.1
——SS (mode 1)
---SS (mode 2)
1 S —o—CC (mode 1)
N —8— CC (mode 2)
@ 0.9
=
i
Q 0.8
2
g
% 0.7
5
=
g 0.6
E 8
0.5
4
0 0 0.5 1 1.5 2 2.5 3

Nonlocal parameter ()

Figure 10 Frequency ratio as a function of the nonlocal parameter
for various boundary conditions.
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properties are used: Young’s modulus E=205, Poisson’s
ratio »=0.3 and mass density p=8900. The circular plate
has a radius R=0.5. The influence of the radius-to-thick-
ness ratio =h/R and the internal length x« on the funda-
mental frequency is numerically studied. In all cases, we
present the non-dimensionalized free flexural frequency

Q=wR’ p_h
\'D

For this problem, a NURBS quadratic basis function
is sufficient to model exactly the circular geometry. Any
further refinement, if done, will only improve the accu-
racy of the solution. The knot vectors for the coarsest mesh
with one element are defined as follows: ==[0,0,0,1,1,1]
and H=[0, 0, 0, 1, 1, 1]. The data for the circular plate
are given in Table 8. Before proceeding further with
details, the results from the present formulation are com-
pared with available results pertaining to circulate plates
based on the classical theory of elasticity. Table 9 presents
the convergence of the first three fundamental frequen-
cies with mesh refinement and order elevation. It can be
seen that very good agreement with the available results is

(36)

Table 8 Control points and corresponding weights for a circular
plate with radius R=0.5.

1 2 3 4 5 6 7 8 9
x N2 2 2 00 o 2 2 2
4 2 4 4 2 4
y, Y2 0 2 20 22 o0 2
4 4 2 2 4 4
w, 1 2 1 21 2 A2 1
2 2 2 2

Table 9 Convergence of the non-dimensionalized fundamental
frequencies for a clamped circular plate with u=0.

Non-dimensionalized
frequency (u=0)

Q Q

Number of
control points

Method Order

Q

1 2 3

Ref. [71] - - 9.2751
IGA Quadratic 7 9.3035
9 9.2848

11 9.2793

13 9.2772

15 9.2763

Cubic 7 9.2755
9 9.2752

11 9.2751

13 9.2751

15 9.2751

17.8285
17.9918
17.8804
17.8500
17.8390
17.8342
17.8346
17.8295
17.8287
17.8285
17.8284

27.1041
27.3737
27.1861
27.1372
27.1199
27.1126
27.1232
27.1069
27.1046
27.1041
27.1039

IGA
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obtained and that the order elevation improves the accu-
racy of the solution. For the remainder of the analysis,
13x13 NURBS cubic elements are used. The influence of
the radius-to-thickness ratio d and the internal length u
on the fundamental frequency is presented in Table 10.
It can be seen that for a constant internal length u, with
increasing thickness, the frequency decreases as expected
and the effect of increasing the internal length for a con-
stant 0 is to decrease the frequency. The combined effect
of increasing the internal length and radius-to-thickness
ratio is to decrease the frequency. The advantage of using
NURBS is that the geometry is exactly represented and
higher order continuous functions can be obtained with
less computational effort.

5 Conclusions

In this paper, after discussing two types of different non-
local elasticity theories, the constitutive stress gradient
proposed by Eringen was used to discuss Euler-Bernoulli
nanobeams, Timoshenko beams and nanoplates based
on Reissner-Mindlin formulation. The natural frequen-
cies of the nanobeams and nanoplates are studied by
employing Lagrange polynomials, MLS approximants and
NURBS. Numerical experiments have been conducted to
reveal the effect of boundary conditions and the nonlocal
parameter on the natural frequencies of nanobeams and
nanoplates. The results obtained by employing different
basis functions are found to be in excellent agreement
with the analytical results available in the literature. From
the numerical studies, it can be seen that the NURBS basis
functions require fewer degrees of freedom to yield the
same order of accuracy as that of the radial basis func-
tions in the case of beams. It can also be inferred that the
effect of the nonlocal parameter is to reduce the natural
frequency of nanoplates irrespective of the boundary
conditions.

Table 10 Influence of the internal length on the non-dimensionalized
fundamental frequency for a clamped circular plate. The influence of
the thickness-to-radius ratio is also shown.

W o0=h/R

0.1 0.15 0.2
0 9.9782 9.6648 9.2751
1 1.8381 1.7828 1.7146
2 1.3105 1.2710 1.2223
3 1.0730 1.0407 1.0008
4 0.9305 0.9025 0.8679
5 0.8330 0.8079 0.7769
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