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Abstract: The main objectives of the paper are to (1) present 
an overview of nonlocal integral elasticity and Aifantis 
gradient elasticity theory and (2) discuss the application 
of partition of unity methods to study the response of low-
dimensional structures. We present different choices of 
approximation functions for gradient elasticity, namely 
Lagrange intepolants, moving least-squares approxim-
ants and non-uniform rational B-splines. Next, we employ 
these approximation functions to study the response of 
nanobeams based on Euler-Bernoulli and Timoshenko 
theories as well as to study nanoplates based on first-
order shear deformation theory. The response of nanobe-
ams and nanoplates is studied using Eringen’s nonlocal 
elasticity theory. The influence of the nonlocal parameter, 
the beam and the plate aspect ratio and the boundary con-
ditions on the global response is numerically studied. The 
influence of a crack on the axial vibration and buckling 
characteristics of nanobeams is also numerically studied.
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1  Introduction
The mechanical behavior of solids can be studied at three 
different length scales: (i) atomic/lattice scale, (ii) micro-
structure/grain scale and (iii) the continuum scale. The 
lattice theory takes into account a finite range of the inter-
atomic forces, whereas the macroscopic (or local) theory 
of elasticity is based on the concept that the response 
forces of the body are contact forces, i.e., the forces have 

the zero range. Here, the material constants are estimated 
under bulk situation or similar continuum large scale and 
time scale. When there is an additional activity in the 
material (i.e., when small-scale effects become important, 
e.g., atomic cohesive force, surface and interface energy, 
non-equilibrium transport, defect formulation, etc.), then 
it is important to modify the continuum model with the 
help of atomic/lattice-scale and microstructure/grain-
scale considerations.

In the atomic theory of lattices, the existence of long-
range cohesive forces is well recognized and their effect on 
the dispersion of elastic waves is well documented [1]. The 
classical theory of elasticity being the long-wavelength 
limit of the atomic theory excludes these effects. The local 
theory can successfully describe a physical phenomenon 
by considering a very large number of molecules under 
equilibrium, but it fails when the physics is governed by 
the microstructure (dislocations and grain boundaries in 
crystals or network morphology in polymers and atomic 
cluster motion). The inherent assumption in local elastic-
ity is that the dimensions of engineering structures are 
much larger than the characteristic dimensions of the 
microstructure. Thus, the classical continuum theories 
lack the capability of representing the size effects since 
they do not include any internal length scale [2]. Conse-
quently, these theories fail when the specimen size or the 
wavelength becomes comparable with the internal length 
scales of the material.

In order to improve the local theory of elasticity, 
several modifications of the classical elasticity formu-
lation have been proposed, such as the strain gradient 
theory [3], modified couple stress theory [4–9] and non-
local elasticity theory [10–12]. A common feature of these 
theories is that they include one or several intrinsic length 
scales. The predictions of these theories reduce to those 
of local continuum theories when the specimen size is 
much larger than the internal length scale. The key idea 
of the nonlocal elastic approaches is that within a non-
local elastic medium, the particles influence one another 
not simply by contact forces and heat diffusion but also by 
long-range cohesive forces. In this way, the internal length 
scale can be considered in the constitutive equations 
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simply as a material parameter as gradient coefficient 
or commonly known as the nonlocal parameter. One 
approach to estimate these nonlocal material parameters 
is by matching the phonon dispersion relation computed 
by these theories with the lattice dynamics dispersion 
relation [13–15].

Sun and Zhang [16] investigated the in-plane Young’s 
modulus and in-plane and out-of-plane Poisson’s ratio 
for ultra-thin films. Their result showed that the values 
of Young’s modulus and Poisson’s ratio depend on the 
number of atomic layers considered in the thickness 
direction and they approach the respective bulk proper-
ties as the number of atomic layers increases. Thus, the 
local continuum theories cannot be readily applied to 
study small-scale effects, since at small sizes the material 
microstructure, such as the lattice spacing between the 
individual atoms, cannot be neglected and, moreover, the 
discrete structure of the material can no longer be homog-
enized as done in local continuum theories. It is seen from 
the recent literature that the amount of work carried out 
on the application of nonlocal and/or gradient elasticity 
theories to study the response of nanobeams and nano-
structures is considerably increasing. The following sub-
section outlines some of most recent contributions.

1.1  Background

1.1.1  Vibration of nanostructures

Eringen’s nonlocal elasticity theory has been applied by 
several authors to study axial vibrations and free trans-
verse vibrations of nanostructures [17–19]. Recently, the 
nonlocal beam models have been applied to investigate 
the static and vibration properties of single- and multi-
walled carbon nanotubes (CNTs) [20–24]. As the small-
scale effects have to be accounted for and the nonlocal 
theory seamlessly connects atomic lattice theory and con-
tinuum theory, via nonlocal moduli, there has been an 
increasing use of nonlocal elasticity theory to study the 
stability characteristics of CNTs [25–28]. It is also evident 
from the explicit solutions derived by Wang and Liew [21] 
for static deformation of micro- and nanostructures that 
the small-scale effects cannot be neglected. Duan et  al. 
[29] derived exact solutions for axisymmetric bending of 
circular plates based on nonlocal plate theory. Duan et al. 
[30] calibrated the small scaling parameter e0 for the non-
local Timoshenko beam theory from molecular dynamics. 
Their results showed that the calibrated values of e0 are 
different from published results. The parameter is a func-
tion of the length-to-diameter ratio, mode shapes and 

boundary conditions associated with single-walled CNTs 
(SWCNTs). Lu et al. [31] studied the dynamic characteris-
tics of beams using the nonlocal elasticity model.

Reddy and Pang [32] derived the governing equations 
of motion for Euler-Bernoulli beams and Timoshenko 
beams using the nonlocal differential equations of Eringen 
[10] and presented closed-form solutions for beam static 
bending, vibration and buckling response with various 
boundary conditions. Recently, Reddy [33], based on von 
Karman nonlinear strains and Eringen’s nonlocal theory, 
derived governing equations of equilibrium for beams. 
Phadikar and Pradhan [19] developed a variational for-
mulation for Euler-Bernoulli beams and Kirchoff plates 
employing Hermite and Lagrange polynomials to study the 
response of beams and plates within the nonlocal elastic-
ity framework. Roque et al. [34] studied bending, buckling 
and vibration of Timonshenko nanobeams using colloca-
tion techniques. Civalek and Demir [35] applied nonlocal 
Euler-Bernoulli beam theory to study static bending and 
vibration of microtubules using the differential quadra-
ture method (DQM). The nonlocal linear elasticity theory 
of Eringen has been applied to study free in-plane vibra-
tion and flexural vibration of plates [36–38]. Reddy [33] 
and Aghababaei and Reddy [39] extended the classical, 
first- and third-order shear deformation theory using the 
nonlocal linear theory of elasticity and presented analyti-
cal solutions of bending and vibration of plates. The free 
vibration of single-layered and multi-layered graphene 
sheets has been studied using the first-order shear defor-
mation nonlocal plate theory [37, 40].

1.1.2  Buckling of nanostructures

Wang et al. [25] based on the differential version of Erin-
gen’s nonlocal elastic model showed that the buckling 
solutions for CNTs via local continuum mechanics overes-
timate the response and the scale effect is indispensable. 
Murmu and Pradhan [41, 42] for the first time studied the 
buckling of SWCNTs embedded in an elastic medium using 
nonlocal elasticity and Timoshenko beam theory. Both 
Wrinkler-type and Pasternak-type models are employed 
to simulate the interaction of nanotubes with the sur-
rounding elastic medium. The critical buckling loads are 
numerically obtained by using a DQM. Their study sug-
gested that the buckling loads of SWCNTs strongly depend 
on the small-scale coefficients and on the stiffness of the 
surrounding medium. Pradhan [43] studied the buckling 
of nanoplates such as graphene sheets using a modified 
higher order shear deformation theory employing the non-
local differential constitutive relations of Eringen. Zhang 
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et al. [27] proposed a nonlocal Donnell multi-shell model 
for the axial buckling of multi-walled carbon nanotubes 
(MWCNTs) with hinge ends under axial compression. 
Their results showed that the buckling modes and length 
of the tubes influence the small-scale effects on the axial 
buckling strain. By including both van der Waals forces 
and the effects of small length scales, Sudak [28] studied 
the buckling characteristics of MWCNTs. In a recent work, 
Pradhan and Murmu [44] have studied the buckling char-
acteristics of a single-layer graphene sheet under biaxial 
compression. Their results showed that biaxially com-
pressed graphene sheets showed a lower influence of non-
local effects for the case of smaller side lengths and large 
nonlocal parameter values.

1.2  Objective

As seen earlier, the study of the response of low-dimen-
sional structures relied on analytical approaches or 
numerical techniques. To the best of the author’s knowl-
edge, the existing numerical approaches are limited to 
using the DQM [35, 45] and radial basis functions [34]. In 
this paper, we use Lagrange basis functions, moving least-
squares (MLS) approximants and non-uniform rational 
B-splines (NURBS) to approximate the unknown field var-
iables. The response of such low-dimensional structures 
is studied with the framework of the Galerkin method. 
The influence of the nonlocal parameter, boundary con-
ditions, the aspect ratio and the plate dimensions on the 
fundamental frequency and the critical buckling load 
is numerically studied. The longitudinal vibration of a 
nanorod with a crack is also studied within the framework 
of the extended finite element method (XFEM).

1.3  Outline

The paper commences with a brief overview of Eringen’s 
nonlocal elasticity theory and Aifantis’ gradient elastic-
ity theory. Section 3 presents the governing equations for 
nanobeams and nanoplates based on Eringen’s gradient 
elasticity theory. The weak form of the corresponding 
equations is also described. The section also discusses 
the application of the partition of unity methods (PUMs) 
and the choice of various basis functions to describe the 
unknown field variables within nonlocal elasticity theory. 
Section 4 presents numerical results for longitudinal and 
free flexural vibration of nanobeams and nanoplates. The 
critical buckling load of a nanobeam is also studied. Con-
cluding remarks are presented in the last section.

2  �Overview of Eringen’s nonlocal 
elasticity theory and Aifantis’ 
gradient elasticity theory

Consider a region Ω in three-dimensional Euclidean space 
occupied by a continuum body. The body can be envi-
sioned as a collection of a large number of deformable 
particles. If the internal motion of the particle is neglected 
and if a single typical material particle is assumed to inter-
act with its neighbors with short-range elastic forces, the 
resulting theory is the “local elasticity theory”, whereas 
in the “nonlocal elasticity theory”, all the particles which 
influence one another are considered to write out the 
stress-strain relations. In this section, we discuss two 
types of nonlocal elasticity theory, namely Eringen’s non-
local elasticity theory and Aifantis’ gradient elasticity 
theory. Both theories require only one additional param-
eter to be calibrated.

2.1  Eringen’s nonlocal elasticity theory

Eringen [11, 12] by accounting for long-range cohesive 
forces proposed a nonlocal theory in which the stress 
at a point depends on the strains of an extended region 
around that point in the body. Thus, the nonlocal stress 
tensor σ at a point x is expressed as

	
(| | ,) ( ) d

Ω

α= −′ ′ ′∫ x x t x xσ
�

(1)

where t(x) is the classical, macroscopic stress tensor at 
a point x and the kernel function is called the nonlocal 
modulus, also referred to as the attenuation or influence 
function. The nonlocality effects at a reference point x 
produced by the strains at x and x′ are included in the 
constitutive law by this function. The kernel weights the 
effects of the surrounding stress states. From the structure 
of the nonlocal constitutive equation, given by Eq. (1), it 
can be seen that the nonlocal modulus has the dimension 
of (length)–3 [11, 12]. Typically, the kernel is a function of 
the Euclidean distance between the points x and x′. The 
kernel in Eq. (1) has the following properties:
1.	 The kernel is maximum at x′ = x and decays with |x′–x|.
2.	 The classical elasticity limit is recovered in the 

limit of the vanishing internal characteristic length 

0
lim (| |) (| |).
τ

α δ
→

− = −′ ′x x x x

3.	 For small internal characteristic lengths, the nonlocal 
theory approximates the atomic lattice dynamics.

4.	 The kernel is a Green’s function of a linear differential 
operator L, (| |) (| |).α δ− = −′ ′L x x x x
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The nonlocal modulus has a very important role in 
describing nonlocal effects. Of course, ultimately, the 
accurate estimation of α(|x′–x|) would dictate the overall 
reliability of the nonlocal model. Eringen [11, 12] numeri-
cally determined the functional form of the kernel. This is 
feasible due to the Cauchy-Born rule [46–48], which states 
that in a medium subjected to a small strain, the position 
of the atoms follows the overall strain of the medium. This 
rule, in general, can be applied directly to face-centered 
and body-centered cubic systems and, with slight modifi-
cation, also to more complex lattices such as the diamond. 
Eringen [10] showed that a stress gradient theory can be 
derived by assuming that the nonlocal kernel is a special 
form that satisfies the differential equation

	
2[ 1 ] (| |) (| |),µ α δ− ∇ − = −′ ′x x x x � (2)

where μ = (e0a/L)2 is a material-specific parameter, called 
the nonlocal parameter, a is an internal characteristic 
parameter, L is the macroscopic length and e0 is a con-
stant. In such a stress gradient type of nonlocal elasticity 
theory, the relevant constitutive equation is given by

	
2[ 1 ] ,µ− ∇ =Dσ ε � (3)

where D is the fourth-order elasticity tensor and ε is the 
local strain tensor.

2.2  Aifantis’ gradient elasticity theory

In gradient-type nonlocal elasticity theory, the stress is 
expressed as a function of strain and its gradients at the 
same point [3]. In this category, there are two classes of 
strain gradient elasticity models:

Gradient theory type I: The gradient elasticity model 
in which the higher order term has been postulated and 
which is used to smoothen heterogeneity. The constitutive 
equation in this type is given by [3]

	
2[ 1 ] .µ= − ∇Dσ ε � (4)

Gradient theory type II: The gradient elasticity model 
derived from a discrete lattice structure and which is used 
to introduce heterogeneity. The constitutive equation is 
given by

	 2[ 1 ] .µ= + ∇Dσ ε � (5)

Remark 1: The only difference between these two classes 
of the gradient elasticity model is the “sign” of the higher 
order terms.

More details on Aifantis’ strain gradient elasticity 
model and its use to interpret size effects eliminate stress/

strain singularities from dislocation lines and crack tips 
can be found in a series of articles by Aifantis and co-
workers [49–61], as well as references quoted therein. In 
these references, a comparison of fundamental differ-
ences between Eringen’s stress gradient theory and Aifan-
tis’ strain gradient theory can be found. In the following, 
we mainly apply Eringen’s model to study the static and 
dynamic behavior of low-dimensional structures. Aifan-
tis’ theory for such structures is considered separately 
elsewhere.

3  �Governing equations based on 
Eringen’s nonlocal elasticity and 
choice of basis functions

3.1  Governing equations

In this section, we present the governing equations for 
nanorods, nanobeams and nanoplates based on Eringen’s 
differential stress gradient elasticity. For more information 
and detailed derivation, interested readers are referred to 
the literature [17, 39] and references therein.

3.1.1  Nanorods

For nanorods, the constitutive relation is given by

	

2

2 EA ,N uN
xx

µ
∂ ∂− =

∂∂ �
(6)

where N is the stress resultant, EA is the effective axial 
rigidity and u is the axial displacement. The equation of 
motion for the axial vibration of the nanorod is given by

	

2 2

2 2EA 1 .u u
x x x t

µ ρ
  ∂ ∂ ∂ ∂

= −  ∂ ∂  ∂ ∂ 
�

�
(7)

3.1.2  Timoshenko beam theory

Consider a straight uniform beam of length L and thick-
ness h. The displacement field is given by

	 0 0( , , ) ( , ) ( , );     ( , , ) ( , ),u x z t u x t z x t w x z t w x tφ= + =
� (8)

where u0 and w0 are the axial and the transverse displace-
ments of the point on the mid-plane (i.e., z = 0) of the 
beam and f is the rotation of the mid-plane. The non-zero 
strains are
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0 0;     .xx xz

u w
z

x x x
φ

ε γ φ
∂ ∂∂= + = +
∂ ∂ ∂ �

(9)

The Timoshenko beam theory requires shear correc-
tion factors to compensate for the error due to the con-
stant shear stress assumption. The governing equations of 
motion in this case are given by

	

, , , , , , ,

0 ,

[ ] (( )
( )

) [ ( ) ]s x x x x x x x

xx

GA w q Nw q Nw
m w w

κ φ µ

µ

+ + − − −
= −�� ��

� (10a)

	 , , , 1 ,( ) ( )( ) ,x x s x xxEI GA w mφ κ φ φ µφ− + = −�� ��
� (10b)

where the subscript “comma” denotes partial derivative 
with respect to the spatial coordinate succeeding it, G is 
the shear modulus, κs is the shear correction factor, q is 
the externally applied load, m0 and m1 are the mass den-
sities, EI is the flexural rigidity and N  is the externally 
applied axial load. The boundary conditions involve spec-
ifying one of each of the following at x = 0 and at x = L: w 
or Q and f or M, where Q is the shear force and M is the 
bending moment.

3.1.3  Reissner-Mindlin plates

Consider a rectangular Cartesian coordinate system (x, 
y, z) with the xy-plane coinciding with the undeformed 
middle plane of the plate and the z-coordinate taken posi-
tive downwards. The displacement field based on the first-
order shear deformation theory, also referred to as the 
Reissner-Mindlin plate theory, is given by

	

0

0

0

( , , , ) ( , , ) ( , , )
( , , , ) ( , , ) ( , , )
( , , , ) ( , , ),

x

y

u x y z t u x y t z x y t
v x y z t v x y t z x y t

w x y z t w x y t

θ

θ

= +
= +
=

�

(11)

where u0, v0 and w0 are the mid-plane displacements and 
θx and θy are the rotations of the mid-plane. The strains are 
given by

	
.

0
p b

s

z      = +   
     

ε ε
ε

ε
�

(12)

The mid-plane strains, the bending strains and the 
shear strains in Eq. (12) are written as

	

0, 

0, 

0, 0, 

x

p y

y x

u
v

u v

 
 

= 
 + 

ε

�

(13a)
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θ

θ

θ θ

 
 

= 
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ε
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(13b)

	

0, 

0, 

.x x
s

y y

w
w

θ

θ
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ε

�
(13c)

The equations of motion are given by

	
11 12

xyxx
x

NN
I u I

x x
θ

∂∂
+ = +

∂ ∂
����

�
(14a)

	
11 12

xy yy
y

N N
I v I

x x
θ

∂ ∂
+ = +
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����

�
(14b)

	
11

yzxz
NN

I w
x x

∂∂
+ =

∂ ∂
��

�
(14c)

	
12 22

xyxx
x

MM
I u I

x x
θ

∂∂
+ = +

∂ ∂
����

�
(14d)

	
12 22 ,xy yy

y

M M
I v I

x x
θ

∂ ∂
+ = +

∂ ∂
����

�
(14e)

where 
/ 2

2
11 12 22

/ 2

( , , ) ( 1, , ) d .
h

h

I I I z z zρ
−

= ∫  The relation 

between the nonlocal stress and moment resultants to its 
local counterpart is given by

	

L
2

L[ 1 ] .ij ij

ij ij

N N
M M

µ
     − ∇ =   

       �
(15)

The local stress and moment resultants are related to 
the strains by

	

e be b

be b κ

       =    
       

N A B
M B D

ε

�
(16)

where A, Bbe and Db are the extensional, the bending-
extensional coupling and the bending stiffness coeffi-
cients, respectively. The equations of motion in terms of 
the mid-plane displacements and rotations are obtained 
by substituting the nonlocal (strictly speaking gradient) 
constitutive relations given by Eq. (16) into the equa-
tions of motion given by Eq. (14) along with Eq. (15). For a 
detailed derivation, interested readers are referred to the 
literature [33, 36, 38].

Remark 2: The governing equations of motion for classical 
elasticity can be obtained by setting the nonlocal para
meter μ equal to zero.
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3.2  Discretized form

The standard Galerkin procedure can be adopted to derive 
the following discretized form of the governing equations 
of motion for nanorods, nanobeams and nanoplates.

	
NL ):  (vibration + + =K M M 0��δ δ � (17)

	
NL:  ( [ ]) ,G GBuckling λ+ + =K K K 0δ

� (18)

where δ is the vector of unknown field variables, λ is the 
critical buckling load, K is the stiffness matrix, KG is the 
geometric stiffness matrix, M is the mass matrix and the 
superscript “NL” refers to the contribution from the nonlo-
cal part. Note that when Eringen’s stress gradient elastic-
ity theory is employed, the nonlocal parameter influences 
only the mass matrix in the case of free vibration and the 
geometric stiffness matrix in the case of buckling. The stiff-
ness matrix is unaltered. It is also noted that, for the free 
vibration problem, the approximation functions require 
only 0C  continuity, whereas the approximation functions 
need to be 1C  continuous for the buckling problem. The 
stiffness matrix and the mass matrix for nanobeams and 
nanoplates are given below.

3.2.1  Timoshenko beam

The elemental stiffness, the geometric stiffness and the 
elemental mass matrix for the nonlocal Timoshenko beam 
are given by

	 3

T 0
 d

0
e

s

EI
GA

Ω

Ω
κ

 
=  

  
∫K B B

�
(19a)
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ρ ρ

   
= +   

      
∫M N N N N

�
(19b)
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T
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e

T
e
G x x

Ω

µ Ω
 ∂ ∂= +  ∂ ∂∫ N NK N

�
(19c)

Remark 3: It is seen from the above equations that the 
computation of the geometric stiffness matrix involves the 
second derivative of the approximation functions, i.e., the 
approximation functions should be 1C  continuous.

3.2.2  Reissner-Mindlin plate

The elemental stiffness and mass matrix for the nonlocal 
stress gradient Reissner-Mindlin plate are given by

	

T T  de
e e be

s s
be b

Ω
Ω

  
= +  
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�

(20a)

	

3T

3

3

0 0 0 0
0 0 0 0
0 0 / 12 0 0  d
0 0 0 / 12 0
0 0 0 0 / 12

e

e

h
h

h
h

h

Ω
ρ Ω

 
 
 
 =  
 
 
  

∫M N N

�

(20b)

	

T
3

NL
3

3

0 0 0 0
0 0 0 0
0 0 / 12 0 0  d ,
0 0 0 / 12 0
0 0 0 0 / 12

e

e

h
h

h
h

h

Ω
ρµ Ω

η η

 
 
 ∂ ∂ =  ∂ ∂
 
 
  

∫
N NM

� (20c)
where η = x, y and B and Bs are the strain-displacement 
matrices corresponding to bending-extensional coupling 
and shear terms, respectively.

3.3  Choice of basis functions

As noted earlier, the numerical implementation of the 
nonlocal or the gradient elasticity theory requires at least 

1C  continuous functions in some cases, for example, buck-
ling. For this, the conventional finite element approach 
with Lagrange polynomials is not suitable. In this section, 
we discuss the different choices of basis functions.

3.3.1  1C  finite elements

The higher order gradients of strain and stresses in Aifan-
tis’ gradient elasticity and Eringen’s gradient elasticity 
theory, respectively, lead to partial differential equations 
of higher order. Employing Galerkin’s method for numeri-
cal solution requires a high regularity of the interpolation 
scheme. For the first-order strain gradient theory, 1C  con-
tinuity has to be ensured. There are only a limited number 
of 1C  continuous finite elements. The Argyris element, 
the bicubic element and the HCT element have been used 
in the literature for gradient elasticity problems. All these 
elements satisfy 1C continuity requirement imposed by 
the gradient elasticity formulation. Figure 1 shows the 
first six shape functions for a triangular element with 
three nodes. Each node has six degrees of freedom, i.e., u, 
ux, uy, uxx, uxy and uyy. The explicit form of the shape func-
tions is given in [62]. These elements have many degrees 
of freedom per node and are difficult to implement. Papa-
constantopoulos et al. [63] developed a three-dimensional 
hexahedral element with 1C  continuity. In [19], Hermite 
interpolation functions and Hermite cubic elements were 
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Figure 1  1C  shape functions for a triangular finite element. Only the first six shape functions corresponding to a node are shown. The other 
shape functions can be constructed by permutation [62].

employed for studying static and dynamic characteristics 
of nonlocal Euler-Bernoulli beams and nonlocal Kirchoff 
plates, respectively. The Hermite cubic element involves a 

12-term approximation polynomial with , , w ww
x y

 ∂ ∂
  ∂ ∂ 

 as 

the nodal degrees of freedom, where w is the transverse 
displacement.

3.3.2  Non-uniform rational B-splines

NURBS is a short form for non-uniform rational B-splines. 
We give here only a brief introduction to NURBS. More 
details on their use in FEM are given in [64, 65]. The key 
ingredients in the construction of NURBS basis functions 
are the knot vector (a non-decreasing sequence of param-
eter values, ξi  ≤  ξi+1, i = 0, 1, …, m–1), the control points, Pi, 
the degree of the curve p and the weight associated with a 
control point, w. The ith B-spline basis function of degree 
p, denoted by Ni, p is defined as [66]
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The B-spline basis functions have the following prop-

erties: (i) non-negativity, (ii) partition of unity, , 1i p
i

N =∑  

and (iii) interpolatory at the end points. As the same 
function is also used to represent the geometry, the exact 
representation of the geometry is preserved. It should be 
noted that the continuity of the spline functions can be 
tailored to the needs of the problem. Moreover, the spline 
function has limited support. When employed to approxi-
mate the FE solution space, the resulting stiffness matrix 
has similar properties to the stiffness matrix computed by 
employing Lagrange shape functions. Given n+1 control 
points (p0, p1, …, pn) and a knot vector Ξ = {η0, η1, …, ηm}, 
the piecewise polynomial B-spline curve of degree p is 
defined as

	
, 
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where Pi are the control points. A B-spline curve has the 
following information: n+1 control points, m+1 knots and a 
degree p. It is noted that n, m and p must satisfy m = n+p+1. 
The B-spline functions also provide a variety of refinement 
algorithms, which are essential when employing B-spline 
functions to discretize the unknown fields. The analogous 
h and p refinement can be done by the process of “knot 
insertion” and “order elevation”. The B-spline surfaces 
are defined by the tensor product of basis functions in two 
parametric dimensions ξ and η with two knot vectors, one 
in each dimension as
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where Pi, j is the bidirectional control net and Ni, p and 
Mj, q are the B-spline basis functions defined on the knot 
vectors over an m × n net of control points Pi, j. Despite the 
flexibility offered by the B-splines, they lack the ability 
to exactly represent some shapes such as circles and 
ellipsoids. To improve this, NURBS are formed through 
rational functions of B-splines. The NURBS thus form the 
superset of B-splines. The key ingredients in the construc-
tion of NURBS basis functions are the knot vector (a non-
decreasing sequence of parameter values, ηi  ≤  ηi +1, i = 0, 1, 
…, m–1), the degree of the curve p and the weight associ-
ated with a control point, w. A pth degree NURBS basis 
function is defined as follows:
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where wi are the weights for the ith basis function Ni, p(η). 
Figure 2 shows the third-order NURBS for an open knot 
vector Ξ = {0, 0, 0, 0, 1/3, 1/3, 1, /3, 1/2, 2/3, 1, 1, 1, 1}.

The NURBS surface is then defined by
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where w(ξ, η) is the weighting function. The displacement 
field, u

τ
(x, y) within the control mesh is approximated by

	
( , ) ( , ) ( , ),x y x y

τ τ
ξ η=u R q

� (26)

where q
τ
(x, y) are the nodal variables and R(ξ, η) are the 

basis functions given by Eq. (25).

3.3.3  MLS approximants

The unknown field variables can be approximated by the 
MLS approximation as

	
T( ) ( ) ( ),h ≡u x p x a x � (27)

where p(x) is a vector of basis functions and a(x) are 
unknown coefficients. The unknown coefficients a(x) are 
obtained by minimizing a weighted least-squares sum 
of the difference between the local approximation uh(x) 
and the field function nodal parameters uI. The weighted 
least-squares sum L(x) can be written in the quadratic 
form as
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where uI is the nodal parameter associated with node 
I at xI, w(x–xI) is the weight function having a compact 
support associated with node I and n is the total number 
of nodes with the domain of influence containing the 
points x where w(x–xI)≠0. By setting ∂L/∂a = 0, we obtain 
the following set of linear equations:

	 ( ) ( ) ( ) .=A x a x B x u � (29)

Upon substituting Eq. (26) into Eq. (24), we obtain the 
approximation function as

	 1

( ) .( )
n

h
I I

i

Φ
=

≡∑u x x u
�

(30)

Figure 3 shows a typical MLS function with a quartic 
spline weight function. Note that the MLS shape functions 
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Figure 2 Non-uniform rational B-splines. Order of the basis func-
tion is 3 with the open knot vector.

Figure 3 Moving least-squares basis function with the quartic 
spline weight function.
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do not satisfy the Kronecker delta property, and hence 
imposing boundary conditions requires an additional 
step. However, the MLS shape functions satisfy the parti-
tion of unity property, which makes them a candidate as 
basis functions within the Galerkin procedure. Moreover, 
the higher order continuity of the shape functions can be 
constructed.

Remark 4: When applying the NURBS or MLS approxima-
tions for gradient elasticity, the inherent higher order con-
tinuity of the shape functions is utilized.

3.3.4  Field-consistent Q4 and Q8 elements

In order to study the free vibration of Reissner-Mindlin 
plates, we employ four-noded and eight-noded shear flex-
ible quadrilateral elements. These plate elements are 0C  
continuous elements with five degrees of freedom per 
node. The same element can be used within the nonlocal 
elasticity framework to study the free vibration of nano-
plates, because the weak form (Eq. 21) does not involve 
higher order derivatives of the shape functions. However, 
if the interpolation functions for Q4/Q8 are used directly to 
interpolate the five variables in deriving the shear strains 
and membrane strains, the element will lock and show 
oscillations in the shear and membrane stresses. Field 
consistency requires that the transverse shear strains 
and membrane strains must be interpolated in a consist-
ent manner. Thus, the θx and θy terms in the expressions 
for shear strains εs have to be consistent with the deriva-
tives of the field functions w0, x and w0, y. This is achieved 
by using field redistributed substitute shape functions 
to interpolate these specific terms, which must be con-
sistent as described in [66, 67]. These elements are free 
from locking and have good convergence properties. For 
a complete description of the element, interested readers 
are referred to the literature [66, 67], where the element 
behavior is discussed in great detail. Since the element is 
based on the field consistency approach, exact integra-
tion is applied for calculating various strain energy terms.

4  �Numerical results and 
discussion

In this section, we study the nonlocal response of low-
dimensional structures using the PUMs. For all the study, 
consistent units are used for the material properties.

4.1  Axial vibration of nanorods

In this section, we study the influence of the internal 
length μ, boundary conditions and the presence of a crack 
on the fundamental frequency of a nanorod. The nanorod 
with length L has Young’s modulus E and uniform cross-
section A. The crack is located at a distance C from the 
left end and it is simulated by an equivalent spring with 
stiffness k. In this work, the influence of a single crack on 
the longitudinal vibration is studied. In this example, we 
represent the discontinuity (i.e., crack) independently of 
the mesh within the framework of the XFEM. Within this 
framework, the generic form of the displacement approxi-
mation is given by

	 fem xfem

,( ) ( ) ( )h
I I J J

I J

N N
∈ ∈

= +∑ ∑u x q x x a
N N

�

�
(31)

where NI, NJ are the standard finite element shape func-
tions, femN  is the set of nodes in the finite element mesh 
and xfemN  is the set of nodes whose nodal support is cut 
by the discontinuity. Interested readers are referred to [68] 
for more details. The weak form is given by

	 coh
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where , c c= ⋅ = ⋅u n t t nU  and tc = ku; k is the spring stiffness.
Before proceeding further with the numerical study, 

the results from the present formulation are compared 
with results available in the literature for the case when 
the nonlocal parameter μ = 0. Based on a progressive mesh 
refinement, 100 elements were found to be adequate for 
the study. Figure 4 shows the convergence of the first three 
modes with mesh size with and without nonlocal effects. 
It can be seen that with decreasing mesh size, the analyti-
cal solution is approached.

Tables 1 and 2 give a comparison of computed fre-
quencies for the clamped-free (CF) and clamped-clamped 
(CC) nanobeam with a single crack, respectively [69, 70]. 
It can be seen that the numerical results from the present 
formulation are found to be in good agreement with the 
existing previous solutions. The effect of the nonlocal 
parameter on the fundamental frequencies is shown in 
Figure 5 for a fixed value of the nonlocal parameter (e0a = 1 
nm). In this case, the length of the beam is varied. It can 
be seen that as the length of the beam increases with 
respect to the characteristic internal length, the nonlocal 
effect decreases, and for very large beams, the nonlocal 
effect is negligible.

Figure 6 depicts the influence of boundary condi-
tions and nonlocal parameter on the first three models 
of the CF and CC beam with a single crack. The crack is 
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Figure 4 Convergence of the first three modes of frequencies 
with mesh size.

Table 1 Comparison of natural frequencies of the clamped-
free beam with a single crack at C/L = 0.2002, crack parameter 
K = EA/kL = 0.1144 and nonlocal parameter e0a/L = 0.

Mode XFEM Ref. [69] Ref. [70]

1 1.4228 1.4278 1.4278
2 4.4429 4.5579 4.5576
3 7.8559 7.8540 7.8540
4 10.4289 10.4471 10.4486

Table 2 Comparison of natural frequencies for the clamped-
clamped beam with a single crack located at C/L = 0.25 for various 
internal lengths and crack parameters.

μ = (e0a/L) K = 0.065 K = 0.35 K = 2

XFEM Ref. [69] XFEM Ref. [69] XFEM Ref. [69]

0.2 2.6144 2.6173 2.4649 2.4668 2.1503 2.1506
0.4 1.9455 1.9467 1.9060 1.9071 1.7660 1.7663

Figure 5 Frequency ratio β as a function of the beam length with a 
fixed nonlocal parameter e0a = 1 nm. It can be seen that as the length 
of the beam increases with respect to the characteristic internal 
length, the nonlocal effect decreases, and for very long beams, the 
nonlocal effect is negligible.located at C/L = 0.4 from the left end. It can be seen that 

the frequencies are higher for the beam with no crack, and 
with increasing crack parameter K = EA/kL, the frequency 
decreases. The presence of crack introduces local flexibil-
ity, and the effect of the crack parameter on the frequencies 
is significant for lower values of the nonlocal parameter μ. 
This observation is consistent with the existing previous 
results [69]. The effect of crack local along the length of 
the beam and the boundary conditions on the frequency 
is shown in Figure 7. In both cases, the natural frequency 

of the beam is influenced by the location of the crack. In 
the case of the CF boundary condition, the crack near the 
free end shows a stronger influence than the crack at the 
fixed end, whereas in the case of the CC boundary condi-
tion, the crack in the middle of the beam has a stronger 
influence. Due to the CC boundary condition, a symmet-
ric distribution of the frequency is observed. This again is 
consistent with the results available in the literature [69].
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Figure 6 The dimensionless frequency for different crack para
meters for the first three vibration modes. The crack is located at a 
distance 0.4 from the left end.

Figure 7 Influence of the crack location on the fundamental 
frequency for clamped-free and clamped-clamped nanorods for 
various internal lengths μ.

4.2  Flexural vibration and buckling of beams

In this section, we present the influence of the internal 
length on the fundamental frequencies and on the criti-
cal buckling load for nanobeams based on both Euler-
Bernoulli beam and Timoshenko beam theories. In all 
cases, we present the non-dimensionalized fundamental 
frequencies as (unless specified otherwise)

	
2 ,L

EI
ρ

Ω ω=
�

(33)

where EI is the flexural rigidity, ρ is the mass density and 
L is the length of the beam.

4.2.1  Vibration of beams

Consider a beam of length L = 10 with Young’s modulus 
E = 30 × 106, Poisson’s ratio ν = 0.3 and mass density ρ = 1. The 
influence of the beam thickness h, the nonlocal parameter 
μ and the boundary conditions [namely simply supported 
(SS) ends, CC and CF] on the fundamental frequency is 
numerically studied. The efficiency and accuracy of dif-
ferent basis functions, namely Lagrange interpolants, MLS 
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Figure 8 Timoshenko beam theory: (A) frequency ratio β as a 
function of the nonlocal parameter for a simply supported beam 
with a/h = 100 and L = 10 and (B) non-dimensionalized mode 1 
frequency as a function of the aspect ratio L/h for various nonlocal 
parameters.

Table 3 Comparison of natural frequencies for the simply sup-
ported Timoshenko beam.

a/h μ Timoshenko beam

Ref. [17] Ref. [34] NURBS MLS FEM

100 0 9.8683 9.8283 9.8680 9.8645 9.8630
1 9.4147 9.3766 9.4144 9.4112 9.4096
2 8.0750 8.0423 8.0748 8.0725 8.0706

20 0 9.8381 9.8059 9.8281 9.8258 9.7955
1 9.3858 9.3551 9.3763 9.3742 9.3452
2 8.0503 8.0239 8.0421 8.0407 8.0154

10 0 9.7454 9.7792 9.7075 9.7034 9.5886
1 9.2973 9.3294 9.2612 9.2538 9.1460
2 7.9744 8.0014 7.9434 7.9385 7.8445

approximants and NURBS basis functions, are critically 
studied. The numerical results for free vibration of beams 
based on the Timoshenko beam theory are given in Table 3. 
The results from the present study are compared with the 
available analytical solution [17] and with radial basis func-
tions [34]. It can be seen that the numerical results from the 
present study are in very good agreement with the existing 
solutions. The influence of the internal length μ and the 
thickness is also shown in Table 3. The combined effect of 
increasing the plate thickness and the nonlocal parameter 
μ is to decrease the fundamental frequency. The influence 
of the beam aspect ratio and the nonlocal parameter on 
the frequency ratio β = ΩNL/ΩL and on the fundamental fre-
quency ΩNL is shown in Figure 8. It can be observed that 
increasing the nonlocal parameter, for a fixed aspect ratio, 
decreases the frequency ratio. The nonlocal parameter has 
a greater influence on the higher modes. The variation of 
the frequency ratio for mode 1 is almost linear, whilst for 
higher modes, the frequency ratio is nonlinear. The effect 
of increasing the aspect ratio is to increase the frequency, 
whilst increasing the nonlocal parameter decreases the 
frequency. This is because increasing the aspect ratio 
increases the flexibility of the structure, and on the other 
hand, the nonlocal parameter decreases the flexibility. The 
effect of various boundary conditions on the fundamen-
tal frequency is presented in Table 4. For this example, a 
NURBS basis function of order 3 is employed. It is observed 
that the frequency decreases with increasing nonlocal 
parameter. The CC boundary condition increases the fun-
damental frequency, whilst the CF lowers the frequency 
compared to the SS boundary condition.

4.2.2  Buckling of beams

In this section, we present the critical buckling load for SS 
nanobeams based on the Timoshenko beam theory. For 

comparison purposes, we have included the results for 
nanobeams based on the Euler-Bernoulli beam theory. The 
non-dimensionalized critical buckling load is given by

	

2

.LN
EI

λ∗ =
�

(34)

Consider a beam of length L = 10 with Young’s modulus 
E = 30 × 106 and Poisson’s ratio ν = 0.3. The weak form of the 
governing equations for nanobeam buckling requires 1C  
continuity, and hence we employ the element-free Galer-
kin method based on MLS approximants. The beam is 
discretized with 100 nodes with a quadratic polynomial 
basis and a quartic spline as a weight function. The non-
dimensionalized critical buckling loads are presented in 
Table 5. From this table, it is observed that the buckling 
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load decreases with increasing nonlocal parameter μ. 
Similar to free vibration, for the shorter beam length L, 
the nonlocal effect is important, and this effect is negli-
gible for longer beam lengths. The numerical results from 
the present study are compared with the results of Reddy 
[17] and very good agreement is observed. Moreover, it is 
noted that the influence of the nonlocal parameter does 
not depend on the beam theory used.

4.3  Free vibration of plates

In this section, we study the influence of the nonlocal 
parameter μ and the plate dimensions on the fundamental 
frequencies of rectangular and circular plates.

Table 4 Non-dimensionalized frequency for the Timoshenko beam 
under various boundary conditions. Influence of the internal length 
and the aspect ratio is also shown.

a/h μ NURBS, p = 3

SS CC CF

100 0 9.8680 22.3892 3.5178
1 9.4144 21.1228 3.4385
2 9.0180 20.0450 3.3639
5 8.0748 17.5791 3.1646

20 0 9.8281 21.9967 3.5091
1 9.3763 20.7595 3.4303
2 8.9816 19.7049 3.3561
5 8.0421 17.2877 3.1577

10 0 9.7075 20.9726 3.4884
1 9.2612 19.8083 3.4107
2 8.8713 18.8124 3.3375
5 7.9434 16.5200 3.1415

Table 5 Comparison of the critical buckling load for simply 
supported nanobeams.

Boundary 
condition

μ Euler-Bernoulli beam Timoshenko beam

Ref. [17] MLS Ref. [17] MLS

SS 0.0 4.8458 4.8447 4.7670 4.7670
0.5 4.7290 4.7281 4.6540 4.6540
1.0 4.4105 4.4095 4.3450 4.3450
1.5 3.9651 3.9644 3.9122 3.9121
2.0 3.4741 3.4735 3.4333 3.4333

CF 0.0 1.2542 1.2112 1.2063 1.2063
0.5 1.2062 1.2037 1.1989 1.1989
1.0 1.1829 1.1820 1.1773 1.1773
1.5 1.1593 1.1475 1.1431 1.1431
2.0 1.1134 1.1024 1.0983 1.0983

4.3.1  Flat rectangular plate

Consider a plate of uniform thickness h, length a and 
width b. The following material properties are used: 
Young’s modulus E = 30 × 106, Poisson’s ratio ν = 0.3 and 
mass density ρ = 1. In all cases, we present the non-dimen-
sionalized free flexural frequency

	
,h

D
ρ

Ω ω=
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(35)

where 
3

212( 1 )
EhD

ν
=

−
 is the plate rigidity. In this case, the 

displacement field is approximated by Lagrange elements 
(Q4 and Q8) and with NURBS basis functions with each 
node having five degrees of freedom (δ = u0, v0, w0, θx, θy). In 
this study, we employ a structured mesh size of 40 × 40 with 
Q4 elements, 8 × 8 with Q8 elements and cubic NURBS func-
tions. The computed non-dimensionalized fundamental fre-
quencies for a rectangular SS plate are given in Table 6. It can 
be seen that the numerical results from the present study are 
found to be in good agreement with the existing solutions. 
Table 6 gives the results of non-dimensional frequencies 
for a first-order nonlocal plate theory for different values 
of nonlocal parameters and aspect ratios for various basis 
functions. Again, it can be seen that the nonlocal theory 
predicts smaller values of natural frequencies than the local 
elasticity theory. The nonlocal frequency-to-local frequency 
ratio ΩNL/ΩL is computed for an SS isotropic square plate 
and the results are compared with those available in the lit-
erature [38]. Frequency ratios for different values of the non-
local parameter are presented in Table 7. It can be seen that 
the results from the present formulation are in good agree-
ment with the existing previous results [38, 39].

Table 6 Comparison of the non-dimensionalized fundamental 
frequency for a simply supported rectangular plate.

a/b a/h μ Ref. [39] Method

Q4 Q8 NURBS

1 10 0 0.0930 0.0927 0.0926 0.0929
1 0.0850 0.0847 0.0846 0.0849
5 0.0660 0.0657 0.0657 0.0659

20 0 0.0239 0.0240 0.0238 0.0239
1 0.0218 0.0219 0.0218 0.0219
5 0.0169 0.0170 0.0169 0.0170

2 10 0 0.0589 0.0588 0.0587 0.0590
1 0.0556 0.0554 0.0554 0.0556
5 0.0463 0.0462 0.0462 0.0464

20 0 0.0150 0.0150 0.0150 0.0151
1 0.0141 0.0141 0.0141 0.0141
5 0.0118 0.0118 0.0118 0.0118
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Table 7 Comparison of the frequency ratio β for a simply supported 
square plate with a = 10 and h = 0.34. Consistent units are used for 
the study.

μ Ref. [39] Ref. [38] Method

Q4 Q8 NURBS

0 1.0000 1.0000 1.0000 1.0000 1.0000
1 0.9139 0.9139 0.9099 0.9107 0.9107
2 0.8467 0.8467 0.8393 0.8468 0.8468
3 0.7925 0.7925 0.7857 0.7928 0.7928

Figure 9 Frequency ratio β for a simply supported isotropic plate: 
(A) influence of the length of the plate for various internal lengths and 
(B) influence of the nonlocal parameter for various lengths of the plate.

Figure 10 Frequency ratio as a function of the nonlocal parameter 
for various boundary conditions.

parameter is assumed to vary between μ = 0 (local elastic-
ity) and μ = 3 nm2 (nonlocal or stress gradient elasticity). It 
is seen that as the length of the plate increases for a fixed 
internal length μ, the frequency ratio tends to increase 
monotonically and approach the local elasticity solution 
for a considerably larger plate length, irrespective of the 
nonlocal parameter. The influence of the nonlocal param-
eter is significant for smaller plate dimensions. The influ-
ence of the nonlocal parameter on the frequency ratio 
for various plate dimensions is also shown in Figure 9. It 
can be seen that the nonlocal parameter has a stronger 
influence for small plate dimensions. The influence of 
the nonlocal parameter on the frequency ratio is nonlin-
ear for small plate dimensions and the frequency ratio 
decreases with increasing nonlocal parameter. To study 
the influence of the nonlocal parameter and the boundary 
condition on the natural frequency of an isotropic plate, a 
square plate of length 10 nm is considered with a/h = 100. 
The frequency ratio corresponding to two different bound-
ary conditions, namely all edges SS and all edges clamped 
boundary conditions, is plotted in Figure 10. It can be 
seen that both the boundary condition and the nonlocal 
parameter have an influence on the frequency ratio. The 
higher the nonlocal parameter, the larger is the influence, 
irrespective of the boundary condition.

4.3.2  Circular plate

In this example, we consider a circular plate with fully 
clamped boundary conditions. The following material 

Figure 9 shows the influence of plate dimensions and 
the influence of the internal length μ on the frequency 
ratio for an SS isotropic plate. The value of the nonlocal 
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properties are used: Young’s modulus E = 205, Poisson’s 
ratio ν = 0.3 and mass density ρ = 8900. The circular plate 
has a radius R = 0.5. The influence of the radius-to-thick-
ness ratio δ = h/R and the internal length μ on the funda-
mental frequency is numerically studied. In all cases, we 
present the non-dimensionalized free flexural frequency

	
2 .hR

D
ρ

Ω ω=
�

(36)

For this problem, a NURBS quadratic basis function 
is sufficient to model exactly the circular geometry. Any 
further refinement, if done, will only improve the accu-
racy of the solution. The knot vectors for the coarsest mesh 
with one element are defined as follows: Ξ = [0,0,0,1,1,1] 
and [ 0, 0, 0, 1, 1, 1].=H  The data for the circular plate 
are given in Table 8. Before proceeding further with 
details, the results from the present formulation are com-
pared with available results pertaining to circulate plates 
based on the classical theory of elasticity. Table 9 presents 
the convergence of the first three fundamental frequen-
cies with mesh refinement and order elevation. It can be 
seen that very good agreement with the available results is 

Table 8 Control points and corresponding weights for a circular 
plate with radius R = 0.5.

1 2 3 4 5 6 7 8 9
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− 2

2
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2
4

0 0 0 2
4

2
2
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4
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− 2

2
0 2

2
− 2

4
0 2

4
−

wi 1 2
2

1 2
2

1 2
2

1 2
2

1

obtained and that the order elevation improves the accu-
racy of the solution. For the remainder of the analysis, 
13 × 13 NURBS cubic elements are used. The influence of 
the radius-to-thickness ratio δ and the internal length μ 
on the fundamental frequency is presented in Table 10. 
It can be seen that for a constant internal length μ, with 
increasing thickness, the frequency decreases as expected 
and the effect of increasing the internal length for a con-
stant δ is to decrease the frequency. The combined effect 
of increasing the internal length and radius-to-thickness 
ratio is to decrease the frequency. The advantage of using 
NURBS is that the geometry is exactly represented and 
higher order continuous functions can be obtained with 
less computational effort.

5  Conclusions
In this paper, after discussing two types of different non-
local elasticity theories, the constitutive stress gradient 
proposed by Eringen was used to discuss Euler-Bernoulli 
nanobeams, Timoshenko beams and nanoplates based 
on Reissner-Mindlin formulation. The natural frequen-
cies of the nanobeams and nanoplates are studied by 
employing Lagrange polynomials, MLS approximants and 
NURBS. Numerical experiments have been conducted to 
reveal the effect of boundary conditions and the nonlocal 
parameter on the natural frequencies of nanobeams and 
nanoplates. The results obtained by employing different 
basis functions are found to be in excellent agreement 
with the analytical results available in the literature. From 
the numerical studies, it can be seen that the NURBS basis 
functions require fewer degrees of freedom to yield the 
same order of accuracy as that of the radial basis func-
tions in the case of beams. It can also be inferred that the 
effect of the nonlocal parameter is to reduce the natural 
frequency of nanoplates irrespective of the boundary 
conditions.

Table 9 Convergence of the non-dimensionalized fundamental 
frequencies for a clamped circular plate with μ = 0.

Method Order Number of 
control points

Non-dimensionalized 
frequency (μ = 0)

Ω1 Ω2 Ω3

Ref. [71] – – 9.2751 17.8285 27.1041
IGA Quadratic 7 9.3035 17.9918 27.3737

9 9.2848 17.8804 27.1861
11 9.2793 17.8500 27.1372
13 9.2772 17.8390 27.1199
15 9.2763 17.8342 27.1126

IGA Cubic 7 9.2755 17.8346 27.1232
9 9.2752 17.8295 27.1069

11 9.2751 17.8287 27.1046
13 9.2751 17.8285 27.1041
15 9.2751 17.8284 27.1039

Table 10 Influence of the internal length on the non-dimensionalized 
fundamental frequency for a clamped circular plate. The influence of 
the thickness-to-radius ratio is also shown.

μ δ = h/R

0.1 0.15 0.2

0 9.9782 9.6648 9.2751
1 1.8381 1.7828 1.7146
2 1.3105 1.2710 1.2223
3 1.0730 1.0407 1.0008
4 0.9305 0.9025 0.8679
5 0.8330 0.8079 0.7769
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