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Abstract: The aim of the present paper is to investigate 
the surface waves in a homogeneous, isotropic, visco-
elastic solid medium of nth order, including time rate of 
strain under the influence of surface stresses. The theory 
of generalized surface waves is developed to investigate 
particular cases of waves such as the Stoneley, Rayleigh, 
and Love waves. Corresponding equations have been 
obtained for different cases. These are reduced to classical 
results, when the effects of surface stresses and viscosity 
are ignored.
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1  Introduction
The propagation of surface waves in elastic media is of 
considerable importance in earthquake engineering and 
seismology due to the stratification in the earth’s crust. As 
a result, the theory of surface waves has been developed 
by Stoneley [1], Bullen [2], Ewing et  al. [3], Hunters [4], 
and Jeffreys [5].

The effect of gravity on wave propagation in an elastic 
solid medium was first considered by Bromwich [6] who 
treated gravity as a type of body force. Love [7] extended 
the work of Bromwich [6] in investigating the influence of 
gravity on surface waves and showed that the Rayleigh 
wave velocity may be affected significantly by the gravity 
field. Sezawa [8] studied the dispersion of elastic waves 
propagating on curved surfaces.

The transmission of elastic waves through a strati-
fied solid medium was first studied by Thomson [9]. 
Haskell [10] examined the dispersion of surface waves 

in multilayered media. Biot [11] studied the influence of 
gravity on Rayleigh waves, assuming the force of gravity 
to create a type of initial stress of hydrostatic nature and 
the medium to be incompressible. De and Sengupta [12] 
examined several problems of elastic waves and vibra-
tions under the influence of gravity field. In another 
work, Sengupta and Acharya [13] studied the influence 
of gravity on the propagation of waves in a thermoelas-
tic layer. Brunelle [14], meanwhile, analyzed surface wave 
propagation under initial tension or compression. Roy [15] 
studied wave propagation in a thin two-layered laminated 
medium (with stress couples) under initial stress, while 
Datta [16] studied the effect of gravity on Rayleigh wave 
propagation in a homogeneous, isotropic elastic solid 
medium. Goda [17] examined the effect of inhomogene-
ity and anisotropy on Stoneley waves, while Abd-Alla and 
Ahmed [18] studied the Rayleigh waves in an orthotropic 
thermoelastic medium under gravity field and initial 
stress. Bland [19], Flugge [20], and Voigt [21] all analyzed 
wave propagation in visco-elastic media. Recently, Sethi 
and Gupta [22] studied surface waves in non-homogene-
ous, general visco-elastic media of higher order.

Gurtin and Murdoch [23], Chandrasekharaiah [24], 
and other authors [25–28] all reported that surface stress 
plays a vital role in the propagation of waves due to the 
fact that the surface of a body exhibits properties that are 
quite different than those associated with the interior of 
the medium. In fact, surface tension, which is generally 
accounted for in the theory of liquids may be consid-
ered as a particular case of surface stress. The presence 
of surface stress on the boundary of bodies has been 
detected in some particular type of crystals, whose orders 
of magnitude agree with the predictions made by molecu-
lar theory [23]. Compressive surface stress is involved in 
the case of shot peening of ductile metals [23], and its 
knowledge is quite useful for the shaping of aircraft wing 
panels.

A few problems on the propagation of plane waves in 
homogeneous and isotropic materials have been consid-
ered [23]. Though the concept of surface stress is compar-
atively new, a few authors [24, 25] investigated problems 
based on the effect of surface stress. Pal et  al. [26], in 
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particular, investigated the effect of surface stress on the 
propagation of surface waves.

In the present paper, the problem of nth order visco-
elastic surface waves involving time rates of strain in a 
homogeneous and isotropic medium, under the influence 
of surface stresses, is studied. Biot’s theory of incremental 
deformations is used to obtain the wave velocity equation 
for Stoneley, Rayleigh and Love waves. These equations 
are in complete agreement with the corresponding classi-
cal results in the absence of surface stresses and viscosity.

2  Formulation of the problem
Consider M1 and M2 to be two homogeneous, visco-elas-
tic, isotropic, semi-infinite media welded in contact to 
prevent any relative motion or sliding before or after the 
occurrence of any disturbance. Suppose that the media 
are separated by a plane horizontal boundary, which 
extends to an infinite large distance from the origin, M2 is 
taken to be above M1, and the mechanical properties of M1 
are different from those of M2.

As a reference coordinate system, we consider a set of 
orthogonal cartesian axes Oxyz, with the origin O being 
at an arbitrary point on the boundary, and Oz pointing 
outward normal to M1 (Figure 1). Consider the possibility 
of a type of wave traveling in the positive x-direction, in 
such a way that the disturbance is largely confined to the 
neighborhood of the boundary and, at any instant, all 
particles in any line parallel to Oy have equal displace-
ment and all partial derivatives with respect to y are zero. 
These two assumptions suggest that the wave is a surface 
wave.

Further let us assume that “u, v, w” are the compo-
nents of displacement at any point (x, y, z) at any time t. The 
dynamical equations of motion for a three-dimensional 
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Z
Y
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O

Figure 1 Two media, M1 and M2, in contact.

isotropic, visco-elastic solid medium (e.g., Biot’ [11]) are 
as follows:
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where ρ is the density of the material medium, and τij = τji 
are the stress components.

The stress-strain relations for a general isotropic, 
visco-elastic medium are assumed to be given by the 
following:

	 τij = Dλ Δ δij+2 Dμ eij ,� (2)
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The coefficients λ0, μ0, λ′0, μ′0, are constants and λK, μK 
(K = 1, 2, … n) are the parameters associated with Kth order 
visco-elasticity.

Introducing Eqs. (2) and (3) to Eqs. (1a), (1b) and (1c), 
we obtain:
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To investigate the propagation of a surface wave along the 
direction of Ox, we introduce the displacement potentials 
f (x, z, t) and ψ (x, z, t), which are related to the displace-
ment components as follows:
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The displacement potentials f and ψ in the above equa-
tions are two distinct “potentials”, whose Laplacians 
specify the dilatation and rotation given by:
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These are associated with P-waves and SV-waves.
Substituting Eq. (5) into Eqs. (4a), (4b) and (4c), we 

obtain:
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Similar relations for medium M2 can be obtained by 
replacing λK, μK, ρ by λ′K, μ′K, and ρ′.

3  Solution of the problem
Now our main objective is to solve Eqs. (6a), (6b), and (6c).

We seek a solution of the following form:

	 (f, ψ, v) = [f (z), V (z), h (z)] eiη(x-ct).� (8)

By inserting Eqs. (8) and (7) into Eqs. (6a), (6b) and (6c), 
we obtain a set of differential equations for the medium 
M1 as follows:
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where
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The corresponding equations for medium M2 are given by:
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where
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The governing equations for media M1 and M2 must have 
exponential solutions such that f, V, and h describe the 
surface waves. They must become vanishingly small as 
z→∞.

Hence, for the medium M1, the desired solutions are 
given by the following expressions:
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Similarly for medium M2 (for the region 0  ≤  z < -∞) they are 
given by the following expressions:
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4  Boundary conditions
We assume that the plane z = 0 is a material layer that 
adheres to its neighboring layer without slipping. The layer 
is capable of supporting its own stress as represented by a 

surface stress tensor ,
iα
∑  which obeys the equation given 

by Chandrashekraiah [24], i.e.,
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Here, λd and μd are the Lame’s moduli of the material 
boundary, and σ is the residual surface tension on the 
layer z = 0. The forces on the bounding surface are gov-
erned by the surface stress tensor .

iα
∑  The dimensions of 

λd, μd and σ are N/m.
(i)	 The displacement components at the boundary 

surface between the media M1 and M2 must be 
continuous at all times and positions.

	 i.e., [u, v, w] M1 = [u, v, w] M2 at z = 0, respectively. We 
also have
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at z = 0, (u1 = u, u2 = v, u3 = w).
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Here, ρ1 is the mass per unit area of the layer, and τij and 
τ′ij are the stress tensors in the interior of media M1 and M2, 
respectively. The dimension of conventional stress tensor 

τi3 is force per unit area and that of stress tensor 
,iα α

∑  is 

force per unit length, and these further obey the law given 
by Gurtin and Murdoch [23]:

τij = Dλδij uk,k+Dμ(ui,j+uj,i).

Hence, the boundary conditions become:
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Applying boundary conditions (16) to (13) and (14), the fol-
lowing system of equations is obtained:
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From Eqs. (17b) and (17e), we obtain E = E′ = 0. Thus, there 
is no propagation of displacement v, and hence, SH-waves 
are decoupled in this case.

Finally, eliminating the constants A, B, A′, B′ from 
Eqs. (17a), (17c), (17d) and (17f), we obtain:
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Here, Eq. (20) represents the wave velocity dispersion 
equation for interface waves in homogeneous, visco-
elastic solid media under the influence of surface stresses, 
where the viscosity is of general nth order involving time 
rates of change of strain.

5  Particular cases

5.1  Stoneley waves

Stoneley waves are a generalized form of Rayleigh waves 
propagating along the common boundary of two semi-
infinite media, M1 and M2. Therefore, Eq. (20) determines 
the wave velocity equation for Stoneley waves in homo-
geneous, visco-elastic, solid media of nth order involving 
time rates of strain under the influence of surface stresses. 
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Clearly from Eq. (20), it follows that the wave velocity of 
the Stoneley waves depends upon the surface stresses and 
viscosity.

Thus, after simplification, Eq. (20) is reduced to:
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Due to the presence of wave number k in Eq. (21), it 
follows that Stoneley waves are dispersive in nature.

In the absence of surface stresses, we take λd, μd, σ 
and ρ1 to be equal to 0 so that F = H = 0. Then Eq. (21) is 
reduced to:
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Here, Eq. (23) represents the wave velocity equation of 
Stoneley waves in homogeneous visco-elastic media, 
which is in complete agreement with the corresponding 
classical result. In the absence of viscous effects, Eq. (23) 
is reduced to:
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Thus, Eq. (24) represents the wave velocity equation of 
Stoneley waves in elastic media, which is in complete 
agreement with the corresponding classical result.

5.2  Rayleigh waves

To investigate the possibility of Rayleigh waves in a homo-
geneous semi-infinite visco-elastic media, we replace 
medium M2 by vacuum, in the proceeding problem. We 
also note that the SH-wave is decoupled in this case. By 
applying the boundary conditions:
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Eqs. (17d) and (17f) are reduced to:
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Eliminating A and B from Eqs. (26a) and (26b), we obtain:
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Upon simplification, Eq. (27) gives the following:
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Here, Eq. (28) represents the wave velocity equation for 
Rayleigh waves in a homogeneous, visco-elastic solid 
medium of nth order involving time rates of strain under 
the influence of surface stresses. Thus, from Eq. (28), we 
conclude that Rayleigh waves depend on the residual 
surface tension, surface stresses and viscosity.

Meanwhile, in the case of conventional stress free 
boundary, Eq. (28) becomes:

	 4T1T2-(1+T1
2) (2-S2) = 0.� (29)

Thus, Eq. (29) represents the wave velocity equation for 
Rayleigh waves in a homogeneous, visco-elastic solid 
medium of nth order involving time rates of strain. This 
equation, of course, is in complete agreement with the 
corresponding classical result, when the effect of viscos-
ity is neglected.

5.3  Love waves

To investigate the possibility of Love waves in a homoge-
neous visco-elastic solid, we restrict medium M2 by two 
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horizontal plane surfaces at a distance H-apart, while M1 
remains infinite (see Figure 2).

For medium M1, the displacement component “v” 
remains same as in general case given by Eq. (13). For the 
medium M2, we preserve the full solution, since the dis-
placement component along the y-axis (i.e., v) no longer 
diminishes with increasing distance from the boundary 
surface of two media.

Thus:

	
1 1- K  ( - ) K ( - )

1 2 .z i x ct z i x cte ev E Eη η+ +′ ′=′ + � (30)

(i)	 In this case, the boundary conditions are given by:
v and τ32 are continuous at z = 0,

(ii)	 τ′32 = 0 at z = -H,

where we take
2

1 2
2 , 

23   - 0.v
tα α

ρτ
∂ =
∂

+ ∑

Applying boundary conditions (i) and (ii) to Eqs. (13), (16) 
and (30), we obtain:

	 E = E1+E2,� (31)

	
*

1 1K 2
*

K 1 1-K   E=  [-K  E +K  E ],′ ′µ µ′
�

(32)

1* 2 * 2
1 1 2K K1 1 1[ - c ] [ -( - K c )]  =0.E -  KHe e Eρ ′′′µ µ µ µ′ ′′ 1-K HK

d d ρ
�

(33)

Upon eliminating the constants E, E1 and E2 from Eqs. 
(31), (32) and (33), we obtain:

	

* * * 2
1 1 1 1

*2 2 * 2
1 1 1K

1

[  K    K   K ( -
tan 

 )]
- .

[   K    K ( -  )]
(  K  H ) dK K K

dK

c
i

c
i

µ µ µ ρ

µ µ µ ρ

µ +′ ′ ′ ′

+′ ′
=′

� (34)

In this case, Eq. (34) represents the wave velocity equa-
tion for Love waves in a homogeneous, visco-elastic solid 
medium of nth order involving time rates of strain under 

M2

M1

Z

Y

X

H

O

Figure 2 Configuration for Love waves.

the influence of surface stresses. Clearly, it depends upon 
the viscous parameter μd and is independent of the resid-
ual surface tension σ. Moreover, when surface stresses 
and viscous effects are ignored, this equation reduces to 
the corresponding classical result of Love waves.

6  Discussion and conclusions
The present study reveals the effects of surface stresses, 
residual surface tension, and viscosity on the wave 
velocity equations corresponding to the Stoneley, Ray-
leigh, and Love waves. is the process by which visco-
elastic surface waves is affected is identified through 
the time rates of strain parameters. These parameters 
influence the wave velocity depending on the corre-
sponding constants characterizing the visco-elastic 
behavior of the material. Special cases of this study in 
homogeneous elastic medium are discussed by several 
authors, including Chandrasekharaiah [24] and Gurtin 
and Murdoch [23, 27, 28].

The wave velocity equation for Rayleigh waves under 
the influence of surface stresses is dispersive due to the 
presence of the wave number. It also depends on the vis-
cosity, residual surface tension and surface stresses. Our 
results are in complete agreement with the corresponding 
classical results when surface stresses and viscous effects 
are neglected.

By contrast, Love waves do not depend on the resid-
ual surface tension σ. These are only affected by such 
factors as viscosity, Lame moduli of material boundary, 
and surface stresses. In the absence of surface stresses 
and other effects, the dispersion equation is in complete 
agreement with the corresponding classical result.

It is noted that the wave velocity equation of Stoneley 
waves is very similar to the corresponding problem in the 
classical theory of elasticity. Here, we also observed the 
dispersion of waves due to the presence of wave number, 
surface stresses, and visco-elastic nature of the solid. 
Moreover, the wave velocity equation of this general-
ized type of surface waves in homogeneous visco-elastic 
solid media of higher order under the influence of surface 
stresses is in complete agreement with the correspond-
ing classical results when surface stresses and viscous 
effects are neglected. Finally, the solution of wave veloc-
ity equation for Stoneley waves cannot be determined by 
easy analytical methods. One needs to apply numerical 
techniques to solve the relevant detrimental equation by 
choosing suitable values of physical constants for both 
media M1 and M2.
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