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Abstract: The aim of the present paper is to investigate
the surface waves in a homogeneous, isotropic, visco-
elastic solid medium of n* order, including time rate of
strain under the influence of surface stresses. The theory
of generalized surface waves is developed to investigate
particular cases of waves such as the Stoneley, Rayleigh,
and Love waves. Corresponding equations have been
obtained for different cases. These are reduced to classical
results, when the effects of surface stresses and viscosity
are ignored.
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1 Introduction

The propagation of surface waves in elastic media is of
considerable importance in earthquake engineering and
seismology due to the stratification in the earth’s crust. As
a result, the theory of surface waves has been developed
by Stoneley [1], Bullen [2], Ewing et al. [3], Hunters [4],
and Jeffreys [5].

The effect of gravity on wave propagation in an elastic
solid medium was first considered by Bromwich [6] who
treated gravity as a type of body force. Love [7] extended
the work of Bromwich [6] in investigating the influence of
gravity on surface waves and showed that the Rayleigh
wave velocity may be affected significantly by the gravity
field. Sezawa [8] studied the dispersion of elastic waves
propagating on curved surfaces.

The transmission of elastic waves through a strati-
fied solid medium was first studied by Thomson [9].
Haskell [10] examined the dispersion of surface waves

in multilayered media. Biot [11] studied the influence of
gravity on Rayleigh waves, assuming the force of gravity
to create a type of initial stress of hydrostatic nature and
the medium to be incompressible. De and Sengupta [12]
examined several problems of elastic waves and vibra-
tions under the influence of gravity field. In another
work, Sengupta and Acharya [13] studied the influence
of gravity on the propagation of waves in a thermoelas-
tic layer. Brunelle [14], meanwhile, analyzed surface wave
propagation under initial tension or compression. Roy [15]
studied wave propagation in a thin two-layered laminated
medium (with stress couples) under initial stress, while
Datta [16] studied the effect of gravity on Rayleigh wave
propagation in a homogeneous, isotropic elastic solid
medium. Goda [17] examined the effect of inhomogene-
ity and anisotropy on Stoneley waves, while Abd-Alla and
Ahmed [18] studied the Rayleigh waves in an orthotropic
thermoelastic medium under gravity field and initial
stress. Bland [19], Flugge [20], and Voigt [21] all analyzed
wave propagation in visco-elastic media. Recently, Sethi
and Gupta [22] studied surface waves in non-homogene-
ous, general visco-elastic media of higher order.

Gurtin and Murdoch [23], Chandrasekharaiah [24],
and other authors [25-28] all reported that surface stress
plays a vital role in the propagation of waves due to the
fact that the surface of a body exhibits properties that are
quite different than those associated with the interior of
the medium. In fact, surface tension, which is generally
accounted for in the theory of liquids may be consid-
ered as a particular case of surface stress. The presence
of surface stress on the boundary of bodies has been
detected in some particular type of crystals, whose orders
of magnitude agree with the predictions made by molecu-
lar theory [23]. Compressive surface stress is involved in
the case of shot peening of ductile metals [23], and its
knowledge is quite useful for the shaping of aircraft wing
panels.

A few problems on the propagation of plane waves in
homogeneous and isotropic materials have been consid-
ered [23]. Though the concept of surface stress is compar-
atively new, a few authors [24, 25] investigated problems
based on the effect of surface stress. Pal et al. [26], in
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particular, investigated the effect of surface stress on the
propagation of surface waves.

In the present paper, the problem of n™ order visco-
elastic surface waves involving time rates of strain in a
homogeneous and isotropic medium, under the influence
of surface stresses, is studied. Biot’s theory of incremental
deformations is used to obtain the wave velocity equation
for Stoneley, Rayleigh and Love waves. These equations
are in complete agreement with the corresponding classi-
cal results in the absence of surface stresses and viscosity.

2 Formulation of the problem

Consider M, and M, to be two homogeneous, visco-elas-
tic, isotropic, semi-infinite media welded in contact to
prevent any relative motion or sliding before or after the
occurrence of any disturbance. Suppose that the media
are separated by a plane horizontal boundary, which
extends to an infinite large distance from the origin, M, is
taken to be above M,, and the mechanical properties of M,
are different from those of M..

As a reference coordinate system, we consider a set of
orthogonal cartesian axes Oxyz, with the origin O being
at an arbitrary point on the boundary, and Oz pointing
outward normal to M, (Figure 1). Consider the possibility
of a type of wave traveling in the positive x-direction, in
such a way that the disturbance is largely confined to the
neighborhood of the boundary and, at any instant, all
particles in any line parallel to Oy have equal displace-
ment and all partial derivatives with respect to y are zero.
These two assumptions suggest that the wave is a surface
wave.

Further let us assume that “u, v, w” are the compo-
nents of displacement at any point (X, y, z) at any time t. The
dynamical equations of motion for a three-dimensional

Figure1 Two media, M, and M,, in contact.
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isotropic, visco-elastic solid medium (e.g., Biot’ [11]) are
as follows:

Ity Ty 3T, 0U
+ —,0 2 (13)
ox dy 9z ot
o, It ot v
2,72 23 :p_z’ (1b)
ox dy 0z ot
T, ot ot o’w
B, 773 775 =p—s (1)
ox ady 0z ot

where p is the density of the material medium, and 7=,
are the stress components.

The stress-strain relations for a general isotropic,
visco-elastic medium are assumed to be given by the
following:

7,=D, A 81i+2 D.e,, )

where
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The coefficients A, u, A, u’,, are constants and A, p,
(K=1, 2, ... n) are the parameters associated with K order
visco-elasticity.

Introducing Egs. (2) and (3) to Egs. (1a), (1b) and (1c),
we obtain:

A , . du (4a)
(DA+D}1)§+D11V u—pF,
2y
D“VZ V:pﬁ’ (4b)
A *w
D.+D )—+D V> w= . (40)
(D, “)az " P at?

To investigate the propagation of a surface wave along the
direction of Ox, we introduce the displacement potentials
o (%, z, t) and v (X, z, t), which are related to the displace-
ment components as follows:

LW g (5)

ax oz’ o0z ox

The displacement potentials ¢ and y in the above equa-
tions are two distinct “potentials”, whose Laplacians
specify the dilatation and rotation given by:
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ou ow
Sa, V-
V= X 9z

These are associated with P-waves and SV-waves.
Substituting Eq. (5) into Egs. (4a), (4b) and (4c), we
obtain:

H,V’ ¢_ ¢, (6a)
2
H VZV:a_Z, (6b)
u at
ER) (6c)
2,
V= o>’
where
6 A )
ZU : HZZUIZGF’
K=0
with U12<T =M, U2 M

Py ©p,
Similar relations for medium M, can be obtained by
replacing A,, ., p by M, W', and p’.

3 Solution of the problem

Now our main objective is to solve Egs. (6a), (6b), and (6¢).
We seek a solution of the following form:

(©, v, V)=I[f (2), V (2), h (z)] e, (8)

By inserting Egs. (8) and (7) into Egs. (6a), (6b) and (6c),
we obtain a set of differential equations for the medium
M, as follows:

d’f

= +H?*f=0,
h +Kh=0, ©)
2
d V+ K?V=0,
where
2.2 2
H =T, K, 2——" . (0
> Uz, (-inc)” ZU (-inc)”
K=0

The corresponding equations for medium M, are given by:

27
df —+H*f’=0,
dz?

21,7
dh +K?h=0, (11)
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where
2.2
L 2

2C2
n 7.
ZU (-inc)”

ZU’Z( -inc)”

H1/2 — 772 , K1/2

(12)

The governing equations for media M, and M, must have
exponential solutions such that f, V, and h describe the
surface waves. They must become vanishingly small as
Z—>00.

Hence, for the medium M,, the desired solutions are
given by the following expressions:

¢(X z, t)_Ae—leﬂ'n(x—ct)
w(x z, t) Besz; xct),

v(x, z, t)=Eef# <)

(13)

Similarly for medium M, (for the region 0<z<-cc) they are
given by the following expressions:

¢,( X, z, t):A,eH{qu(x-ct)’

1/),( X, z, t) =B,eK1’z+i17(x»ct) ,

V(x, z, t)=E’ 5= nt)

(14)

4 Boundary conditions

We assume that the plane z=0 is a material layer that
adheres to its neighboring layer without slipping. The layer
is capable of supporting its own stress as represented by a

surface stress tensor Z, which obeys the equation given
by Chandrashekraiah [24], i.e.,
Z:[éia{a+( /ld+o)uy,y}+,udui'a+( yd-a)um] fori, o, y=1, 2,

=ou,  fori=3. (15)

Here, A . and u, are the Lame’s moduli of the material
boundary, and ¢ is the residual surface tension on the
layer z=0. The forces on the bounding surface are gov-
erned by the surface stress tensor 2 The dimensions of
A, 1, and o are N/m. fa
(i) The displacement components at the boundary
surface between the media M, and M, must be
continuous at all times and positions.
ie., [u, v, w] M=[u, v, w] M, at z=0, respectively. We
also have

2

o’u,
(i) 7+ - p182=13,atz 0, (u,=u, u,=v, u=w).

io,a
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Here, p, is the mass per unit area of the layer, and T and
', are the stress tensors in the interior of media M, and M,
respectively. The dimension of conventional stress tensor
T, is force per unit area and that of stress tensor z
force per unit length, and these further obey the law given
by Gurtin and Murdoch [23]:

T =D,5,u

5 Uy k+Dp(ui’i+uiyi).

Hence, the boundary conditions become:
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Applying boundary conditions (16) to (13) and (14), the fol-
lowing system of equations is obtained:

A4 TB-A™-i T B'=0, (17a)
E=F/, (17b)
T A-i B+T/ A’+i B'=0, (17¢)

u; [A (21 T,+i Fn)+B{(1+T*)+nFT,}] +p; [(2iT) A

-(1+T;%)B’] =0,
} {”—KT{E’}O,
n
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(17d)
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where we have taken

A42u,pc’
%

K

o-p,c’
u

Fe (18)

, H=

*

K

and

DE GRUYTER
o ZﬂK( -ine), ZMK( -inc)*,
2
1
> Uz, (-inc)*
K=0
2 2
T12: n < -1, T2'2: € -1,
ZU;S(-inc)K ZU’Z( -inc)®
K=0
2
Tl,zzC— 1,
ZUQ( lﬂC)K
K=0
2_ c’? 52— c’
U2 (-inc)® Ura( l1’]C)K
2 Ks I; (19)

From Egs. (17b) and (17e), we obtain E=E’=0. Thus, there
is no propagation of displacement v, and hence, SH-waves
are decoupled in this case.

Finally, eliminating the constants A, B, A’, B’ from
Egs. (17a), (17¢), (17d) and (17f), we obtain:

det (ai],)= 0,1,j=1,2,3, 4, (20)

where

’

a,=la,= i T1’ a,=1a,= iTl’
ay :Tz’ a,=" i, ay :Tz,’ a

a, =l (21 T, +iFn), a,,=p, {(1+T*)+nFT,},
a; =},L;;(Zi Tz,)’ a, ='Ll':(( 1+T1,2)’

a, =M, (2-S’+nHT,), a,,=p, (-2i T,-i Hn),
a,=p,-(2-s%), a,, =W, (2iT)).

Here, Eq. (20) represents the wave velocity dispersion
equation for interface waves in homogeneous, visco-
elastic solid media under the influence of surface stresses,
where the viscosity is of general n™ order involving time
rates of change of strain.

5 Particular cases

5.1 Stoneley waves

Stoneley waves are a generalized form of Rayleigh waves
propagating along the common boundary of two semi-
infinite media, M, and M,. Therefore, Eq. (20) determines
the wave velocity equation for Stoneley waves in homo-
geneous, visco-elastic, solid media of n™ order involving
time rates of strain under the influence of surface stresses.
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Clearly from Eq. (20), it follows that the wave velocity of
the Stoneley waves depends upon the surface stresses and
viscosity.

Thus, after simplification, Eq. (20) is reduced to:

’ ’ ‘u,* ’ ’
WFH(I-TT,)(1-T/T))n—[F{T/(TT,-1)(2-M")

2

p K

T (1T ) M)V HITATT, 1)(2L)
u

*

K

+IZ—KT (T/T/-1) (2-D)}]-A=0, (21)
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K

where
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,\2
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u

K K
+2 (T,+T,) (LT/+L'T, - (1+TT,) (ML'+4T/T,)-(LM"+4T T,)

T(LM'T, +4TT;)|+(1-T, T,) (ML-4TT,) (22)

and L=(1+T?), L'=(1+T/*), M=(2-S*), M=(2-S").

Due to the presence of wave number k in Eq. (21), it
follows that Stoneley waves are dispersive in nature.

In the absence of surface stresses, we take A, i, ©
and p, to be equal to O so that F=H=0. Then Eq. (21) is
reduced to:

7#\2 ,~

(ﬂ—Kj (LTT,) (M’ L4T/T)+ 5 [2(T +T7) (M T/4MT,)
'uK qu

+2(T,+T,) (LT/+L'T,)-(1+TT,) (ML'+4T/T,)

-(LM"+4TT))-T/(LM'T,+4TT,)]+(1-T/T,) (ML-4TT, ) =0

(23)

Here, Eq. (23) represents the wave velocity equation of
Stoneley waves in homogeneous visco-elastic media,
which is in complete agreement with the corresponding
classical result. In the absence of viscous effects, Eq. (23)
is reduced to:

(1-R'SH{(2-s° )2—4RS—4&( 1-*-RS)}+(1-RS){(2-¢°s*)’

0

-4R’S’-4ﬂ—°( 1-q’s’-R’S") }-¢’s* ”—0( 2+SR’+S'R) =0,

0 qu
(24)
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Thus, Eq. (24) represents the wave velocity equation of
Stoneley waves in elastic media, which is in complete
agreement with the corresponding classical result.

5.2 Rayleigh waves

To investigate the possibility of Rayleigh waves in a homo-
geneous semi-infinite visco-elastic media, we replace
medium M, by vacuum, in the proceeding problem. We
also note that the SH-wave is decoupled in this case. By
applying the boundary conditions:

u
% +z -pIFZO’
la,a R (25)
W j—

T33 +3az,a'pl F—O.

Egs. (17d) and (17f) are reduced to:
A (2 T,+i Fn)+B {(1+T »)+nFT }=0,
A (2-S+mH T)+B (2i T-i Hn)=0.

(26a)
(26b)

Eliminating A and B from Egs. (26a) and (26b), we obtain:
(20 T,+i Fn)) (2 T Hn)-{(1+T ) +nFT }(2-S4+nH T,)=0. (27)
Upon simplification, Eq. (27) gives the following:

n?FH (1T,T))+n [2 FT+2 HT-(2-$) F T-(1+T2) HT,]

+4T T (14T ) (2-%)=0. (28)

Here, Eq. (28) represents the wave velocity equation for
Rayleigh waves in a homogeneous, visco-elastic solid
medium of n™ order involving time rates of strain under
the influence of surface stresses. Thus, from Eq. (28), we
conclude that Rayleigh waves depend on the residual
surface tension, surface stresses and viscosity.

Meanwhile, in the case of conventional stress free
boundary, Eq. (28) becomes:

4TT (14T ) (2-59=0. (29)

Thus, Eq. (29) represents the wave velocity equation for
Rayleigh waves in a homogeneous, visco-elastic solid
medium of n™ order involving time rates of strain. This
equation, of course, is in complete agreement with the
corresponding classical result, when the effect of viscos-
ity is neglected.

5.3 Love waves

To investigate the possibility of Love waves in a homoge-
neous visco-elastic solid, we restrict medium M, by two
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z

Figure 2 Configuration for Love waves.

horizontal plane surfaces at a distance H-apart, while M,
remains infinite (see Figure 2).

For medium M, the displacement component “v”
remains same as in general case given by Eq. (13). For the
medium M,, we preserve the full solution, since the dis-
placement component along the y-axis (i.e., v) no longer
diminishes with increasing distance from the boundary
surface of two media.

Thus:

K| z+in(x-ct) Kiz+in(x-ct)

vV'=E e +E,e (30)
(i) In this case, the boundary conditions are given by:
v and T, are continuous at z=0,

(i) v,=0atz=-H,
where we take
o’v
Tt 2 P 0.

2a,a atz

Applying boundary conditions (i) and (ii) to Egs. (13), (16)
and (30), we obtain:

E=E+E, (31)
K, E=p’” [-K] E+K]E,], (32)
(W Kip,p,c’1e "B -0 Ki-(u,-pe?)l e E,=0.  (33)

Upon eliminating the constants E, E, and E, from Eqs.
(31), (32) and (33), we obtain:

i[ﬂ; KW Ki+ur K (i pic)]
(W KP+p K (pyp,c”)]

tan (i K/ H)=-
(34)

In this case, Eq. (34) represents the wave velocity equa-
tion for Love waves in a homogeneous, visco-elastic solid
medium of n® order involving time rates of strain under
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the influence of surface stresses. Clearly, it depends upon
the viscous parameter u, and is independent of the resid-
ual surface tension o. Moreover, when surface stresses
and viscous effects are ignored, this equation reduces to
the corresponding classical result of Love waves.

6 Discussion and conclusions

The present study reveals the effects of surface stresses,
residual surface tension, and viscosity on the wave
velocity equations corresponding to the Stoneley, Ray-
leigh, and Love waves. is the process by which visco-
elastic surface waves is affected is identified through
the time rates of strain parameters. These parameters
influence the wave velocity depending on the corre-
sponding constants characterizing the visco-elastic
behavior of the material. Special cases of this study in
homogeneous elastic medium are discussed by several
authors, including Chandrasekharaiah [24] and Gurtin
and Murdoch [23, 27, 28].

The wave velocity equation for Rayleigh waves under
the influence of surface stresses is dispersive due to the
presence of the wave number. It also depends on the vis-
cosity, residual surface tension and surface stresses. Our
results are in complete agreement with the corresponding
classical results when surface stresses and viscous effects
are neglected.

By contrast, Love waves do not depend on the resid-
ual surface tension c. These are only affected by such
factors as viscosity, Lame moduli of material boundary,
and surface stresses. In the absence of surface stresses
and other effects, the dispersion equation is in complete
agreement with the corresponding classical result.

It is noted that the wave velocity equation of Stoneley
waves is very similar to the corresponding problem in the
classical theory of elasticity. Here, we also observed the
dispersion of waves due to the presence of wave number,
surface stresses, and visco-elastic nature of the solid.
Moreover, the wave velocity equation of this general-
ized type of surface waves in homogeneous visco-elastic
solid media of higher order under the influence of surface
stresses is in complete agreement with the correspond-
ing classical results when surface stresses and viscous
effects are neglected. Finally, the solution of wave veloc-
ity equation for Stoneley waves cannot be determined by
easy analytical methods. One needs to apply numerical
techniques to solve the relevant detrimental equation by
choosing suitable values of physical constants for both
media M, and M..
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