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Abstract: We derive an energy-based material model for 
thermomechanically coupled phase transformations in 
polycrystalline shape memory alloys. For the variational 
formulation of the model, we use the principle of the mini-
mum of the dissipation potential for nonisothermal pro-
cesses for which only a minimal number of constitutive 
assumptions has to be made. By introducing a condensed 
formulation for the representative orientation distribu-
tion function, the resulting material model is numerically 
highly efficient. For a first analysis, we present the results 
of material point calculations, where the evolution of tem-
perature as well as its influence on the mechanical mate-
rial response is investigated.
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1  Introduction
Shape memory alloys are materials that possess the highly 
symmetric austenitic crystal lattice at high temperatures 
and a composition of martensitic variants of lower sym-
metry at low temperatures. This can be observed for other 
alloys, too. However, the unique property of shape memory 
alloys, which characterizes this class of materials, is that 
the transformation strain is nearly volume preserving. As a 
consequence, it is possible to induce the phase transforma-
tion from austenite to martensite and vice versa or from one 
martensitic configuration to another by mechanical loads 
because they are not inhibited by volumetric eigenstresses. 
Dependent on the current room temperature and thus the 
virgin crystallographic state, shape memory alloys can show 
the effect of pseudoelasticity or pseudoplasticity, which are 

both accompanied by plateaus in the stress-strain diagrams. 
For more details, we refer, for example, to [1].

At high temperatures, austenite is the prevalent 
phase. A previous stress-induced phase transformation 
from austenite to a certain composition of martensitic var-
iants results again in the austenitic configuration when 
the external load is removed. Hence, this material behav-
ior is called pseudoelastic.

At low temperatures, where a uniform distribution 
of martensites forms the initial crystallographic state, an 
external mechanical load forces the material to accommo-
date its internal microstructure via detwinning. This means 
that some martensitic variants, which have a more favorable 
orientation than others, grow at the expense of the remain-
ing ones. Because a martensitic crystal lattice has only low 
symmetry, it is easy to imagine that the initial configuration 
of uniformly distributed martensite cannot be recovered 
when the external load is removed. Hence, the material 
relaxes elastically, but a remaining deformation indicates a 
deviation from a state with uniformly distributed martensi-
tic variants. If such a specimen is heated, thermally induced 
phase transformation takes place from the specific marten-
sitic configuration to the austenitic one. Subsequent cooling 
restores the initial state of undeformed uniformly distrib-
uted martensite. Therefore, the observed material behavior 
is termed pseudoplastic. The described so-called one-way 
effect gives rise to the notion “shape memory alloys.”

Various experiments, for example in [2], show that, 
due to the dissipative character of phase transitions, 
which can be identified by the hysteresis observed in 
stress-strain diagrams, mechanical energy is partly con-
verted into heat. The resultant change in temperature, 
on the contrary, has a direct consequence for the phase 
transformations: because a higher temperature stabilizes 
the austenite, phase transformation is slowed down if 
temperature is increased. This implies that the hysteresis 
in the stress-strain diagram increases its slope the higher 
the temperature is. This effect is more pronounced if more 
energy is converted into heat [2].

In this paper, we present a material model for the 
simulation of polycrystalline shape memory alloys, which 
accounts for thermal coupling. The model uses a novel 
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approach involving a condensed orientation distribution 
function. This one is based on representing the entire 
texture of the polycrystalline aggregate by its average 
orientation. This way, the number of degrees of freedom 
is reduced drastically and the numerical effort by orders 
of magnitude compared with previous works. We use the 
variational concept of the minimum of the dissipation 
potential for nonisothermal processes, as presented in 
[3], which allows to derive a thermomechanically coupled 
material model. Additionally, this approach results in 
a more concise mathematical structure of the equations 
compared with the principle of maximum dissipation 
[3]. A variational or energy-based material model has the 
advantage that it must be calibrated only once. After-
wards, results of comparable quality can be obtained for 
different load states and geometries at different tempera-
tures. This concept is expanded in this paper by the ther-
momechanically coupled version of the material model.

This work is based on a model in [4, 5], which has been 
investigated within a finite element scheme in [6]. A ther-
momechanically coupled version of this model, based on 
the principle of maximum dissipation, was presented in 
[7, 8]. Previous models for shape memory alloys based on 
phenomenological concepts can be found, for instance, 
in [9–11]. A selection of other micromechanical models is 
derived in [12–14].

2  Material model
The principle of the minimum of the dissipation potential 
for nonisothermal processes states that

	 , 
- min

ξ
= →

q
ℒ ��

�
(1)

see [3]. In Equation (1), ξ�  are the rates of the internal 
variables of the specific material model, q is the heat flux 
vector, and �  is the thermodynamic dissipation, which 
is given by the second law of thermodynamics. This is

	
1- - ,ψ θ
θ

= ∇q� ⋅� � (2)

with the Helmholtz free energy ψ and the (absolute) tem-
perature θ. We introduce two kinds of internal variables, 
namely, a vector of volume fractions of the crystallographic 
phases denoted by λ = (λi ), λ0 representing the austenite 
and , { 1, , }i i nλ ∈ …  representing the specific martensitic 
variants, where n  is alloy dependent, and a set of three 
Euler angles α, which indicates the average or mean orien-
tation direction of the polycrystalline arrangement.

Thus, the rate of the internal variables is { , }.ξ=� � �λ α  
We denote by �  the so-called dissipation potential intro-
duced in [15] comprising the material-dependent dissipa-
tive terms. We decompose the dissipation potential into 
a transformational and a thermal part as tr th.= +� � �  
Moreover, we set tr | | | |r r
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= +� �� λ α  and follow [3] to set 
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α
 are the dissipation 

parameters for phase transformation and reorientation, 
respectively, and μ is the reciprocal of the heat conductiv-
ity [3].

The Lagrangean ℒ  in Equation (1) is not minimized 
with respect to the rates of the strains. Hence, we drop the 
term ( / ):  ψ∂ ∂ �ε ε  and find
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The last two terms in Equation (3), - γ·λ and 
0

,n

ii
β λ

=∑ �  
are introduced to include the constraints of positivity and 
mass conservation, respectively, by means of the Lagrange 
parameter β and the Kuhn-Tucker parameters γ = (γi). For 
more details, we refer to [4, 5].

The stationarity condition of ℒ  with respect to the 
rates of the volume fractions reads, due to the nondiffer-
entiability of | |�λ  at ,=0�λ  the differential inclusion
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where β = β1 and 1 denotes the 1n+ -dimensional vector 
with value 1 in all components. The stationarity condition 
of ℒ  with respect to the rates of the Euler angles gives
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Finally, stationarity of ℒ  with respect to q yields

	

1- θ
µ

= ∇q
�

(6)

which is nothing else but Fourier’s law of heat conduction.
It turns out to be convenient to invert Equations (4) 

and (5), which amounts to performing a Legendre trans-
formation of the dissipation potentials tr�  and th.�  For 
this purpose, let us introduce an active set (of variants) 
� as

	 { | 0} { | 0 0}i i ii iλ λ ∧λ= ≠ = >�∪� � (7)

to account for the constraint of positivity and further-
more pλ = -∂ψ/∂λ and pα = -∂ψ/∂α as thermodynamically 
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conjugated driving forces. Inserting this into Equation (4), 
we find
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Following [4, 5], we introduce the active deviator as
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(9)

with n�  as number of active phases. This allows to define 
yield functions Φ

λ
  ≤  0 and Φα  ≤  0, which indicate whether 

phase transformation and/or reorientation take place, 
respectively. They are given as
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and
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where 2 2| | ii
p

∈
=∑p � � . We take the formula given in [3] to 

derive the heat conduction equation. Using our approach 
for 

th,�  it is given as
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where κ denotes the heat capacity. Structural heating p
θ
θ�  

is defined via

	
θ
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θ
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(13)

For the Helmholtz free energy, we take the approach from 
[4, 5], now including temperature-dependent parts, as
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where Q = Q(α) denotes a rotation matrix, and the effec-
tive transformation strain ,η  the effective stiffness tensor 

,C  and the effective caloric part of the energy ( )c θ  are 
given by
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According to [16], the temperature-dependent caloric part 
of the energy is given as

	 ci(θ) = ai - biθ,� (16)

where we have omitted terms that are identical for all 
phases and therefore are not relevant for our formulation.

We are now able to write the final system of evolution 
equations as

	 ( dev ) ,λ
λ

ρ= p�
� �λ � (17)

	
α

α
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with : | | /r
λ λ

ρ = �λ  and : | | /r
α α

ρ = �α  as consistency para
meters. The Kuhn-Tucker conditions
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close the system of equations, in combination with the 
consistency condition

	
dev 0 for  ip iλ ≤ ∉� �

� (21)

which updates the active set. The heat conduction equa-
tion reads
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with b = (bA, bM, …, bM), where bA and bM denote the entropic 
constants for austenite and martensite, respectively.

To evaluate the material model, it is necessary to 
derive the driving forces. For the volume fractions, they are
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see also [4, 5]. The rotation matrix is given in terms of 
Euler angles as

ϕ ω ν ϕ ω ν ω ϕ ϕ ω ν ϕ

ω ϕ ν ϕ ω ν ϕ ω ϕ ω ϕ ν
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with α = {ϕ, ν, ω} and ϕ, ω∈[0, 2π], ν∈[0, π]. Now, we can 
calculate the corresponding driving forces as
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- - : Qp
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(25)

Whereas the first term in Equation (25) reads
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the entries of the second part ∂Q/∂α = (∂Q/∂ϕ, ∂Q/∂ν, 
∂Q/∂ω) are
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3  Material point analysis

The evolution equations for the volume fractions and the 
Euler angles, Equations (19) and (20), can be evaluated if 
the strain is known as a function of time. Hence, for our 
purpose of analyzing the material point behavior of the 
model, no modifications are necessary. In contrast, the 
temperature gradient in Equation (22) cannot be evalu-
ated at a material point level. There are several possibili-
ties to reduce the equation in an appropriate way. One 
would be to consider the isothermal case, where all heat is 
immediately transported away when produced. Obviously, 
this case is of minor interest because it ignores thermal 
coupling completely. Therefore, we choose to investigate 
another possibility that is an adiabatic process. In such 
a system, no heat may enter or leave the system. Thus, 
for our case, all heat produced in the material point is 
converted directly into temperature changes. We find the 
material point heat conduction equation in its reduced 
form as

	 λ ακθ θ= +� �� � - .p p b⋅ ⋅ ⋅λ α λ � (30)

The unknown values of temperature, volume frac-
tions, and Euler angles at the end of the time increment 
are indicated by (·)n+1, the known ones at the beginning by 
(·)n. On substitution, we obtain the time discretized form 
of the heat conduction equation. We are using a forward 
Euler scheme for the solution as

	 κ(θn+1 - θn) = (pλ)n·Δ λ+(pα)n·Δ α - b·Δλθn+1� (32)

from which the current temperature can be calculated as
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The driving forces are evaluated using the known 
quantities at the beginning of the time increment. The dis-
cretized versions of Equations (17) and (18) then read

	 ˆ ˆ( dev ( ) ) , ( ) .n nλ α
λ α

∆ ρ ∆ ρ= =p p� �λ α � (34)

The yield conditions are evaluated at the end of the 
time increment:

	 Φ
λ
( λn+1, αn+1)  ≤  0,  Φα( λn+1, αn+1)  ≤  0� (35)

The update of the variables is now calculated in a 
staggered scheme. In a first step, Equations (34) and (35), 

Due to its high nonlinearity, we solve the system of 
governing equations (17), (18), and (30) numerically.

On inspection of the equations, we find that our 
model is rate independent for a material point analysis, 
that is, the results do not change when altering the veloci-
ties of the process. Especially, for an adiabatic process, 
the loading velocity, defined as ,�ε  has no influence on 
the heat production and thus temperature evolution. This 
means that we can replace the rates in Equation (30) by 
increments

	 Δθ  =  θn+1 - θn, Δ λ  =  λn+1 -  λn, Δα =  αn+1 -  αn,� (31)
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together with the Kuhn-Tucker conditions, are solved 
for λn+1, αn+1, and the discretized consistency parameters 
ˆ ˆ, .

λ α
ρ ρ  In a second step, the temperature is updated 
according to Equation (33).

4  Numerical experiments
We apply our material model to nickel titanium, which 
can form 12 martensitic variants, yielding 12.n=  The 
respective transformation strains for the different marten-
sitic variants after [17] are collected in Table 1 (η0 = 0). For 
the elastic constants of austenite and martensite, we use 
the expectation values, based on experimental data of [17] 
and [18], Table 2.

The values for the caloric part of the Helmholtz free 
energy, Δc(θ): = c0(θ) -ci > 0(θ) = Δa-Δbθ, are chosen as 
Δa = 0.258 GPa and Δb = 0.001 GPa/K. The initial tempera-
ture is set to θ0 = 323.15 K, which implies Δc(θ0) =  -0.065 
GPa. The dissipation parameter for phase transformation 
is set to r

λ
 = 0.013 GPa.

The value for r
α
 controls the intensity of stress drop 

when phase transformation initializes and the plateau has 
not yet been completely established. Here, we choose it to 
be r

α
 = 0.001 GPa.
The only remaining parameter is the heat capac-

ity. As pointed out previously, on a material point level 
for the adiabatic case, the amount of produced heat is 
independent of the loading velocities. In other words, it 
is completely determined by the material parameters. 
Consequently, for demonstration of our material model, 

Table 1 Transformation strains for cubic to monoclinic transforming 
nickel titanium after [17]. 
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we vary the only parameter that is not fixed yet: the heat 
capacity κ. This allows to influence the magnitude of tem-
perature change and therefore to investigate the mate-
rial model for different cases. In a finite element setting, 
this modification is not necessary because then the tem-
perature gradient in the heat conduction equation is still 
present and the dependence on the loading velocity is still 
given. However, for this first analysis, we present various 
sets of simulations with different values of the heat capac-
ity, specifically κ∈{0.010, 0.015, 0.030, 0.050} GPa/K. 
The larger the heat capacity is, the smaller the change in 
temperature. Hence, we expect higher temperatures for 
smaller heat capacity and therefore a larger influence on 
the mechanical material response compared with an iso-
thermal case.

Strain is the input variable. We perform a numerical 
triaxial tension test for which we set

	

1 0 0
0 -0.41 0
0 0 -0.41

χ

 
 =  
  

ε

�

(36)

with χ∈[0, 0.06] linearly varying in time. The material 
is subjected to loading and unloading; consequently, χ 
increases linearly from zero to its maximum value and 
then decreases linearly again until it reaches zero. As 
randomly chosen initial set for the Euler angles, we take 
α0 = {2.62596, 1.84057, 5.98139} (rad).

At first, we show the evolution of temperature over 
strain in Figure 1. We see that, in the beginning, temper-
ature is constant. At a strain of approximately χ = 0.0125, 
phase transformation initializes (see also Figure 3), which 
causes temperature to increase. Depending on the specific 
choice of the heat conductivity, the increase of heat differs: 

Table 2 Expectation values for the elastic constants for austenite 
and martensite in NiTi, based on the experiments in [18] and [17].
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it is lowest for κ = 0.050 GPa/K and highest for κ = 0.010 
GPa/K. When the material is unloaded, the elevated tem-
perature remains constant until the phase transformation 
from the martensitic composition starts, which was estab-
lished during loading back to austenite. In contrast to the 
transformation from the thermodynamically stable phase 
of austenite to martensite when the material was loaded, 
the back-transformation is endothermic. Thus, during 
unloading, the material absorbs heat, which causes tem-
perature to decrease. When the back-transformation has 
finished, temperature remains constant again, but at a 
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Figure 2 Volume fraction of austenite over strain with varying heat conductivity κ∈{0.010, 0.015, 0.030, 0.050} GPa/K, including a zoom of 
the end region.
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Figure 1 Temperature over strain with varying heat conductivity 
κ∈{0.010, 0.015, 0.030, 0.050} GPa/K. Higher temperature evolu-
tion is observed at lower values of κ.

higher value than at the beginning. This effect is expected 
because phase transformations in shape memory alloys 
are dissipative. Therefore, a part of the mechanically 
applied power is transformed into heat. This aspect is cap-
tured by our material model as demonstrated in Figure 1.

The value for the heat capacity determines the amount 
of produced heat not only in terms of final values of tem-
perature but also influences shape and size of the hyster-
esis in the temperature-strain diagram in Figure 1.

Thermomechanical coupling in shape memory alloys 
takes place bilaterally: due to phase transformations, 
temperature increases, which in turn has an impact on 
the evolution of phase transformation. This phenomenon 
can be observed in Figure 2. Here, the evolution of the 
austenitic phase over strain is presented. We see that, in 
the beginning, there is hardly any difference between the 
cases with varying heat capacity. However, at maximum 
load, the diagram shows that the amount of remaining 
austenite is approximately about 2% higher for the simu-
lation with low heat capacity and thus high temperature 
(gray, dashed curve) compared with the case with large 
heat capacity (black curve).

Although it may seem at first glance that a differ-
ence of approximately 2% in the remaining amount of 
austenite is of minor importance, the contrary is true 
as demonstrated in Figure 3. Here, the corresponding 
stress-strain diagrams are plotted for the simulations 
with different values for κ. At the very beginning, the 
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material behaves linearly elastic. Then, at a strain of 
χ = 0.0125, a stress drop takes place when phase trans-
formation starts. This first part of the material reaction 
is almost independent of the specific choice for the heat 
conductivity, which is expected because, during that 
part, the increase in temperature is not yet very pro-
nounced (see Figure 1). After the stress drop, we find the 
well-known plateau behavior, which is typical during 
phase transformation in shape memory alloys. Although 
the load increases further, the difference in the evolu-
tion of temperature increases, which stabilizes the aus-
tenite as discussed previously (Figure 2). Although the 
resulting change in the evolution of austenite is not very 
huge, it is large enough to have a pronounced impact 
on the resultant stress: whereas stress remains quite 
constant for a small temperature increase, the stress 
plateau shows a distinct inclination, which is the more 
pronounced the higher the temperature is. This aspect 
corresponds well to experiments [2].

The material model accounts for the polycrystal-
line martensitic texture by the specific approach for the 
representative orientation distribution function in terms 
of evolving Euler angles. The relative value of the Euler 
angles is presented in Figure 4. Here, all angles start at a 
relative value of 1. We see that the evolution of the Euler 
angles differs. For instance, one angle diminishes only 
by approximately 2%, whereas another angle reduces its 
value by approximately 12%. This depends on the choice 
of the initial set of angles. Again, we see some influence 
when temperature increases with different loading rates. 
However, here the differences are quite small.

It can be seen that all angles evolve quite drastically 
when phase transformation initializes. After this initial 
drop, they remain almost constant. The evolution of the 
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Figure 3 Stress σ11 over strain for varying heat conductivity 
κ∈{0.010, 0.015, 0.030, 0.050} GPa/K.
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Figure 4 Relative value of the Euler angles over strain for 
varying heat conductivity κ ∈ {0.010, 0.015, 0.030, 0.050} GPa/K, 
α0 = {2.62596, 1.84057, 5.98139}.

orientation of the average direction of phase transform-
ing grains is dissipative. Thus, the evolution of the relative 
values for α contributes to the evolution of temperature 
as well. This explains the nonlinear behavior of the tem-
perature-strain curves in Figure 1 right at the beginning of 
temperature evolution. This means that we see a similar 
effect as for the evolution of the volume fraction of aus-
tenite: although the difference in the evolution of Euler 
angles seems to be quite small for different values for κ, 
these small differences have a measurable impact on tem-
perature evolution.

5  Conclusions
Based on the variational principle of the minimum of the 
dissipation potential for nonisothermal processes, we 
derived a thermomechanically coupled material model for 
polycrystalline shape memory alloys. The application of 
this variational principle yields more concise governing 
equations in comparison with the principle of maximum 
dissipation [19]. To increase numerical efficiency, we 
adapted a condensed formulation for the distribution ori-
entation functions. Finally, we presented in this paper the 
first results for the thermomechanically coupled material 
model on a material point level. Various examples showed 
that the evolution of temperature as well as the tempera-
ture dependence of the stress can be captured very well by 
our material model. In a future work, we will discuss the 
model’s performance for entire material specimens when 
it is evaluated within a finite element framework and the 
artificial assumption of an adiabatic process will not have 
to be made. 
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