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Abstract: We derive an energy-based material model for
thermomechanically coupled phase transformations in
polycrystalline shape memory alloys. For the variational
formulation of the model, we use the principle of the mini-
mum of the dissipation potential for nonisothermal pro-
cesses for which only a minimal number of constitutive
assumptions has to be made. By introducing a condensed
formulation for the representative orientation distribu-
tion function, the resulting material model is numerically
highly efficient. For a first analysis, we present the results
of material point calculations, where the evolution of tem-
perature as well as its influence on the mechanical mate-
rial response is investigated.
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1 Introduction

Shape memory alloys are materials that possess the highly
symmetric austenitic crystal lattice at high temperatures
and a composition of martensitic variants of lower sym-
metry at low temperatures. This can be observed for other
alloys, too. However, the unique property of shape memory
alloys, which characterizes this class of materials, is that
the transformation strain is nearly volume preserving. As a
consequence, it is possible to induce the phase transforma-
tion from austenite to martensite and vice versa or from one
martensitic configuration to another by mechanical loads
because they are not inhibited by volumetric eigenstresses.
Dependent on the current room temperature and thus the
virgin crystallographic state, shape memory alloys can show
the effect of pseudoelasticity or pseudoplasticity, which are

both accompanied by plateaus in the stress-strain diagrams.
For more details, we refer, for example, to [1].

At high temperatures, austenite is the prevalent
phase. A previous stress-induced phase transformation
from austenite to a certain composition of martensitic var-
iants results again in the austenitic configuration when
the external load is removed. Hence, this material behav-
ior is called pseudoelastic.

At low temperatures, where a uniform distribution
of martensites forms the initial crystallographic state, an
external mechanical load forces the material to accommo-
date its internal microstructure via detwinning. This means
that some martensitic variants, which have a more favorable
orientation than others, grow at the expense of the remain-
ing ones. Because a martensitic crystal lattice has only low
symmetry, it is easy to imagine that the initial configuration
of uniformly distributed martensite cannot be recovered
when the external load is removed. Hence, the material
relaxes elastically, but a remaining deformation indicates a
deviation from a state with uniformly distributed martensi-
tic variants. If such a specimen is heated, thermally induced
phase transformation takes place from the specific marten-
sitic configuration to the austenitic one. Subsequent cooling
restores the initial state of undeformed uniformly distrib-
uted martensite. Therefore, the observed material behavior
is termed pseudoplastic. The described so-called one-way
effect gives rise to the notion “shape memory alloys.”

Various experiments, for example in [2], show that,
due to the dissipative character of phase transitions,
which can be identified by the hysteresis observed in
stress-strain diagrams, mechanical energy is partly con-
verted into heat. The resultant change in temperature,
on the contrary, has a direct consequence for the phase
transformations: because a higher temperature stabilizes
the austenite, phase transformation is slowed down if
temperature is increased. This implies that the hysteresis
in the stress-strain diagram increases its slope the higher
the temperature is. This effect is more pronounced if more
energy is converted into heat [2].

In this paper, we present a material model for the
simulation of polycrystalline shape memory alloys, which
accounts for thermal coupling. The model uses a novel
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approach involving a condensed orientation distribution
function. This one is based on representing the entire
texture of the polycrystalline aggregate by its average
orientation. This way, the number of degrees of freedom
is reduced drastically and the numerical effort by orders
of magnitude compared with previous works. We use the
variational concept of the minimum of the dissipation
potential for nonisothermal processes, as presented in
[3], which allows to derive a thermomechanically coupled
material model. Additionally, this approach results in
a more concise mathematical structure of the equations
compared with the principle of maximum dissipation
[3]. A variational or energy-based material model has the
advantage that it must be calibrated only once. After-
wards, results of comparable quality can be obtained for
different load states and geometries at different tempera-
tures. This concept is expanded in this paper by the ther-
momechanically coupled version of the material model.

This work is based on a model in [4, 5], which has been
investigated within a finite element scheme in [6]. A ther-
momechanically coupled version of this model, based on
the principle of maximum dissipation, was presented in
[7, 8]. Previous models for shape memory alloys based on
phenomenological concepts can be found, for instance,
in [9-11]. A selection of other micromechanical models is
derived in [12-14].

2 Material model

The principle of the minimum of the dissipation potential
for nonisothermal processes states that

=9 -D —min )

&q

see [3]. In Equation (1), £ are the rates of the internal
variables of the specific material model, q is the heat flux
vector, and 2 is the thermodynamic dissipation, which
is given by the second law of thermodynamics. This is

1
QZ'W'EQ'VQ (2)

with the Helmholtz free energy y and the (absolute) tem-
perature 6. We introduce two kinds of internal variables,
namely, a vector of volume fractions of the crystallographic
phases denoted by A=(4,), 4, representing the austenite
and A, ie{1, ...,n} representing the specific martensitic
variants, where n is alloy dependent, and a set of three
Euler angles e, which indicates the average or mean orien-
tation direction of the polycrystalline arrangement.
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Thus, the rate of the internal variables is £é={4, &}.
We denoteby & the so-called dissipation potential intro-
duced in [15] comprising the material-dependent dissipa-
tive terms. We decompose the dissipation potential into
a transformational and a thermal part as G=T" +J".
Moreover, we set @trzril/‘llwaldl and follow [3] to set
@“‘:/Jthl2 /(26), where r, and r_ are the dissipation
parameters for phase transformation and reorientation,
respectively, and u is the reciprocal of the heat conductiv-
ity [3].

The Lagrangean . in Equation (1) is not minimized
with respect to the rates of the strains. Hence, we drop the
term (Jy/0de): € and find

; L M Oy s dy ]
F= adl X+ 4+—q-Vo
r4|}~|+ﬁx|f‘|+29|Q| +E)A /1+aa a+9q
—y-A+BY, A~ min. (3)
i=0 Aa,q

The last two terms in Equation (3), -y-4 and ﬂz:;) )li,
are introduced to include the constraints of positivity and
mass conservation, respectively, by means of the Lagrange
parameter $ and the Kuhn-Tucker parameters y=(y,). For
more details, we refer to [4, 5].

The stationarity condition of & with respect to the
rates of the volume fractions reads, due to the nondiffer-
entiability of |A| at A=0, the differential inclusion

oY

A
r,——+—-y+B30, (4)
where =p1 and 1 denotes the n+1-dimensional vector
with value 1in all components. The stationarity condition
of % with respect to the rates of the Euler angles gives

r ;+—90. ®)

q=-—Vo (6)

which is nothing else but Fourier’s law of heat conduction.

It turns out to be convenient to invert Equations (4)
and (5), which amounts to performing a Legendre trans-
formation of the dissipation potentials " and &' . For
this purpose, let us introduce an active set (of variants)
o/ as

o ={i| 2,20} {i| L, =0AA >0} @)

to account for the constraint of positivity and further-
more p'=-0y/oA and p=-0y/de as thermodynamically
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conjugated driving forces. Inserting this into Equation (4),
we find
1 LA
pi/1 = 2 b=t 1ed,
ng] ket | )" I (8)
p -;Zpiz-yﬁo, ied.

nﬂ ke

Following [4, 5], we introduce the active deviator as

1
dev, p':=p'-—3 pi1 ©)

o ked

with n, as number of active phases. This allows to define
yield functions ®,<0 and ®_ <0, which indicate whether
phase transformation and/or reorientation take place,
respectively. They are given as

®,=|dev, p’|’ -7 (10)

and

(Da:p“-p“ -raz, (11

where [pl? =2ie _, D! We take the formula given in [3] to

derive the heat conduction equation. Using our approach
—th

for I , itis given as

K0 - V-[lvejzp*ﬁpa-m p,0. (12)
u

where « denotes the heat capacity. Structural heating p,6
is defined via

dy
=-—. 13
Pi="7, (13)
For the Helmholtz free energy, we take the approach from
[4, 5], now including temperature-dependent parts, as

WZ%(G'Q 7-Q):C:(e-Q" 7-Q)+c(6), (14)

where Q=Q(a) denotes a rotation matrix, and the effec-
tive transformation strain #, the effective stiffness tensor
C, and the effective caloric part of the energy c(6) are
given by

COS¢ COS® - COSY Sing sinw - Cosy Cosw Sing - cos¢ sinw
Q(a)=| cosw sing+cosv cose sinw cosv cosp cosw - sing sinw -cose siny

sinv sinw cosw siny
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77=i/1f’7,»’ @{ili(ci)'l}, 6(0)=ilici(0). (15)

According to [16], the temperature-dependent caloric part
of the energy is given as

c(0)=a.-bp, (16)

where we have omitted terms that are identical for all
phases and therefore are not relevant for our formulation.

We are now able to write the final system of evolution
equations as

A=p,(dev_p") , a7)

a=p,p* (18)

with pl:=|}'~|/rZ and p :=|a|/r, as consistency para-
meters. The Kuhn-Tucker conditions

p,20, ®,<0, p,®,=0, (19)

p,20, b <0, p ® =0,

a aa

(20)

close the system of equations, in combination with the
consistency condition

dev, p/<0  for igo/ (21

which updates the active set. The heat conduction equa-
tion reads

K0 - V-(lve}plmp“-a -b-A0 (22)
u

withb=(b,, b, ..., b)), where b, and b,, denote the entropic
constants for austenite and martensite, respectively.

To evaluate the material model, it is necessary to
derive the driving forces. For the volume fractions, they are

p/=(Q"p,-Q):C:(¢-Q"-7-Q)

_ _ 23
+%(8-QT-ﬁ-Q):[C:((Ci)'l:C]:(6-QT-T7-Q)-ci(0)- 3

see also [4, 5]. The rotation matrix is given in terms of
Euler angles as

siny sing
(24)
cosv
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with a={p, v, o} and ¢, we [0, 2], ve [0, 7]. Now, we can
calculate the corresponding driving forces as

" W_ w0
p= da 9Q da (25)
Whereas the first term in Equation (25) reads
N = r—
- =2[7-Q-C:(e-Q"-7-Q)],
3 [7-Q-C:(e-Q"-77-Q)] (26)

the entries of the second part 0Q/da=(0Q/op, 0Q/dv,
0Q/ow) are
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Due to its high nonlinearity, we solve the system of
governing equations (17), (18), and (30) numerically.

On inspection of the equations, we find that our
model is rate independent for a material point analysis,
that is, the results do not change when altering the veloci-
ties of the process. Especially, for an adiabatic process,
the loading velocity, defined as ¢, has no influence on
the heat production and thus temperature evolution. This
means that we can replace the rates in Equation (30) by
increments

AQ =01 - 9", A). =)'n+l _ )’n’ Aa=a™ - a, (31)

30 -COSw Sing-Ccosy COSy Sinw - COSY COSw COSw+Sing sinw cosg siny
a—= COS¢p COSW—COSY Sing Sinw - oSV COSg Sing - Cose sinw  siny cos¢ (27)
P
0 0 0
30 sinv sing sinw  cosw sinv sing  cosv sing
= -cos¢ sinv sinw -cosg cosw sinv -cosv cose |, (28)
v . .
cosv sinw COSV COS® - siny
20 - COSV COSw Sing - Cos¢ sinw - Ccos¢p cosw+cosy sing sinw 0
8_: COSY COS¢ COSw - Sing sinw - cosw sing - cosy cose sinw O |, (29)
w . . .
cosw siny - sinv sinw 0

3 Material point analysis

The evolution equations for the volume fractions and the
Euler angles, Equations (19) and (20), can be evaluated if
the strain is known as a function of time. Hence, for our
purpose of analyzing the material point behavior of the
model, no modifications are necessary. In contrast, the
temperature gradient in Equation (22) cannot be evalu-
ated at a material point level. There are several possibili-
ties to reduce the equation in an appropriate way. One
would be to consider the isothermal case, where all heat is
immediately transported away when produced. Obviously,
this case is of minor interest because it ignores thermal
coupling completely. Therefore, we choose to investigate
another possibility that is an adiabatic process. In such
a system, no heat may enter or leave the system. Thus,
for our case, all heat produced in the material point is
converted directly into temperature changes. We find the
material point heat conduction equation in its reduced
form as

k0=p*-A+p“-a-b-10. (30)

The unknown values of temperature, volume frac-
tions, and Euler angles at the end of the time increment
are indicated by (-)", the known ones at the beginning by
(-)™. On substitution, we obtain the time discretized form
of the heat conduction equation. We are using a forward
Euler scheme for the solution as

k(0™ - 07)=(p" ) AA+(p)-Acc - b-AAG™ (32)

from which the current temperature can be calculated as
k6" +(p*)" AA+(p“)"- A
Kk+b-AA '

The driving forces are evaluated using the known
quantities at the beginning of the time increment. The dis-
cretized versions of Equations (17) and (18) then read

Al=p,(dev, (p')"),.

6n+l — (33)

Aa=p,(p*)". (34)
The yield conditions are evaluated at the end of the
time increment:

(I)A(Aml, an+l) < 0’ (I)a(lml’ aml) <0 (35)

The update of the variables is now calculated in a
staggered scheme. In a first step, Equations (34) and (35),
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together with the Kuhn-Tucker conditions, are solved
for A", @™, and the discretized consistency parameters
p,»P,. In a second step, the temperature is updated
according to Equation (33).

4 Numerical experiments

We apply our material model to nickel titanium, which
can form 12 martensitic variants, yielding n=12. The
respective transformation strains for the different marten-
sitic variants after [17] are collected in Table 1 (1,=0). For
the elastic constants of austenite and martensite, we use
the expectation values, based on experimental data of [17]
and [18], Table 2.

The values for the caloric part of the Helmholtz free
energy, Ac(0):=c (0)-c>0(0)=Aa-Abf, are chosen as
Aa=0.258 GPa and Ab=0.001 GPa/K. The initial tempera-
ture is set to 6°=323.15 K, which implies Ac(6°)=-0.065
GPa. The dissipation parameter for phase transformation
is set to r,=0.013 GPa.

The value for r_ controls the intensity of stress drop
when phase transformation initializes and the plateau has
not yet been completely established. Here, we choose it to
be r =0.001 GPa.

The only remaining parameter is the heat capac-
ity. As pointed out previously, on a material point level
for the adiabatic case, the amount of produced heat is
independent of the loading velocities. In other words, it
is completely determined by the material parameters.
Consequently, for demonstration of our material model,

Table1 Transformation strains for cubic to monoclinic transforming
nickel titanium after [17].

a o e a o - a -0 -¢
’71:5 a € n,= 0 a -€ n,= 0 a €
cep -€ -¢ B e B
a -0 € aeod a -¢ o
n,=|-0 @ -€ n=€ B € n,=-€ B -€
€ -€ B 0 F a d € @
a - -0 a & -0 pec
n,=-€ B € ne=| € B -€ =€ @ o
-0 € @ -0 € @ € 0 a
p - - p - -¢ g - -¢
0= "€ a o n,=-€ «a o N,=| € a )
-0 @ € -0 @ - -0 @

@=0.02381, f=-0.02480, 6=0.07528, €=0.04969.
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Table 2 Expectation values for the elastic constants for austenite
and martensite in NiTi, based on the experiments in [18] and [17].

149.36 105.32 105.32 0 0 0
105.32 149.36 10532 0 0 0
105.32 105.32 149.36 0 0 0 |GPa
7 o 0 0 4404 O 0
0 0 0 0 4404 O
0 0 0 0 0  44.04
205.05 120.78 120.78 0 0 0
120.78 205.05 120.78 0 0 0
120.78 120.78 205.05 0 0 0 |GPa
o0 0 0 8428 O 0
0 0 0 0 8428 0
0 0 0 0 0 84.28

we vary the only parameter that is not fixed yet: the heat
capacity k. This allows to influence the magnitude of tem-
perature change and therefore to investigate the mate-
rial model for different cases. In a finite element setting,
this modification is not necessary because then the tem-
perature gradient in the heat conduction equation is still
present and the dependence on the loading velocity is still
given. However, for this first analysis, we present various
sets of simulations with different values of the heat capac-
ity, specifically «e{0.010, 0.015, 0.030, 0.050} GPa/K.
The larger the heat capacity is, the smaller the change in
temperature. Hence, we expect higher temperatures for
smaller heat capacity and therefore a larger influence on
the mechanical material response compared with an iso-
thermal case.

Strain is the input variable. We perform a numerical
triaxial tension test for which we set

1 0 0
e=X|0 -041 O (36)
0 0 -041

with ye[0, 0.06] linearly varying in time. The material
is subjected to loading and unloading; consequently, y
increases linearly from zero to its maximum value and
then decreases linearly again until it reaches zero. As
randomly chosen initial set for the Euler angles, we take
aO:{2.62596, 1.84057, 5.98139} (rad).

At first, we show the evolution of temperature over
strain in Figure 1. We see that, in the beginning, temper-
ature is constant. At a strain of approximately y=0.0125,
phase transformation initializes (see also Figure 3), which
causes temperature to increase. Depending on the specific
choice of the heat conductivity, the increase of heat differs:
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Figure1 Temperature over strain with varying heat conductivity
x€{0.010, 0.015, 0.030, 0.050} GPa/K. Higher temperature evolu-
tion is observed at lower values of k.

it is lowest for k=0.050 GPa/K and highest for ¥=0.010
GPa/K. When the material is unloaded, the elevated tem-
perature remains constant until the phase transformation
from the martensitic composition starts, which was estab-
lished during loading back to austenite. In contrast to the
transformation from the thermodynamically stable phase
of austenite to martensite when the material was loaded,
the back-transformation is endothermic. Thus, during
unloading, the material absorbs heat, which causes tem-
perature to decrease. When the back-transformation has
finished, temperature remains constant again, but at a
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higher value than at the beginning. This effect is expected
because phase transformations in shape memory alloys
are dissipative. Therefore, a part of the mechanically
applied power is transformed into heat. This aspect is cap-
tured by our material model as demonstrated in Figure 1.

The value for the heat capacity determines the amount
of produced heat not only in terms of final values of tem-
perature but also influences shape and size of the hyster-
esis in the temperature-strain diagram in Figure 1.

Thermomechanical coupling in shape memory alloys
takes place bilaterally: due to phase transformations,
temperature increases, which in turn has an impact on
the evolution of phase transformation. This phenomenon
can be observed in Figure 2. Here, the evolution of the
austenitic phase over strain is presented. We see that, in
the beginning, there is hardly any difference between the
cases with varying heat capacity. However, at maximum
load, the diagram shows that the amount of remaining
austenite is approximately about 2% higher for the simu-
lation with low heat capacity and thus high temperature
(gray, dashed curve) compared with the case with large
heat capacity (black curve).

Although it may seem at first glance that a differ-
ence of approximately 2% in the remaining amount of
austenite is of minor importance, the contrary is true
as demonstrated in Figure 3. Here, the corresponding
stress-strain diagrams are plotted for the simulations
with different values for k. At the very beginning, the

0.60

0.060

0.065

N

0.03 0.04 0.05

x )

0.01 0.02

0.06

Figure 2 Volume fraction of austenite over strain with varying heat conductivity ke {0.010, 0.015, 0.030, 0.050} GPa/K, including a zoom of

the end region.
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Figure 3 Stress o, over strain for varying heat conductivity
xe€{0.010, 0.015, 0.030, 0.050} GPa/K.

material behaves linearly elastic. Then, at a strain of
x=0.0125, a stress drop takes place when phase trans-
formation starts. This first part of the material reaction
is almost independent of the specific choice for the heat
conductivity, which is expected because, during that
part, the increase in temperature is not yet very pro-
nounced (see Figure 1). After the stress drop, we find the
well-known plateau behavior, which is typical during
phase transformation in shape memory alloys. Although
the load increases further, the difference in the evolu-
tion of temperature increases, which stabilizes the aus-
tenite as discussed previously (Figure 2). Although the
resulting change in the evolution of austenite is not very
huge, it is large enough to have a pronounced impact
on the resultant stress: whereas stress remains quite
constant for a small temperature increase, the stress
plateau shows a distinct inclination, which is the more
pronounced the higher the temperature is. This aspect
corresponds well to experiments [2].

The material model accounts for the polycrystal-
line martensitic texture by the specific approach for the
representative orientation distribution function in terms
of evolving Euler angles. The relative value of the Euler
angles is presented in Figure 4. Here, all angles start at a
relative value of 1. We see that the evolution of the Euler
angles differs. For instance, one angle diminishes only
by approximately 2%, whereas another angle reduces its
value by approximately 12%. This depends on the choice
of the initial set of angles. Again, we see some influence
when temperature increases with different loading rates.
However, here the differences are quite small.

It can be seen that all angles evolve quite drastically
when phase transformation initializes. After this initial
drop, they remain almost constant. The evolution of the
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1.00

0.03 0.04 0.05 0.06

X )

0.01 0.02

Figure 4 Relative value of the Euler angles over strain for
varying heat conductivity xe {0.010, 0.015, 0.030, 0.050} GPa/K,
a,={2.62596, 1.84057, 5.98139}.

orientation of the average direction of phase transform-
ing grains is dissipative. Thus, the evolution of the relative
values for @ contributes to the evolution of temperature
as well. This explains the nonlinear behavior of the tem-
perature-strain curves in Figure 1 right at the beginning of
temperature evolution. This means that we see a similar
effect as for the evolution of the volume fraction of aus-
tenite: although the difference in the evolution of Euler
angles seems to be quite small for different values for «,
these small differences have a measurable impact on tem-
perature evolution.

5 Conclusions

Based on the variational principle of the minimum of the
dissipation potential for nonisothermal processes, we
derived a thermomechanically coupled material model for
polycrystalline shape memory alloys. The application of
this variational principle yields more concise governing
equations in comparison with the principle of maximum
dissipation [19]. To increase numerical efficiency, we
adapted a condensed formulation for the distribution ori-
entation functions. Finally, we presented in this paper the
first results for the thermomechanically coupled material
model on a material point level. Various examples showed
that the evolution of temperature as well as the tempera-
ture dependence of the stress can be captured very well by
our material model. In a future work, we will discuss the
model’s performance for entire material specimens when
it is evaluated within a finite element framework and the
artificial assumption of an adiabatic process will not have
to be made.
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