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Abstract: The present contribution is concerned with
the modeling and computation of size effects in metallic
glasses. For the underlying model description, we resort
to a thermodynamically consistent, gradient-extended
continuum mechanics approach. The numerical imple-
mentation is carried out with the help of the finite ele-
ment method. Numerical examples are presented and
compared with existing experimental findings to illustrate
the performance of the constitutive model. In this regard,
the influence of the material length scale is investigated.
It is shown that with decreasing sample size or decreasing
material length scale, a delay of the shear localization is
obtained. In addition, the tension-compression asymme-
try observed in experiments is captured by the proposed
model. Further, the rate-dependent behavior as well
as the influence of the results to initial local defects are
investigated.

Keywords:  constitutive  model; finite element
method; metallic glass; shear localization; size effect;
viscoplasticity.

*Corresponding author: Benjamin Klusemann, Institute of
Continuum Mechanics and Materials Mechanics, Hamburg
University of Technology, Hamburg, Germany,

e-mail: benjamin.klusemann@tu-harburg.de

Swantje Bargmann: Institute of Continuum Mechanics and Materials
Mechanics, Hamburg University of Technology, Hamburg, Germany;
and Institute of Materials Research, Helmholtz-Zentrum Geesthacht,
Geesthacht, Germany

1 Introduction

Metallic glass is a solid, amorphous material that was first
produced in 1960 [1]. Most metallic glasses are alloys and
often manufactured with the help of very rapid cooling
to avoid crystallization. At first, scientists suggested that
metallic glasses have a chaotic structure. However, lately,
it is believed that they have some kind of semi-ordered
structure [2].

Several types of metallic glasses with different distinc-
tive properties exist. Zhang et al. [3] report on a metallic

glass with an extremely low glass transition temperature
and a polymer-like thermoplastic behavior. On the one
hand, metallic glasses are stronger than their crystalline
counterparts due to the lack of dislocations. On the other
hand, this causes the metallic glasses to be more brittle.

However, there also exist exceptional types with a
large ductility [4]. Further, metallic glasses are tougher
than ceramics and have a greater elasticity, wear resist-
ance, and corrosion resistance [2, 5]. In addition, their
thermal and electrical conductivity is lower compared
with crystalline materials.

Nowadays, metallic glasses are used or aimed to be
used in sports equipment (e.g., golf club heads, golf balls,
skis, baseball hats, tennis rackets), watches, medical
devises (screws, pins, or plates for implantation into
bones, scalpels), and automobile industry (because it
is twice as strong as steel but lighter) (see also [6] for a
list of possible applications). At the moment, production
costs are still rather high, which limits the actual use.
The mechanical properties of metallic glasses have been
analyzed intensively, and consequently, there are several
experimental investigations of metallic glasses [4, 7-15].
An extensive overview over the mechanical properties of
bulk metallic glasses is given in [16].

Like crystalline metals, metallic glasses exhibit
localized, i.e., heterogeneous, deformations. During
deformation, shear bands form inside the metallic
glasses. Following the explanation by Schuh and Lund
[17], the shear transformation zone is the fundamen-
tal unit of plasticity in metallic glasses. In the shear
transformation zone, small clusters of randomly close-
packed atoms spontaneously and cooperatively reor-
ganize under the applied shear strain. Self-assembly
is the process that leads to the continued propagation
of shear strains. This effect produces localized distor-
tion within the material, which results in free-volume
generation and thermal softening [16]. This triggers the
formation of large planar bands of shear transformation
zones, representing distinct shear bands in the material.

In the last years, there have been numerous experi-
mental studies regarding the size effect in small-sized
metallic glass samples with respect to the change in
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ductility, strength, or hardness (see, e.g., [18-24]). One
major outcome of these studies is that the ductility
increases with decreasing sample size. The main reason
for this behavior is a delay or even suppression of shear
localization with decreasing sample size [25]. Guo et al.
[26] observed a stable growth of shear localization in their
experiments with small sample sizes. This leads to much
more plastic deformation before fracture, as observed in
bulk metallic glasses, where usually catastrophic shear
localization is obtained, see, e.g., [27]. Similar observa-
tions have been done in nanostructured materials [28-30].
Due to the small size of the specimen, the experimental
preparation is very difficult and may affect the experimen-
tal results, such as processing-induced size effects [31].
Next to intrinsic effects, extrinsic effects (e.g., [21]) may
also play a significant role. Therefore, modeling can help
to further understand the mechanism and isolate the par-
ticular effects.

Due to the dominant failure mechanism of shear
localization, which leads to a strain-softening behavior
in metallic glasses, one encounters several problems in
modeling. The application of classical continuum models
result in loss of ellipticity of the boundary value problem,
and a strong mesh dependency is observed. Several
authors have dealt with these problems and obtained
mesh-independent formulations (e.g., [32-34]), especially
by the addition of gradient terms that preserve the ellip-
ticity in the softening regime. In the works by Aifantis
[35, 36], it was shown that the Laplacian in the plastic
strain or a diffusive-like term in the internal variables
settle the issue of shear band thickness and mesh-size
dependence in the modeling of shear band formation.

For years, modeling the size-dependence of (poly-)
crystalline materials, especially metals, has been of high
research interest (see, e.g., [37-44]). Metallic glasses,
which are amorphous metals and therefore noncrystal-
line, however, have hardly been studied in the frame-
work of continuum mechanical approaches. Argon [45]
present one of the first models of the plastic deforma-
tion in metallic glasses based on the introduction of the
notion of the free volume. Anand and Su [46] present a
finite-deformation, elastic-viscoplastic theory for metallic
glasses. Purely theoretical approaches are presented by
Vaks [47] and Huang et al. [48]. Steif et al. [49], Gao [50],
and Thamburaja [51] computationally study the length-
scale effects on the shear localization process in metallic
glasses. A Ginzburg-Landau type of theory is introduced
by Zheng and Li [52]. A rate-dependent theory for bulk
metallic glasses, which is experimentally validated by the
metallic glass named Vitreloy 1, is studied by Yang et al.
[53]. The approach of [14] is based on the idea that metallic
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glasses have a similar behavior to granular materials.
They assume that the motion of the atoms is comparable
to the sliding of granules.

The purpose of this contribution is the modeling
and analysis of size effects in metallic glasses. For this
purpose, a nonlocal material model is proposed. To the
authors’ knowledge, this is the first fully nonlocal contin-
uum-mechanics-based approach attempting to model size
effects in metallic glasses. Its mathematical formulation
is presented in Section 2, and its finite element discretiza-
tion in Section 3. A numerical investigation of the material
behavior with respect to size effect, rate dependence, ten-
sion-compression asymmetry, and the influence of initial
conditions is given in Section 4. The work ends with a brief
summary in Section 5.

2 Mathematical model

The purpose of this section is to present the mathematical
formulation for the modeling of metallic glasses. This is
formulated in the framework of continuum thermodynam-
ics (e.g., [54]) and rate variational methods (e.g., [44, 55]).
To this end, let B be the body in question with boundary
0B and outward unit normal n. Further, let u be the time-
dependent displacement field.

The metallic glass consists of atoms of different sizes.
This leads to a free volume! £ inside the material, which
determines the inelastic deformation. The free-volume
generation £ is either induced by plastic shearing (i.e.,
plastic strain y) and other mechanisms (i.e., diffusion,
hydrostatic pressure, or structural relaxation), which are
accounted for by & . For simplicity, the current formula-
tion is restricted to quasi-static, infinitesimal deforma-
tion, supply-free, and isothermal processes.

Energy storage is represented by the general form
w=y(E, Ep, y, &, VE) of the free energy density depending
in general on the strain tensor for small strains? E=sym Vu
the inelastic strain tensor Ep, and the internal variables y,
£, and VE.

In this contribution, the free energy density v is addi-
tively decomposed into three parts, i.e.,

Y=Y AP APy @)
The elastic part, is determined by

1 The notion of a free volume was first used by Argon [45].
2 Determined by the symmetric part of displacement gradient Vu,

where sym( A):=1( A+A") represents the symmetric part of any

second-order tensor A.
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where C, denotes the fourth-order elastic stiffness tensor

and E, is the elastic strain tensor in the geometrically

linear context, with small displacements, strains, and

rotations, and it holds

E=EE, €)

The plastic strain tensor E is decomposed into a spherical
and deviatoric part

Ep=sph(Ep)+dev(Ep) %tr(Ep)HdeV(Ep). (4)

Following Thamburaja and Ekambaram [56] and
Thamburaja [51], the deviatoric part is determined by

. 1.
dev(Ep)z\/;yN

where N denotes the traceless unit vector of the plastic
flow direction. This part describes the plastic deformation
due to shear-like motion of localized atom groups [51].

The spherical part, which describes the plastic defor-
mation due to free-volume generation, is determined by
the total free-volume generation

)

tr(E )=§ (6)

and is not affected by an initial reference free volume & .
Consequently, the plastic strain tensor is given by

. 1. 1
E =—&I+,|=yN.
3% \fzy

Based on the modeling approaches of Demetriou and
Johnson [57] and Heggen et al. [58], the total free-volume
generation is decomposed as

@

E=s y+&, 8)
where syj/ represents the free-volume generation due to
plastic shearing, with s, denoting the free-volume crea-
tion factor. If s, is positive, free volume is generated. In
case of s, being negative, free volume is annihilated by the
plastic shearing. Therefore, the free-volume generation
and plastic strain y are strongly coupled in this model.
ém covers all other mechanisms for free-volume genera-
tion, such as diffusion of free volume, generation of free
volume due to hydrostatic pressure, and annihilation of
free volume by structural relaxation.
The defect free energy density is determined by
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(see also Thamburaja [51]), where a, is a material con-
stant representing the defect-free energy coefficient and
&, denotes the fully annealed free volume.

The gradient part of the free energy density is assumed
to be a quadratic function of the free-volume gradient V&:

Vo= lIVEL, (10)
depending on the fracture surface energy a and the mate-
rial length L.

Next, we are turning to dissipative kinetic processes,
which are represented by the dissipation potential X. The
dissipation potential X is additively decomposed into a
part related to plastic strain ¥ and a part for all further
mechanisms for free-volume generation ém.

Power law relations are assumed for both processes,

. i/n+1
o~
o

where 7, denotes the reference strain (shearing) rate, n
the strain rate sensitivity of the material, and c the intrin-
sic resistance or cohesion. The cohesion can be interpreted
as a bonding resistance to sliding of the atomic structure;
a. represents the resistance to free-volume generation
due to mechanisms other than plastic strain (shear-
ing); v denotes a frequency-like term determined by

vm=voexp[-er J\/exp(-¢/§)=f0\/exp(-¢/§) [59, 60].

b~ 0

%ot
n+1

la, .,
+_%§m’
m

3 11

Here, ¢ describes a dimensional fit constant that has to be
chosen between 0.1 and 1, as shown in [13, 59]. v,=10" ¢!
is the frequency of atomic vibration, Q=107 ] is the acti-
vation energy, and k,=1.3806503x10% m? kg s? K* is the
Bolzmann constant. 6, denotes the reference temperature,
which is assumed to be the room temperature 6,=300 K.

Q ]z 327 s,
0

b~ 0

This leads to f, =v, exp[- p

(12)

Following the work of Thamburaja [51], the cohesion
. bé
¢=c
i1

is determined by the evolution equation:
cosh
(f

)

where c(0)=c, is the initial value of resistance, b is a unit-
less fitting constant, which is relevant for the rate of strain
softening due to free-volume generation, and f,=f, is a
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characteristic frequency. To model softening, the fitting
constant b has to fulfill b<sya%.

The dissipation principle [54] is satisfied sufficiently
in the bulk when the dissipation potential X is nonnega-
tive and convex in its nonequilibrium arguments (see,
e.g., [55]).

With these basic constitutive relations, we now carry
out the continuum thermodynamic variation formulation
of the evolution-field relations of the model following [55].
The formulation begins with the following rate functional

R=_[BrVdV+faErs ds. (13)

The surface rate potential r_:=C +X_consists of an ener-
getic £_and a dissipative kinetic X_part that are linear and
nonlinear, respectively, in terms of the rates u and 7 and
.

The volumetric rate potential r:={ +X_is determined
by the dissipation potential X and the volumetric energy
storage rate density { =C. The latter is determined by the
free energy density i, which is written as

£=0,,1:Vi+d yi+0,pE+0,,y-VE (1a)
=0y, ¥: YU+, Y+, Y Vy+d, Y& +y. Y-VE, .

The energy storage rate density ¢ is linear in the rates
u, y, é, and Vé and, therefore, also in Vy, ém, and V&‘m.
The first variation of the rate functional R in the rates u, 7,
and Em together with partial integration and the diver-
gence theorem then yields

0R=] [0,1,~div(d,,r,) Jou AV
+ [9eur,m+d,r, fou dS+[ [9r,~div(ayr,) Jopdv
+Ias[aV7rV'n+a?rsJ‘Wd&fs[aémrv_di"( avsm’v)}ééde
+f [y rona, 1 o, as.

vE
(15)

The rate functional R is stationary with respect to all
admissible variations of u when

d,r,—div(dy,r) =

N 0 inZB,
0

0 ondB (16)

vl IHO,T,
which holds in the bulk and at the flux part of the boun-
dary 0B. These relations represent the momentum
balance in B and on d3 in rate variational form.

The stationary condition of the rate functional R with
respect to admissible variations of y is written as
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d.r-div(d,r)=0 inpB,
[ o 17)
d,,r,n+d.r.=0 onoB3
vV 7's ?,
which can be interpreted as generalized flow rules in the
respective regions.
The stationary condition of the rate functional R with
respect to admissible variations of &  is written as

aé rv—div(aVé r)=0 in B,
m m (18)
avé r~n+aé r=0 onodB
m v m s ©

&

which can be physically interpreted as generalized free-
volume generation rules in the respective regions.

Thus, the following formulations represent the strong
form of the field equations in the bulk yielding

0=div(d,,£),
B?X:-8?§+div( BWC) ,
aémx=-8$m§+dlv( avémg),

(19)

for the quasi-static momentum balance, the flow rule, and
the free-volume generation rule, respectively.

Turning back to the energy storage rate density ¢, the
form is written as

g:aww:Vu+ayw+a§zp.§+av§¢-vé,

—o:sym(Vit)-o: \ENy-;a Ae+la, Ea, & Eva, IVEVE,

=g :sym( Vl'l)-\/g |devo | )'/+fa§+[ a,5-a,.§, ]§+asflV’g‘~V§,
=0 :sym(Va)+[ -?+sy [p+la, &-a, &, 1] j/+syasflV§~Vj/
+|:f)+|:adef§_adef§0 :|:| ém +asflV§.Vém °

(20)

Here, we use the following definitions

1 1 )
T:=0 :\EN=\E|C1€VG| to represent the equivalent shear

stress and 5:=-%tra the hydrostatic pressure. The unit

normal flow direction N is determined by

_dev(o)

|dev(o) @)

where dev(o) denotes the deviator of the Cauchy stress
tensor o, which is calculated as usual

0:=d, Yy=C_:E . (22)

Substituting Egs. (11) and (20) into Eq. (19) results in
the strong forms
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0=divo,

. in
C[l} =75 | Pra,, [E€, ||+s a,ldiv(VE),

Yo (23)

St —pa,, (&€, +a, 1div(VE).
14

m

The term p+a, [&-§,] in the second equation of Eq. (23)
is similar to a viscous stress-like term [53]. The term
a1 div (V&) can be interpreted as a nonlocal back stress
term similar to the strain-gradient plasticity theory
[38, 61]. Thamburaja [51] refers to this term as interaction
stress because of its long-range nature between defects.
The first term of the third equation of Eq. (23) describes
the generation of free volume due to hydrostatic pres-
sure; the second term is the annihilation of free volume
by structural relaxation; and the last term describes the
diffusion of free volume where the diffusion coefficient is
represented by v _a_/a,_.

The evolution equation for the total free-volume gene-
ration £ is obtained by inserting Eq. (8) into the third equa-
tion of Eq. (23):

. l
s=syy+{vm2i}div(vs)-;—m[madef[s-&on. (24)

res res

3 Finite element discretization

Based on these relations, we formulate the finite-element
algorithm for the initial boundary value problem to solve
for the unknowns u, y, and &. Thamburaja [51] uses a
theory which provides the information on the integration
points by a special numbering of the integration points
where he is using the finite-difference method to solve for
the Laplacian of the free volume & in the evolution equa-
tion of the plastic strain y [second equation of Eq.(23)]
and the free volume generation [Eq. (24)]. However, the
use of this theory leads to problems when changing the
numbering or the element sizes within the structure. For
this reason a fully non-local method is proposed in this
work.

We apply a dual mixed finite element solution method
[62]: we locally solve for the plastic strain v and the free
volume &. At the global level, we solve for the displace-

ment u and the free-volume generation gradient
l:l::Vé . (25)

Consequently, we work with the weak forms of the
first equation of Eq. (23) and Eq. (25), i.e.,
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0= JBa: voudv- LB[a-n] .suds,

. L . . (26)
0= h-ohdV+] £i-VohdV-| En-ohds,
satisfying the boundary conditions for the variations du
and Sh. Here, i denotes the unit vector in the x- or y-direc-
tion. The system is completed by the local evolution rela-
tions (24) for the free volume &:

) l
§=S"/’}./+I:Vm - 1div _v_m[l_)+adef[§_§o]]’ @7)
a a

res res

as well as the second equation of Eq. (23) for the plastic
strain y, which we solve in its dual form

.. | 7s [p+a,[&& 1]+s a ldivh i
V=Vo[ ) T - (28

C

Domain B is subdivided into finite elements, where
the unknown fields of the displacement u and free-volume
gradient h:=V& and the associated weighting functions
within each element are approximated by their nodal
values multiplied with the bilinear interpolation shape
functions. An implicit backward Euler time integration
scheme is applied for the temporal discretization. The
weak forms are solved in a fully monolithic procedure by
means of a Newton-Raphson scheme. As a consequence,
the coupling of the governing equations is fully taken into
account. In the course of the Newton-Raphson method, the
discretized weak forms are linearized with respect to the
variations of the primary variables. Finally, the linearized
set of equations are solved with respect to the primary field
variables. The calculations are done in (ABAQUS, Simulia,
Dassault Systémes, Vélizy-Villacoublay Cedex, France) via
the UELEMENT interface, and the postprocessing is done
within the PYTHON interface to ABAQUS/CAE.

4 Numerical experiments

As opposed to crystalline metals, metallic glasses do not
melt at a certain temperature but change reversibly from a
solid to a liquid state at the glass transition temperature.
This distinctive property is of great advantage because it
helps to manufacture complex shapes out of the metallic
glass. The material parameters used in this work are taken
from the literature to reproduce the glassy state response
of metallic glasses at low homologous temperatures.
Homologous temperature describes the temperature as
a fraction of its melting point temperature. As reported
in [20], the plastic zone size (also referred to as fracture
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process zone f) lies between 100 nm and 100 um. Samples
smaller than the plastic zone will not exhibit brittle
failure by catastrophic shear localization because of the
stable propagation of shear bands. Therefore, shear bands
become stabilized when the sample size is comparable to
the plastic zone. However, the absolute value of sample
size and material length scale is not of importance —

rather its T
sample sizeois assumed to be [ =100 nm, and the intrinsic
material length scale [ is one tenth of the maximum frac-
ture process zone (I=10 um). In the work of Thamburaja
[51], such a length-scale ratio is considered as submicron-
sized metallic glasses. In the following, the influence of
this parameter is studied. The free-volume creation factor
due to plastic strain S, which strongly influences the coup-
ling of the plastic strain y and free volume &, is assumed
to be 5,=0.02. Chen et al. [63] report a bulk yield stress for
their metallic glass sample to be roughly 1.7 GPa. Conse-
quently, an initial cohesion ¢ =750 MPa seems reasonable.
The strain rate sensitivity exponent n is chosen as n=50.

The defect-free energy coefficient a,; as well as the
resistance to free-volume generation due to mechanisms
other than plastic strain (shearing) a__ are taken from
[64]. The internal strain rate Y, is assumed according to
quasi-static conditions. If not stated explicitly, the exter-
nal applied strain rate is ¢,=107s", which corresponds
to quasi-static loading conditions. The complete list of the
material parameters is given in Table 1.

The numerical investigation is performed for two
samples. Thesetup of thefirstsample S, isshownin Figure1.
Here, a rectangular with a size ratio of 2:1 is chosen,
which is discretized by 40x80 bilinear plane-strain ele-
ments. The bottom face is fixed in the y (22)-direction as

ratio. Therefore, in this work, the general
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Figure1 Sample S, with dimension [ x2[,. The mesh consists of
40x80 elements. A defect is placed near the center to trigger the
shear band in the simulation.

well as the node in the bottom left corner in x (11)- and y
(22)-directions. The deformation is applied at the top face,
which leads either to compression or tension depending
on the applied loading direction. For the second field,
micro-free boundary conditions h-n=0 (see [66]) are
applied. A slightly lower value of the initial cohesion ¢, in
the model represents a defect in the material and acts as
nucleation for shear localization. If not stated otherwise,
one element with a 1% lower initial cohesion c, is placed
near the center of the samples.

Table1 Material parameter values adopted for the mathematical model.

Parameter Symbol Value Unit
Young’s modulus E 100 GPa
Poisson’s ratio v 0.4 -
Free-volume creation factor due to plastic strain s, 0.02 -
Fracture surface energy a, 1 Jm2
Material length scale l 10 um
Defect-free energy coefficient Ay 3500 G) m?
Resistance to free-volume generation a., 320 G) m?
Fully annealed free (reference) volume (at 6,=300K) &, 0.06 %
Initial cohesion [ 750 MPa
Material strain rate Yo 0.001 st
Fitting constant b -300 -
Fitting constant ¢ 0.2 -
Strain rate sensitivity n 50 -
External applied strain rate & 0.001 st

o

The value of fracture surface energy a_ is taken from [65], the ones of the defect-free energy coefficient a,, and resistance to free-volume
generation due to mechanisms other than plastic strain a__from [64], and fully annealed free (reference) volume (at 6, =300 K) & from [53].
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Sample S, is investigated as a second example, whose
setup is shown in Figure 2. S, is a square discretized by
40x40 bilinear plane-strain elements and subject to
plane-strain tension loading assuming periodic deforma-
tion and periodic boundary conditions for the free volume
&. To this end, the bottom left corner of the square is fixed
in the x (11)- and y (22)-directions, the top left corner in
x-direction, and the bottom right corner in y-direction. A
displacement rate u =¢ [ is then applied at the bottom
right corner in x-direction of the square. The deforma-
tion boundary conditions are modeled as periodic in
both directions. To apply periodic boundary conditions
for the free-volume &, anti-periodic boundary conditions
have to be applied for the free-volume gradient h (e.g.,
htor=-hPtom)  This is analogous to the case of periodic
deformation boundary conditions that results in anti-peri-
odic tractions on opposite sites [67-69].

4.1 General model behavior

In Figure 3, the average stress-strain behavior of the
model under compressive loading is shown for sample S,.
The applied boundary conditions lead to the fact that the
average of all stress components (except ¢,,) are zero, i.e.,
[;0,dV=0 and |, 0,, dV=0. The general model behavior is
summarized as follows: First, the specimen behaves elas-
tically. Next, the model predicts a macroscopically homo-
geneous plastic deformation that is characterized by a
stress plateau (with slightly negative slope).

This is followed by a stress drop in the simulation,
which marks the start of shear localization, resulting in
the formation of distinct shear bands. A plateau is reached
once one shear band is fully developed. This general
behavior is similar to results obtained in experiments [70]

Figure2 Sample S, with dimension [ x[ . The mesh consists of
40x40 elements. If not stated otherwise, a defect is placed near the
center to trigger the shear band in the simulation. For this sample,
periodic boundary conditions are assumed for the deformation and
free volume &.
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Figure 3 Sample S, general model behavior: average stress com-
ponent |o,,| over applied strain |E,,| under compressive loading.

and molecular dynamic simulations [71, 72] for metallic
glasses loaded under compression.

The spatial distribution of the free volume & at three
characteristic applied compression strains (2%, 5%,
and 8%) is displayed in Figure 4. In the elastic region
(IE,,|<1.5%), no change in free volume &, plastic slip y,
or cohesion c is observed. After yielding, the free volume
increases and shows a cross-structure, triggered by the
lower initial cohesion ¢, near the center of the sample.
After the stress drop (|E,,|~3%), shear localization starts,
the formation of one distinct shear band is noticed. The
cross-structure, which was observed previously, vanishes
on the cost of the formation of one distinct shear band.
At |E, |~6%, the shear band is fully formed. With increas-
ing deformation, the width of the shear band increases
and the upper sample part slides along the shear band.
However, no increase in the maximum value of free
volume & is observed anymore.

Figure 5 shows the spatial distribution of the cohe-
sion c at the three characteristic applied compression
strains (2%, 5%, and 8%). With increasing deforma-
tion and free volume &, the cohesion c is decreasing.
The cohesion ¢ describes the internal resistance of the
atomic structure to sliding, therefore, a decreasing cohe-
sion ¢ promotes the development of shear bands. Cross-
structured shear bands develop, which end up in one
distinct shear band. As for &, the width of the shear band
increases with increasing deformation and the minimum
cohesion c is nearly constant between |E,|=5% and
|E,,|=8%.

The plastic strain distribution is shown in Figure 6 at
three strain states. The plastic strain y and free volume
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Figure 4 Sample S, general model behavior: spatial distribution of free volume & at three applied compression strains |E,,|.
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Figure5 Sample S, general model behavior: spatial distribution of cohesion c at three applied compression strains |E,|.

& are strongly coupled [see Eq. (24)]. Consequently, their elements of the sample are plotted. Four characteristic
behavior are similar. However, for |E, |=8%, differences elements, two within the shear band (P, P,), one within
that are due to the gradient h are observed. The plastic the sidelocalized region (P,), and one outside of any local-
strain distribution shows a stronger bulge distribution ized region (P,), are chosen. The locations are shown in
compared with the free-volume distribution. the spatial free-volume & distribution at |E,,|=8% of the

To confirm the previous assumptions, in Figure 7, meshed sample S,. The side localized region refers to
the development of the free volume & for different local the region of the cross-structure at the beginning of the

IE,|=2% IE,|=5% IE,|=8%
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Figure 6 Sample S, general model behavior: spatial distribution of plastic strain y at three applied compression strains |E,,|.
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Figure7 Sample S,, general model behavior: free volume & over applied strain |E,, | under compression loading for different elements of the

mesh that shows the free-volume distribution & at |E, |=8%.
P,, element within shear band and with initial defect; P
outside localized regions.

2

deformation (see Figure 4), which is not part of any dis-
tinct shear band.

After yielding, the free volume & increases for all ele-
ments in the same way. At |E, |=2.5%, differences in the
free volume &£ between the elements are observed. The free
volume in element P, already reaches a saturation value
at this strain, whereas for element P, the value reaches
a plateau at |E,,|~3%. This strain state corresponds to the
stress drop and the beginning of shear localization. For

800

element within shear band; P

element within side localized region; P,, element

39 4

the development of the free volume &, nearly no difference
is seen for the elements P, and P,. The free volume reaches
a constant value of £~0.7% at |E, |~6%. Note that this is
an outcome of the simulation and not due to any imposed
saturation value. The observation of a saturation value for
the free volume & agrees with assumptions and observa-
tions in the literature [46, 51].

Next, the development of the cohesion c is investi-
gated (see Figure 8). The cohesion ¢ shows the opposite

¢ (MPa)
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+5.725e+02
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+4.675e+02
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Figure 8 Sample S, general model behavior: cohesion c over applied strain |E,,| under compression loading for different elements of the

mesh that shows the cohesion distribution c at |E,,|=8%.

P,, element within shear band and with initial defect; P,, element within shear band; P, element within side localized region; P

outside localized regions.

» element
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behavior in comparison to the free volume £. With increas-
ing applied strain |E, |, the cohesion decreases. Analogous
to the free volume &, the saturation values of c are reached
after a certain amount of applied strains. Here, it is inter-
esting to note the differences between elements P, and
P.. The initial cohesion c, of element P, is slightly smaller
than in the rest of the structure. The development for ele-
ments P, and P, are similar up to |E,,|~2.5%. Subsequently
the cohesion ¢ decreases for element P, until it nearly
reaches the one from P,. A saturation value of 100 MPa is
reached for both elements.

The presented nonlocal model for metallic glasses
is able to model the stable growth of shear localization
in submicron samples, resulting in a distinct shear band
formation. The shear localization process starts at the
specimen’s initial defect. With ongoing deformation, the
saturation values of the free volume and cohesion are
reached within the distinct shear band.

4.2 Length scale-dependent behavior

To investigate the length scale-dependent behavior, the

L ratio of internal length [ and external specimen size® [
0

is varied between 100 and 5000. The average stress-strain

behavior is shown in Figure 9. Differences are observed in

the strain range |E,,|~3-6%, the so-called knee region [51].

l

An increased T ratio of internal length [ to external speci-
0

men size I, can be interpreted as decreased sample size

or increased fracture process zone size f. With increasing

i ratio, the knee region diffuses, which implies that the
0
mechanism of shear localization changes. Consequently,

the shear localization process delays with an increase in

i ratio.

0

Figure 10 shows the spatial distribution for the dif-

ferent IL ratios of the free volume & at 8% strain. For the
0

l

smallest T ratio (=100), the most pronounced shear band
0

is obtained, which represents a stable shear localization

l
process. An increase in T leads to less pronounced shear

0

bands and for IL: 5000, even no shear band is obtained.
0

3 Note for quantitative comparison to these results that the crucial
external size for sample S, is the height 21 .
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Figure9 Sample S, length scale-dependent behavior: average stress
component |o,,| over applied strain |E, | under compression loading for

different IL ratios of internal length [ and external specimen size [ .
0

However, in this case, the formation of a bulge around
the middle axis is observed. A further increase leads to a
homogeneous deformation process (shear localization is
suppressed) that is correlated to the size of the shear band
nucleus. As reported in [73], the size of the shear band
nucleus d for metallic glasses is around 20 nm. Therefore,

. l -
a mechanism change occurs once — reaches the critical

0
ratio gz 5000 ofthe fracture process zone size fand shear

band nucleus d, implying that the sample size is of the

same size as the shear band nucleus and no shear band is
l

nucleated in the sample. As shown in [51], for l—<1 unsta-

0
ble (catastrophic) shear localization is obtained. A stable

shear band forms for 1<i<£. The main mechanism that
0
is responsible for the observed size effect is the nonlocal

back stress [cf. Eq. (24)], which is energetic. As noted in
[51], the back stress is the main mechanism. It is physi-
cally sensible because the free-volume diffusivity is very
low in an annealed, and therefore relaxed, metallic glass
sample (for temperatures below glass transition tempera-
ture). The back stress leads to a strengthening of the shear
band boundary, and therefore, to an increased resistance
to plastic deformation being responsible for the delay of
the shear localization process.

l
In summary, a larger T ratio first leads to a change

from catastrophic shear l0calization, which is usually
observed in bulk metallic glasses, to stable shear band
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Figure 10 Sample S, length scale-dependent behavior: spatial distribution of free volume & at an applied compression strain |E,,|=8% for

different [L ratios of internal length [ and external specimen size [.

0
formation. A further increase causes a delay and finally
even a suppression of the shear band formation.

4.3 Rate-dependent behavior

In this section, the rate dependence of the model is ana-
lyzed. As known from the phenomena related to micro-
structure evolution, the strain rate has a strong influence
on the material behavior and may lead to change and also
the suppression of the microstructure and its develop-
ment [61, 74, 75].

Figure 11 displays the average stress-strain behavior of

I3
the model for four different strain rate ratios - of external
Yo

1750

1500 | S

£

1250 +

1000

lo,,| (MPa)

500

250

\E,, (%)

Figure11 Sample S, rate-dependent behavior: average stress
component |o,,| over applied strain |E,,| under compression loading

I3 .
for different - ratios of external loading rate &, tointernal mate-

. Y
rial rate . "°

loading rate &, to internal material rate Vo As expected,
no effect is observed in the elastic region. As usual, with

increasing ratlo , the stress level increases and yield-

V
ing occurs at a larger strain. Therefore, the highest ratio
& .
-2 always shows the highest stress. The general model
Yo
behavior is the same for all rates; however, small differ-
ences arise: after yielding, the negative slope of the stress
&
plateau increases with increasing —2.
Yo

The stress drop is steeper and longer until the satura-
tion value is reached for larger rate ratios. With ongoing
deformation, the stress difference between the results is
staying constantly for the different rates.

The spatial distributions of &, ¢, and y are very similar
for the different rates. For lower strain rates, a slightly
more diffuse distribution, which gets sharper with increas-
ing rate, is observed. The results show that our model for
metallic glasses behaves similar to most crystalline mate-
rials with respect to its rate dependence. An increase in
the loading rate generally leads to a stress increase.

4.4 Tension-compression asymmetry

In the following part, the tension-compression asym-
metry of our model is investigated. The asymmetry of
metallic glasses under tensile and compressive loading
is one of its distinguishing attributes compared with
other materials such as metals. Metallic glasses start to
yield earlier under tension than under compression (see,
e.g., [17, 76-78]). To investigate this behavior, Figure 12
shows the average stress-strain behavior under tension
and compression. As expected, an earlier yielding is
observed for tension. With ongoing deformation, the
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Figure12 Sample S, tension-compression asymmetry: average
stress component |o,,| over applied strain |E,,| under tensile and
compressive loading.

tensile behavior is similar to the compressive behavior;
however, the knee region disappears (similar as observed

l
for increasing T ).
0

Figure 13 shows the spatial distribution of the free
volume & under compressive and tensile loading. As
observed, under tensile loading, the sample shows a
necking behavior instead of the formation of a bulge
structure. In addition, the distinct shear band is more pro-
nounced under compression, whereas the side shear band
is more pronounced under tension.
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The shear band develops at a different angle under
tension compared with compression. In case of compres-
sion, a shear band angle of ®=41° is observed in the simu-
lations. This is in excellent agreement with experimental
findings of Wright et al. [15], who observed a compressive
fracture angle of ®=42° as well as with the theoretical
study of Schuh and Lund [17], who obtained ©®=41.5° for
the compressive shear angle. In the case of tension, the
shear band is formed at an angle ©®=46°. In the experi-
ments, a fracture angle ® between 50° and 56° is reported
under tension (e.g., [15, 78, 79]). However, these studies
were performed for bulk metallic glasses and size effects
were not explicitly investigated. These studies also report
that the bulk metallic glass does not yield but rather
shows a direct brittle fracture behavior under tension.
Under compression, a catastrophic failure behavior is
reported, which changes with decreasing size [26] (cf.
Section 4.2). One explanation for the different behavior
under tension and compression was given by Jiang et al.
[80], who proposed that the mechanism of direct break-
age of local atomic clusters involves a tension transfor-
mation zone next to the shear transformation zone under
tension. If the material does not have enough time to fully
flow and therefore relax, the shear transformation zones
is restrained and fracture occurs via the tension transfor-
mation zone. For more details, the reader is referred to
[16, 80].

In summary, the model is able to predict the tension-
compression asymmetry accurate for specimens of small
size. The shear angle for compressive loading fits quite

Figure13 Sample S, tension-compression asymmetry: spatial distribution of free volume £ at an applied strain |E,,|=8% under compres-
sive (left) and tensile (right) loading. The shear band angle under compression is ®=41° and under tension @=46°.
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Figure 14 Sample S, variation of initial defect: spatial distribution of free volume & at different applied strains E,,.

Initial defect near the center (see Figure 16).

well with experimental observations. However, for tensile
loading, a small deviation is obtained with respect to
experiments of large-sized bulk metallic glass samples.
This might be due to size effects.

4.5 Investigation of the influence of initial
defects on the example of sample S,

In this section, the model behavior for sample S, is studied.
This sample represents a square loaded in tension with
periodic deformation and free-volume & boundary condi-
tions. Based on this numerical example, the influence on
the position of the initial defect, represented by a lower
initial cohesion c, is studied. Figure 14 shows the spatial
distribution of the free volume & at three applied tensile
strain states for a defect near the center of the structure.
In the beginning, a similar distribution as for sample S, is
obtained (see Figure 4), but with increasing strain, differ-
ences occur. These are related to the different structure
and periodic boundary conditions. Due to the periodic
free-volume boundary conditions, parts of three shear
bands are observed within the sample. Sample S, leads to
the same response under tensile as well as compressive
loading due to the periodic boundary conditions, which,
e.g., suppresses necking phenomena. In this example,
the shear band forms from the bottom left corner to the

top right corner. The direction is defined by the position
of the defect. Depending on this position, different dis-
tinct shear bands are observed. The cohesion ¢ and the
plastic strain y are showing a similar behavior as the free
volume &.

Next, the spatial distribution of the free volume
& at three applied tensile strain states for a defect at
the center of the right edge is shown in Figure 15 (see
also Figure 16). In this case, the shear band proceeds
from the bottom right to the top left due to the fact that
the initial defect is located above the horizontal center
axis.

To summarize the influence of the position of the
defect, Figure 16 displays the results of five simulations
with different positions of initial defect as indicated in
the figure. Differences are observed with respect to the
distributions and the directions of the shear band. The
average stress-strain behavior is the same for all simula-
tions. Although different defect positions induce different
nucleation position of the shear bands, the RVE predicts
the same overall material behavior.

Finally, two limiting cases are investigated: (i) ran-
domly distributed initial cohesion {0.99-1}c, and (ii) a
perfect structure without initial defect. Figure 17 depicts
the free-volume distribution £. For case (i), a much
sharper shear band is obtained compared with the previ-
ous simulations, which is due to a different initial kinetic
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Figure 15 Sample S,, variation of initial defect: spatial distribution of free volume £ at different applied strains E, .
Initial defect at the right edge slightly above horizontal center (see Figure 16).
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Figure16 Sample S, variation of initial defect: spatial distribution of free volume & at an applied tensile strain £,=8% for different places

of the initial defect.

In each simulation, only one element (shown in black of the mesh in the middle) had a prescribed lower initial cohesion of 0.99¢, as

indicated.

state. The cohesion ¢ has a kinetic character and does
not change the internal energy state. The heterogene-
ous initial kinetic state leads to an imbalanced atomistic
structure. The atoms aim relaxation and at reaching the
lowest energy state. As a consequence, a much sharper
shear band develops faster. This finding is visible in the
average stress-strain curve in Figure 18. The larger number
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of defects leads to an acceleration of the shear localization
process.

As a last example, case (ii) is investigated. The free-
volume & distribution at 8% strain is shown in Figure 17
(right). Although no defects are existing in this sample to
trigger the shear band formation, shear bands that start
from the center of each edge are observed. However, the

Figure 17 Sample S,, variation of initial defect: spatial distribution of free volume & at an applied tensile strain £,=8% for sample with

randomly distributed defects (left) and sample without defects (right).
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Figure 18 Sample S,, variation of initial defect: average stress
component |0, | over applied strain |E, | under tensile loading for dif-
ferent conditions for the initial defects within the sample.

Solid line, one element with defect placed near the center; dashed
line, results with randomly distributed defects; dot-dashed line, no
defect placed in the structure.

shear bands form slower than in case of a sample with
defects. Therefore, a pronounced shear band cannot yet
be observed at E; =8%. Another consequence is a slightly
higher stress level once a shear band pronounces in the
samples with defects (see Figure 18).

The change of the defect’s position to trigger the
shear band formation does not affect the macroscopic
behavior and the shear band structure. However, it
affects the shear bands direction but not its orientation.
Increasing the number of defects leads to an imbalance
of the atomic structure and, consequently, to an accel-
eration of the shear band formation. Without internal
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