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  Abstract:   The present contribution is concerned with 

the modeling and computation of size effects in metallic 

glasses. For the underlying model description, we resort 

to a thermodynamically consistent, gradient-extended 

continuum mechanics approach. The numerical imple-

mentation is carried out with the help of the finite ele-

ment method. Numerical examples are presented and 

compared with existing experimental findings to illustrate 

the performance of the constitutive model. In this regard, 

the influence of the material length scale is investigated. 

It is shown that with decreasing sample size or decreasing 

material length scale, a delay of the shear localization is 

obtained. In addition, the tension-compression asymme-

try observed in experiments is captured by the proposed 

model. Further, the rate-dependent behavior as well 

as the influence of the results to initial local defects are 

investigated.  
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1     Introduction 
 Metallic glass is a solid, amorphous material that was first 

produced in 1960  [1] . Most metallic glasses are alloys and 

often manufactured with the help of very rapid cooling 

to avoid crystallization. At first, scientists suggested that 

metallic glasses have a chaotic structure. However, lately, 

it is believed that they have some kind of semi-ordered 

structure  [2] . 

 Several types of metallic glasses with different distinc-

tive properties exist. Zhang et al.  [3]  report on a metallic 

glass with an extremely low glass transition temperature 

and a polymer-like thermoplastic behavior. On the one 

hand, metallic glasses are stronger than their crystalline 

counterparts due to the lack of dislocations. On the other 

hand, this causes the metallic glasses to be more brittle. 

 However, there also exist exceptional types with a 

large ductility  [4] . Further, metallic glasses are tougher 

than ceramics and have a greater elasticity, wear resist-

ance, and corrosion resistance  [2, 5] . In addition, their 

thermal and electrical conductivity is lower compared 

with crystalline materials. 

 Nowadays, metallic glasses are used or aimed to be 

used in sports equipment (e.g., golf club heads, golf balls, 

skis, baseball hats, tennis rackets), watches, medical 

devises (screws, pins, or plates for implantation into 

bones, scalpels), and automobile industry (because it 

is twice as strong as steel but lighter) (see also  [6]  for a 

list of possible applications). At the moment, production 

costs are still rather high, which limits the actual use. 

The mechanical properties of metallic glasses have been 

analyzed intensively, and consequently, there are several 

experimental investigations of metallic glasses  [4, 7 – 15] . 

An extensive overview over the mechanical properties of 

bulk metallic glasses is given in  [16] . 

 Like crystalline metals, metallic glasses exhibit 

localized, i.e., heterogeneous, deformations. During 

deformation, shear bands form inside the metallic 

glasses. Following the explanation by Schuh and Lund 

 [17] , the shear transformation zone is the fundamen-

tal unit of plasticity in metallic glasses. In the shear 

transformation zone, small clusters of randomly close-

packed atoms spontaneously and cooperatively reor-

ganize under the applied shear strain. Self-assembly 

is the process that leads to the continued propagation 

of shear strains. This effect produces localized distor-

tion within the material, which results in free-volume 

generation and thermal softening  [16] . This triggers the 

formation of large planar bands of shear transformation 

zones, representing distinct shear bands in the material. 

 In the last years, there have been numerous experi-

mental studies regarding the size effect in small-sized 

metallic glass samples with respect to the change in 
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ductility, strength, or hardness (see, e.g.,  [18 – 24] ). One 

major outcome of these studies is that the ductility 

increases with decreasing sample size. The main reason 

for this behavior is a delay or even suppression of shear 

localization with decreasing sample size  [25] . Guo et  al. 

 [26]  observed a stable growth of shear localization in their 

experiments with small sample sizes. This leads to much 

more plastic deformation before fracture, as observed in 

bulk metallic glasses, where usually catastrophic shear 

localization is obtained, see, e.g.,  [27] . Similar observa-

tions have been done in nanostructured materials  [28 – 30] . 

Due to the small size of the specimen, the experimental 

preparation is very difficult and may affect the experimen-

tal results, such as processing-induced size effects  [31] . 

Next to intrinsic effects, extrinsic effects (e.g.,  [21] ) may 

also play a significant role. Therefore, modeling can help 

to further understand the mechanism and isolate the par-

ticular effects. 

 Due to the dominant failure mechanism of shear 

localization, which leads to a strain-softening behavior 

in metallic glasses, one encounters several problems in 

modeling. The application of classical continuum models 

result in loss of ellipticity of the boundary value problem, 

and a strong mesh dependency is observed. Several 

authors have dealt with these problems and obtained 

mesh-independent formulations (e.g.,  [32 – 34] ), especially 

by the addition of gradient terms that preserve the ellip-

ticity in the softening regime. In the works by Aifantis 

 [35, 36] , it was shown that the Laplacian in the plastic 

strain or a diffusive-like term in the internal variables 

settle the issue of shear band thickness and mesh-size 

dependence in the modeling of shear band formation. 

 For years, modeling the size-dependence of (poly-)

crystalline materials, especially metals, has been of high 

research interest (see, e.g.,  [37 – 44] ). Metallic glasses, 

which are amorphous metals and therefore noncrystal-

line, however, have hardly been studied in the frame-

work of continuum mechanical approaches. Argon  [45]  

present one of the first models of the plastic deforma-

tion in metallic glasses based on the introduction of the 

notion of the free volume. Anand and Su  [46]  present a 

finite-deformation, elastic-viscoplastic theory for metallic 

glasses. Purely theoretical approaches are presented by 

Vaks  [47]  and Huang et al.  [48] . Steif et al.  [49] , Gao  [50] , 

and Thamburaja  [51]  computationally study the length-

scale effects on the shear localization process in metallic 

glasses. A Ginzburg-Landau type of theory is introduced 

by Zheng and Li  [52] . A rate-dependent theory for bulk 

metallic glasses, which is experimentally validated by the 

metallic glass named Vitreloy 1, is studied by Yang et al. 

 [53] . The approach of  [14]  is based on the idea that metallic 

 1   The notion of a free volume was first used by Argon [45]. 

glasses have a similar behavior to granular materials. 

They assume that the motion of the atoms is comparable 

to the sliding of granules. 

 The purpose of this contribution is the modeling 

and analysis of size effects in metallic glasses. For this 

purpose, a nonlocal material model is proposed. To the 

authors ’  knowledge, this is the first fully nonlocal contin-

uum-mechanics-based approach attempting to model size 

effects in metallic glasses. Its mathematical formulation 

is presented in Section 2, and its finite element discretiza-

tion in Section 3. A numerical investigation of the material 

behavior with respect to size effect, rate dependence, ten-

sion-compression asymmetry, and the influence of initial 

conditions is given in Section 4. The work ends with a brief 

summary in Section 5.  

2    Mathematical model 
 The purpose of this section is to present the mathematical 

formulation for the modeling of metallic glasses. This is 

formulated in the framework of continuum thermodynam-

ics (e.g.,  [54] ) and rate variational methods (e.g.,  [44, 55] ). 

To this end, let   B  be the body in question with boundary 

  ∂B  and outward unit normal  n . Further, let  u  be the time-

dependent displacement field. 

 The metallic glass consists of atoms of different sizes. 

This leads to a free volume  1      ξ   inside the material, which 

determines the inelastic deformation. The free-volume 

generation   ξ�  is either induced by plastic shearing (i.e., 

plastic strain   γ  ) and other mechanisms (i.e., diffusion, 

hydrostatic pressure, or structural relaxation), which are 

accounted for by   ξ   
 m 

 . For simplicity, the current formula-

tion is restricted to quasi-static, infinitesimal deforma-

tion, supply-free, and isothermal processes. 

 Energy storage is represented by the general form 

  ψ    =    ψ  ( E ,  E  
p
 ,   γ  ,   ξ  ,  ∇   ξ  ) of the free energy density depending 

in general on the strain tensor for small strains  2     E   =  sym  ∇  u  

the inelastic strain tensor  E  
p
 , and the internal variables   γ  , 

  ξ  , and  ∇   ξ  . 
 In this contribution, the free energy density   ψ   is addi-

tively decomposed into three parts, i.e., 

    ψ    =    ψ   
e
  +   ψ   

  ξ     +  ψ   
 ∇   ξ   . (1) 

 The elastic part   ψ   
e
  is determined by 

 2   Determined by the symmetric part of displacement gradient  ∇  u , 

where   T1
sym( ):= ( )

2
+A A A  represents the symmetric part of any 

second-order tensor  A . 
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e e e e

1
: :

2
ψ = E EC

 
(2) 

 where   
e
C  denotes the fourth-order elastic stiffness tensor 

and  E  
e
  is the elastic strain tensor in the geometrically 

linear context, with small displacements, strains, and 

rotations, and it holds 

   E  
e
   =   E - E  

p
 . (3) 

 The plastic strain tensor  E  
p
  is decomposed into a spherical 

and deviatoric part 

    
p p p p p

1
=sph( ) dev( )= tr( ) dev( ).

3
+ +E E E E I E

 
(4) 

 Following Thamburaja and Ekambaram  [56]  and 

Thamburaja  [51] , the deviatoric part is determined by 

    
p

1
dev( )

2
γ=E N� �

  
(5) 

 where  N  denotes the traceless unit vector of the plastic 

flow direction. This part describes the plastic deformation 

due to shear-like motion of localized atom groups  [51] . 

 The spherical part, which describes the plastic defor-

mation due to free-volume generation, is determined by 

the total free-volume generation 

    p
tr( ) ξ=E ��

 
(6) 

 and is not affected by an initial reference free volume   ξ   
0
 . 

Consequently, the plastic strain tensor is given by 

    
p

1 1
.

3 2
ξ γ= +E I N�� �

 
(7) 

 Based on the modeling approaches of Demetriou and 

Johnson  [57]  and Heggen et al.  [58] , the total free-volume 

generation is decomposed as 

    m
s

γ
ξ γ ξ= +� ��

 
(8) 

 where   sγ
γ�  represents the free-volume generation due to 

plastic shearing, with  s  
  γ    denoting the free-volume crea-

tion factor. If  s  
  γ    is positive, free volume is generated. In 

case of  s  
  γ    being negative, free volume is annihilated by the 

plastic shearing. Therefore, the free-volume generation 

and plastic strain   γ   are strongly coupled in this model. 

  
m

ξ�  covers all other mechanisms for free-volume genera-

tion, such as diffusion of free volume, generation of free 

volume due to hydrostatic pressure, and annihilation of 

free volume by structural relaxation. 

 The defect free energy density is determined by 

    

2

def def 0

1
- ,

2
a a

ξ
ψ ξ ξ ξ=

 
(9) 

 (see also Thamburaja  [51] ), where  a  
def

  is a material con-

stant representing the defect-free energy coefficient and 

  ξ   
0
  denotes the fully annealed free volume. 

 The gradient part of the free energy density is assumed 

to be a quadratic function of the free-volume gradient  ∇   ξ  : 

    

2

sf

1
[ ] ,

2
a l

ξ
ψ ξ∇ = ∇

 
(10) 

 depending on the fracture surface energy  a  
sf
  and the mate-

rial length  l . 
 Next, we are turning to dissipative kinetic processes, 

which are represented by the dissipation potential   χ  . The 

dissipation potential   χ   is additively decomposed into a 

part related to plastic strain   γ   and a part for all further 

mechanisms for free-volume generation   .mξ�

 Power law relations are assumed for both processes, 

    

1/ 1

0 2res

m

0

1
= ,

1 2

n

m

n ac
n v
γ γ

χ ξ
γ

+
⎡ ⎤

+⎢ ⎥+ ⎢ ⎥⎣ ⎦

� � �
�

 

(11) 

 where   0
γ�  denotes the reference strain (shearing) rate,  n  

the strain rate sensitivity of the material, and  c  the intrin-

sic resistance or cohesion. The cohesion can be interpreted 

as a bonding resistance to sliding of the atomic structure; 

 a  
res

  represents the resistance to free-volume generation 

due to mechanisms other than plastic strain (shear-

ing);  v  
 m 

  denotes a frequency-like term determined by 

  
0 0

0

= exp - exp( - / ) = exp( - / )m
b

Qv v f
k

φ ξ φ ξ
θ

⎛ ⎞
⎜ ⎟⎝ ⎠

  [59, 60] . 

Here,   φ   describes a dimensional fit constant that has to be 

chosen between 0.1 and 1, as shown in  [13, 59] .  v  
0
   =  10 13    s -1  

is the frequency of atomic vibration,  Q   =  10 -19     J is the acti-

vation energy, and  k  
 b 
   =  1.3806503  ×  10 -23     m 2     kg s -2     K -1  is the 

Bolzmann constant.   θ   
0
  denotes the reference temperature, 

which is assumed to be the room temperature   θ   
0
   =  300    K. 

This leads to 

  

-1

0 0

0

exp - 327 s .
b

Qf v
k θ

⎛ ⎞
= ≈⎜ ⎟

⎝ ⎠  

 Following the work of Thamburaja  [51] , the cohesion 

is determined by the evolution equation: 

    1

= ,

cosh

b
c c

f

ξ

ξ⎛ ⎞
⎜ ⎟⎝ ⎠

�
�

�

 

(12) 

 where  c (0)  =   c  
0
  is the initial value of resistance,  b  is a unit-

less fitting constant, which is relevant for the rate of strain 

softening due to free-volume generation, and  f  
1
   =   f  

0
  is a 
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characteristic frequency. To model softening, the fitting 

constant  b  has to fulfill
   

def
.

s a
b

c
γ<

 
 The dissipation principle  [54]  is satisfied sufficiently 

in the bulk when the dissipation potential   χ   is nonnega-

tive and convex in its nonequilibrium arguments (see, 

e.g.,  [55] ). 

 With these basic constitutive relations, we now carry 

out the continuum thermodynamic variation formulation 

of the evolution-field relations of the model following  [55] . 

The formulation begins with the following rate functional 

     v s
= d d .R r V r S

∂
+∫ ∫B B   

(13) 

 The surface rate potential  r  
s
 :  =    ζ   

s
  +   χ   

s
  consists of an ener-

getic   ζ   
s
  and a dissipative kinetic   χ   

s
  part that are linear and 

nonlinear, respectively, in terms of the rates   u�  and   γ�  and 

  
m

.ξ�  

 The volumetric rate potential  r  
v
 :  =    ζ   

v
  +   χ   

v
  is determined 

by the dissipation potential   χ   and the volumetric energy 

storage rate density   ζ   
v
   =    ζ  . The latter is determined by the 

free energy density   ψ  , which is written as 

   m m
m m

:

: .

u

u

γ ξ ξ

γ γ ξ ξ

ζ ψ ψγ ψξ ψ ξ

ψ ψγ ψ γ ψξ ψ ξ
∇ ∇

∇ ∇ ∇

=∂ ∇ +∂ +∂ +∂ ⋅∇
=∂ ∇ +∂ +∂ ⋅∇ +∂ +∂ ⋅∇

u
u

� �� �
� �� � �

 

(14) 

 The energy storage rate density   ζ   is linear in the rates 

  , , ,γ ξu �� �  and   ξ∇�  and, therefore, also in   
m

, ,γ ξ∇ ��  and   
m

.ξ∇�  

The first variation of the rate functional  R  in the rates   , ,u γ� �  

and   
m

ξ�  together with partial integration and the diver-

gence theorem then yields 

   

m m

m m

v v

v s v v

v s v v m

v s m

div( )  d

 d div( ) d

d div( ) d

d .

R r r V
r r S r r V

r r S r r V

r r S

γ γ

γ γ ξ ξ

ξ ξ

δ δ

δ δγ

δγ δξ

δξ

∇

∇ ∇∂

∇ ∇∂

∇∂

⎡ ⎤= ∂ − ∂⎣ ⎦
⎡ ⎤⎡ ⎤+ ∂ ⋅ +∂ ⋅ + ∂ − ∂⎣ ⎦ ⎣ ⎦

⎡ ⎤⎡ ⎤+ ∂ ⋅ +∂ + ∂ − ∂⎣ ⎦ ⎣ ⎦
⎡ ⎤+ ∂ ⋅ +∂⎣ ⎦

∫
∫ ∫
∫ ∫
∫

u u

u u

u
n u

n

n

� �

� � � �

� �� �

� �

�

� �

��

�

B

B B

B B

B
  

 (15) 

 The rate functional  R  is stationary with respect to all 

admissible variations of   u�  when 

    

v v

v s

div( ) in ,

on t

r r
r r

∇

∇

∂ − ∂ =
∂ +∂ = ∂

u u

u u

0
n 0

� �

� �

B

B
 

(16) 

 which holds in the bulk and at the flux part of the boun-

dary   .t∂B  These relations represent the momentum 

balance in   B  and on   t∂B  in rate variational form. 

 The stationary condition of the rate functional  R  with 

respect to admissible variations of   γ�  is written as 

    

v v

v s

-div( ) 0 in ,

    0 on 

r r
r r

γ

γ γ

γ γ ϕ

∇

∇

∂ ∂ =
∂ ⋅ +∂ = ∂n
� �

� �

B

B
 

(17) 

 which can be interpreted as generalized flow rules in the 

respective regions. 

 The stationary condition of the rate functional  R  with 

respect to admissible variations of   
m

ξ�  is written as 

    m

v v
m m

v s
m m

div( ) 0 in  ,

      0  on 

r r
r r

ξ ξ

ϕξ ξ
ξ

∇

∇

∂ − ∂ =

∂ ⋅ +∂ = ∂n
� �

� �
�

B

B
 

(18) 

 which can be physically interpreted as generalized free-

volume generation rules in the respective regions. 

 Thus, the following formulations represent the strong 

form of the field equations in the bulk yielding 

    
m m m

div( ),

- div( ),

- div( ),

u

γ γ γ

ξ ξ ξ

ζ

χ ζ ζ

χ ζ ζ

∇

∇

∇

= ∂
∂ = ∂ + ∂

∂ = ∂ + ∂

0 �

� � �

� � �

 

(19) 

 for the quasi-static momentum balance, the flow rule, and 

the free-volume generation rule, respectively. 

 Turning back to the energy storage rate density   ζ  , the 

form is written as 

   

def def 0 sf

def def 0 sf

def def 0 sf

d

: ,

1 1
:sym( )- : - : [ - ] ,

2 3

1
:sym( )- | dev | [ - ] ,

2
:sym( ) [ - [ [ - ]]]

a a a l

p a a a l

s p a a s a l
p a

γ ξ ξ

γ γ

ζ ψ ψγ ψξ ψ ξ

γ ξ ξ ξ ξ ξ ξ

γ ξ ξ ξ ξ ξ ξ

τ ξ ξ γ ξ γ

∇ ∇=∂ ∇ +∂ +∂ +∂ ⋅∇

= ∇ + + ∇ ⋅∇

= ∇ + + + ∇ ⋅∇

= ∇ + + + + ∇ ⋅∇

+ +

u u

u N I

u
u

� �� �

� � �� �

� � �� �

� � �

σ σ σ

σ σ

σ

ef def 0 sf
 .m ma a lξ ξ ξ ξ ξ⎡ ⎤⎡ ⎤− + ∇ ⋅∇⎣ ⎦⎣ ⎦
� �

 (20) 

 Here, we use the following definitions 

  

1 1
:= : dev

2 2
τ σ = ⏐ ⏐N σ

 
to represent the equivalent shear 

stress and 
  

1
: - tr

3
p = σ

 
the hydrostatic pressure. The unit 

normal flow direction  N  is determined by 

    

dev( )

dev( )
=
⏐ ⏐

N σ

σ
 

(21) 

 where dev(  σ  ) denotes the deviator of the Cauchy stress 

tensor   σ  , which is calculated as usual 

    e
e e

: : .ψ=∂ =E ECσσ
 

(22) 

 Substituting Eqs. (11) and (20) into Eq. (19) results in 

the strong forms 
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1/

def 0 sf

0

res

m def 0 sf

div ,

- - div( ),

- - - div( ).

n

m

c s p a s a l

a p a a l
v

γ γ

γ
τ ξ ξ ξ

γ

ξ ξ ξ ξ

=

⎡ ⎤
⎡ ⎤⎡ ⎤= + + ∇⎢ ⎥ ⎣ ⎦⎣ ⎦⎢ ⎥⎣ ⎦

⎡ ⎤= + ∇⎣ ⎦

0
�
�

�

σ

 

(23) 

 The term   
def 0

[ - ]p a ξ ξ+  in the second equation of Eq. (23) 

is similar to a viscous stress-like term  [53] . The term 

 a  
sf
  l div ( ∇   ξ  ) can be interpreted as a nonlocal back stress 

term similar to the strain-gradient plasticity theory 

 [38, 61] . Thamburaja  [51]  refers to this term as interaction 

stress because of its long-range nature between defects. 

The first term of the third equation of Eq. (23) describes 

the generation of free volume due to hydrostatic pres-

sure; the second term is the annihilation of free volume 

by structural relaxation; and the last term describes the 

diffusion of free volume where the diffusion coefficient is 

represented by  v  
 m 

   a  
 sf  / a  

res
 . 

 The evolution equation for the total free-volume gene-

ration   ξ   is obtained by inserting Eq. (8) into the third equa-

tion of Eq. (23): 

    

sf

def 0

res res

= div( )- [ [ - ]].m
m

a l vs v p a
a aγ

ξ γ ξ ξ ξ
⎡ ⎤

+ ∇ +⎢ ⎥
⎢ ⎥⎣ ⎦

� �

 

(24)  

3    Finite element discretization 
 Based on these relations, we formulate the finite-element 

algorithm for the initial boundary value problem to solve 

for the unknowns  u ,   γ  , and   ξ  . Thamburaja [51] uses a 

theory which provides the information on the integration 

points by a special numbering of the integration points 

where he is using the finite-difference method to solve for 

the Laplacian of the free volume ξ in the evolution equa-

tion of the plastic strain γ [second equation of Eq.(23)] 

and the free volume generation [Eq. (24)]. However, the 

use of this theory leads to problems when changing the 

numbering or the element sizes within the structure. For 

this reason a fully non-local method is proposed in this 

work. 

 We apply a dual mixed finite element solution method 

 [62] : we locally solve for the plastic strain   γ   and the free 

volume   ξ .  At the global level, we solve for the displace-

ment  u  and the free-volume generation gradient 

    : .ξ=∇h� �
 (25) 

 Consequently, we work with the weak forms of the 

first equation of Eq. (23) and Eq. (25), i.e., 

    

0 : d - [ ] d ,

0 d d - d ,

V S

V V S

δ δ

δ ξ δ ξ δ

∂

∂

= ∇ ⋅ ⋅

= ⋅ + ⋅∇ ⋅

∫ ∫
∫ ∫ ∫

u n u

h h i h n h

� �

� � � � � �
B B

B B B

σσ σ

 

(26) 

 satisfying the boundary conditions for the variations   δu�  

and   .δh�  Here,  i  denotes the unit vector in the  x - or  y -direc-

tion. The system is completed by the local evolution rela-

tions (24) for the free volume   ξ  : 

    

sf

def 0

res res

= div [ [ ]] ,m
m

a l vs v p a
a aγ

ξ γ ξ ξ
⎡ ⎤

+ − + −⎢ ⎥
⎢ ⎥⎣ ⎦

h� �

 

(27) 

 as well as the second equation of Eq. (23) for the plastic 

strain   γ  , which we solve in its dual form 

    

def 0 sf

0

- [ [ - ]] div
.

n
s p a s a l

c
γ γ

τ ξ ξ
γ γ

⎡ ⎤+ +
= ⎢ ⎥

⎢ ⎥⎣ ⎦

h
� �

 

(28) 

 Domain   B  is subdivided into finite elements, where 

the unknown fields of the displacement  u  and free-volume 

gradient  h :  =   ∇   ξ   and the associated weighting functions 

within each element are approximated by their nodal 

values multiplied with the bilinear interpolation shape 

functions. An implicit backward Euler time integration 

scheme is applied for the temporal discretization. The 

weak forms are solved in a fully monolithic procedure by 

means of a Newton-Raphson scheme. As a consequence, 

the coupling of the governing equations is fully taken into 

account. In the course of the Newton-Raphson method, the 

discretized weak forms are linearized with respect to the 

variations of the primary variables. Finally, the linearized 

set of equations are solved with respect to the primary field 

variables. The calculations are done in (ABAQUS, Simulia, 

Dassault Systèmes, Vélizy-Villacoublay Cedex, France)  via  

the UELEMENT interface, and the postprocessing is done 

within the PYTHON interface to ABAQUS/CAE.  

4    Numerical experiments 
 As opposed to crystalline metals, metallic glasses do not 

melt at a certain temperature but change reversibly from a 

solid to a liquid state at the glass transition temperature. 

This distinctive property is of great advantage because it 

helps to manufacture complex shapes out of the metallic 

glass. The material parameters used in this work are taken 

from the literature to reproduce the glassy state response 

of metallic glasses at low homologous temperatures. 

Homologous temperature describes the temperature as 

a fraction of its melting point temperature. As reported 

in  [20] , the plastic zone size (also referred to as fracture 
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process zone  f ) lies between 100   nm and 100   μ  m. Samples 

smaller than the plastic zone will not exhibit brittle 

failure by catastrophic shear localization because of the 

stable propagation of shear bands. Therefore, shear bands 

become stabilized when the sample size is comparable to 

the plastic zone. However, the absolute value of sample 

size and material length scale is not of importance   –  

rather its   
0

l
l  ratio. Therefore, in this work, the general 

sample size is assumed to be  l  
0
   =  100   nm, and the intrinsic 

material length scale  l  is one tenth of the maximum frac-

ture process zone ( l   =  10   μ  m). In the work of Thamburaja 

 [51] , such a length-scale ratio is considered as submicron-

sized metallic glasses. In the following, the influence of 

this parameter is studied. The free-volume creation factor 

due to plastic strain  s  
  γ   , which strongly influences the coup-

ling of the plastic strain   γ   and free volume   ξ  , is assumed 

to be  s  
  γ     =  0.02. Chen et al.  [63]  report a bulk yield stress for 

their metallic glass sample to be roughly 1.7    GPa. Conse-

quently, an initial cohesion  c  
0
   =  750   MPa seems reasonable. 

The strain rate sensitivity exponent  n  is chosen as  n   =  50   . 

 The defect-free energy coefficient  a  
def

  as well as the 

resistance to free-volume generation due to mechanisms 

other than plastic strain (shearing)  a  
res

  are taken from 

 [64] . The internal strain rate   
0

γ�  is assumed according to 

quasi-static conditions. If not stated explicitly, the exter-

nal applied strain rate is   -3 -1

0
10 s ,ε =�  which corresponds 

to quasi-static loading conditions. The complete list of the 

material parameters is given in Table 1. 

 The numerical investigation is performed for two 

samples. The setup of the first sample  S  
1
  is shown in Figure  1  . 

Here, a rectangular with a size ratio of 2:1 is chosen, 

which is discretized by 40  ×  80 bilinear plane-strain ele-

ments. The bottom face is fixed in the  y  (22)-direction as 

well as the node in the bottom left corner in  x  (11)- and  y  

(22)-directions. The deformation is applied at the top face, 

which leads either to compression or tension depending 

on the applied loading direction. For the second field, 

micro-free boundary conditions  h  ·  n   =  0 (see  [66] ) are 

applied. A slightly lower value of the initial cohesion  c  
0
  in 

the model represents a defect in the material and acts as 

nucleation for shear localization. If not stated otherwise, 

one element with a 1% lower initial cohesion  c  
0
  is placed 

near the center of the samples. 

 Table 1      Material parameter values adopted for the mathematical model.  

Parameter Symbol Value Unit

Young ’ s modulus  E 100 GPa

Poisson ’ s ratio  v 0.4  – 

Free-volume creation factor due to plastic strain  s  
  γ   0.02  – 

Fracture surface energy  a  
sf

 1 J m -2 

Material length scale  l 10  μ m

Defect-free energy coefficient  a  
def

 3500 GJ m -3 

Resistance to free-volume generation  a  
res

 320 GJ m -3 

Fully annealed free (reference) volume (at   θ   
0
   =  300K)   ξ   

0
 0.06 %

Initial cohesion  c  
0
 750 MPa

Material strain rate   γ�0 0.001 s -1 

Fitting constant  b -300  – 

Fitting constant   φ  0.2  – 

Strain rate sensitivity  n 50  – 

External applied strain rate   
0

ε� 0.001 s -1 

   The value of fracture surface energy  a  
sf

  is taken from  [65] , the ones of the defect-free energy coefficient  a  
def

  and resistance to free-volume 

generation due to mechanisms other than plastic strain  a  
res

  from  [64] , and fully annealed free (reference) volume (at   θ   
0
   =  300   K)   ξ   

0
  from  [53] .   

2l0

l0

u0
˙

 Figure 1      Sample  S  
1
  with dimension  l  

0
   ×  2 l  

0
 .   The mesh consists of 

40  ×  80 elements. A defect is placed near the center to trigger the 

shear band in the simulation.    
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 Sample  S  
2
  is investigated as a second example, whose 

setup is shown in Figure  2  .  S  
2
  is a square discretized by 

40  ×  40 bilinear plane-strain elements and subject to 

plane-strain tension loading assuming periodic deforma-

tion and periodic boundary conditions for the free volume 

  ξ  . To this end, the bottom left corner of the square is fixed 

in the  x  (11)- and  y  (22)-directions, the top left corner in 

 x -direction, and the bottom right corner in  y -direction. A 

displacement rate   
0 0 0

u lε=� �  is then applied at the bottom 

right corner in  x -direction of the square. The deforma-

tion boundary conditions are modeled as periodic in 

both directions. To apply periodic boundary conditions 

for the free-volume   ξ  , anti-periodic boundary conditions 

have to be applied for the free-volume gradient  h  (e.g., 

 h  top   =  - h  bottom ). This is analogous to the case of periodic 

deformation boundary conditions that results in anti-peri-

odic tractions on opposite sites  [67 – 69] . 

4.1    General model behavior 

 In Figure  3  , the average stress-strain behavior of the 

model under compressive loading is shown for sample  S  
1
 . 

The applied boundary conditions lead to the fact that the 

average of all stress components (except   σ   
22

 ) are zero, i.e., 

 ∫  
B
    σ   

11
  d V  ≈ 0 and  ∫  

B
    σ   

12
  d V  ≈ 0. The general model behavior is 

summarized as follows: First, the specimen behaves elas-

tically. Next, the model predicts a macroscopically homo-

geneous plastic deformation that is characterized by a 

stress plateau (with slightly negative slope). 

 This is followed by a stress drop in the simulation, 

which marks the start of shear localization, resulting in 

the formation of distinct shear bands. A plateau is reached 

once one shear band is fully developed. This general 

behavior is similar to results obtained in experiments  [70]  

and molecular dynamic simulations  [71, 72]  for metallic 

glasses loaded under compression. 

 The spatial distribution of the free volume   ξ   at three 

characteristic applied compression strains (2%, 5%, 

and 8%) is displayed in Figure  4  . In the elastic region 

( |  E  
22

  |   <  1.5%), no change in free volume   ξ  , plastic slip   γ  , 
or cohesion  c  is observed. After yielding, the free volume 

increases and shows a cross-structure, triggered by the 

lower initial cohesion  c  
0
  near the center of the sample. 

After the stress drop ( |  E  
22

  |  ≈ 3%), shear localization starts, 

the formation of one distinct shear band is noticed. The 

cross-structure, which was observed previously, vanishes 

on the cost of the formation of one distinct shear band. 

At  |  E  
22

  |  ≈ 6%, the shear band is fully formed. With increas-

ing deformation, the width of the shear band increases 

and the upper sample part slides along the shear band. 

However, no increase in the maximum value of free 

volume   ξ   is observed anymore. 

 Figure  5   shows the spatial distribution of the cohe-

sion  c  at the three characteristic applied compression 

strains (2%, 5%, and 8%). With increasing deforma-

tion and free volume   ξ  , the cohesion  c  is decreasing. 

The cohesion  c  describes the internal resistance of the 

atomic structure to sliding, therefore, a decreasing cohe-

sion  c  promotes the development of shear bands. Cross-

structured shear bands develop, which end up in one 

distinct shear band. As for   ξ  , the width of the shear band 

increases with increasing deformation and the minimum 

cohesion  c  is nearly constant between  |  E  
22

  |   =  5% and 

 |  E  
22

  |   =  8%. 

 The plastic strain distribution is shown in Figure  6   at 

three strain states. The plastic strain   γ   and free volume 

l0

l0

u0
˙

 Figure 2      Sample  S  
2
  with dimension  l  

0
   ×   l  

0
 .   The mesh consists of 

40  ×  40 elements. If not stated otherwise, a defect is placed near the 

center to trigger the shear band in the simulation. For this sample, 

periodic boundary conditions are assumed for the deformation and 

free volume   ξ  .    
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 Figure 3      Sample  S  
1
 , general model behavior: average stress com-

ponent  |   σ   
22

  |  over applied strain  |  E  
22

  |  under compressive loading.    
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  ξ   are strongly coupled [see Eq. (24)]. Consequently, their 

behavior are similar. However, for  |  E  
22

  |   =  8%, differences 

that are due to the gradient  h  are observed. The plastic 

strain distribution shows a stronger bulge distribution 

compared with the free-volume distribution. 

 To confirm the previous assumptions, in Figure  7  , 

the development of the free volume   ξ   for different local 

elements of the sample are plotted. Four characteristic 

elements, two within the shear band (P 
1
 , P 

2
 ), one within 

the side localized region (P 
3
 ), and one outside of any local-

ized region (P 
4
 ), are chosen. The locations are shown in 

the spatial free-volume   ξ   distribution at  |  E  
22

  |   =  8% of the 

meshed sample  S  
1
 . The side localized region refers to 

the region of the cross-structure at the beginning of the 

|E
22

|=2% |E
22

|=5% |E
22

|=8%
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 Figure 5      Sample  S  
1
 , general model behavior: spatial distribution of cohesion  c  at three applied compression strains  |  E  

22
  | .    
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 Figure 6      Sample  S  
1
 , general model behavior: spatial distribution of plastic strain   γ   at three applied compression strains  |  E  
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 Figure 4      Sample  S  
1
 , general model behavior: spatial distribution of free volume   ξ   at three applied compression strains  |  E  

22
  | .    
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deformation (see Figure 4), which is not part of any dis-

tinct shear band. 

 After yielding, the free volume   ξ   increases for all ele-

ments in the same way. At  |  E  
22

  |  ≈ 2.5%, differences in the 

free volume   ξ   between the elements are observed. The free 

volume in element  P  
4
  already reaches a saturation value 

at this strain, whereas for element  P  
3
 , the value reaches 

a plateau at  |  E  
22

  |  ≈ 3%. This strain state corresponds to the 

stress drop and the beginning of shear localization. For 

the development of the free volume   ξ  , nearly no difference 

is seen for the elements  P  
1
  and  P  

2
 . The free volume reaches 

a constant value of   ξ   ≈ 0.7% at  |  E  
22

  |  ≈ 6%. Note that this is 

an outcome of the simulation and not due to any imposed 

saturation value. The observation of a saturation value for 

the free volume   ξ   agrees with assumptions and observa-

tions in the literature  [46, 51] . 

 Next, the development of the cohesion  c  is investi-

gated (see Figure  8  ). The cohesion  c  shows the opposite 
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 Figure 7      Sample  S  
1
 , general model behavior: free volume   ξ   over applied strain  |  E  

22
  |  under compression loading for different elements of the 

mesh that shows the free-volume distribution   ξ   at  |  E  
22

  |   =  8%. 

 P 
1
 , element within shear band and with initial defect; P 

2
 , element within shear band; P 

3
 , element within side localized region; P 

4
 , element 

outside localized regions.    
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 Figure 8      Sample  S  
1
 , general model behavior: cohesion  c  over applied strain  |  E  

22
  |  under compression loading for different elements of the 

mesh that shows the cohesion distribution  c  at  |  E  
22

  |   =  8%. 

 P 
1
 , element within shear band and with initial defect; P 

2
 , element within shear band; P 

3
 , element within side localized region; P 

4
 , element 

outside localized regions.    



60      B. Klusemann and S. Bargmann: Modeling and simulation of size effects in metallic glasses

behavior in comparison to the free volume   ξ  . With increas-

ing applied strain  |  E  
22

  | , the cohesion decreases. Analogous 

to the free volume   ξ  , the saturation values of  c  are reached 

after a certain amount of applied strains. Here, it is inter-

esting to note the differences between elements P 
1
  and 

P 
2
 . The initial cohesion  c  

0
  of element P 

1
  is slightly smaller 

than in the rest of the structure. The development for ele-

ments P 
1
  and P 

2
  are similar up to  |  E  

22
  |  ≈ 2.5%. Subsequently 

the cohesion  c  decreases for element P 
2
  until it nearly 

reaches the one from P 
1
 . A saturation value of 100   MPa is 

reached for both elements. 

 The presented nonlocal model for metallic glasses 

is able to model the stable growth of shear localization 

in submicron samples, resulting in a distinct shear band 

formation. The shear localization process starts at the 

specimen ’ s initial defect. With ongoing deformation, the 

saturation values of the free volume and cohesion are 

reached within the distinct shear band.  

4.2    Length scale-dependent behavior 

 To investigate the length scale-dependent behavior, the 

  0

l
l

 ratio of internal length  l  and external specimen size  3     l  
0
 
 

is varied between 100 and 5000. The average stress-strain 

behavior is shown in Figure  9  . Differences are observed in 

the strain range  |  E  
22

  |  ≈ 3 – 6%, the so-called knee region  [51] . 

An increased  
 0

l
l  ratio of internal length  l  to external speci-

men size  l  
0
  can be interpreted as decreased sample size 

or increased fracture process zone size  f . With increasing 

  0

l
l  

ratio, the knee region diffuses, which implies that the 

mechanism of shear localization changes. Consequently, 

the shear localization process delays with an increase in 

  0

l
l

 ratio.
 

 Figure  10   shows the spatial distribution for the dif-

ferent 
  0

l
l  

ratios of the free volume   ξ   at 8% strain. For the 

smallest
   0

l
l  

ratio (  =  100), the most pronounced shear band 

is obtained, which represents a stable shear localization 

process. An increase in  
 0

l
l  leads to less pronounced shear 

bands and for
   0

5000,
l
l

≈  even no shear band is obtained. 

However, in this case, the formation of a bulge around 

the middle axis is observed. A further increase leads to a 

homogeneous deformation process (shear localization is 

suppressed) that is correlated to the size of the shear band 

nucleus. As reported in  [73] , the size of the shear band 

nucleus  d  for metallic glasses is around 20   nm. Therefore, 

a mechanism change occurs once   
0

l
l

 reaches the critical 

ratio   5000
f
d

≈  of the fracture process zone size  f  and shear 

band nucleus  d , implying that the sample size is of the 

same size as the shear band nucleus and no shear band is 

nucleated in the sample. As shown in  [51] , for 
  0

1
l
l

<  unsta-

ble (catastrophic) shear localization is obtained. A stable 

shear band forms for 
  0

1 .
l f
l d

< <  The main mechanism that 

is responsible for the observed size effect is the nonlocal 

back stress [cf. Eq. (24)], which is energetic. As noted in 

 [51] , the back stress is the main mechanism. It is physi-

cally sensible because the free-volume diffusivity is very 

low in an annealed, and therefore relaxed, metallic glass 

sample (for temperatures below glass transition tempera-

ture). The back stress leads to a strengthening of the shear 

band boundary, and therefore, to an increased resistance 

to plastic deformation being responsible for the delay of 

the shear localization process. 

 In summary, a larger   
0

l
l  ratio first leads to a change 

from catastrophic shear localization, which is usually 

observed in bulk metallic glasses, to stable shear band 

|E22| (%)

|σ
22

| (
M

Pa
)

l
l0

l0

l0

l0

=100

l =500

l =1000

l =5000

0 2 4 6 8
0

250

500

750

1000

1250

1500

1750

 Figure 9      Sample  S  
1
 , length scale-dependent behavior: average stress 

component  |   σ   
22

  |  over applied strain  |  E  
22

  |  under compression loading for 

different 
  0

l
l

 ratios of internal length  l  and external specimen size  l  
0
 .    

 3   Note for quantitative comparison to these results that the crucial 

external size for sample  S  
1
  is the height 2 l  

0
 . 
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formation. A further increase causes a delay and finally 

even a suppression of the shear band formation.  

4.3    Rate-dependent behavior 

 In this section, the rate dependence of the model is ana-

lyzed. As known from the phenomena related to micro-

structure evolution, the strain rate has a strong influence 

on the material behavior and may lead to change and also 

the suppression of the microstructure and its develop-

ment  [61, 74, 75] . 

 Figure  11   displays the average stress-strain behavior of 

the model for four different strain rate ratios 
  

0

0

ε

γ

�
�

 of external 

loading rate   
0

ε�  to internal material rate   
0
.γ�  As expected, 

no effect is observed in the elastic region. As usual, with 

increasing ratio   
0

0

,
ε

γ

�
�

 the stress level increases and yield-

ing occurs at a larger strain. Therefore, the highest ratio 

  
0

0

ε

γ

�
�

 always shows the highest stress. The general model 

behavior is the same for all rates; however, small differ-

ences arise: after yielding, the negative slope of the stress 

plateau increases with increasing 
  

0

0

.
ε

γ

�
�  

 The stress drop is steeper and longer until the satura-

tion value is reached for larger rate ratios. With ongoing 

deformation, the stress difference between the results is 

staying constantly for the different rates. 

 The spatial distributions of   ξ  ,  c , and   γ   are very similar 

for the different rates. For lower strain rates, a slightly 

more diffuse distribution, which gets sharper with increas-

ing rate, is observed. The results show that our model for 

metallic glasses behaves similar to most crystalline mate-

rials with respect to its rate dependence. An increase in 

the loading rate generally leads to a stress increase.  

4.4    Tension-compression asymmetry 

 In the following part, the tension-compression asym-

metry of our model is investigated. The asymmetry of 

metallic glasses under tensile and compressive loading 

is one of its distinguishing attributes compared with 

other materials such as metals. Metallic glasses start to 

yield earlier under tension than under compression (see, 

e.g.,  [17, 76 – 78] ). To investigate this behavior, Figure  12   

shows the average stress-strain behavior under tension 

and compression. As expected, an earlier yielding is 

observed for tension. With ongoing deformation, the 

l
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 Figure 10      Sample  S  
1
 , length scale-dependent behavior: spatial distribution of free volume   ξ   at an applied compression strain  |  E  

22
  |   =  8% for 

different 
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l
l  ratios of internal length  l  and external specimen size  l  

0
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1
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tensile behavior is similar to the compressive behavior; 

however, the knee region disappears (similar as observed 

for increasing 
  0

l
l ). 

 Figure  13   shows the spatial distribution of the free 

volume   ξ   under compressive and tensile loading. As 

observed, under tensile loading, the sample shows a 

necking behavior instead of the formation of a bulge 

structure. In addition, the distinct shear band is more pro-

nounced under compression, whereas the side shear band 

is more pronounced under tension. 

 The shear band develops at a different angle under 

tension compared with compression. In case of compres-

sion, a shear band angle of  Θ   =  41 °  is observed in the simu-

lations. This is in excellent agreement with experimental 

findings of Wright et al.  [15] , who observed a compressive 

fracture angle of  Θ   =  42 °  as well as with the theoretical 

study of Schuh and Lund  [17] , who obtained  Θ   =  41.5 °  for 

the compressive shear angle. In the case of tension, the 

shear band is formed at an angle  Θ   =  46 ° . In the experi-

ments, a fracture angle  Θ  between 50 °  and 56 °  is reported 

under tension (e.g.,  [15, 78, 79] ). However, these studies 

were performed for bulk metallic glasses and size effects 

were not explicitly investigated. These studies also report 

that the bulk metallic glass does not yield but rather 

shows a direct brittle fracture behavior under tension. 

Under compression, a catastrophic failure behavior is 

reported, which changes with decreasing size  [26]  (cf. 

Section 4.2). One explanation for the different behavior 

under tension and compression was given by Jiang et al. 

 [80] , who proposed that the mechanism of direct break-

age of local atomic clusters involves a tension transfor-

mation zone next to the shear transformation zone under 

tension. If the material does not have enough time to fully 

flow and therefore relax, the shear transformation zones 

is restrained and fracture occurs  via  the tension transfor-

mation zone. For more details, the reader is referred to 

 [16, 80] . 

 In summary, the model is able to predict the tension-

compression asymmetry accurate for specimens of small 

size. The shear angle for compressive loading fits quite 
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 Figure 12      Sample  S  
1
 , tension-compression asymmetry: average 

stress component  |   σ   
22

  |  over applied strain  |  E  
22

  |  under tensile and 

compressive loading.    
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 Figure 13      Sample  S  
1
 , tension-compression asymmetry: spatial distribution of free volume   ξ   at an applied strain  |  E  

22
  |   =  8% under compres-

sive (left) and tensile (right) loading.   The shear band angle under compression is  Θ   =  41 °  and under tension  Θ   =  46 ° .    
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well with experimental observations. However, for tensile 

loading, a small deviation is obtained with respect to 

experiments of large-sized bulk metallic glass samples. 

This might be due to size effects.  

4.5     Investigation of the influence of initial 
defects on the example of sample  S  2  

 In this section, the model behavior for sample  S  
2
  is studied. 

This sample represents a square loaded in tension with 

periodic deformation and free-volume   ξ   boundary condi-

tions. Based on this numerical example, the influence on 

the position of the initial defect, represented by a lower 

initial cohesion  c  
0
 , is studied. Figure  14   shows the spatial 

distribution of the free volume   ξ   at three applied tensile 

strain states for a defect near the center of the structure. 

In the beginning, a similar distribution as for sample  S  
1
  is 

obtained (see Figure 4), but with increasing strain, differ-

ences occur. These are related to the different structure 

and periodic boundary conditions. Due to the periodic 

free-volume boundary conditions, parts of three shear 

bands are observed within the sample. Sample  S  
2
  leads to 

the same response under tensile as well as compressive 

loading due to the periodic boundary conditions, which, 

e.g., suppresses necking phenomena. In this example, 

the shear band forms from the bottom left corner to the 

top right corner. The direction is defined by the position 

of the defect. Depending on this position, different dis-

tinct shear bands are observed. The cohesion  c  and the 

plastic strain   γ   are showing a similar behavior as the free 

volume   ξ  . 
 Next, the spatial distribution of the free volume 

  ξ   at three applied tensile strain states for a defect at 

the center of the right edge is shown in Figure  15   (see 

also Figure  16  ). In this case, the shear band proceeds 

from the bottom right to the top left due to the fact that 

the initial defect is located above the horizontal center 

axis. 

 To summarize the influence of the position of the 

defect, Figure 16 displays the results of five simulations 

with different positions of initial defect as indicated in 

the figure. Differences are observed with respect to the 

distributions and the directions of the shear band. The 

average stress-strain behavior is the same for all simula-

tions. Although different defect positions induce different 

nucleation position of the shear bands, the RVE predicts 

the same overall material behavior. 

 Finally, two limiting cases are investigated: (i) ran-

domly distributed initial cohesion  { 0.99 – 1 }  c  
0
  and (ii) a 

perfect structure without initial defect. Figure  17   depicts 

the free-volume distribution   ξ  . For case (i), a much 

sharper shear band is obtained compared with the previ-

ous simulations, which is due to a different initial kinetic 
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 Figure 14      Sample  S  
2
 , variation of initial defect: spatial distribution of free volume   ξ   at different applied strains  E  

11
 . 

 Initial defect near the center (see Figure 16).    
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 Figure 15      Sample  S  
2
 , variation of initial defect: spatial distribution of free volume   ξ   at different applied strains  E  

11
 . 

 Initial defect at the right edge slightly above horizontal center (see Figure 16).    
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state. The cohesion  c  has a kinetic character and does 

not change the internal energy state. The heterogene-

ous initial kinetic state leads to an imbalanced atomistic 

structure. The atoms aim relaxation and at reaching the 

lowest energy state. As a consequence, a much sharper 

shear band develops faster. This finding is visible in the 

average stress-strain curve in Figure  18  . The larger number 

of defects leads to an acceleration of the shear localization 

process. 

 As a last example, case (ii) is investigated. The free-

volume   ξ   distribution at 8% strain is shown in Figure 17 

(right). Although no defects are existing in this sample to 

trigger the shear band formation, shear bands that start 

from the center of each edge are observed. However, the 
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 Figure 16      Sample  S  
2
 , variation of initial defect: spatial distribution of free volume   ξ   at an applied tensile strain  E  

11
   =  8% for different places 

of the initial defect. 

 In each simulation, only one element (shown in black of the mesh in the middle) had a prescribed lower initial cohesion of 0.99 c  
0
  as 

indicated.    
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 Figure 17      Sample  S  
2
 , variation of initial defect: spatial distribution of free volume   ξ   at an applied tensile strain  E  

11
   =  8% for sample with 

randomly distributed defects (left) and sample without defects (right).    
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shear bands form slower than in case of a sample with 

defects. Therefore, a pronounced shear band cannot yet 

be observed at  E  
11

   =  8%. Another consequence is a slightly 

higher stress level once a shear band pronounces in the 

samples with defects (see Figure 18). 

 The change of the defect ’ s position to trigger the 

shear band formation does not affect the macroscopic 

behavior and the shear band structure. However, it 

affects the shear bands direction but not its orientation. 

Increasing the number of defects leads to an imbalance 

of the atomic structure and, consequently, to an accel-

eration of the shear band formation. Without internal 

defects, shear localization is observed, however, slightly 

delayed.   

5    Summary 
 In this work, a nonlocal thermodynamically consistent 

model formulation is presented for metallic glasses. The 

numerical implementation is carried out with the help of 

the finite element method. Based on several numerical 

experiments, the model behavior was investigated. The 

presented model formulation is able to model the stable 

growth of shear localization in submicron samples. A 

length scale-dependent behavior is observed. The size 

effect leads to a delay and, finally, even a suppression 

of shear localization. An increased loading rate leads to 

higher stresses in the metallic glasses. The model also 

maps the tension-compression asymmetry. The shear 

band angle under compression is predicted as  Θ   =  41 °  

and as  Θ   =  46 °  under tension. Further numerical experi-

ments were performed on the basis of a periodic sample 

with multiple shear bands. The influence of the defects 

to trigger the shear band formation was investigated. The 

position of the initial defect(s) does not affect the mac-

roscopic behavior  –  only the direction of the shear band 

evolution. It is shown that the inclusion of several defects 

leads to an imbalance in the atomic structure resulting in 

an acceleration of the shear band formation.   
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