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Statistical aspects of microplasticity: 
experiments, discrete dislocation simulations  
and stochastic continuum models

Abstract: The plastic deformation properties of micro-
scale and nanoscale specimens differ from those of their 
macroscopic counterparts as the discrete nature of the 
elementary processes governing plastic flow becomes 
directly visible. In such specimens, details of the initial 
defect microstructure may exert a strong influence on 
the recorded deformation behaviour, which accordingly 
exhibits significant scatter even amongst specimens that 
share an identical preparation history. The plasticity of 
microsamples appears as a sequence of spatially and tem-
porally localised events and not as the smooth and con-
tinuous flow process envisaged by classical continuum 
elastoplasticity. These observations pose a significant 
challenge to constitutive modelling. In this feature article, 
we discuss the statistics of fluctuations in microscale and 
nanoscale plasticity and discuss the implications for com-
putational modelling of plastic deformation processes 
on microscale and nanoscales. We propose a new type 
of constitutive models that combine a classical contin-
uum description of the elastic problem with a stochastic 
description of the dynamics of plastic flow.

Keywords: dislocations; fluctuations; plasticity.

*Corresponding author: Michael Zaiser, School of Engineering,  
Institute for Materials and Processes, The King’s Buildings, Sanderson 
Building, Edinburgh EH93JL, UK, e-mail: m.zaiser@ed.ac.uk
M. Zaiser: Institute for Materials Modelling, Department of  
Materials Science, University of Erlangen-Nürnberg,  
Dr.-Mack-Strasse 77, 90762 Fürth, Germany

1  Introduction
As a consequence of the progressive miniaturisation of 
systems and devices, classical questions of materials engi-
neering such as the plastic deformation behaviour of crys-
talline and non-crystalline solids have to be addressed on 
smaller and smaller scales. Traditional concepts of materi-
als plasticity – in principle, a well-established and settled 
field – have to be reassessed to decide whether they can 

meet the demands posed by the design and manufactur-
ing of components as miniaturisation proceeds to micro-
scales and nanoscales. Where changes in scale manifest 
qualitative changes in behaviour, a renewed effort in fun-
damental research is required to provide the conceptual 
and computational tools required for predicting and con-
trolling the plastic deformation processes.

The plasticity of the samples with dimensions on the 
micrometer and submicrometer scale differs from macro
scopic plasticity in two important respects: (i) the flow 
stress of small samples depends on their size (“smaller is 
stronger”) and (ii) the scatter of plasticity data increases 
immensely, to the extent that the standard deviation of flow 
stress data is of the same order of magnitude as the mean 
flow stress. Both effects are illustrated in Figure 1 showing a 
series of deformation curves of molybdenum (Mo) nanopil-
lars (for a description of the experiments, see [1,2]) together 
with a macroscopic deformation curve of the same material 
under comparable deformation conditions [3].

A large number of experimental and theoretical 
investigations have been devoted to the measurement 
and computational modelling of size effects in micro-
plasticity (for recent reviews, see [4–6]). A significant 
theoretical effort has been devoted to models that retain 
the continuum framework while including length scales –  
which are absent from classical plasticity models – into 
constitutive equations for plasticity. Scale dependence of 
the constitutive equations as a necessary prerequisite for 
modelling size effects has been introduced either by non-
local generalisations of plastic flow rules (non-local or 
gradient plasticity) [7–9] or, more recently, by recourse on 
fundamental physical mechanisms of dislocation motion 
that are cast into a continuum framework (continuum 
dislocation dynamics) [10–15]. An alternative approach is 
provided by discrete dislocation dynamics (DDD) simula-
tions [16–19], but these are still confined to small systems/
small strains and have difficulties in handling complex 
boundary conditions as encountered in problems of tech-
nological relevance.

By their nature, traditional continuum theories of 
plasticity make deterministic predictions and thus cannot 
address the issue of fluctuations. This is not a major 
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problem in macroscopic plasticity because the scatter 
of deformation properties amongst different samples of 
a well-characterised material is small. However, fluctua-
tions pose a major challenge for developing constitutive 
models in microplasticity, where even samples that have 
been machined from the same single crystal – as shown 
in Figure 1 – may exhibit a 50% scatter in flow stress. 
What is the use of predicting a mean flow stress of 1500 
MPa at 5% strain when the scatter between different 
samples ranges between 1100 and 2200 MPa? A funda-
mental purpose of the scientific investigation of plastic 
deformation processes – on the microscale as well as on 
the macroscale – is to provide engineers with tools that 
allow them to predict the performance and reliability of 
components in technical systems. Unless the issue of 
“scatter” can be satisfactorily addressed, scientists will 
have failed in this task as far as microplasticity is con-
cerned. We need to understand how the large fluctua-
tions of microscale deformation behaviour that are con-
sistently observed in simulations and experiments affect 
predictions of small-scale plasticity and how we can 
obtain reliability estimates for the deformation behaviour 
of microscale components.

What are the origins of scatter in microplasticity? 
Underlying the stress-strain curves, plasticity is gov-
erned by the (deterministic) dynamics of discrete objects, 
namely the interacting dislocation lines. These dynamics 
are inherently non-linear and characterised by collec-
tive phenomena, which can be broadly envisaged within 
the conceptual framework of non-equilibrium statistical 
mechanics and complexity theory [20]. Because of the 
complex nature of the underlying deterministic dynamics, 
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Figure 1 Top, Stress-strain curves of [100]-oriented Mo  
micropillars, mean diameter d = 0.3 μm [1, 2]. Bottom, Room 
temperature stress-strain curve of macroscopic [100]-oriented Mo 
single crystal (after Hollang et al. [3]).

small changes in initial conditions may lead to significant 
changes in deformation behaviour. As these changes are 
related to the local configuration of individual discrete 
defects, they can, in principle, not be captured within a 
deterministic continuum framework. Thus, to account 
for scatter in microplasticity, we either need to study the 
underlying discrete dynamics (perform discrete disloca-
tion dynamics simulations for large strains and complex 
geometries) or we need to generalise continuum models 
to include local variability. In such models, our lack of 
knowledge regarding the local initial conditions and the 
inherently complex dynamics of dislocation systems need 
to be reflected by an appropriate stochastic description of 
the deformation process.

The aim is thus to replace the complex dynamics of 
interacting dislocations in the different volume elements 
of deforming crystals by equivalent spatiotemporal sto-
chastic processes involving the continuum variables of 
stress, plastic strain, and possible internal variables. 
“Equivalent” must be understood here in a statistical 
sense: equivalence means that, over an ensemble of 
simulations, the relevant statistical characteristics of the 
overall deformation behaviour and of the internal stress 
and strain patterns are correctly reproduced.

There are, in principle, two strategies towards devel-
oping such a stochastic theory of microplasticity. We 
may statistically characterise experimental deformation 
curves [2] and surface deformation patterns [21–23], and 
we may use advanced strain mapping and imaging tech-
niques to gain access to the statistics of internal stress and 
strain fields to deduce statistical characteristics of real 
deformation processes and obtain information required 
for constructing a matching stochastic description. This 
strategy is, however, limited by the practical difficul-
ties of obtaining sufficiently large statistical ensembles 
of experimental data as required for a reliable statistical 
analysis. An alternative approach is provided by ensem-
ble simulations of discrete dislocation dynamics. This has 
the advantage of giving direct access to stress and strain 
patterns on all scales above the atomistic scale and pro-
vides the additional possibility of assessing the relevance 
of various dislocation mechanisms and of different types 
of initial dislocation configurations by systematically 
varying respective parameters. In the remainder of this 
article, we will illustrate both approaches. Section 2 gives 
an overview of the analysis of data from microcompres-
sion experiments, whereas Section 3 details the analy-
sis of simulation results obtained in compression and 
bending. Section 4 illustrates for a simple example how 
such results can be used for constructing a stochastic 
plasticity model and how such models can be used in a 
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Monte Carlo approach for assessing the possible outcomes 
of deformation processes.

2  �Statistical analysis of  
microdeformation experiments

In the following, we illustrate the statistical analysis of 
microdeformation processes for the example of compres-
sion experiments conducted on Mo micropillars. We focus 
exclusively on the data analysis aspects; for a description 
of the experimental details, the reader is referred to the 
original articles [1, 2].

The deformation curves of compressed micropillars 
are characterised by a strongly intermittent behaviour: 
deformation proceeds as a discrete sequence of “defor-
mation events”, during which the plastic deformation 
rate increases significantly, and these events are sepa-
rated by intervals of near-elastic stress increase. The 
shape of the corresponding stress-strain curves depends 
on the loading mode. On the one hand, in displacement-
controlled deformation, rapid plastic flow during a 
deformation event leads to elastic unloading. Hence, the 
stress-strain curves assume a serrated shape where each 
deformation event corresponds to a stress drop. In stress-
controlled loading, on the other hand, rapid deformation 
leads to a strain increase at almost constant stress. The 
corresponding, almost-horizontal parts of the stress-
strain curve are separated by much steeper intervals of 
low plastic activity where the stress increases in a nearly 
elastic manner. Hence, the stress-strain curves assume a 
staircase-like shape, as seen in Figure 1. Both stress and 
strain increments scatter widely, leading to a variation in 
flow stresses that increases with increasing strain.

An obvious first step towards a statistical characteri-
sation of deformation curves consists in determining the 
average value and the statistical variation of flow stresses 
as functions of strain and specimen size. This is shown 
in Figures 2 and 3. It can be seen that both the flow stress 
and the flow stress variation of Mo micropillars are size 
dependent. They rise rapidly at the onset of deformation 
and saturate above strains of about 10%.

Figure 4 demonstrates that the size-dependent flow 
stress and flow stress variation scale in approximate pro-
portion with each other. Both dependences can be well 
described by inverse power laws,  < σ > ~ < Δσ2 > 1/2~d-a, where 
a≈0.5 and d is the micropillar diameter.

For a more detailed statistical analysis, we consider 
the sequence of strain bursts and stress increases observed 
in stress-controlled compression tests. To analyse the 
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Figure 2 Average deformation curves of Mo micropillars and  
nanopillars of different diameters. Each curve represents an 
average of eight samples. Data from [1, 2].
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Figure 3 Scatter of deformation curves of Mo micropillars and 
nanopillars of different diameters. Each curve represents the  
standard deviation of the flow stresses of eight samples. Data  
from [1, 2].

statistical properties of this sequence, we start out from 
time records of stress, plastic strain, and strain rate. After 
filtering out external sources of noise in the signals, we 
construct a sequence of deformation events by imposing 
a threshold on the plastic strain rate (for details, see [2]). 
The ensuing series of stress and strain jumps can be statis-
tically characterised in terms of probability distributions 
of stress increments Δσ and strain increments Δɛ. The 
strain bursts exhibit a scale-free power law distribution:

	 p(Δɛ) ∝ Δɛ-κ� (1)

with an exponent κ close to 3/2 as also reported for many 
other materials [20]. The distributions do not depend 
appreciably on system size (Figure 5). By contrast, the 
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distributions of stress increments show a clear system size 
dependence (Figure 6). They are not scale-free – in fact, 
they can be represented well by Weibull distributions,
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1( ) exp -p
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with a shape parameter (Weibull exponent) β close to 1, i.e., 
we find near-exponential behaviour. This parameter does 
not depend on the system size. The mean stress increment 
(and also the stress parameter Δσ0 of the Weibull distribu-
tions), by contrast, is inversely proportional to the system 
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Figure 5 Probability distribution of strain increments determined in 
stress-controlled compression of [100]-oriented Mo micropillars of 
different sizes. The straight line indicates a power law distribution 
with exponent 3/2.
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Figure 6 Cumulative probability distributions of stress increments 
determined in stress-controlled compression of [100]-oriented 
Mo micropillars of different sizes. The straight line is a Weibull 
distribution with parameter 0.87. Inset, Mean stress increment as a 
function of sample diameter.
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Figure 4 Size dependence of the flow stress and flow stress varia-
tion of [100]-oriented Mo single crystals (both parameters deter-
mined at 15% strain).

size (inset in Figure 6). This poses the question how the 
size dependences of the flow stress and of the stress incre-
ment distribution relate to each other.

Before we address this question, a word of caution is 
needed. It is in the nature of power-law distributions with 
exponents between 1 and 2 that p(Δɛ) contains a very large 
number of small jumps as the probability density diverges 
at small Δɛ. This “infrared divergence” must be mitigated 
by introducing a cut-off Δɛmin at small sizes. The actual 
value of Δɛmin is at first glance of little importance, as a 
simple calculation demonstrates that, for small Δɛmin, the 
(infinitely many) small events that are cut out produce 
only a negligible fraction of the overall strain. However, 
the value of the cut-off in the strain increment distribution 
is of crucial importance for the distribution of stress incre-
ments: it is evident that the mean stress increment simply 
equals the mean flow stress divided by the number of 
events that have occurred up to that stress. Reducing Δɛmin 
(the smallest strain increment still counted as a strain 
jump) increases the number of events and hence reduces 
the mean value of the stress increment distribution. Thus, 
any discussion of the size dependence of the stress incre-
ment statistics is meaningless unless we specify how we 
define Δɛmin.

In our analysis of Mo micropillar deformation, the 
smallest event size was implicitly defined to be inversely 
proportional to the system size (the imposed requirement 
was that the corresponding displacement increment had 
to exceed the typical level of machine-induced oscillations 
in the displacement record). Using the relation Δɛmin~d-1, 
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we may now try to understand the relation between the 
size dependence of the flow stress and the stress incre-
ment statistics.

To this end, we formulate a minimal statistical model 
by assuming that the stress and strain increments in a 
sequence are mutually uncorrelated random variables. 
In addition, we assume that the sequences of stress and 
strain increments constitute two independent, stationary 
stochastic processes such that the statistics of deforma-
tion curves is completely characterised by the respective 
probability distributions. Under these assumptions, the 
following statistical arguments can be put forward:

–– The total number of events is equal to the total strain 
divided by the average strain increment:

	
N ε

=
∆ε �

(3)

–– For a power law distribution of exponent 3/2, the 
average is the arithmetic mean of the upper and 
lower cut-offs of the power law scaling regime. 
Hence, the average strain increment is

 		  < Δɛ >  ∝ ΔɛminΔɛmax� (4)

–– The upper cut-off of the scaling regime is given by 
the total strain (at strain ɛ, no event with Δɛ > ɛ can 
possibly have occurred):

	 Δɛmax~ɛ.

The average stress increment is given by the flow stress 
(determined at strain γ) divided by the number of strain 
increments that have occurred up to that strain:

 σ σ ∆ε ∆ε
∆σ = = ∝σ 

 γ ε

1/2
min

N �
(5)

The analysis of flow stresses for the Mo experiments 
indicates that σ~d-1/2. Furthermore, Δɛmin~d-1 due to the 
manner the stress-strain curves were analysed [2]. Insert-
ing both relations into Eq. (5), we find that  < Δσ > ~d-1 as 
observed. Thus, the observed size dependences of the 
stress and stress increment statistics are mutually consist-
ent within the framework of our minimal statistical model.

Temporal intermittency of microscale plasticity goes 
along with spatial localisation as the sequence of distinct 
deformation events corresponds to a pattern of localised 
slip bands. Using surface analysis methods, Schwerdtfeger  
et al. [22, 23] demonstrated that the local strains in slip 
bands obey the same statistics as the temporal strain 
increments during strain bursts, supporting the conjec-
ture that each strain burst corresponds to the formation 

of a localised slip band. Although the slip band heights 
were demonstrated to exhibit scale-free statistics, the slip 
band spacings were exponentially distributed, supporting 
the idea that slip band nucleation can be envisaged as an 
uncorrelated Poisson process. Using these ideas, a statis-
tical model of the formation and evolution of slip band 
patterns was proposed in [23], which produced a good 
agreement with the overall surface morphology observed 
in experiments on alkali halide single crystals.

Unfortunately, despite these successes, it is difficult 
to build statistical models of microplasticity exclusively 
upon experimental data. For evident reasons, experimen-
tators shun the boring task of preparing and testing large 
numbers of identical specimens. Even in a carefully con-
ducted and well-documented series of experiments, it is 
rare to find statistics based upon more than a dozen speci-
mens for each set of physical and geometrical parameters. 
Moreover, it is difficult to fully characterise and reproduce –  
let alone independently control – the statistical param-
eters of the initial dislocation microstructure in different 
samples. As a consequence of incomplete characterisa-
tion and poor statistics, there is little agreement as to the 
physical origin of fluctuations and size effects. Even for 
a seemingly straightforward parameter as the size effect 
exponent a, different leading groups keep advocating 
different values (compare, e.g., the reviews [4, 6]). To 
overcome the difficulties related to poor statistics and 
insufficient information regarding microstructures, it is 
useful to resort to discrete dislocation dynamics simula-
tions. Although such simulations have problems of their 
own (restriction to small samples and small strains), they 
allow to independently control the initial dislocation 
microstructure and simulate reasonably large ensembles 
by unsophisticated “farming out” of computations over 
multiple computers.

3  �Statistical analysis of discrete  
dislocation dynamics simulations

To illustrate the statistical analysis of DDD simulations, 
we refer to simulations of microbending by Motz et al. [24] 
and, for comparison, to simulations of micropillar com-
pression by Csikor et al. [25]. Again we discuss mainly the 
statistical analysis of stress-strain and dislocation density 
vs. strain curves. For details of the DDD method and spe-
cific parameters, the reader is referred to the original 
works.

The bending of Al microbeams was simulated 
by prescribing displacements on the end surfaces of 
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[100]-oriented fcc single crystals with dimensions of 
0.75 × 0.75 × 1.5 μm3. The initial dislocation microstructure 
consisted of randomly distributed dislocation sources. The 
initial dislocation density was 2 × 1013 m-2, and the source 
length was chosen equal to the mean dislocation spacing. 
A bending strain rate of 2 × 104 s-1 was imposed by keeping 
one end surface of the specimen fixed and displacing the 
other end surface to impose a given bending radius R. A 
set of resulting bending curves (bending moment vs. total 
surface strain) is shown in Figure 7 together with the cor-
responding dislocation density vs. strain records.

Figure 8 demonstrates the correlation between the 
stress and dislocation density evolution and the strain rate 
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Figure 7 Discrete dislocation dynamics simulations of microbend-
ing. Upper curves, scaled bending moment vs. total surface strain; 
lower curves, dislocation density vs. surface strain; [100]-oriented 
Al single crystals, specimen dimensions 0.75 × 0.75 × 1.5 μm.
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Figure 8 Stress, strain rate, and dislocation density vs. time signals in a DDD simulation of microbending. Left, Scaled bending moment vs. 
time and plastic surface strain rate vs. time; right, dislocation density vs. time and plastic surface strain rate vs. time.

vs. time record. It can be seen that each strain burst corre-
sponds to a drop in bending moment and a simultaneous 
upward jump in dislocation density. This is due to the strain 
gradient in the microbending test, which neccessitates 
the accumulation of geometrically necessary dislocations 
(GNDs) during plastic deformation. In view of the theoreti-
cal interpretation of microbending size effects, it is inter-
esting to take a look at the sample-to-sample variations of 
stress and dislocation density evolution. From Figure 7, it is 
seen quite clearly that the samples that deform plastically 
at the lowest bending moment are those that exhibit the 
largest accumulation of dislocations. This finding is con-
sistent with the concept of plastic strain gradients causing 
GND accumulation but difficult to reconcile with the 
popular idea (see, e.g., [8]) that a larger GND density sup-
posedly leads to a higher flow stress, causing a size effect. 
Figure 9 shows, for comparison, the same records for a 
uniaxial compression test. Here, again, there is a clear cor-
relation between stress drops and strain bursts. However, 
the strain bursts are, in this case, not associated with any 
appreciable changes in dislocation density, thus refuting 
the idea that strain bursts might be associated with either 
rapid dislocation multiplication or dislocation depletion 
through the specimen surfaces.

We now proceed to statistically analyse the evolu-
tion of stress, strain, and dislocation density. To this end, 
we determine the statistics of plastic strain and disloca-
tion density increments associated with strain bursts, as 
well as the stress changes between bursts. We smoothen 
the simulated strain rate vs. time signals by performing 
a running average over a short time interval to eliminate 
high-frequency strain rate oscillations associated with 
the discretisation of dislocation lines and then threshold 
the smoothened signal to identify “strain bursts” as time 
intervals over which the strain rate continuously exceeds 
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Figure 9 Stress, strain rate, and dislocation density vs. time signals in a DDD simulation of uniaxial compression.
Left, Stress vs. time and strain rate vs. time; right, dislocation density vs. time and strain rate vs. time.

the imposed threshold value. Strain and dislocation 
density increments are then simply defined as the differ-
ences between the values of plastic strain and total dislo-
cation density at the start and the end of the burst.

Figure 10 demonstrates the near-perfect agreement 
between the distributions of dislocation density incre-
ments and strain burst sizes. Both variables appear to be 
linked by the simple linear relationship KΔɛ = Δρ, where the 
value K~1017 m-2 compares well with the minimal propor-
tionality factor that follows from geometrical considera-
tions for GNDs, K = 1/(b⊥d) = 7.5 × 1016, where b⊥ = 1.77 × 10-10 m 
is the projection length of the Burgers vector on the [100] 
axis and d = 0.75 × 10-6 m is the specimen thickness.

If we compare these results with those obtained for 
displacement-controlled uniaxial deformation simula-
tions (see Figure 11, which compiles strain increment 
distributions from bending, uniaxial deformation, and 
experiment), we make the surprising observation that the 
strain increments follow in both cases the same distribu-
tion, whereas the dislocation density increments in uni-
axial deformation are much smaller, have zero average, 
and show no indication of scale-free behaviour. This 
leads to the surprising conclusion that the very significant 
accumulation of GNDs in the bending simulations has 
little impact on the strain burst phenomenon, which thus 
seems to be quite insensitive to the presence or absence 
of strain gradients. Irrespective of deformation mode and 
material parameters, the distribution of strain burst sizes 
(strain increments) appears to be well described by a trun-
cated power law,

-3/2
max

max
( ) exp - ,

( )
Ebp N

M l
 ∆ε

∆ = ∆ε ∆ε = 
∆ε Θ+ 

ε
�
(6)

where N is a normalisation constant. The cut-off Δɛmax 
is found to be inversely proportional to the system size 
l and to the sum of the intrinsic hardening coefficient Θ 
and a stiffness parameter M. The latter parameter governs 
the stress reduction in response to a plastic strain incre-
ment in conditions of displacement control; it is equal to 
zero in stress-controlled experiments and is equal to the 
elastic modulus E for displacement-controlled deforma-
tion with an ideally stiff machine. Relation (6) was first 
found in simulations of a stochastic microplasticity model 
by Zaiser and Nikitas [26], and the scaling Δɛmax~1/l was 
later confirmed for a generic dislocation-based model by 
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Figure 10 Distributions of strain and dislocation density incre-
ments in discrete dislocation dynamics simulations of microbend-
ing. The corresponding stress-strain and dislocation density vs. 
strain curves are shown in Figure 7/Full line, Truncated power law  
[cf. Eq. (6)].
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Salman and Truskinovsky [27], as well as by discrete dis-
location dynamics simulations [25].

We now turn to the statistics of stress increments 
between strain bursts. We define the stress increment 
between two bursts as the difference of the stresses at 
burst initiation. In displacement-controlled deforma-
tion, we may thus observe negative stress increments. 
We exclude the first stress increments in each sequence, 
which correspond to the regime of elastic loading before 
yield.

The resulting stress increment distribution for our set 
of bending simulations is shown in Figure 12. The distri-
bution consists of two regimes. First, we observe a regime 
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Figure 12 Distribution of stress increments between strain bursts 
in discrete dislocation simulations of microbending (upper curve) 
and compression (lower curve; the red lines correspond to Weibull 
distributions) (modulus β = 0.8).
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Figure 11 Comparison of the statistics of strain burst sizes in 
microcompression and microbending simulations and in micropillar 
compression experiments [25]. Full line, Fit according to Eq. (6).

of negative stress increments that have low overall prob-
ability (P(Δσ < 0) < 0.1), indicating that each strain burst 
tends to initiate at a higher stress than the preceding one. 
The bulk of the distribution at positive stress increments 
can be well described by a Weibull distribution of shape 
parameter β = 0.8, similar to what we find in experiments 
(Section 3) and also in simulations of uniaxial deforma-
tion (see Figure 12).

In conclusion of this section, we note that there is a 
remarkable degree of similarity in the statistics of stress-
strain curves obtained in simulated microbending and 
microcompression. This indicates universality of the 
mechanisms underlying strain bursts and fluctuation 
phenomena in microplasticity in general [20]. This uni-
versality, if it can be further corroborated, gives hope that 
it may be possible to develop generic models that allow to 
assess and evaluate the scatter of microdeformation pro-
cesses. The structure and possible output of such models 
will be outlined in the following section.

4  �Stochastic continuum modelling 
of microplasticity

As stated in the introduction, the ultimate aim of stochastic 
microplasticity models is to map the complex dynamics of 
interacting dislocations in the different volume elements 
of a deforming crystal onto equivalent spatiotemporal 
stochastic processes involving the continuum variables 
of stress and plastic strain. Using statistical information 
extracted from discrete dislocation dynamics simula-
tions and/or experiments, we want to construct stochastic 
models that reproduce the essential statistical features of 
the deformation processes in small volumes of a mate-
rial. The task is then to assemble these small volumes into 
larger samples in such a manner that the deformation of 
these samples is captured correctly.

To this end, interactions between the different volume 
elements need to be represented correctly. These interac-
tions may conceptually be split into surface-mediated, 
short-range interactions that arise from the exchange of 
dislocations across the boundaries between adjacent 
volume elements and long-range interactions that emerge 
from the internal stresses that are required to maintain 
compatibility of deformation as the plastic flow of the indi-
vidual volume elements proceeds in a heterogeneous and 
erratic manner. One the one hand, these long-range inter-
actions arise naturally as we assemble elements with dif-
ferent stochastic deformation curves into a composite and 
can be captured by standard finite element calculations. 
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Surface-mediated interactions (dislocation exchange), on 
the other hand, can be related to imbalances in disloca-
tion fluxes and hence to strain gradients. In a continuum 
setting, these interactions can be represented by gradient-
dependent terms in the local flow rule as discussed by 
Zaiser and Aifantis [28, 29]. Besides providing a summary 
representation of dislocation fluxes and the associated 
internal length scales, these terms have an important role 
in computational modeling: as we refine the spatial reso-
lution of a stochastic model, the relative fluctuations in 
deformation behaviour are bound to increase, leading to 
mesh-dependent and, in the continuum limit of infinite 
spatial resolution, non-differentiable strain patterns. Gra-
dient terms in the flow rule fulfill the important role of 
suppressing short-wavelength fluctuations of the defor-
mation fields and thus ensuring mesh independence of 
simulation results.

In the following, we illustrate the stochastic simu-
lation of microdeformation processes on a particularly 
simple example, namely, the stress-controlled bending 
of a long thin rod of length L and diameter d. The rod is 
clamped at one end and bent by applying a monotoni-
cally increasing torque to its other end. The simulation 
is terminated once this end has rotated by 180°, at which 
point – assuming the classical plasticity theory with an 
arbitrary monotonic hardening law – the rod should have 
bent into a circle. The geometry of a long thin rod is partic-
ularly convenient because such a rod can be envisaged as 
a sequence of segments where both short- and long-range 
interactions between different segments can be neglected. 
Furthermore, with the imposed boundary conditions, 
the solution of the elastic problem is trivial: the bending 
moment is constant along the rod and equals the applied 
torque. Thus, the rod can be envisaged as a sequence of 
(approximately) non-interacting segments deforming in 
series under the same applied stress that is controlled 
externally. As a consequence, the overall deformation of 
the rod can be calculated by a simple summation over the 
bending characteristics of the constituent segments.

To formulate a stochastic model for the bending 
behaviour of an individual segment, we refer to the sta-
tistical analysis of DDD curves as demonstrated in the 
previous section. In stress control, the bending curve of 
a segment can, above an initial yield stress σy, be envis-
aged as a stochastic sequence of strain bursts alternat-
ing with quasi-elastic loading intervals. Strain burst 
sizes (plastic surface strain increments) are distributed 
according to a truncated power law with size-dependent 
cut-off, Eq. (6), where we identify l with the rod diameter 
d. Strain bursts are separated by stress increments for 
which we assume a Weibull distribution with exponent 

β = 1 (i.e., an exponential distribution). The characteristic 
stress increment Δσ0 must fulfill the consistency condi-
tion  < Δσ >  = Θ < Δɛ >  among hardening rate, mean stress, 
and mean strain increment. This yields with Eqs. (2), 
(4), and (6) the value Δσ0 = (ΘEΔɛminb/d)1/2. Here Δɛmin is a 
small cut-off strain that is formally required to regularise 
the non-integrable singularity of the probability distribu-
tion (6) at Δɛ→ 0. In the limit of a sufficiently small Δɛmin, 
the particular choice of this parameter does not affect the 
simulation results. For simplicity, the hardening rate Θ is 
assumed to be strain independent (for simulations with 
strain-dependent Θ, see, e.g., [23]). Thus, the stress-strain 
curve of each element consists of an elastic part with slope 
E up to a stress of σy, followed by a random staircase of 
average slope Θ.

Using this stochastic model for the response of an 
individual segment, bending simulations are conducted 
as follows: after dividing the rod of length L into N = L/d 
segments of length l = d and setting the flow stress for each 
segment equal to the initial value σy, we execute an itera-
tive Monte Carlo scheme consisting of the following steps:

–– Define the active segment k as the segment with the 
lowest flow stress (if multiple segments have the 
same flow stress, choose one of them at random).

–– Set the scaled bending moment equal to the flow 
stress σk of the active segment.

–– Increase the bending strain ɛk of the active segment 
by a random amount Δɛ drawn from distribution (6).

–– Increase the flow stress of the active segment by a 
random amount Δσ drawn from distribution (2) with 
parameters as discussed above.

–– Evaluate the overall shape of the rod using the relation 
θi = Σj < iɛj, where θj is the rotation angle of segment j.

–– Repeat until the last segment has rotated by 180° 
(θN = π).

If we measure stress in units of E, the only parameters in 
the simulations are the scaled specimen diameter d/b, the 
scaled length N = L/d, and the scaled hardening rate Θ/E. 
In the following, we consider specimens of aspect ratio 
1:50 (N = 50), keep the hardening rate at the fixed value 
Θ/E = 10-3, assume a Burgers vector length b = 2.5 × 10-10 m, 
and vary the specimen diameter d from 100 μm down to 
0.1 μm.

Bending shapes and local bending strains resulting 
from individual simulations are shown in Figure 13. For 
rod diameters well above 1 μm, bending occurs (apart from 
boundary effects) in a homogeneous manner, leading to 
well-controlled circular shapes. At a diameter of 1 μm, on 
the other hand, and much more so at 0.1 μm, we observe 
very irregular shapes that differ significantly from the 
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deterministic expectation. In mathematical terms, this 
increasing irregularity is related to the fact that the extrin-
sic cut-off in distribution (6) becomes so large that the 
maximum strain increment that might be expected from 
the distribution is not actually reached during the simula-
tion. Our end condition imposes an “extrinsic” cut-off to 
the strain increment distribution of Δɛmax < π. Using Eq. (6) 
with M = 0 and the other parameters as given above, we 
find that the intrinsic cut-off reaches this value for d < 0.1 
μm. Below this scale, we see “pure” power law statistics. 
The power law with exponent  < 2, however, has the prop-
erty that the strain carried by the largest events makes up 
an appreciable fraction of the cumulative deformation 
produced by the ensemble of all strain increments. In 
simple words, most of the deformation becomes localised 
in just one or two segments of the rod.

To analyse the spectrum of possible outcomes of our 
deformation simulations in more quantitative terms, we 
resort to ensemble simulations and superimpose the out-
comes of large numbers of runs to obtain a “density of 
shapes”. Owing to the numerical efficiency of the Monte 
Carlo scheme, it is not a problem to perform some 104 or 
105 runs using the common boundary condition of one 
end of the rod clamped horizontally in the origin. The 
resulting spatial density of shapes can be envisaged as the 

probability that a rod that has been bent using the above 
scheme with this boundary condition passes through 
a given point in space. It can thus be used as a measure 
to quantify shape control for the stochastic microde-
formation process. For instance, from this density, we 
may directly determine the risk that bent parts may pass 
through or get in contact with undesirable locations. 
The application, e.g., in shape control of wire bonds is 
straightforward.

Figure 14 shows the results of ensemble simulations 
using the same parameters as given above. As above, 
there is a critical size of about 0.1 μm, below which the 
resulting shape is entirely controlled by scale-free fluctua-
tions, and as a result, the deformation shapes cannot be 
controlled at all. Above this scale, however, fluctuations 
tend to average out with increasing size, leading to a well-
defined circular shape in the limit of large rod sizes.

5  Summary and conclusions
We have demonstrated how systematic statistical analysis 
of microdeformation experiments and discrete disloca-
tion dynamics simulations can provide data that serve to 

Figure 13 Results of simulated microbending experiments showing individual outcomes.
Rod diameter: top left, d = 100 μm; top right, d = 10 μm; bottom left, d = 1 μm; bottom right, d = 0.1 μm.
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construct stochastic models that allow the computation-
ally efficient simulation of large ensembles of microdefor-
mation processes. This, in turn, gives access to statistical 
signatures such as shape densities that allow to assess the 
spectrum of possible outcomes resulting from the inher-
ently stochastic nature of plasticity on submicrometer 
scales.

The investigations that we have presented are only 
a first step on the path towards a comprehensive statis-
tical model of microplasticity. Our example in Section 
4 was constructed in such a manner that interactions 

Figure 14 Each graph represents an ensemble of 104 simulated 
microbending experiments illustrating the probabilistic spectrum of 
possible outcomes for different thickness of the bending beams.
Top left, d = 100 μm; top right, d = 10 μm; bottom left, d = 1 μm; 
bottom right, d = 0.1 μm; in the simulations, one end of the beams is 
clamped horizontally in the origin while a monotonically increasing 
torque is applied to the other end.

between different volume elements (rod segments) could 
be neglected. Thus, information from discrete dislocation 
dynamics simulations of the bending of short rods could 
be directly used in constructing the stochastic rules gov-
erning deformation of the individual segments of a long 
rod. In general, however, both long- and short-range inter-
actions between different volume elements need to be con-
sidered, and as a consequence, the stress-strain response 
of a volume element that is part of a larger sample may 
not be identical – not even in a statistical sense – with the 
behaviour of the same volume element tested in isolation.

Thus, a more thorough statistical analysis that con-
siders, in addition to the overall stress-strain behaviour of 
experimental or simulated samples, the plastic response 
of embedded subvolumes is needed. This is relatively 
straightforward for dislocation dynamics simulations, 
which give full access to the internal stress and strain 
fields above the atomic scale. In the experiment, however, 
recourse to sophisticated experimental techniques such 
as microstrain mapping and X-ray microscopy is needed 
to gain access to internal stress and strain patterns on the 
micrometer scale. The ultimate aim of such investigations 
is to understand how the statistical deformation proper-
ties of material volumes and subvolumes change as we 
change the scale of observation and how these changes 
relate to the characteristic scales of the defect microstruc-
ture. As a plastically deforming crystal may be considered 
as a driven non-equilibrium system in a state close to criti-
cality [20], a study of the scale dependence of fluctuation 
properties in such systems is tantamount to a renormali-
sation theory of dislocation plasticity. From a practical 
point of view, such a theory will help to develop stochas-
tic models that give access to the statistical properties of 
deformation processes in general geometries and thus 
pave the way for a comprehensive approach towards com-
putational prediction and control of statistical aspects of 
microplasticity.
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