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Abstract: The plastic deformation properties of micro-
scale and nanoscale specimens differ from those of their
macroscopic counterparts as the discrete nature of the
elementary processes governing plastic flow becomes
directly visible. In such specimens, details of the initial
defect microstructure may exert a strong influence on
the recorded deformation behaviour, which accordingly
exhibits significant scatter even amongst specimens that
share an identical preparation history. The plasticity of
microsamples appears as a sequence of spatially and tem-
porally localised events and not as the smooth and con-
tinuous flow process envisaged by classical continuum
elastoplasticity. These observations pose a significant
challenge to constitutive modelling. In this feature article,
we discuss the statistics of fluctuations in microscale and
nanoscale plasticity and discuss the implications for com-
putational modelling of plastic deformation processes
on microscale and nanoscales. We propose a new type
of constitutive models that combine a classical contin-
uum description of the elastic problem with a stochastic
description of the dynamics of plastic flow.
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1 Introduction

As a consequence of the progressive miniaturisation of
systems and devices, classical questions of materials engi-
neering such as the plastic deformation behaviour of crys-
talline and non-crystalline solids have to be addressed on
smaller and smaller scales. Traditional concepts of materi-
als plasticity — in principle, a well-established and settled
field — have to be reassessed to decide whether they can

meet the demands posed by the design and manufactur-
ing of components as miniaturisation proceeds to micro-
scales and nanoscales. Where changes in scale manifest
qualitative changes in behaviour, a renewed effort in fun-
damental research is required to provide the conceptual
and computational tools required for predicting and con-
trolling the plastic deformation processes.

The plasticity of the samples with dimensions on the
micrometer and submicrometer scale differs from macro-
scopic plasticity in two important respects: (i) the flow
stress of small samples depends on their size (“smaller is
stronger”) and (ii) the scatter of plasticity data increases
immensely, to the extent that the standard deviation of flow
stress data is of the same order of magnitude as the mean
flow stress. Both effects are illustrated in Figure 1 showing a
series of deformation curves of molybdenum (Mo) nanopil-
lars (for a description of the experiments, see [1,2]) together
with a macroscopic deformation curve of the same material
under comparable deformation conditions [3].

A large number of experimental and theoretical
investigations have been devoted to the measurement
and computational modelling of size effects in micro-
plasticity (for recent reviews, see [4-6]). A significant
theoretical effort has been devoted to models that retain
the continuum framework while including length scales —
which are absent from classical plasticity models - into
constitutive equations for plasticity. Scale dependence of
the constitutive equations as a necessary prerequisite for
modelling size effects has been introduced either by non-
local generalisations of plastic flow rules (non-local or
gradient plasticity) [7-9] or, more recently, by recourse on
fundamental physical mechanisms of dislocation motion
that are cast into a continuum framework (continuum
dislocation dynamics) [10-15]. An alternative approach is
provided by discrete dislocation dynamics (DDD) simula-
tions [16-19], but these are still confined to small systems/
small strains and have difficulties in handling complex
boundary conditions as encountered in problems of tech-
nological relevance.

By their nature, traditional continuum theories of
plasticity make deterministic predictions and thus cannot
address the issue of fluctuations. This is not a major
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Figure1 Top, Stress-strain curves of [100]-oriented Mo
micropillars, mean diameter d=0.3 pm [1, 2]. Bottom, Room
temperature stress-strain curve of macroscopic [100]-oriented Mo
single crystal (after Hollang et al. [3]).

problem in macroscopic plasticity because the scatter
of deformation properties amongst different samples of
a well-characterised material is small. However, fluctua-
tions pose a major challenge for developing constitutive
models in microplasticity, where even samples that have
been machined from the same single crystal — as shown
in Figure 1 — may exhibit a 50% scatter in flow stress.
What is the use of predicting a mean flow stress of 1500
MPa at 5% strain when the scatter between different
samples ranges between 1100 and 2200 MPa? A funda-
mental purpose of the scientific investigation of plastic
deformation processes — on the microscale as well as on
the macroscale - is to provide engineers with tools that
allow them to predict the performance and reliability of
components in technical systems. Unless the issue of
“scatter” can be satisfactorily addressed, scientists will
have failed in this task as far as microplasticity is con-
cerned. We need to understand how the large fluctua-
tions of microscale deformation behaviour that are con-
sistently observed in simulations and experiments affect
predictions of small-scale plasticity and how we can
obtain reliability estimates for the deformation behaviour
of microscale components.

What are the origins of scatter in microplasticity?
Underlying the stress-strain curves, plasticity is gov-
erned by the (deterministic) dynamics of discrete objects,
namely the interacting dislocation lines. These dynamics
are inherently non-linear and characterised by collec-
tive phenomena, which can be broadly envisaged within
the conceptual framework of non-equilibrium statistical
mechanics and complexity theory [20]. Because of the
complex nature of the underlying deterministic dynamics,
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small changes in initial conditions may lead to significant
changes in deformation behaviour. As these changes are
related to the local configuration of individual discrete
defects, they can, in principle, not be captured within a
deterministic continuum framework. Thus, to account
for scatter in microplasticity, we either need to study the
underlying discrete dynamics (perform discrete disloca-
tion dynamics simulations for large strains and complex
geometries) or we need to generalise continuum models
to include local variability. In such models, our lack of
knowledge regarding the local initial conditions and the
inherently complex dynamics of dislocation systems need
to be reflected by an appropriate stochastic description of
the deformation process.

The aim is thus to replace the complex dynamics of
interacting dislocations in the different volume elements
of deforming crystals by equivalent spatiotemporal sto-
chastic processes involving the continuum variables of
stress, plastic strain, and possible internal variables.
“Equivalent” must be understood here in a statistical
sense: equivalence means that, over an ensemble of
simulations, the relevant statistical characteristics of the
overall deformation behaviour and of the internal stress
and strain patterns are correctly reproduced.

There are, in principle, two strategies towards devel-
oping such a stochastic theory of microplasticity. We
may statistically characterise experimental deformation
curves [2] and surface deformation patterns [21-23], and
we may use advanced strain mapping and imaging tech-
niques to gain access to the statistics of internal stress and
strain fields to deduce statistical characteristics of real
deformation processes and obtain information required
for constructing a matching stochastic description. This
strategy is, however, limited by the practical difficul-
ties of obtaining sufficiently large statistical ensembles
of experimental data as required for a reliable statistical
analysis. An alternative approach is provided by ensem-
ble simulations of discrete dislocation dynamics. This has
the advantage of giving direct access to stress and strain
patterns on all scales above the atomistic scale and pro-
vides the additional possibility of assessing the relevance
of various dislocation mechanisms and of different types
of initial dislocation configurations by systematically
varying respective parameters. In the remainder of this
article, we will illustrate both approaches. Section 2 gives
an overview of the analysis of data from microcompres-
sion experiments, whereas Section 3 details the analy-
sis of simulation results obtained in compression and
bending. Section 4 illustrates for a simple example how
such results can be used for constructing a stochastic
plasticity model and how such models can be used in a
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Monte Carlo approach for assessing the possible outcomes
of deformation processes.

2 Statistical analysis of
microdeformation experiments

In the following, we illustrate the statistical analysis of
microdeformation processes for the example of compres-
sion experiments conducted on Mo micropillars. We focus
exclusively on the data analysis aspects; for a description
of the experimental details, the reader is referred to the
original articles [1, 2].

The deformation curves of compressed micropillars
are characterised by a strongly intermittent behaviour:
deformation proceeds as a discrete sequence of “defor-
mation events”, during which the plastic deformation
rate increases significantly, and these events are sepa-
rated by intervals of near-elastic stress increase. The
shape of the corresponding stress-strain curves depends
on the loading mode. On the one hand, in displacement-
controlled deformation, rapid plastic flow during a
deformation event leads to elastic unloading. Hence, the
stress-strain curves assume a serrated shape where each
deformation event corresponds to a stress drop. In stress-
controlled loading, on the other hand, rapid deformation
leads to a strain increase at almost constant stress. The
corresponding, almost-horizontal parts of the stress-
strain curve are separated by much steeper intervals of
low plastic activity where the stress increases in a nearly
elastic manner. Hence, the stress-strain curves assume a
staircase-like shape, as seen in Figure 1. Both stress and
strain increments scatter widely, leading to a variation in
flow stresses that increases with increasing strain.

An obvious first step towards a statistical characteri-
sation of deformation curves consists in determining the
average value and the statistical variation of flow stresses
as functions of strain and specimen size. This is shown
in Figures 2 and 3. It can be seen that both the flow stress
and the flow stress variation of Mo micropillars are size
dependent. They rise rapidly at the onset of deformation
and saturate above strains of about 10%.

Figure 4 demonstrates that the size-dependent flow
stress and flow stress variation scale in approximate pro-
portion with each other. Both dependences can be well
described by inverse power laws, <o>~<Ag?*>"*~d?, where
a=~0.5 and d is the micropillar diameter.

For a more detailed statistical analysis, we consider
the sequence of strain bursts and stress increases observed
in stress-controlled compression tests. To analyse the
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Figure 2 Average deformation curves of Mo micropillars and
nanopillars of different diameters. Each curve represents an
average of eight samples. Data from [1, 2].

statistical properties of this sequence, we start out from
time records of stress, plastic strain, and strain rate. After
filtering out external sources of noise in the signals, we
construct a sequence of deformation events by imposing
a threshold on the plastic strain rate (for details, see [2]).
The ensuing series of stress and strain jumps can be statis-
tically characterised in terms of probability distributions
of stress increments Ac and strain increments Ae. The
strain bursts exhibit a scale-free power law distribution:

P(Ag) o< Ae™ 6]

with an exponent k close to 3/2 as also reported for many
other materials [20]. The distributions do not depend
appreciably on system size (Figure 5). By contrast, the
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Figure 3 Scatter of deformation curves of Mo micropillars and
nanopillars of different diameters. Each curve represents the
standard deviation of the flow stresses of eight samples. Data
from [1, 2].
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Figure 4 Size dependence of the flow stress and flow stress varia-
tion of [100]-oriented Mo single crystals (both parameters deter-
mined at 15% strain).

distributions of stress increments show a clear system size
dependence (Figure 6). They are not scale-free — in fact,
they can be represented well by Weibull distributions,

Ao ﬂrlex (Ao /
Ao, P Ao, 2

with a shape parameter (Weibull exponent) Scloseto 1, i.e.,
we find near-exponential behaviour. This parameter does
not depend on the system size. The mean stress increment
(and also the stress parameter Ac, of the Weibull distribu-
tions), by contrast, is inversely proportional to the system
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Figure 5 Probability distribution of strain increments determined in
stress-controlled compression of [100]-oriented Mo micropillars of
different sizes. The straight line indicates a power law distribution
with exponent 3/2.
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Figure 6 Cumulative probability distributions of stress increments
determined in stress-controlled compression of [100]-oriented

Mo micropillars of different sizes. The straight line is a Weibull
distribution with parameter 0.87. Inset, Mean stress increment as a
function of sample diameter.

size (inset in Figure 6). This poses the question how the
size dependences of the flow stress and of the stress incre-
ment distribution relate to each other.

Before we address this question, a word of caution is
needed. It is in the nature of power-law distributions with
exponents between 1 and 2 that p(A¢) contains a very large
number of small jumps as the probability density diverges
at small Ae. This “infrared divergence” must be mitigated
by introducing a cut-off Ac_, at small sizes. The actual
value of Ae__ is at first glance of little importance, as a
simple calculation demonstrates that, for small Ae__, the
(infinitely many) small events that are cut out produce
only a negligible fraction of the overall strain. However,
the value of the cut-off in the strain increment distribution
is of crucial importance for the distribution of stress incre-
ments: it is evident that the mean stress increment simply
equals the mean flow stress divided by the number of
events that have occurred up to that stress. Reducing Ae__
(the smallest strain increment still counted as a strain
jump) increases the number of events and hence reduces
the mean value of the stress increment distribution. Thus,
any discussion of the size dependence of the stress incre-
ment statistics is meaningless unless we specify how we
define Ae__ .

In our analysis of Mo micropillar deformation, the
smallest event size was implicitly defined to be inversely
proportional to the system size (the imposed requirement
was that the corresponding displacement increment had
to exceed the typical level of machine-induced oscillations
in the displacement record). Using the relation Ae  ~d,
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we may now try to understand the relation between the
size dependence of the flow stress and the stress incre-
ment statistics.

To this end, we formulate a minimal statistical model
by assuming that the stress and strain increments in a
sequence are mutually uncorrelated random variables.
In addition, we assume that the sequences of stress and
strain increments constitute two independent, stationary
stochastic processes such that the statistics of deforma-
tion curves is completely characterised by the respective
probability distributions. Under these assumptions, the
following statistical arguments can be put forward:
— The total number of events is equal to the total strain

divided by the average strain increment:

N=— 3)

—  For a power law distribution of exponent 3/2, the
average is the arithmetic mean of the upper and
lower cut-offs of the power law scaling regime.
Hence, the average strain increment is

< A8> i ASminAgmax (4)

—  The upper cut-off of the scaling regime is given by
the total strain (at strain €, no event with Ae>¢ can
possibly have occurred):

Ae_ ~e.
The average stress increment is given by the flow stress
(determined at strain y) divided by the number of strain
increments that have occurred up to that strain:

A A ) 1/2
<Aa>=%=—”<y %0(%) ®)

The analysis of flow stresses for the Mo experiments
indicates that o~d'. Furthermore, Ae_ ~d' due to the
manner the stress-strain curves were analysed [2]. Insert-
ing both relations into Eq. (5), we find that <Ag>~d" as
observed. Thus, the observed size dependences of the
stress and stress increment statistics are mutually consist-
ent within the framework of our minimal statistical model.

Temporal intermittency of microscale plasticity goes
along with spatial localisation as the sequence of distinct
deformation events corresponds to a pattern of localised
slip bands. Using surface analysis methods, Schwerdtfeger
et al. [22, 23] demonstrated that the local strains in slip
bands obey the same statistics as the temporal strain
increments during strain bursts, supporting the conjec-
ture that each strain burst corresponds to the formation
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of a localised slip band. Although the slip band heights
were demonstrated to exhibit scale-free statistics, the slip
band spacings were exponentially distributed, supporting
the idea that slip band nucleation can be envisaged as an
uncorrelated Poisson process. Using these ideas, a statis-
tical model of the formation and evolution of slip band
patterns was proposed in [23], which produced a good
agreement with the overall surface morphology observed
in experiments on alkali halide single crystals.

Unfortunately, despite these successes, it is difficult
to build statistical models of microplasticity exclusively
upon experimental data. For evident reasons, experimen-
tators shun the boring task of preparing and testing large
numbers of identical specimens. Even in a carefully con-
ducted and well-documented series of experiments, it is
rare to find statistics based upon more than a dozen speci-
mens for each set of physical and geometrical parameters.
Moreover, itis difficult to fully characterise and reproduce —
let alone independently control — the statistical param-
eters of the initial dislocation microstructure in different
samples. As a consequence of incomplete characterisa-
tion and poor statistics, there is little agreement as to the
physical origin of fluctuations and size effects. Even for
a seemingly straightforward parameter as the size effect
exponent a, different leading groups keep advocating
different values (compare, e.g., the reviews [4, 6]). To
overcome the difficulties related to poor statistics and
insufficient information regarding microstructures, it is
useful to resort to discrete dislocation dynamics simula-
tions. Although such simulations have problems of their
own (restriction to small samples and small strains), they
allow to independently control the initial dislocation
microstructure and simulate reasonably large ensembles
by unsophisticated “farming out” of computations over
multiple computers.

3 Statistical analysis of discrete
dislocation dynamics simulations

To illustrate the statistical analysis of DDD simulations,
we refer to simulations of microbending by Motz et al. [24]
and, for comparison, to simulations of micropillar com-
pression by Csikor et al. [25]. Again we discuss mainly the
statistical analysis of stress-strain and dislocation density
vs. strain curves. For details of the DDD method and spe-
cific parameters, the reader is referred to the original
works.

The bending of Al microbeams was simulated
by prescribing displacements on the end surfaces of
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Figure 7 Discrete dislocation dynamics simulations of microbend-
ing. Upper curves, scaled bending moment vs. total surface strain;
lower curves, dislocation density vs. surface strain; [100]-oriented
Al single crystals, specimen dimensions 0.75x0.75x1.5 pm.

[100]-oriented fcc single crystals with dimensions of
0.75x0.75%x1.5 pm’. The initial dislocation microstructure
consisted of randomly distributed dislocation sources. The
initial dislocation density was 2x10® m?, and the source
length was chosen equal to the mean dislocation spacing.
A bending strain rate of 2x10* s was imposed by keeping
one end surface of the specimen fixed and displacing the
other end surface to impose a given bending radius R. A
set of resulting bending curves (bending moment vs. total
surface strain) is shown in Figure 7 together with the cor-
responding dislocation density vs. strain records.

Figure 8 demonstrates the correlation between the
stress and dislocation density evolution and the strain rate
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vs. time record. It can be seen that each strain burst corre-
sponds to a drop in bending moment and a simultaneous
upward jump in dislocation density. This is due to the strain
gradient in the microbending test, which neccessitates
the accumulation of geometrically necessary dislocations
(GNDs) during plastic deformation. In view of the theoreti-
cal interpretation of microbending size effects, it is inter-
esting to take a look at the sample-to-sample variations of
stress and dislocation density evolution. From Figure 7, it is
seen quite clearly that the samples that deform plastically
at the lowest bending moment are those that exhibit the
largest accumulation of dislocations. This finding is con-
sistent with the concept of plastic strain gradients causing
GND accumulation but difficult to reconcile with the
popular idea (see, e.g., [8]) that a larger GND density sup-
posedly leads to a higher flow stress, causing a size effect.
Figure 9 shows, for comparison, the same records for a
uniaxial compression test. Here, again, there is a clear cor-
relation between stress drops and strain bursts. However,
the strain bursts are, in this case, not associated with any
appreciable changes in dislocation density, thus refuting
the idea that strain bursts might be associated with either
rapid dislocation multiplication or dislocation depletion
through the specimen surfaces.

We now proceed to statistically analyse the evolu-
tion of stress, strain, and dislocation density. To this end,
we determine the statistics of plastic strain and disloca-
tion density increments associated with strain bursts, as
well as the stress changes between bursts. We smoothen
the simulated strain rate vs. time signals by performing
a running average over a short time interval to eliminate
high-frequency strain rate oscillations associated with
the discretisation of dislocation lines and then threshold
the smoothened signal to identify “strain bursts” as time
intervals over which the strain rate continuously exceeds
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Figure 8 Stress, strain rate, and dislocation density vs. time signals in a DDD simulation of microbending. Left, Scaled bending moment vs.
time and plastic surface strain rate vs. time; right, dislocation density vs. time and plastic surface strain rate vs. time.
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Figure 9 Stress, strain rate, and dislocation density vs. time signals in a DDD simulation of uniaxial compression.
Left, Stress vs. time and strain rate vs. time; right, dislocation density vs. time and strain rate vs. time.

the imposed threshold value. Strain and dislocation
density increments are then simply defined as the differ-
ences between the values of plastic strain and total dislo-
cation density at the start and the end of the burst.

Figure 10 demonstrates the near-perfect agreement
between the distributions of dislocation density incre-
ments and strain burst sizes. Both variables appear to be
linked by the simple linear relationship KAe=Ap, where the
value K~107 m? compares well with the minimal propor-
tionality factor that follows from geometrical considera-
tions for GNDs, K=1/(b d)=7.5x10%, where b =1.77x10" m
is the projection length of the Burgers vector on the [100]
axis and d=0.75x10° m is the specimen thickness.
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Figure 10 Distributions of strain and dislocation density incre-
ments in discrete dislocation dynamics simulations of microbend-
ing. The corresponding stress-strain and dislocation density vs.
strain curves are shown in Figure 7/Full line, Truncated power law
[cf. Eq. (6)].

If we compare these results with those obtained for
displacement-controlled uniaxial deformation simula-
tions (see Figure 11, which compiles strain increment
distributions from bending, uniaxial deformation, and
experiment), we make the surprising observation that the
strain increments follow in both cases the same distribu-
tion, whereas the dislocation density increments in uni-
axial deformation are much smaller, have zero average,
and show no indication of scale-free behaviour. This
leads to the surprising conclusion that the very significant
accumulation of GNDs in the bending simulations has
little impact on the strain burst phenomenon, which thus
seems to be quite insensitive to the presence or absence
of strain gradients. Irrespective of deformation mode and
material parameters, the distribution of strain burst sizes
(strain increments) appears to be well described by a trun-
cated power law,

¢ }, Ae,..

max

_ Eb
(e0+M)l

_ -3/2
P(Ae)=NAe"" exp [ Az (6)

where N is a normalisation constant. The cut-off Ae__
is found to be inversely proportional to the system size
I and to the sum of the intrinsic hardening coefficient ©
and a stiffness parameter M. The latter parameter governs
the stress reduction in response to a plastic strain incre-
ment in conditions of displacement control; it is equal to
zero in stress-controlled experiments and is equal to the
elastic modulus E for displacement-controlled deforma-
tion with an ideally stiff machine. Relation (6) was first
found in simulations of a stochastic microplasticity model
by Zaiser and Nikitas [26], and the scaling Ae__ ~1/l was
later confirmed for a generic dislocation-based model by
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Salman and Truskinovsky [27], as well as by discrete dis-
location dynamics simulations [25].

We now turn to the statistics of stress increments
between strain bursts. We define the stress increment
between two bursts as the difference of the stresses at
burst initiation. In displacement-controlled deforma-
tion, we may thus observe negative stress increments.
We exclude the first stress increments in each sequence,
which correspond to the regime of elastic loading before
yield.

The resulting stress increment distribution for our set
of bending simulations is shown in Figure 12. The distri-
bution consists of two regimes. First, we observe a regime
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Figure 12 Distribution of stress increments between strain bursts
in discrete dislocation simulations of microbending (upper curve)
and compression (lower curve; the red lines correspond to Weibull
distributions) (modulus f=0.8).
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of negative stress increments that have low overall prob-
ability (P(Ac<0)<0.1), indicating that each strain burst
tends to initiate at a higher stress than the preceding one.
The bulk of the distribution at positive stress increments
can be well described by a Weibull distribution of shape
parameter f=0.8, similar to what we find in experiments
(Section 3) and also in simulations of uniaxial deforma-
tion (see Figure 12).

In conclusion of this section, we note that there is a
remarkable degree of similarity in the statistics of stress-
strain curves obtained in simulated microbending and
microcompression. This indicates universality of the
mechanisms underlying strain bursts and fluctuation
phenomena in microplasticity in general [20]. This uni-
versality, if it can be further corroborated, gives hope that
it may be possible to develop generic models that allow to
assess and evaluate the scatter of microdeformation pro-
cesses. The structure and possible output of such models
will be outlined in the following section.

4 Stochastic continuum modelling
of microplasticity

Asstated in the introduction, the ultimate aim of stochastic
microplasticity models is to map the complex dynamics of
interacting dislocations in the different volume elements
of a deforming crystal onto equivalent spatiotemporal
stochastic processes involving the continuum variables
of stress and plastic strain. Using statistical information
extracted from discrete dislocation dynamics simula-
tions and/or experiments, we want to construct stochastic
models that reproduce the essential statistical features of
the deformation processes in small volumes of a mate-
rial. The task is then to assemble these small volumes into
larger samples in such a manner that the deformation of
these samples is captured correctly.

To this end, interactions between the different volume
elements need to be represented correctly. These interac-
tions may conceptually be split into surface-mediated,
short-range interactions that arise from the exchange of
dislocations across the boundaries between adjacent
volume elements and long-range interactions that emerge
from the internal stresses that are required to maintain
compatibility of deformation as the plastic flow of the indi-
vidual volume elements proceeds in a heterogeneous and
erratic manner. One the one hand, these long-range inter-
actions arise naturally as we assemble elements with dif-
ferent stochastic deformation curves into a composite and
can be captured by standard finite element calculations.
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Surface-mediated interactions (dislocation exchange), on
the other hand, can be related to imbalances in disloca-
tion fluxes and hence to strain gradients. In a continuum
setting, these interactions can be represented by gradient-
dependent terms in the local flow rule as discussed by
Zaiser and Aifantis [28, 29]. Besides providing a summary
representation of dislocation fluxes and the associated
internal length scales, these terms have an important role
in computational modeling: as we refine the spatial reso-
lution of a stochastic model, the relative fluctuations in
deformation behaviour are bound to increase, leading to
mesh-dependent and, in the continuum limit of infinite
spatial resolution, non-differentiable strain patterns. Gra-
dient terms in the flow rule fulfill the important role of
suppressing short-wavelength fluctuations of the defor-
mation fields and thus ensuring mesh independence of
simulation results.

In the following, we illustrate the stochastic simu-
lation of microdeformation processes on a particularly
simple example, namely, the stress-controlled bending
of a long thin rod of length L and diameter d. The rod is
clamped at one end and bent by applying a monotoni-
cally increasing torque to its other end. The simulation
is terminated once this end has rotated by 180°, at which
point — assuming the classical plasticity theory with an
arbitrary monotonic hardening law — the rod should have
bent into a circle. The geometry of a long thin rod is partic-
ularly convenient because such a rod can be envisaged as
a sequence of segments where both short- and long-range
interactions between different segments can be neglected.
Furthermore, with the imposed boundary conditions,
the solution of the elastic problem is trivial: the bending
moment is constant along the rod and equals the applied
torque. Thus, the rod can be envisaged as a sequence of
(approximately) non-interacting segments deforming in
series under the same applied stress that is controlled
externally. As a consequence, the overall deformation of
the rod can be calculated by a simple summation over the
bending characteristics of the constituent segments.

To formulate a stochastic model for the bending
behaviour of an individual segment, we refer to the sta-
tistical analysis of DDD curves as demonstrated in the
previous section. In stress control, the bending curve of
a segment can, above an initial yield stress o, be envis-
aged as a stochastic sequence of strain bursts alternat-
ing with quasi-elastic loading intervals. Strain burst
sizes (plastic surface strain increments) are distributed
according to a truncated power law with size-dependent
cut-off, Eq. (6), where we identify [ with the rod diameter
d. Strain bursts are separated by stress increments for
which we assume a Weibull distribution with exponent
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B=1 (i.e., an exponential distribution). The characteristic
stress increment Ao, must fulfill the consistency condi-
tion <Ao>=0<Ae> among hardening rate, mean stress,
and mean strain increment. This yields with Egs. (2),
(4), and (6) the value Ao, =(OEAe,_ b/d)"”. Here Ae_, is a
small cut-off strain that is formally required to regularise
the non-integrable singularity of the probability distribu-
tion (6) at Ae—0. In the limit of a sufficiently small Ae__,
the particular choice of this parameter does not affect the
simulation results. For simplicity, the hardening rate © is
assumed to be strain independent (for simulations with
strain-dependent 0, see, e.g., [23]). Thus, the stress-strain
curve of each element consists of an elastic part with slope
E up to a stress of g, followed by a random staircase of
average slope 0.

Using this stochastic model for the response of an
individual segment, bending simulations are conducted
as follows: after dividing the rod of length L into N=L/d
segments of length I=d and setting the flow stress for each
segment equal to the initial value 0,, We execute an itera-
tive Monte Carlo scheme consisting of the following steps:
— Define the active segment k as the segment with the

lowest flow stress (if multiple segments have the

same flow stress, choose one of them at random).

— Set the scaled bending moment equal to the flow
stress o, of the active segment.

- Increase the bending strain ¢, of the active segment

by a random amount Ae drawn from distribution (6).
— Increase the flow stress of the active segment by a

random amount Ag drawn from distribution (2) with

parameters as discussed above.
—  Evaluate the overall shape of the rod using the relation

Hi:quej, where 0.is the rotation angle of segment j.

— Repeat until the last segment has rotated by 180°
0,=n).

If we measure stress in units of E, the only parameters in
the simulations are the scaled specimen diameter d/b, the
scaled length N=L/d, and the scaled hardening rate O/E.
In the following, we consider specimens of aspect ratio
1:50 (N=50), keep the hardening rate at the fixed value
©/E=1073, assume a Burgers vector length b=2.5x10"° m,
and vary the specimen diameter d from 100 pm down to
0.1 pm.

Bending shapes and local bending strains resulting
from individual simulations are shown in Figure 13. For
rod diameters well above 1 um, bending occurs (apart from
boundary effects) in a homogeneous manner, leading to
well-controlled circular shapes. At a diameter of 1 pm, on
the other hand, and much more so at 0.1 pm, we observe
very irregular shapes that differ significantly from the
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Figure 13 Results of simulated microbending experiments showing individual outcomes.
Rod diameter: top left, d=100 pm; top right, d=10 pm; bottom left, d=1 pm; bottom right, d=0.1 pm.

deterministic expectation. In mathematical terms, this
increasing irregularity is related to the fact that the extrin-
sic cut-off in distribution (6) becomes so large that the
maximum strain increment that might be expected from
the distribution is not actually reached during the simula-
tion. Our end condition imposes an “extrinsic” cut-off to
the strain increment distribution of Ae__ <. Using Eq. (6)
with M=0 and the other parameters as given above, we
find that the intrinsic cut-off reaches this value for d<0.1
pm. Below this scale, we see “pure” power law statistics.
The power law with exponent <2, however, has the prop-
erty that the strain carried by the largest events makes up
an appreciable fraction of the cumulative deformation
produced by the ensemble of all strain increments. In
simple words, most of the deformation becomes localised
in just one or two segments of the rod.

To analyse the spectrum of possible outcomes of our
deformation simulations in more quantitative terms, we
resort to ensemble simulations and superimpose the out-
comes of large numbers of runs to obtain a “density of
shapes”. Owing to the numerical efficiency of the Monte
Carlo scheme, it is not a problem to perform some 10* or
10° runs using the common boundary condition of one
end of the rod clamped horizontally in the origin. The
resulting spatial density of shapes can be envisaged as the

probability that a rod that has been bent using the above
scheme with this boundary condition passes through
a given point in space. It can thus be used as a measure
to quantify shape control for the stochastic microde-
formation process. For instance, from this density, we
may directly determine the risk that bent parts may pass
through or get in contact with undesirable locations.
The application, e.g., in shape control of wire bonds is
straightforward.

Figure 14 shows the results of ensemble simulations
using the same parameters as given above. As above,
there is a critical size of about 0.1 pm, below which the
resulting shape is entirely controlled by scale-free fluctua-
tions, and as a result, the deformation shapes cannot be
controlled at all. Above this scale, however, fluctuations
tend to average out with increasing size, leading to a well-
defined circular shape in the limit of large rod sizes.

5 Summary and conclusions

We have demonstrated how systematic statistical analysis
of microdeformation experiments and discrete disloca-
tion dynamics simulations can provide data that serve to
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Figure 14 Each graph represents an ensemble of 10* simulated
microbending experiments illustrating the probabilistic spectrum of
possible outcomes for different thickness of the bending beams.
Top left, d=100 pm; top right, d=10 pm; bottom left, d=1 pm;
bottom right, d=0.1 pm; in the simulations, one end of the beams is
clamped horizontally in the origin while a monotonically increasing
torque is applied to the other end.

construct stochastic models that allow the computation-
ally efficient simulation of large ensembles of microdefor-
mation processes. This, in turn, gives access to statistical
signatures such as shape densities that allow to assess the
spectrum of possible outcomes resulting from the inher-
ently stochastic nature of plasticity on submicrometer
scales.

The investigations that we have presented are only
a first step on the path towards a comprehensive statis-
tical model of microplasticity. Our example in Section
4 was constructed in such a manner that interactions
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