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Abstract: In the realm of image-based breast cancer detection and severity assessment, this study delves into
the revolutionary potential of sophisticated artificial intelligence (AI) techniques. By investigating image
processing, machine learning (ML), and deep learning (DL), the research illuminates their combined impact
on transforming breast cancer diagnosis. This integration offers insights into early identification and precise
characterization of cancers. With a foundation in 125 research articles, this article presents a comprehensive
overview of the current state of image-based breast cancer detection. Synthesizing the transformative role of
Al including image processing, ML, and DL, the review explores how these technologies collectively reshape
the landscape of breast cancer diagnosis and severity assessment. An essential aspect highlighted is the
synergy between advanced image processing methods and ML algorithms. This combination facilitates the
automated examination of medical images, which is crucial for detecting minute anomalies indicative of
breast cancer. The utilization of complex neural networks for feature extraction and pattern recognition in
DL models further enhances diagnostic precision. Beyond diagnostic improvements, the abstract underscores
the substantial influence of Al-driven methods on breast cancer treatment. The integration of Al not only
increases diagnostic precision but also opens avenues for individualized treatment planning, marking a
paradigm shift toward personalized medicine in breast cancer care. However, challenges persist, with issues
related to data quality and interpretability requiring continued research efforts. Looking forward, the abstract
envisions future directions for breast cancer identification and diagnosis, emphasizing the adoption of
explainable Al techniques and global collaboration for data sharing. These initiatives promise to propel the
field into a new era characterized by enhanced efficiency and precision in breast cancer care.
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1 Introduction

Breast cancer is a health issue that is highly prevalent worldwide and affects women. Early identification is
crucial because the disease starts in cells and has the potential to spread to other parts of the body. When
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aberrant cells proliferate and form a mass called a lump, it is critical to identify the condition as soon as
possible [1]. There are three main types of breast cancer, all of which have different traits. The milk ducts are
the exclusive site of ductal carcinoma in situ, and adjacent tissues are not invaded. Invasive ductal carcinoma
is the most common type in which cancer cells invade the surrounding breast tissues. The third type, invasive
lobular carcinoma, starts in the lobules of the milk glands and spreads to the surrounding tissues [2]. The main
sign of malignant cancer is the presence of masses, which can be identified by identifying lesions that have
certain characteristics related to their marginal features and structural formation. Evaluation of these masses
is essential for identifying whether cancerous development is potentially malignant [3]. Notably, calcifications,
deposits of calcium in the breast tissue, represent the second primary signal. In mammographic images, these
calcifications appear as tiny bright dots and are important diagnostic signals. To categorize cancer as benign or
malignant, a thorough assessment of its physical dimensions and features is essential [4]. This entails closely
examining the characteristics and structural elements of the detected masses or calcifications to determine the
type of malignant development. Architectural aberrations are another important marker for breast cancer.
These distortions, which are identifiable by anomalous architectural elements, represent aberrations in the
normal tissue structures. Finding these distortions is critical to the diagnostic process, as it adds to a thorough
comprehension of the traits and behavior of malignancy [5]. Early diagnosis and prompt treatment are
essential to lower the mortality rate of breast cancer. Prompt intervention reduces the chance of unfavorable
outcomes such as death, and early detection helps with a correct diagnosis. Customized cancer treatment,
which adjusts regimens for each patient, requires complex analysis at several levels, primarily related to the
tumor’s genetic makeup [6]. Accurate biomarker assessment is essential for making informed therapeutic
decisions in breast pathology. The growing intricacy and necessity for precision in the diagnosis of histopatho-
logic breast cancer present difficulties, which are exacerbated by a dearth of pathologists in several regions
worldwide. To improve breast cancer diagnosis, computerized image analysis using histopathology appears to
be a potential solution [7]. By expediting time-consuming processes, such as biomarker assessment, this
technology may help pathologists make diagnoses that are more precise and timely. Proactive health measures
are crucial for everyone, especially women [8,9]. The likelihood of early detection and effective treatment is
greatly increased by routine screening and self-examination. For patients with breast cancer, early identifica-
tion improves their quality of life by expanding their treatment options and improving their overall prog-
nosis [10,11].

The likelihood of early detection and effective treatment is greatly increased by routine screening and self-
examination. For patients with breast cancer, early identification improves their quality of life by expanding
their treatment options and improving their overall prognosis [12]. Breast cancer can only be detected using X-
rays for a considerable amount of time. A variety of imaging modalities are used to identify and assess breast
abnormalities, assisting medical practitioners in making informed decisions regarding patient care [13]. The
main objectives of breast cancer imaging are early detection, precise diagnosis, disease staging, and therapy
response monitoring. Mammography, ultrasound, magnetic resonance imaging (MRI), computed tomography
(CT), positron emission tomography (PET), and three-dimensional mammography (tomosynthesis) are biome-
dical imaging modalities [14]. Mammography is a popular method for detecting breast cancer. It entails
obtaining X-ray images of the breast tissue to identify anomalies, such as microcalcifications or tumors. It
works especially well in detecting breast cancer in its early stages, frequently before a physical examination
can detect it [15]. Sound waves are used in ultrasound to provide finely detailed images of the breast tissue. It is
frequently used to separate fluid-filled cysts from solid masses or further assess abnormalities found on
mammography. Breast biopsies can be more precisely targeted and sampled using ultrasound guidance
[16]. Using strong magnets and radio waves, breast MRI produces detailed images of the breast. It is frequently
employed in particular contexts, including high-risk individual screening, determining the severity of illness,
and gauging the effectiveness of treatment. Breast MRI is especially helpful in identifying multicentric or
multifocal illnesses and tiny lesions [17]. When diagnosing breast cancer, CT scans can be helpful, particularly
when assessing metastasis, the spread of the disease to other areas of the body. CT is not the primary imaging
modality used to assess breast cancer. PET scans are used in breast cancer staging to identify distant metas-
tases and can be used to evaluate the metabolic activity of tissues [18]. Tomosynthesis is a sophisticated type of
mammography that captures pictures of the breast from various perspectives. This method reduces false
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positives, improves the detection of small tumors, and offers a more detailed image. Combining different
imaging modalities frequently enables a more thorough evaluation of breast problems, assisting in precise
diagnosis and therapeutic planning [19]. For those with breast cancer, early detection by imaging is essential
for improving prognosis and outcomes.

This paragraph explains the necessity of sophisticated Al algorithms to improve detection and severity
evaluation. Large amounts of data are produced from diverse sources in industries such as healthcare,
including genetic data, electronic health records (EHRs), and medical photographs. These complicated data
can be effectively analyzed and interpreted by advanced Al systems, assisting in the early detection of diseases
and precise assessment of their severity [20]. Artificial intelligence (AI) systems can be trained to identify
microscopic trends or abnormalities that may lead to problems. For instance, Al can help with early cancer
identification in the healthcare industry, enabling prompt intervention and better results [21]. Al is vital in the
age of personalized medicine. Al can provide customized treatment regimens by evaluating personal patient
data, such as genetic information, lifestyle, and environmental factors. This increases the disease diagnostic
accuracy (Acc.) and guarantees that each patient receives the most effective treatment, which improves out-
comes [22]. Tasks that would take too much time or be impracticable for humans can now be automated owing
to advanced AI capabilities. This is especially true for medical imaging, where AI can swiftly and precisely
analyze hundreds of images to help radiologists diagnose ailments. Al in cybersecurity can automate the
detection of possible threats, freeing human experts to concentrate on more difficult problems [23]. Real-
time analysis is essential for many applications, including tracking the evolution of diseases and monitoring
vital infrastructures. More sophisticated AI systems can continually analyze data streams, provide timely
insights, and facilitate quick responses to changing conditions [24]. Al models may continuously learn from
fresh data, particularly those that are machine learning (ML)-based. This flexibility is useful in situations in
which threats or conditions change over time. For example, in cybersecurity, Al can adapt its detection
algorithms based on new threat patterns [25]. In today’s connected world, the amount of data collected is
growing and can often be too large for conventional analytical methods. DL and other advanced Al approaches
are particularly effective in handling large amounts of data because they automatically identify relevant
features and patterns. This makes them ideal for jobs such as picture identification, natural language proces-
sing, and predictive analytics [26]. Because of their capacity to handle complicated data, offer early insights,
personalize interventions, automate jobs, monitor in real time, adjust to changing situations, and manage
massive data effectively, advanced AI approaches are becoming increasingly necessary for detection and
severity assessment [27]. These abilities support precise and effective decision-making in several crucial areas
[28].

The major contributions are as follows.

+ This article consolidates findings from 125 research articles, providing a comprehensive overview of the
current landscape of image-based breast cancer detection and severity assessment.

* This review synthesizes the transformative role of Al, covering image processing, ML, and DL, in image-
based breast cancer detection and severity assessment.

* This article explores the synergy between advanced image processing and ML, showcasing their combined
power in automating medical image examination for nuanced.

2 Image-processing techniques

This section comprises three subsections. The different image-processing methods used for breast cancer
analysis are described in Section 2.1. The challenges and limitations of conventional image-processing methods
for breast cancer analysis are described in Section 2.2. Common preprocessing techniques to enhance the
quality of breast images and their comparison are presented in Section 2.3.
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2.1 Image-processing methods used in breast cancer analysis

To help diagnose breast cancer in digital mammograms, Cahoon [29] explained the application of segmenta-
tion using fuzzy models and classification using the crisp k-nearest neighbor (KNN) algorithm. We used
photographs from the digital database for screening mammography (DDSM) in our research. We demonstrate
that when intensity is the primary distinguishing characteristic, both supervised and unsupervised segmenta-
tion techniques, such as KNN and fuzzy c-means (FCM), have significant misclassification rates in digital
mammograms. The segmentations generated by the KNN rule were (visually) improved by adding window
means and standard deviations to the feature suite. Gupta et al. [30] provided an approach that involves
visualizing the tumor location and determining its primary concentration. Using the Mammographic image
Analysis Society (MIAS) dataset, they extracted morphology and color information and then executed mor-
phological procedures, such as dilatation, closing, and K-means clustering. By reducing the impact of noise,
dilation using K-means was used to improve the Acc. by 10%. The overall Acc. range was 60-80%. To separate
infrared (IR) breast images using heat and blood vessel activity data, Prakash et al. [31] employed three
segmentation algorithms: K-means, FCM, and Gaussian mixture model-expectation maximisation (GMM-
EM). The strategies were then compared. FCM segmentation provides reliable diagnosis and illness indication.
Younis et al. [32] used the DDMS dataset’s X-ray pictures’ pixels and light intensity attributes to apply a
thresholding algorithm. This algorithm can be used to identify breast cancer tumor cells. Using MIAS datasets,
Varma and Sawant [33] used morphological methods like texture extraction to extract topographic features
such as texture and appearance. It can effectively identify breast cancer and outline abnormalities in breast
tissue. The mammographic images were converted into a three-dimensional matrix. Tomar et al. [34] carried
out morphological operations to extract primary radiographic signs, i.e., masses (their density, size, shape, and
borders). It is effective in determining the granulometry of the tissues. Granulometry analyzes an image’s
object size distribution without explicitly segmenting individual objects. Using a mammographic image,
Sangeetha and Murthy [35] extracted brightness, contrast, size, form, and texture using a morphological
operator and Otsu’s thresholding technique. Ultimately, extremely early identification of the clusters allows
for the classification of cancer cells as benign or malignant. Ilhadidi [36] compared three segmentation
techniques, i.e., threshold, edge, and watershed segmentation, to find breast cancer tissue using mammo-
graphic images by extracting geometric and texture features. The threshold segmentation technique was faster
than the other two segmentation methods. Adaptive histogram equalization (AHE) and morphological opera-
tions were used by Moh’d Rasoul et al. [37] to extract lymph characteristics, such as spread and intensity, from
mammographic X-ray images. It accurately segments each image and recognizes the area of interest in each
image. To assess various parameters, such as the mean square error, peak signal-to-noise ratio, average
distance, maximum difference, normalized correlation, mean absolute error, normalized error, and structural
correlation, Ramani et al. [38] employed mean or average filter, median filtering, adaptive median filter, and
Wiener filter. Compared to other filters, the adaptive median filter [39] is a better technique for enhancing the
background clarity of photographs. Tarique et al. [39] suggested a Fourier transform method to determine the
stage of breast cancer using X-ray mammographic images. The frequency of dynamic IR imaging in breast
cancer was analyzed by Singh et al. [40]. Several techniques were used. These include the Hanning window
algorithm, linear image restoration techniques, high-pass filtering (HPF) with region windowing, and a Gaus-
sian window with 2D matrix convolution. The Wiener method, which uses linear image restoration techniques,
produces better results in terms of sensitivity (Sens.) and specificity (Spec.). Using the DDSM and morpholo-
gical approaches such as dilatation and opening to extract texture and shape features, Helwan and Abiyev [42]
achieved a 92% recognition rate for breast cancer. Gaussian filtering was performed by Minavathi et al. [43] to
extract speculation, shape, and acoustic shadows from an ultrasound image dataset. The support vector
machine (SVM) technique was then used for the classification. The algorithm’s 0.88 area under curve yielded
92.7% Sens. Using the MIAS breast cancer dataset, Charan et al. [44] executed morphological operations to
extract image component region characteristics or regions of interest (ROI). This method aids in eliminating
noise components.

Several datasets, including the DDSM [29,32,42], MIAS [30,33,34], mammographic images [33-40], dynamic
IR images [31,41], and ultrasound images [43], have been employed according to the literature survey
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mentioned earlier. Numerous approaches have been employed, including thresholding algorithms [32,36],
fuzzy models [29,31], and morphological operations [30,33-35,42,44]. Table 1 presents various image-processing
techniques for breast cancer segmentation.

To ensure breast cancer detection algorithms achieve universal effectiveness, it is vital to include a diverse
range of human demographics and environments in the datasets. Age diversity is crucial because breast
cancer characteristics can vary significantly between young adults and the elderly, affecting disease behavior,
progression, and treatment responses. By including a wide age range, algorithms can better recognize and
manage age-related variations in cancer presentation. Additionally, ethnic and genetic diversity, along with
geographical representation, enhance dataset robustness. The most commonly used datasets are DDSM and
MIAS. The DDSM dataset features mammograms from women within a typical screening age range of 40-74
years, although detailed age distribution information is not always available. There is limited public informa-
tion about the ethnic diversity of DDSM participants, but it likely mirrors the demographic makeup of the US
institutions that contributed to the dataset, resulting in potential overrepresentation and underrepresentation
of certain ethnic groups. Geographically, the DDSM dataset includes contributions from various US institu-
tions, providing diverse domestic representation but lacking international diversity.

Similarly, the MIAS dataset comprises mammograms from a wide age range, typically representing those
involved in routine screening programs, with most subjects between 40 and 75 years old. The MIAS dataset was
developed in the UK, reflecting the ethnic composition of the UK’s population at that time, primarily Caucasian,
and likely underrepresenting minority ethnic groups compared to the global population. Geographically, the
MIAS dataset is confined to the UK, covering regional variations within the country but missing broader
international diversity.

For AI algorithms to be universally applicable and effective, incorporating datasets with diverse age,
ethnic, and geographical representations is crucial. This diversity ensures that models are trained on a
wide array of mammographic characteristics and variations, enhancing diagnostic accuracy and reducing
biases. While DDSM and MIAS datasets are valuable, expanding them or supplementing them with additional
datasets from more geographically and ethnically diverse populations would further enhance their utility in
developing globally effective breast cancer detection algorithms.

2.2 Challenges and limitations of conventional image processing

Conventional image-processing techniques, including the detection and segmentation of breast cancer tumors,
have been widely applied in the field of medical imaging. However, these techniques have several drawbacks
and restrictions that have prompted researchers to investigate more complex and advanced strategies [45].
The following are some of the difficulties and restrictions that arise when traditional image processing is used
for the detection and segmentation of breast cancer tumors:

* Limited feature extraction: When dealing with complex and heterogeneous tumors, conventional approaches
may find it difficult to extract pertinent features from medical images. These techniques frequently depend on
manually created features, which may not fully convey the intricacy of the pictures [46].

Sensitivity to image variability: Conventional image processing methods can be affected by changes in the
resolution, noise level, and contrast of the acquired images. This Sens. may affect the resilience of the
algorithm in various imaging modalities and environments [47].

* Manual parameter tuning: A Many traditional techniques require manual parameter tuning, which can be
laborious and difficult to modify for different datasets. Depending on the properties of the photographs,
different parameter choices may be optimal [48].

Limited adaptability to diverse datasets: When dealing with different datasets that vary in patient
demographics, imaging modalities, and tumor types, conventional methods may not be the best fit. It is
possible that they are not sufficiently adaptable to handle the underlying variability of breast cancer
images [49].
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Handling noise and artifacts: Owing to several variables, including patient mobility and imaging equip-
ment, medical photographs may contain noise and artifacts. Tumor segmentation Acc. may be affected if
conventional approaches cannot manage and reduce these undesirable components [50].

Limited learning capacity: Conventional image-processing methods usually cannot automatically learn new
patterns in the data. The inability to effectively generalize to previously unknown images is a potential
hindrance to a robust and accurate tumor detection process [51].

Inability to capture spatial relationships: The spatial relationships between pixels or voxels in an image
may not be well captured by conventional approaches. This restriction may be important for applications
such as tumor segmentation, where precise delineation depends on awareness of the geographical environ-
ment [52].

Time-consuming annotation process: Medical picture annotation by hand is frequently labor- and expert-
intensive when performed for training and validation. Annotated datasets may be a major component of
conventional approaches, and their production may represent a bottleneck [53].

Difficulty in handling large datasets: Conventional approaches may find it difficult to interpret and analyze
vast volumes of data efficiently, as medical imaging datasets continue to increase in size. This drawback may
make it more difficult for them to scale and be effectively used in actual clinical settings [54].

The use of DL and ML techniques such as convolutional neural networks (CNNs) [55] and deep neural
networks, which have demonstrated encouraging results in automated breast cancer tumor detection [56] and
segmentation tasks [57], has changed in response to these challenges. These methods can recognize intricate
patterns in medical images, adapt to a variety of datasets, and learn hierarchical characteristics directly
from data.

2.3 Common preprocessing techniques to enhance the quality of breast image

Breast photographs, in particular, can be made of higher quality with the help of preprocessing techniques.
These methods seek to lower noise, enhance the visibility of essential structures, and prepare photographs for
precise analysis. Noise reduction [58—-60], contrast enhancement [61,62], image registration [63], normalization
[64], image fusion [65], artifact removal [66], image cropping [67], and resizing [68], mammographic prepro-
cessing techniques, filtering techniques, normalization, and standardization are some of the most frequently
used preprocessing techniques to improve the quality of breast images.

The use of a Gaussian filter aids in lowering the high-frequency noise of the image. The median filtering
technique effectively eliminates salt-and-pepper noise by substituting the value of each pixel with the median
value of its surrounding area. By redistributing the image intensity levels, the histogram equalization
approach improves the overall contrast. By enhancing the local contrast, contrast-limited adaptive histogram
equalization prevents noise in homogeneous regions from being too amplified. Several photographs taken at
various periods or with various modalities may be registered to enhance the overall quality and facilitate
comparison analysis. Maintaining constant intensity levels between various modalities or images contributes
to the increased comparability of the images. Integrating data from various imaging modalities (such as
mammography and MRI) can yield a more thorough picture of breast tissue. Accurate diagnosis depends
on the correction of imaging artifacts such as motion artifacts and equipment-related artifacts. The effective-
ness of the analysis can be increased by concentrating on the pertinent breast region and eliminating extra-
neous backdrops. Changing the image resolution can aid in standardizing data for subsequent processing. The
pectoral muscle region can be removed to enhance breast tissue visibility in mammograms. Early detection
can be facilitated by emphasizing on microcalcifications, which are suggestive of specific disorders. Improving
the image’s edges can help make the boundaries between various components easier to see. Additionally, a
new field of study in medical imaging is the application of DL-based techniques for picture augmentation. A
state-of-the-art comparison of several preprocessing techniques and their outcomes is presented in Table 2.
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3 Application of ML for breast cancer detection

ML has demonstrated considerable potential in the identification and diagnosis of breast cancer. Large
databases of clinical data and medical imaging can be analyzed using ML algorithms to facilitate early
diagnosis, risk assessment, and therapy planning. By helping radiologists identify worrisome spots in mam-
mograms, ML algorithms can increase the precision of breast cancer screening. DL architectures, such as
CNNs, can be trained to recognize irregularities and subtle patterns in mammograms. Between various
preprocessing techniques and their outcomes, ML algorithms can segment and identify lesions in breast
MRI and ultrasound images, offering more precise information for diagnosis. To help characterize the type
of observed anomalies, ML models can be used to analyze the textural properties of lesions. By examining a
variety of variables, including genetic information, family history, and clinical data, ML algorithms can
determine an individual’s risk of developing breast cancer. By customizing treatment regimens based on
each patient’s unique features, ML can maximize the efficacy of therapies.

Using the Wisconsin Diagnosis Breast Cancer (WDBC) dataset, Sharma et al. [69] presented several ML
algorithms, including random forest (RF), KNN, and naive Bayes, to categorize benign and malignant breast
cancer tumors. After assessing recall, Acc., precision, and f1 score, it was discovered that KNN performed the
best for classification. Using the same dataset, to classify two different types of breast cancer, benign and
Malignant and Bazazeh et al. [70] used SVMs, RFs, and Bayesian networks (BNs). They also evaluated the Acc.,
recall, precision, and area of the response curve ([receiver-operating curve (ROC)]). The RF technique offers
the best ROC performance, whereas the BN performs best in terms of recall and precision. “Using ML tech-
niques, such as RF, KNN, naive Bayes, SVM, and RF, and Ak [71] created a model to identify breast cancer and
determine accuracy. The logistic regression (LR) model that contained all features produced the best results,
with a classification Acc. of 98.1%.” In their study, Vaka et al. [72] examined and contrasted threshold, DNSS,
FCM, and histo-sigmoid fuzzy clustering. The DNNS was determined to be far superior to current techniques.
To identify breast cancer with high accuracy, Alarabeyyat and Alhanahnah [73] created a backpropagation
neural network (BPNN), LR, and the BPNN using mammographic pictures to evaluate the number of features
that are extracted. Compared with the BPNN, the LR model used a significantly larger number of character-
istics. SVM-radial basis function (RBF) provided the highest overall Acc. of 96.33%. Nallamala et al. [74]
suggested that the LR algorithm, SVM algorithm, and KNN algorithm classify two different kinds of breast
cancer tumors, i.e., benign and malignant using mammographic images. Osareh and Shadgar [75] used SVM,
KNN, and probabilistic neural network (PNN) models to distinguish between the benign and malignant tumors
of the breast using fine needle aspirates of breast lesions and fine needle aspirates of breast lumps (FNAB).
They also compared performance metrics such as Acc., Sens., Spec., and MCC. The proposed method assesses
yield decipherability, computation time, and predictive capability. The proposed model achieved 98.1% Acc.
Using the University of California, Irvine (UCI) ML library, Omondiagbe et al. [76] used RBF, artificial neural
network (ANN), and naive Bayes classifiers in conjunction with SVM to extract features and minimize their
dimensions. SVM achieved a maximum classification Acc. of 98.82%, Sens. of 98.41%, Spec. of 99.07%, and area
under the ROC curve of 0.9994, according to calculations of Acc., area under the ROC curve, precision, recall,
Sens., Spec., and kappa statistic. The proposed method assesses yield decipherability, computation time, and
predictive capability. The proposed model achieved 98.1% accuracy. Using the University of California, Irvine
(UCDH ML library, Omondiagbe et al. [76] used RBF, ANN, and naive Bayes classifiers in conjunction with SVM to
extract features and minimize their dimensions. SVM achieved a maximum classification Acc. of 98.82%, Sens.
of 98.41%, Spec. of 99.07%, and area under the ROC curve of 0.9994, according to calculations of Acc., area
under the ROC curve, precision, recall, Sens., Spec., and kappa statistic. The MLP model performed the best in
terms of Acc., precision, and recall of 99.12, 99.00, and 99.00%, respectively, after comparing the Acc., precision,
and recall of the classification tests. “To automatically detect breast cancer using a ML algorithm using the
Wisconsin Breast Cancer dataset, Dhahri et al. [77] adopted SVM, KNN, DT, gradient boosting classifier (GB), RF,
LR, AdaBoost classifier (AB), Gaussian Naive Bayes (GNB), and linear discriminant analysis (LDA) models.”
After comparing performance metrics such as Acc., recall, precision, and F1 score, it can be determined that,
with appropriate configuration, the algorithms will perform identically. Using the WDBC dataset, Safdar et al.
[78] compared ML algorithms to accurately predict breast cancer detection. After evaluating the AUC and ROC,
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it was discovered that KNN outperformed SVM. - radial based function, simple linear LR model, naive Bayes,
k-nearest neighbour, AdaBoost, Fuzzy unordered role induction technique, DT — J48, SVM, and WBCD datasets
were employed by Gbenga et al. [79] in the identification of breast cancer.” After calculating the true positive
rate (TPR), false positive rate (FPR), precision, F1 score, and Acc., it was discovered that the SVM outperformed
the others. Using the DDMS dataset, Hussain et al. [80] compared Bayesian, SVM, and decision-tree classifier
models. The Acc., Sens., Spec., and FPR were computed. SVM had the lowest FPR, maximum Sens., Spec., and
Acc. A state-of-the-art comparison of various ML models for the diagnosis and categorization of breast cancer
illnesses is presented in Table 3.

4 Emergence of DL in breast cancer imaging

In the field of breast cancer imaging, DL has advanced significantly and offers promising improvements
in diagnosis, treatment, and detection. The analysis of mammograms using DL models has aided the
early detection of breast cancer. These models are capable of identifying minute patterns and anomalies
that human radiologists can find difficult to recognize. By autonomously identifying and segmenting hreast
lesions in medical photographs, DL algorithms can expedite diagnosis and lower the risk of human error.
Histopathological images of breast tissue can be analyzed using DL algorithms to categorize various subtypes
of breast cancer. Appropriate treatment plans must be determined using this information. In the field of breast
cancer imaging, DL has advanced significantly and offers promising improvements in diagnosis, treatment,
and detection. The analysis of mammograms using DL models has aided the early detection of breast cancer.
These models are capable of identifying minute patterns and anomalies that human radiologists can find
difficult to recognize. By autonomously identifying and segmenting breast lesions in medical photographs, DL
algorithms can expedite diagnosis and lower the risk of human error. Histopathological images of breast tissue
can be analyzed using DL algorithms to categorize various subtypes of breast cancer. Appropriate treatment
plans must be determined using this information. By lowering the false positives and negatives in breast
cancer imaging, DL models seek to increase the overall diagnosis Acc. This is especially crucial for reducing
pointless interventions and ensuring that patients receive timely therapy. The speed and Acc. of breast cancer
screening programs can be increased by integrating DL algorithms into computer-aided detection (CAD)
systems to help radiologists interpret screening mammograms. DL in breast cancer imaging has the potential
to significantly enhance personalized treatment plans, early diagnosis, and early detection, all of which can
improve patient outcomes. To address these issues and guarantee the responsible application of new tech-
nologies in healthcare, continued research and cooperation among physicians, data scientists, and regulatory
agencies are important.

To assess the AUC, Sens., and Spec., Shen et al. [84] suggested utilizing VGG16 and ResNet 50-based image
classification to classify breast cancer using mammographic images using the DDSM (CBIS-DDSM). ResNet50
performed the best. The relative values of the AUC, Sens., and Spec. were 98, 86.7, and 96.1%, respectively.
Utilizing strong computer vision techniques and DL models, Mambou et al. [85] evaluated linear SVM and
InceptionV3 for numerous breast cancer diagnosis strategies utilizing a research database (DMR) comprising
frontal thermogram images and calculated Acc. and AUC. In comparison, SVM performs better than the others.
“Using the IRMA dataset, Ismail and Sovuthy [86] created VGG16 and ResNet50 to test the diagnosis of breast
cancer between two DL model networks. The optimal model, VGG16, had an Acc. of 94%, precision of 89%, and
recall of 99%. The deep learning assisted-efficient adaboost algorithm (DLA-EABA) for breast cancer detection
utilizing MRI images was proposed by Zheng et al. [87]. It attains 97.2% Acc., 98.3% Sens., and 96.5% Spec.”
Using synthetic datasets and image datasets related to breast histopathology, Das et al. [88] presented 2-
dimensional empirical wavelet transform (2-DEWT) decomposed modes by transforming a one-dimensional
signal into two-dimensional images using the deep insight framework and the mean normalization technique.
Using full-field digital mammography (FFDM), Bai et al. [89,89] built and compared deep and recurrent neural
networks to identify malignancies before clinical indications manifest. It was found that the Acc., Sens., Spec.,
and precision of the deep neural networks were all higher. Optimized feature extraction and selection were
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carried out by Sha et al. [90] using the grasshopper optimization method. Before processing, a median filter
was used to remove noise from the image and optimize image segmentation using the CNN and DDSM
databases. It attained 92% Acc., 97% negative predictive value (NPV), 85% positive predictive value (PPV),
93% Spec., and 96% Sens. in the study by Lotter et al. [91] using an annotation-efficient DL approach with a
DDSM pictures, new “maximum suspicion projection” (MSP) images were created from data built tool (DBT)
data to detect mammography and digital breast tomosynthesis. It attained a Sens. of 97.7%, Spec. of 99.4%, and
AUC of 0.963 + 0.003. Using the mammography MIAS database, Khuriwal and Mishra [92] created a CNN to
detect breast cancer from histological pictures. The CNN approach achieved 98% Acc. for the 12 features. CNNs
were proposed by Salvi and Kadam [93] for the identification of breast cancer using thermal camera sensor
image datasets. Using this method, a 98% Acc. was attained. O-net, a mixture of two U-nets connected at the
encoding level and disconnected at the decoding level, was developed by Rashed and El Seoud [94] to develop
an automated breast cancer diagnosis system employing mammography and the CBIS-DDSM dataset. The Acc.
is 95.01%. In a study conducted by Selvathi and Aarthy Poornila [95], breast cancer diagnosis utilizing medical
images and the MIAS mammography dataset was compared using CNNs, sparse autoencoders (SAE), and
supervised SAEs (SSAE). GoogleNet, AlexNet, VGG16, and FaceNet were examined by Wang et al. [96] to identify
metastatic breast cancer from histopathological images. The Acc. rates for GoogleNet, AlexNet, VGG16, and
faceNet are 98.4, 92.1, 97.9, and 96.8%, respectively. With 99.67% Acc. rate, Khuriwal and Mishra [97] suggested
a CNN for breast cancer diagnosis utilizing a DL algorithm and the Wisconsin Breast Cancer Database. Using
the CBIS-DDSM dataset, Ragab et al. [98] employed SVMs and deep CNNs for the diagnosis of breast cancer.
SVM obtained an AUC of 94% and an Acc. of 87.2%. Khan et al. [99] used the idea of transfer learning with a
standard benchmark dataset to compare GoogLeNet, VGGNet, and ResNet for the detection and classification
of breast cancer. The accuracies of GoogLeNet, VGGNet, and ResNet are 93.5, 94.15, and 94.35%, respectively.
Using the MIAS dataset, Saber et al. [100] compared Inception V3, ResNet50, VGG-16, VGG-19, and Inception-V2
ResNet. More power is present in the VGG16 model. The F1 score, AUC, Sens., Spec., Acc., and precision were
98.56, 97.25, 97.66, 99.5, and 98.96%, respectively. A comparison of the various DL models for breast cancer
diagnosis is presented in Table 4.

5 Integration of imaging and Al in breast cancer diagnosis

The combination of AI [101] with imaging for the diagnosis of breast cancer has demonstrated great potential

in terms of enhancing the precision, effectiveness, and customized nature of diagnostic procedures.

» Automated image analysis: Mammograms and tomosynthesis photographs were analyzed using Al algo-
rithms to identify anomalies such as masses, microcalcifications, and architectural distortions [102]. Radi-
ologists can benefit from automated analysis because it shortens interpretation times and highlights areas of
concern.

* MRI and ultrasound analysis: Al was utilized to evaluate breast MRI and ultrasound images, offering further
data for diagnosis. This covers the distinction between benign and malignant signs, as well as the identifica-
tion of lesions and characterization of tumors [103].

» CAD: Al-driven CAD systems have been created to assist radiologists in interpreting images. By marking

possible ROI these technologies help radiologists identify anomalies that can be difficult to notice or easily

missed [104].

Quantitative imaging biomarkers: Through radiomics analysis, Al makes it easier to extract quantitative

characteristics from medical images. These traits function as imaging biomarkers and offer important

insights into the properties and behavior of tumors [105]. Imaging for breast cancer can be made more
diagnostic and prognostic using radiomics.

Integration with clinical data: Imaging data can be integrated with clinical, genetic, and other patient-

specific data using AI [106]. This all-encompassing method improves diagnostic precision and aids in cus-

tomized treatment planning.
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Risk stratification: To categorize patients into distinct risk groups, AI models can evaluate a variety of risk
variables and imaging findings [107]. This will facilitate the creation of customized management plans and
suitable screening intervals.

Real-time decision support: A clinical decision support systems (CDSS) driven by AI [108] helps radiologists
assess images in real time. It can provide advice based on imaging data analysis and assist medical profes-
sionals in making better judgments.

* Telemedicine and remote consultation: Al makes it easier to transmit and analyze imaging data remotely,
allowing specialists and healthcare professionals to collaborate. This is especially helpful in places where
access to qualified radiologists is scarce [109].

Continuous learning and model improvement: AI models constantly learn and change in response to fresh
information and new trends [110]. Over time, this flexibility helps algorithms perform better and keeps them
up-to-date with the most recent advancements in imaging methods and medical understanding.

6 Addressing potential biases and ensuring fairness in AI models
for breast cancer detection

As the integration of Al into breast cancer detection and diagnosis becomes more widespread, it is imperative

to address potential biases that may exist within AI algorithms. Biases in Al can arise from various sources,

including the data used to train the models, the design of the algorithms themselves, and the interpretation of
their outcomes.

6.1 Sources of bias

Data bias: Training datasets that are not representative of the diverse population affected by breast cancer
may lead to biased AI models. For instance, if a dataset predominantly represents a particular age group,
ethnic background, or geographical region, the resulting Al model may not perform equally well across all
segments of the population. Such biases can perpetuate existing disparities in healthcare, leading to inac-
curacies in diagnosis and treatment for underrepresented groups.

Algorithmic bias: The design of AI algorithms can also introduce bias. The choice of features, the way data
are preprocessed, and how the algorithms are configured can all contribute to biased outcomes. If an
algorithm is not designed with fairness in mind, it may disproportionately favor certain groups over others.
Interpretation bias: Human biases can influence the interpretation of Al outputs. Radiologists and other
healthcare professionals may unconsciously favor Al recommendations based on their own preconceptions,
which can amplify existing biases.

6.2 Importance of fairness in AI models

Ensuring fairness in AI models is crucial to promote equitable healthcare outcomes. This requires a multi-

faceted approach.

+ Diverse and representative datasets: To address data bias, it is essential to curate and utilize datasets that are
diverse and representative of the entire population. This includes ensuring a wide range of age groups,
ethnic backgrounds, and geographical regions that are included in the training data. Regular audits of the
datasets for bias and appropriate correction measures can further improve the representativeness.

* Algorithmic fairness: Fairness should be a core consideration in the development of AI algorithms.
Techniques such as re-sampling, re-weighting, and adversarial debiasing can be applied to the data and
models to mitigate bias. Researchers and developers should employ fairness metrics and continually assess
their models for biased behavior.
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» Transparent and explainable Al: Making Al models transparent and their decisions explainable can help in
identifying and mitigating bias. Healthcare professionals should be able to understand how AI models make
decisions to trust and verify the outputs effectively.

* Continuous monitoring and updating: Biases can evolve, and new biases may emerge as Al models are

exposed to new data. Therefore, continuous monitoring and regular updates to the Al models are necessary

to ensure they adapt to changes and maintain fairness.

Interdisciplinary collaboration: Addressing bias and ensuring fairness in Al requires collaboration across

disciplines, including data science, ethics, and healthcare. Multidisciplinary teams can provide diverse

perspectives and expertise to design more equitable AI solutions.

By proactively addressing potential biases and prioritizing fairness, Al models for breast cancer detection
can help reduce disparities and ensure that technological advancements benefit all patient groups equitably.
Fair and unbiased AI has the potential to significantly enhance diagnostic accuracy, provide more persona-
lized care, and improve overall healthcare outcomes.

7 Comparing AI with human radiologists in breast cancer detection
and diagnosis

The integration of Al into breast cancer detection and diagnosis has prompted numerous comparisons with
human radiologists, aiming to evaluate performance, accuracy, and efficiency. Several studies have sought to
measure these aspects, providing valuable insights:

* Performance accuracy: Numerous studies have indicated that AI algorithms can match or even exceed the
performance of experienced radiologists in detecting breast cancer. For instance, a landmark study pub-
lished in Nature by McKinney et al. [111] demonstrated that an AI model developed by Google Health
outperformed radiologists in diagnosing breast cancer. The Al system showed a reduction in false positives
by 5.7% and false negatives by 9.4% compared to human radiologists.

« Efficiency and speed: AI models provide consistent and rapid analysis of medical images, considerably

reducing the time required for diagnosis. A study published by Hirsch et al. [112] revealed that Al-assisted

mammograms significantly decreased interpretation time while maintaining diagnostic accuracy. This effi-
ciency is particularly advantageous in high-volume screening programs, allowing for faster patient
throughput and timely clinical decision-making.

Detection of subtle anomalies: Al has demonstrated a remarkable ability to detect subtle anomalies and

early signs of breast cancer that might be overlooked by human eyes. A study by Rodriguez-Ruiz et al. [113] in

Journal of Clinical Oncology showed that Al systems achieved better sensitivity in identifying early-stage

cancers, some of which were initially missed by radiologists. This capability can lead to earlier diagnosis and

improved patient outcomes.

« Complementary roles: Rather than replacing radiologists, Al is often seen as a complementary tool that

enhances human capabilities. Studies highlight the synergistic effect when Al assists radiologists, combining

the strengths of both AI’s precision and radiologists’ clinical judgment. For example, a study by Dembrower
et al. [114] found that AI support improved radiologists’ performance, aiding in more accurate and confident
diagnoses.

Reduction of cognitive load: AI algorithms can help reduce the cognitive load on radiologists by automating

routine and repetitive tasks, allowing them to focus on more complex cases and clinical decision-making.

This aspect was underscored in a study published by Patil et al. [115], where Al-driven CAD systems enhanced

radiologists’ diagnostic capabilities by highlighting areas of interest and flagging potential issues.

Training and continuous improvement: Al systems are capable of continuous learning and improvement,

absorbing massive amounts of data over time to refine their diagnostic accuracy. In contrast, while human

radiologists benefit from experience and ongoing education, they are limited by the volume of cases they can
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personally review. A study by Kaul et al. [116] emphasized the potential of Al to rapidly incorporate new
findings and guidelines, ensuring it remains at the cutting edge of diagnostic standards.

+ Bias mitigation: It is important to note that Al algorithms can inherit biases from the datasets they are
trained on. Therefore, rigorous training with diverse, representative datasets is crucial to minimize dispa-
rities. Interestingly, studies such as one published by Norgeot et al. [117] suggest that when well trained, Al
can help reduce certain types of human biases, providing more uniform diagnostic standards.

In summary, while Al has demonstrated substantial promise in breast cancer detection and diagnosis, it is
most effective when used in conjunction with skilled radiologists. Together, they can achieve higher accuracy,
improved efficiency, and better patient outcomes. Ongoing research and longitudinal studies will continue to
refine these systems, ensuring that the combination of Al and human expertise maximizes diagnostic precision
and effectiveness.

8 Impact on clinical decision-making

Clinical decision-making in breast cancer has been significantly affected by the combination of Al and image
processing. Al algorithms can improve the Sens. and Spec. of breast cancer detection in medical images such as
mammograms and MRIs [118]. This advancement facilitates early diagnosis and improves treatment outcomes.
By automatically indicating any anomalies or suspicious areas in medical images, Al-based CAD [119] systems
help radiologists. This can improve the diagnostic Acc. and decrease oversight. Al makes it possible to extract
and analyze quantitative features from medical images through radiomics. These traits function as imaging
biomarkers [120], offer more details regarding the nature of tumors. A more accurate diagnosis and prognosis
can be achieved using radiomics. To estimate a patient’s chance of acquiring breast cancer, Al models can
examine a variety of imaging data, medical history, and other pertinent data [121]. Customizing screening
methods and choosing appropriate therapies are made easier with the use of this information. Al systems can
assist in the creation of individualized treatment regimens by predicting molecular subtypes of breast cancer
based on imaging characteristics. This method assists medical professionals in selecting treatments with a
higher chance of working for particular subtypes. Al can be used to track how a tumor’s properties and
response to treatment vary over time. These data will help medical professionals modify their treatment plans
according to each patient’s reaction to therapy. Al makes it easier to combine genomic and clinical data with
the imaging data. CDSS driven by AI [122] can help physicians make decisions in real time by recommending
and supplying pertinent data. This helps medical practitioners make judgments faster and with greater Acc. By
automating repetitive and time-consuming operations, Al allows healthcare personnel to concentrate on more
intricate patient care responsibilities. Faster diagnosis and treatment initiation may result in increased effi-
ciency [123]. AI makes it easier for specialists to analyze medical images remotely, allowing them to counsel
and assist medical practitioners who are located in different locations [124]. This is particularly helpful in
places where access to specialized knowledge is scarce. The use of Al and image-processing technologies in
breast cancer clinical decision-making has many advantages; however, to ensure their safe and successful
integration into standard clinical practice, it is critical to address issues such as data privacy, the interpret-
ability of AI models, and ongoing validation [125]. Encouraging research, cooperation, and regulatory super-
vision is necessary to fully utilize these technologies for the treatment of breast cancer.

9 Challenges and future directions

Caliber and variety of training data have a significant impact on the effectiveness of Al models. Problems such
as unbalanced datasets and differences in imaging methods can affect the generalizability of the models.
Clinicians frequently need transparent insights into the decision-making process; hence, the absence of
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interpretability and explainability in AI models is a barrier [126]. It is difficult to seamlessly integrate Al
technologies into current clinical operations. The adoption of AI technologies may be hampered by interoper-
ability problems, resistance to change, and concerns regarding disruption. The effectiveness of AI algorithms
may be affected by variations in image quality and format caused by the absence of uniform imaging practices
throughout healthcare facilities [127]. Complicated issues surround informed permission, patient privacy, and
ethical application of Al in healthcare. Legal and ethical frameworks must be developed in parallel with new
technological development.

AI models can be made more robust and reliable by incorporating real-world clinical data and carefully
selecting various relevant datasets [128]. Ongoing studies are carried out to create models and explanation
methods for AI forecasts that are easier to understand. Gaining trust and easing the incorporation of Al into
clinical workflows are needed [129] to provide user-friendly interfaces, guarantee interoperability with cur-
rent systems, and provide comprehensive training for healthcare personnel, technologists, and healthcare
professionals collaborate [130]. Promotion and creation of standardized imaging procedures to guarantee
uniformity in data collection may improve the ability of Al models to generalize in various contexts defining
precise privacy protection, ethical standards [131], and legal frameworks to control the advancement and
application of Al in breast cancer diagnosis. It is imperative to guarantee patient participation in the decision-
making procedures [132]. Further, there are other substantial barriers to integrate Al for breast cancer
diagnosis.

* Cost-effectiveness of Al in breast cancer screening and diagnosis: the cost-effectiveness of Al technologies in
breast cancer screening and diagnosis is crucial for their adoption, especially in low-resource settings. Al-
driven tools can potentially reduce the workload on healthcare professionals, decrease diagnostic errors,
and improve patient outcomes, thus leading to significant cost savings. By automating routine tasks, Al
allows radiologists to focus on more complex cases, improving efficiency and reducing costs associated with
delayed diagnoses and treatment. Moreover, the wide-scale adoption of Al can facilitate more equitable
healthcare access by providing advanced diagnostic capabilities even in resource-constrained environ-
ments, ultimately leading to better healthcare delivery without disproportionately high investments.
Regulatory landscape for Al in healthcare — the current regulatory landscape for Al in healthcare is rapidly
evolving. Regulatory bodies like the fisher discriminant analysis are developing frameworks to ensure the
safety, efficacy, and reliability of Al tools. However, the approval process presents challenges due to the
dynamic nature of Al algorithms, which continually learn and adapt. Ensuring consistent performance and
managing updates without compromising patient safety are critical issues. Additionally, there are challenges
related to validating AI models across diverse patient populations and clinical settings to satisfy regulatory
requirements. Emerging guidelines aim to balance innovation with patient safety, yet navigating these
regulatory pathways remains complex.

Integration with existing healthcare IT systems: integrating Al tools with existing healthcare IT systems,
including EHRs, presents significant challenges in interoperability. Achieving seamless integration requires
compatibility between AI applications and diverse healthcare IT infrastructures. Solutions involve devel-
oping standardized data formats, using interoperable APIs, and creating vendor-agnostic platforms to facil-
itate smooth data exchange. Collaborative efforts between technologists and healthcare professionals are
vital to designing user-friendly interfaces and ensuring comprehensive training, thereby enhancing the
acceptance and practical utility of Al tools in clinical workflows.

Patient privacy and data security: addressing patient privacy and data security is paramount, particularly
given the sensitive nature of health data. Al implementation in healthcare must comply with stringent
regulations such as health insurance portability and accountability act and general data protection regula-
tion (GDPR) to protect patient information. The risks associated with data breaches or unauthorized access
necessitate robust encryption methods, secure data storage, and anonymization techniques. Additionally,
establishing clear consent protocols and engaging patients in data governance practices foster transparency
and trust, ensuring ethical handling of health data while leveraging AI's capabilities.

Impact on patient outcomes: evidence from various studies demonstrates the positive impact of Al on
patient outcomes, including improved survival rates, lower recurrence rates, and increased patient satisfac-
tion. For example, research published in peer-reviewed journals has shown that Al-assisted breast cancer
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screening can lead to earlier detection, enabling timely intervention and better prognosis. Patient satisfac-
tion tends to improve when Al tools are used, as they contribute to more accurate diagnoses and persona-
lized treatment plans. Longitudinal studies are essential to further quantify these benefits and solidify AI’s
role in enhancing patient outcomes.

Training healthcare providers: effective training for healthcare providers to use Al tools is essential for
successful deployment. Barriers to user acceptance include lack of familiarity with Al technologies, concerns
about job displacement, and potential technical challenges. Comprehensive training programs that focus on
the benefits of Al, practical usage, and troubleshooting can alleviate these concerns. Continuing education
and hands-on workshops help build confidence among healthcare providers, fostering a collaborative
environment where Al enhances clinical practice rather than disrupts it.

Al as a decision support tool: AI's role in breast cancer detection should be viewed as a decision support tool
rather than a replacement for human experts. Al can assist radiologists by identifying potential anomalies,
analyzing complex imaging data, and providing quantitative insights that complement human expertise.
This collaborative approach ensures that Al augments the diagnostic process, increasing accuracy and
efficiency without diminishing the value of radiologists. Highlighting AI's supportive role encourages its
acceptance and integration into clinical practice.

Technological advancements and future research: recent technological advancements in AI and imaging
techniques continue to influence breast cancer detection. Innovations such as DL, advanced neural net-
works, and improved imaging modalities — like high-resolution MRI and 3D mammography — are paving the
way for more accurate and comprehensive diagnostic tools. Ongoing research focuses on enhancing the
interpretability of AI models, developing robust training datasets, and integrating multimodal data for
holistic cancer diagnosis. As these technologies evolve, they hold the promise of transforming breast cancer
care, making diagnosis more precise, personalized, and accessible.

Hence, Al presents significant opportunities to advance breast cancer detection and diagnosis; several
challenges must be addressed to realize its full potential. Ensuring diverse and balanced training datasets,
improving the transparency and explainability of Al models, facilitating seamless integration into clinical
workflows, addressing privacy and security concerns, and navigating the regulatory landscape are paramount.
Additionally, demonstrating cost-effectiveness, training healthcare providers, and emphasizing AI's role as a
decision support tool are essential steps toward widespread adoption. As technological advancements con-
tinue, collaborative efforts between technologists, healthcare professionals, and regulatory bodies will be
crucial in shaping the future of Al in breast cancer care.

10 Conclusion

A revolutionary era in the identification and assessment of breast cancer severity has been brought about by
the combination of sophisticated Al tools and image-based methods. The transition from conventional tech-
niques to Al-powered technologies has shown the revolutionary changes in breast cancer diagnosis. These
technologies have demonstrated greater skill in identifying minor abnormalities, supporting early detection,
and offering insights into the severity of breast cancer through the application of ML and DL algorithms. Al
integration helps radiologists plan treatments more precisely and individually while also increasing their
productivity. Obstacles such as data integrity, comprehensibility, and moral implications highlight the neces-
sity of continuous investigation and cooperation. The field will advance further with the support of explain-
able Al, multimodal integration, and international data-sharing initiatives, promising more accurate, effective,
and patient-centered care for breast cancer patients. The combination of Al with image-based approaches has
yielded transformative discoveries that represent a paradigm shift in breast cancer management. These
insights have the potential to significantly improve outcomes and eventually save lives.
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