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Abstract: In highway bridge engineering, it is essential to use modern image processing methods to effectively
detect and classify road bumps and potholes, considering the unique characteristics of bridge surfaces.
Accurate identification and handling of road surface irregularities are crucial for preserving the longevity
and security of transportation infrastructure. The study proposes a Convolutional Neural Network
for Highway Anomaly Detection (BCNN-HAD) that uses the “BridgeGuard-Vision” (BGV) method, a computer
vision technology for highway bridges to increase the accuracy and efficiency of automated image proces-
sing for more accurate detection of road irregularities in highway surveillance. Through model training
using datasets that imitate various environmental conditions frequently seen on highway bridges, the
proposed approach obtains dependable characteristics from photos taken close to bridges, improving flex-
ibility and accuracy. The training method considers variations in lighting, weather conditions, and bridge
materials, ensuring the model performs well in various real-world situations. In addition, this work explores
the combination of sensor fusion techniques, combining data from many sources such as bridge structural
health monitoring systems, cameras, accelerometers, and Global Positioning System. This comprehensive
method, represented by BGV-YOLOv5, aims to offer a complete understanding of the bridge surroundings,
therefore helping to detect road irregularities and further developing the field of bridge health monitoring.
Expected results involve developing a personalized and effective system for detecting road bumps and
potholes to tackle specific difficulties in highway bridge situations. In addition, the project seeks to provide
a structure for smart transportation systems in the field of bridge engineering. This project seeks to address
the particular requirements of highway bridge engineers, improving road safety and infrastructure main-
tenance methods in highway bridge engineering with the overall objective of establishing a safer and
longer-lasting transportation network.

Keywords: highway bridge engineering, BridgeGuard-Vision, BCNN-HAD, advanced image processing, sensor
fusion, smart transportation systems

1 Introduction

Highway bridge engineering is a field that combines civil engineering with transportation infrastructure. It
involves the planning, building, and upkeep of bridges that enable vehicles to travel safely and efficiently over
highways and other transportation systems. Highway bridge engineering is concerned with bridges’ design,
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construction, and upkeep, which is essential for effective mobility. Identifying bumps and potholes is vital
because uneven road surfaces can affect the strength of the road and create safety hazards. These problems
speed up deterioration, undermine the vehicle’s comfort, and put road safety at risk. Maintaining a bridge’s
best condition is very important, and automated image processing and computer vision are crucial in effec-
tively recognizing and fixing these abnormalities. Using modern technology, highway bridge engineers
improve structures’ durability, reduce dangers related to vehicle travel, and maximize traffic efficiency,
guaranteeing critical infrastructure’s continued usefulness and safety [1]. New approaches have recently
surfaced to overcome the limitations of traditional vibration-based methodologies for bridge structural status
monitoring. These methods involve using new sensors or novel signal properties. Contemporary real-time
Structural Health Monitoring systems can produce a significant amount of data that needs to be analyzed and
assessed to identify early irregularities and issue timely notifications and alerts regarding the state of civil
infrastructure [2]. Displacement measurements can offer helpful information on the state of structures and
how they behave when subjected to operational and environmental loads. Computer vision systems were
confirmed as a method of measuring displacement; the study conducted here aims to provide the foundation
of a damage detection system that operates in real time [3].

The project aims to find anomalies in the expressway’s computerized surveillance system. To do this, edge
computing and deep learning will be used to improve the real-time effectiveness of the management and
monitoring of an expressway. The video data recorded by the camera system in the smart surveillance net-
work of the roadway is sent to the edge analyzing server for analysis and then passed on to a convolutional
neural network (CNN) [4]. Multiple object detection techniques using deep learning have been developed,
utilizing CNN to obtain characteristics. This study proposes using YOLO, or You Only Look Once, for a system
that detects potholes. Several variations of the YOLO algorithm are trained using a customized dataset that
includes water-logged and dry potholes of different shapes and sizes [5]. To showcase the practicality and
improved performance of the new picture recognition models, the machine learning object identification
software models are evaluated using mAP (mean average precision) and processing speed, commonly used
to quantify efficacy [6]. YOLO series detectors are widely regarded as the optimal balance of precision and
efficiency, making them highly suitable for real-time tasks. The YOLOX technique is the most recent in the
series and is developed by using and enhancing the YOLOv3 algorithm [7]. YOLO, a method for detecting
objects in real-time, uses CNNs to identify and categorize photograph potholes. This deep-learning study
intends to address the issue of potholes encountered during the journeys of autonomous or self-driving
cars. This method instantly detects potholes using highlighted visual indicators [8]. The algorithm’s utilization
of CNN allows for the simultaneous prediction of object categories and bounding boxes, improving respon-
siveness and accuracy. Some of the most often used CV algorithms involve CNNs, commonly employed for
video and image recognition, and object recognition algorithms, capable of identifying and detecting objects in
images and videos [9]. Other computer vision techniques include feature identification algorithms that recog-
nize particular visual characteristics in an image and classification algorithms that divide an image into
different areas or items.

In the picture identifying anomalies method shown in Figure 1, primary phases establish a complete
object-detection network. First, the input data is prepared through initial preprocessing. Then, convolutional
layers to extract important hierarchical characteristics for identifying anomalies. Feature mapping includes (i)
pooling layers to help reduce the input size, making computations more efficient, and (ii) interconnected layers
that analyze the retrieved features, forming a basis for classification. Post-processing methods improve output
predictions, guaranteeing precise anomaly identification. This enhances the network’s capability to identify
and classify irregularities, making it a crucial framework for reliable visual anomaly detection in many
scenarios.
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The primary contribution of the work is,
• To introduce a BCNN-HAD model that extracts dependable features from photos taken near the bridge,
advanced image processing techniques are used to identify and categorize road bumps and potholes, con-
sidering the distinct characteristics of bridge surfaces.

• To develop BGV-YOLOv5, a sophisticated computer vision technique designed explicitly for highway bridges
to enhance automated image processing for improved identification of road anomalies.

• To improve flexibility and accuracy, the system is trained using datasets that simulate the many environ-
mental conditions commonly found on highway bridges.

• To explore the combination of sensor fusion techniques, data from many sources such as bridge structural
health monitoring systems, cameras, accelerometers, and Global Positioning System (GPS) must be combined.

• To provide a structure for intelligent transportation systems in bridge engineering, creating a safer and
more durable transportation network.

The study’s primary goal in highway bridge engineering is to improve road safety and infrastructure
maintenance. The main objective is to develop the BCNN-HAD technique, which uses BridgeGuard-Vision
(BGV) and sensor fusion, to effectively identify road abnormalities such as bumps and potholes. The goal is
to create a complete system for intelligent transportation, ensuring a safer and more long-lasting transporta-
tion network. The research enhances intelligent transportation systems in bridge engineering by introducing
the BGV-YOLOv5 technique. This method integrates sensors, sophisticated picture analysis, and CNNs to
thoroughly observe the state of bridges. The research contributes to the construction of safer and more lasting
transportation networks in the field of bridge engineering by offering a customized system for detecting road
anomalies and assuring flexibility in various climatic circumstances.

The study will follow with the sections including Section 2 as a literature review, proposed automated image
processing systems procedures are described in Section 3, Section 4 covers the experimental analysis and out-
comes, and the study concludes the work in Section 5 covering with a conclusion and plans for future research.

2 Literature review

Peralta-López et al. [10] proposed a deep neural network to automatically analyze color images obtained by a
ZED camera to detect road potholes. An efficient design was created to accelerate the training and usage
process. Bharat et al. [11] proposed significant technical advancements in road pothole detection. A CNN
structure was created manually, starting from scratch, focusing on tackling the difficulties related to pothole
categorization and detection. Wu et al. [12] developed a theoretical structure for an automated system that

Figure 1: Image anomaly detection process.
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detects potholes using cell phone vibration data. Along with performing necessary actions (including resam-
pling, redirection, filtering, etc.) upon the collected data, the program uses a sliding window to divide the
continuous data stream into separate segments.

Lyu et al. [13] suggested bidirectional short-term memory (Bi-LSTM) to identify bump features. The
randomly positioned smartphone during vehicle movement recorded the 3D speed increase, 3D positioning,
and GPS data collection. Alhussan et al. [14] introduced a new approach called adaptable mutation and dipper-
throated optimizing for selecting features and optimizing the random forest, or RF, classifier. Once again, a
thorough statistical analysis is performed on the gathered data to assess the significance and reliability of the
proposed method. The findings highlighted the efficiency and advantages of the proposed method.

Ozoglu and Gökgöz [15] described creating a system for identifying potholes. The technology utilizes
sensors for vibration and the GPS built into cellphones, eliminating the need for extra devices in automobiles
and the associated expenses. In detecting road anomalies based on vibrations, a new method that uses CNNs is
a significant advancement in this area. Bosurgi et al. [16] proposed 3D photographs of the pavement surfaces
obtained using advanced equipment. Based on computer vision protocols, the method can accurately detect
potholes, quantify their size, and assess their depth. Borgalli [17] proposed the systems used to identify various
sorts of potholes by employing techniques that rely on data collected from an ultrasonic sensor, gyroscope, and
Pi camera. This data provides information about the severity and shape of the pothole under any circum-
stances. Users can upload images of potholes, and once approved by the admin, they will be processed by a
deep-learning framework.

Shaghouri et al. [18] proposed, utilized, and evaluated various deep-learning structures to identify the
existence of potholes. To begin, a cell phone attached to the automobile windshield captures multiple photo-
graphs of potholes.

The study suggests tackling issues about uneven road surfaces on highway bridges using the BCNN-HAD
approach. This entails utilizing BGV technology and sensor fusion techniques to enhance the precision of
anomaly detection. The approach involves teaching the model using different datasets to mimic other envir-
onmental conditions commonly found on highway bridges, guaranteeing flexibility and accuracy. The inclu-
sive method efficiently identifies and classifies road irregularities and holes, improving road safety and
infrastructure upkeep in highway bridge engineering.

3 Proposed methodology

The primary objective of this work is to enhance the domain of computerized methods for image processing. The
project intends to create an advanced system that can precisely detect and categorize road surface abnormalities
using state-of-the-art computer vision techniques. The emphasis on highway bridges acknowledges these con-
structions’ distinct difficulties, including differing lighting conditions, weather, and various bridge materials.

The research improves the flexibility and accuracy of the BCNN-HAD model in different environmental
situations by training it with datasets that simulate common variations on highway bridges. This encompasses
elements including illumination, atmospheric conditions, and the composition of the bridge. The suggested
approach guarantees that the BCNN-HADmodel can successfully function in multiple environmental conditions,
enhancing its resilience and dependability in real-life scenarios by subjecting the model to various settings.

3.1 BGV-based convolutional neural network-highway anomaly detection
(BCNN-HAD)

The proposed BCNN-HAD method takes as input images captured nearby highway bridges. The system uses
these images to recognize and extract features associated with road anomalies like bumps and potholes. The
BCNN-HAD method, based on BGV-YOLOv5, enhances automated image processing and improves the
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identification of road abnormalities. The system’s CNN is designed to extract significant characteristics from
these images, helping to detect and categorize road surface irregularities accurately. Although input handling
is more involved than other architectures, the goal is to preserve the rapid processing rate of the CNN network
by reducing the overall number of network layers. Unlike many studies, the suggested approach effectively
identifies speed bumps and potholes on road surfaces in highway bridges, as shown in the flowchart of
Figure 2.

3.1.1 Material and selection

BGV-YOLOv5 (BridgeGuard Vision–You Only Look Once) could be a suitable foundation for implementing
BCNN-HAD in highway bridge engineering. BGV-YOLOv5 is well-known for its capability to rapidly identify
items in live situations, making it a convenient option for promptly identifying irregularities on the road, such
as bumps and potholes. The architecture is created to be efficient, allowing for fast image processing, which is
essential for applications that require quick reactions in real-time anomaly detection. BGV-YOLOv5 guarantees
precise object detection, which is necessary for accurately classifying and recognizing road abnormalities.

The BGV-YOLOv5 technique, which processes the entire image at once, helps to speed up processing and
achieve real-time performance, making it suitable for highway bridge engineering. In addition, the framework
is supported by a solid and engaged community, which provides plenty of help, detailed documentation, and a
wide range of tools for developers. Although BGV-YOLOv5 is a notable choice, the final decision relies on the
project’s unique needs, the dataset’s peculiarities, and the development team’s experience with the selected
framework.

The BCNN-HAD technique utilizes BGV, which combines sophisticated image processing and sensor fusion.
It is proficient at identifying road irregularities close to highway bridges by training on varied datasets,
guaranteeing flexibility in different environmental situations. The approach attempts to improve road safety

Figure 2: Overall flow of proposed BCNN-HAD work.

Optimization of the road bump and pothole detection technology  5



and infrastructure upkeep, contributing to a more efficient transportation network. The suggested BCNN-HAD
approach helps enhance traffic safety in highway bridge engineering by utilizing modern image processing
techniques. It precisely identifies road irregularities like bumps and potholes close to bridges, making it easier
to schedule maintenance promptly. This improves the general state of the road, reduces safety risks, and
guarantees a safer and more secure transportation system.

3.2 BGV-YOLOv5-based system

3.2.1 Data collection

BGV-YOLOV5 starts by gathering input data, which includes high-quality photos taken close to highway
bridges. These pictures concentrate on the road’s outside and function as the unprocessed information for
examination. The bridge’s structure may be monitored for vibrations and oscillations using vibration sensors.
When vibration patterns are out of the ordinary, it could be a sign of structural problems like fractures or
weaknesses.

Under load, strain gauges determine howmuch strain is applied to different bridge parts. This is useful for
determining whether the material is being stressed beyond its intended capacity.

The dynamic reaction of the bridge to traffic, wind, and other environmental conditions may be better
understood using accelerometers, which measure acceleration and movement.

The precise location of bridge components may be followed by GPS, which can detect even the smallest
movements or tilts. Finding possible structural changes or problems with the foundation requires this. It is
feasible to accurately monitor deformation over time by putting GPS sensors at different sites. Continuous GPS
data may track any displacement or movement in real time, allowing for prompt reactions to any problems. A
bridge health monitoring system that integrates GPS and sensor data provides a comprehensive, up-to-the-
minute picture of the bridge’s structural condition and the effects of the surrounding environment. This
comprehensive method improves predictive maintenance, guarantees safety, and increases the bridge’s life-
time by facilitating prompt interventions.

3.2.2 Pre-processing

The input photos go through preprocessing stages to improve quality and standardize characteristics. This
might involve changing the size, standardizing, and modifying lighting conditions.

3.2.3 Features extraction with CNN

The essential aspect of BGV-YOLOv5 focuses on utilizing CNN. CNN captures significant attributes from the
processed images, highlighting traits important for identifying road irregularities like bumps and potholes.
Figure 3 shows the proposed workflow of the system.

6  Haiping Ding and Qianlong Tang



3.2.4 Advanced image processing

BGV-YOLOv5 uses sophisticated image processing methods after extracting features. These methods are
designed to identify and categorize abnormalities on road surfaces, taking into account the unique character-
istics of bridge surfaces.

3.2.5 Training using varied datasets

To improve flexibility and precision, the system is trained using datasets that replicate a range of environ-
mental variables commonly found on highway bridges. This includes differences in illumination, weather
conditions, and bridge materials.

3.2.6 Sensor fusion module

BGV-YOLOv5 investigates methods of sensor fusion, which involve merging data from many sources. This
might include data from bridge structural health monitoring systems, cameras, accelerometers, and GPS
devices. Incorporating many data sources helps achieve a more complete picture of the bridge environment.

3.2.7 Comprehension understanding and abnormality detection

The final step of the workflow is getting a thorough awareness of the bridge’s surroundings using BGV-
YOLOv5. This knowledge helps efficiently identify road abnormalities, contributing to the broader area of
bridge condition monitoring.

The study highlights the importance of YOLO series detectors, specifically YOLOX, in identifying road
irregularities by balancing accuracy and efficiency. YOLOX, being the most recent in the series, improves on
YOLOv3, using CNNs for real-time detection. This enhances the ability to quickly and accurately deal with road
problems. BGV-YOLOv5 has an essential function in the BCNN-HAD system as it is the fundamental technology

Figure 3: BridgeGuardVision system.
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for detecting objects in real time. It is suitable because it can quickly and accurately detect road irregularities
close to highway bridges, including bumps and potholes. The design guarantees effective image processing,
making it suitable for applications that require fast reactions in highway bridge engineering. Furthermore, the
assistance from an engaged community, comprehensive documentation, and various tools make BGV-YOLOv5
a dependable option for the suggested system.

3.3 Conventional neural network architecture

Initially, the camera captures a color image with dimensions of a × b × c (where a = 672 columns and b = 376
rows, along with c = 3 indicating the RGB color index). Every pixel in an image contains an 8-bit resolution, and
the color illustration adheres to the RGB paradigm.

∈ ≤ ≤ ∨ | ≤ ≤ | ≤ ≤ | ≤ ≤I u v w W u u a v v a w w a, , 0 255 1 , 1 , 1 .( ) { } { } { } (1)

In equation (1) mentioned before, I denote a matrix with three dimensions. The initial layer, the “Ima-
geInputLayer,” uses an information n normalization process. This requires subtracting the average image
(mean) of the simulated set, in which the highest value of n is 714, from every image that is input, as specified
in equations (2) and (3). The entered images are colored, with an elevation of 376 pixels, an expanse of 672
pixels, and three color channels saved in the RGB color space. These photos are sorted and stored within a
tensor with a dimension of (376, 672, 3).
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The following layer, known as the “Convolution2Dlayer,” has convolutional processing, including 37 filters
with a specific width and height of 3 × 3 =f f f, , …, 37
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( ). The layer has a stride of 1 and does not include
pooling. However, it incorporates padding of the “same” kind to capture image features and avoid sub-
sampling surrounding information. The layer’s data are stored in a tensor with dimensions (376, 672, 3, 37).
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From equations (4)–(6), f
x
is the filtering window with dimensions + × +g h2 1 2 1( ) ( ) and xd and yd are

the indicators indicating move across the window on both the u and v axes. Figure 4 shows the all-functional
layers of the CNN architecture and their functions.
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The third layer, “batchNormalizationLayer,” normalizes a group of data inside a small batch, treating each
feature individually. This helps speed up the development of the CNN andmakes it less sensitive to how the network
is set up. Multiple normalization layers should be incorporated between convolutional regions and anomalies for
best results. Here, we employ a ReLU layer after a convolutional layer stored in a (376, 672, 3, 37) matrix.
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C u v w
u v w μ
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CONV , ,
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x

( )
( )
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= +u v w α C u v w βCN
ˆ
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In equations (7) and (8), where μ
x
represents the average, αx represents the amplification factor and β

x

represents the offset for each feature.
The fourth layer, known as the “ReluLayer,” consists of a linear unit that has been rectified (ReLU) and

applies the thresholding work to the input. Numbers below zero are set to zero, while numbers above zero stay
the same. When evaluating ReLU to the tanh and the sigmoid functions, ReLU does not have saturation zones.
These saturation areas indicate that the outcomes of the neurons tend to remain relatively stable, resulting in a
limited range of deviations from the initial conditioning gradient and little changes to network parameters.

Figure 4: Various layers of CNN architecture and their functions.
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This results in a need for more development in the instruction process. Equation (9) demonstrates that the
ReLU function is significant in contemporary neural networks, which are stored in a tensor of dimensions (376,
672, 3, 37).

=u v w u v wCapReLU , , max 0, CN
ˆ

, , .x( ) ( ( )) (9)

The fifth layer, referred to as “fullyConnectedLayer,” defined by equation (10), creates a neural network
that is fully connected with a result size of 3. This is because it is separated into three categories =i 1, 2, 3 .( )

The output value generated by the ReLU layer is converted into a series of integers using the vec() method. This
implies that a matrix is transformed into a vector by merging its components. This procedure is often referred
to as leveling. This level resizes the inputs by a set of weights Ki and then supplies a bias to the vector hi. The
outcome is subsequently sent through a feedback loop of transit work. This indicates that our completely
linked neural network comprises 28,046,592 components and yields three outcomes (28, 046, 592).

= × +u v w K hFCL vec ReLU , , .i i i( ( ) ) (10)

The sixth level (three inputs and three results), “Soft Max,” likewise employs a SoftMax function, which is
commonly utilized as the last level of classifiers utilizing artificial neural networks, as shown in equation (11).
It changes a vector of L exact numbers into an additional vector of L real values that add up to 1, allowing them
to be understood as probabilities. For this situation, the value of L is 3.
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The last layer, called “classOutput” with three inputs and thre outcomes, functions as a categorization
layer. The formula (12) computes cross-entropy loss for segmenting the outputs into separate categories (3,3).
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where X represents the sample count, Y represents the class numbers, q
i
represents the weight of class I, and

represents the signal that the nth study is part of the ith class and one represents the output for sample n for
class I, which is the value from the softmax function.

The suggested BCNN-HAD technique using BGV-YOLOv5, including the “BGV” approach, is its capability to
offer specialized computer vision technology designed explicitly for highway bridges. BGV improves image
processing by extracting reliable features from images taken near bridges, raising road anomaly identification
accuracy. This integration guarantees that the model can easily adjust and accurately perform under different
environmental conditions typically seen in highway bridge situations. Based on BGV-YOLOv5, the suggested
solution utilizes a complete process for identifying highway anomalies. The procedure starts by gathering and
preparing photos taken near highway bridges. Then, a CNN extracts features. Sophisticated picture processing
and training with different datasets guarantee flexibility under other environmental circumstances. The
system includes a sensor fusion module for a comprehensive understanding. The use of BGV-YOLOv5 in
anomaly detection helps improve bridge status monitoring. The suggested technique standardizes image input
by deducting the mean image from the dataset during preprocessing. This guarantees consistent character-
istics and enhanced quality. The architecture’s Rectified Linear Unit (ReLU) layer is essential, as it introduces
non-linearity by converting negative values to zero. This aids in learning features, avoiding saturation areas,
and improving the efficiency of the CNN by enabling a more comprehensive range of training gradients.

3.4 Network hyperparameter proposal

In CNNs, hyperparameters are important in the design and include aspects like the input picture dimensions,
the number of convolutional methods used, the size of convolutional filter systems, and the count of outputs of
the neural network. These conditions are set up before the training process. Conversely, network variables in
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the suggested system have values dynamically chosen by the optimization technique, as indicated by (BGV-
YOLOv5). Efficient training of CNNs depends greatly on computer technology, especially when using GPUs for
iterative procedures. Increasing the network’s size alone might not result in improved performance or feature
learning, even though optimizing the network architecture, adjusting hyperparameters, and starting with the
right database are crucial. When categories are easily identifiable, unnecessarily complicated designs may not
be needed. The learning of filters for various categories can be enhanced using a larger input size during training
despite the potential for higher computing costs. Given that prediction is the network’s primary objective, it is
important to note that utilizing high-quality hardware is a prerequisite for achieving optimal performance.

The BCNN-HAD approach uses a neural network structure with important layers, including Convolution2D,
batchNormalization, and fully connected. The Convolution2D layer uses 37 filters with a 3 × 3 window, without
pooling but with padding. The batchNormalization layer standardizes data within tiny batches, improving CNN
development. The fully connected layer constructs a neural network that is fully linked and produces three
outcomes using a rectified linear unit (ReLU) activation function. Combining these layers helps enhance the
anomaly detection capabilities of the BCNN-HAD approach. Network parameters are essential for CNN perfor-
mance in the suggested approach. These settings, such as the input image’s dimensions, filters’ sizes, and the
number of outcomes, are established before training. Appropriately selected hyperparameters are crucial for
optimal feature learning and computational efficiency during training. The thoughtful use of hyperparameters
contributes to the overall success and effectiveness of the suggested CNN-based anomaly detection method.

4 Experiment and results

4.1 Dataset

A total of 174 images of yellow roadway cones and 35-speed bumps that were not seen were gathered and
stored in folder 0. Folder 1 had 231 pictures of potholes, while folder 2 had 304 pictures of smooth streets. The
pictures were taken with a resolution of 376 × 672 pixels. The sun’s position was a significant consideration in
the selection of the photos. For instance, it was sometimes hard to get excellent pictures in the bright afternoon
light at about six o’clock. As a result, several photos and images that didn’t have any bumps or imperfections
were not included to ensure a fair representation in all categories. The collection includes three categories of
images: ones that show speed bumps, potholes, and ones that don’t have either. In addition, the photos were
captured from the outside of a vehicle. The BCNN-HAD uses a simplified seven-layer structure, less resource-
intensive on the computer’s hardware than Inception V2, which has 12 layers. Results using the test dataset of
speed bump images and the trained CNN model [19].

4.2 Performance metrics

4.2.1 Accuracy

In highway bridge technology, precision is crucial for the proposed BCNN-HAD, based on BGV-YOLOv5 CNN,
for detecting highway anomalies. Accuracy assesses the general accuracy of the model’s predictions, which
guarantees dependable detection of road surface irregularities, such as bumps and potholes. A high level of
accuracy reflects the model’s capacity to correctly categorize anomalies and non-anomalies that contribute to
the longevity and safety of the transportation system.

4.2.2 Precision

Precision is essential in the BCNN-HAD system as it evaluates the correctness of optimistic predictions, especially
in identifying road anomalies. Precision refers to the algorithm’s accuracy in accurately detecting and classifying
events like road irregularities, such as bumps and potholes. A high precision score demonstrates the system’s
efficiency in reducing incorrect identifications, ensuring that detected irregularities are indeed on the road.

Optimization of the road bump and pothole detection technology  11



Considering the terms, TP is the True Positives (accurately detected abnormalities); TN is the True
Negatives (accurately detected non-anomalies); FP is the False Positives (mistakenly detected abnormalities);
FN is the False Negatives (erroneously classified non-anomalies), and the equations for the performance
metrics given by,

=
+

+ + +
ACC

TP TN

TP TN FP FN

, (13)

=
+

Precision

TP

TP FP

. (14)

4.2.3 Recall

Recall, sometimes referred to as sensitivity, is crucial for BCNN-HAD to assess its capability to detect all
occurrences of road anomalies. An elevated recall score suggests that the algorithm accurately identifies a
significant portion of actual road surface abnormalities. This measurement is essential for reducing incorrect
results and ensuring the system recognizes occurrences of bumps and potholes, thereby improving safety and
infrastructure upkeep.

4.2.4 F1-score

The F1-Score, a mathematical mean of recall and accuracy, offers a fair evaluation of BCNN-HAD’s perfor-
mance. This measurement considers both incorrect positive and negative results, thoroughly assessing the
model’s precision in detecting road irregularities. A high F1-Score implies a balanced trade-off between
precision and recall, displaying the model’s effectiveness in precise anomaly identification while minimizing
errors. To summarise, accuracy ensures overall correctness, precision highlights the accuracy of optimistic
predictions, recall analyses the ability to identify anomalies thoroughly, and the F1-Score evaluates BCNN-
HAD’s performance. Together, these measurements help achieve the system’s objective of establishing a more
secure and long-lasting transportation network in highway bridge engineering.

=
+

Recall

TP

TP FN

, (15)

=
+

F1

2 precision Recall

Precision Recall

.

· · (16)

Equations (13)–(16) offer a numerical representation of the primary assessment criteria. Figures 5 and 6
represent the analysis of various performance metrics of the proposed BCNN-HAD. Regarding highway bridge
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Figure 5: Evaluation of accuracy and precision based on the BCNN-HAD method.
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engineering and BCNN-HAD, these metrics assist in evaluating the model’s capacity to effectively detect
and handle irregularities on the pavement, which helps to maintain the durability and safety of traffic
infrastructure.

4.3 Training and validation time

“Training and validation time” is a measurement that quantifies the duration required to train and validate
the CNN model using the suggested BGV-YOLOv5 algorithm. This measure is essential for comprehending the
computational effectiveness and pace of the training procedure, which is vital for the actual execution and
utilization of the model.

Training Time is the time needed to train a CNN model using the training dataset. It is an important
measurement, and shorter training durations are often favored for quicker model growth. Nevertheless,
finding a middle ground between minimizing training time and guaranteeing that the model attains both
high accuracy and robustness is essential. Validation Time is the duration required to assess the model’s
effectiveness, which was trained upon a distinct validation dataset. Just like the time spent on training, it is
preferable to have shorter validation durations since they enable faster iterations in improving the model.
Verification is crucial for assessing the model’s ability to generalize unfamiliar data.

Training and Validation Combined Time refers to the whole duration of both the training and validation
processes. This measurement offers a thorough perspective on the time spent designing and assessing the
model. It helps calculate the total computational resources used for both the training and validation stages,
providing information about the efficiency of the model creation process. Equation (17) shows the total
training time taken by the epoch (Ti) as,

= × +T a i b.i (17)

Here, Ti is the total time at epoch I, a is the slope of the line, indicating the rate at which time rises per
epoch, i is the epoch number, and b is the y-intercept, reflecting the initial time at epoch 1. Figure 7 shows the
training and validation evaluation curve compared with other object detection methods.
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Figure 6: Evaluation of accuracy and precision based on the BCNN-HAD method.
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Extended training and validation durations may suggest a model requiring significant computational
resources or more advanced hardware. Reduced durations indicate effectiveness in the model structure, optimi-
zation methods, or parallel processing skills. To summarise, “training and validation time” is a practical measure
that affects the practicality and scalability of implementing the suggested BGV-YOLOv5 algorithm in real-life
scenarios. Reducing this time while ensuring high-quality outcomes is essential for successful deployment.

The proposed BCNN-HAD method and BGV-YOLOv5 are essential in transportation infrastructure and
road safety. By effectively detecting road anomalies, they enhance infrastructure maintenance and road safety
in highway bridge engineering. This comprehensive approach aligns to establish a safer and longer-lasting
transportation network. The study assesses the efficiency of the BCNN-HAD technique utilizing parameters
such as mean average precision (mAP) and processing speed. mAP evaluates the precision of object detection
by taking into account precision-recall curves. The processing speed measures how fast the system detects
abnormalities in real-time situations. These measurements offer a thorough assessment of the accuracy and
effectiveness of the suggested approach in identifying irregularities on highway bridges.

4.4 Effectiveness of sensor fusion techniques

Sensor fusion combines information from several sensors to improve the overall comprehension and preci-
sion of the surroundings. When identifying road bumps and potholes in bridge engineering, combining
information from several sensors is important to improve the system’s capabilities. Within highway bridge
engineering, sensor fusion techniques in the suggested system are crucial for improving the identification of
road anomalies. Combining data from several sources, such as bridge structural health monitoring systems,
cameras, accelerometers, and GPS, is essential in understanding the bridge environment. Evaluation criteria
include the correlation and synchronization of sensor data, managing redundancy, real-time processing
capabilities, improving accuracy through fusion, adaptability to environmental changes, influence on main-
tenance decision-making, and scalability to handle larger data volumes. Effective sensor fusion guarantees
that the system adjusts to various situations, offers practical insights for maintenance choices, and stays
efficient as the monitoring infrastructure grows. A thorough assessment of these factors enables engineers
to improve the sensor fusion algorithms, guaranteeing the dependability and efficiency of road anomaly
detection in practical highway bridge scenarios.
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Sensor integration is essential in BGV-YOLOv5 for detecting highway anomalies by merging data from
systems that monitor structural health, cameras, accelerometers, and GPS. This inclusive method improves the
comprehension of the area around the bridge, which helps detect road irregularities more effectively.
Combining many sources ensures a comprehensive viewpoint for designing intelligent transportation systems
in highway bridge engineering.

4.5 Evaluation of different suggestions of current technology

The suggested BGV-YOLOv5-based system for identifying road irregularities is compared to various object
identification models designed to detect irregularities on roadways. This evaluation entails analyzing the
advantages and disadvantages of the BGV-YOLOv5 system in terms of accuracy, completeness, and overall
effectiveness. Table 1 shows the comparative analysis of the proposed BCAA-HAD system with other proposals.

Table 1: Results using the test dataset of speed bump images and the trained CNN model

S. no. Input image Preprocessing Segmented image Output image Output description

1 Image of a speed bump taken during the
day. With great precision, our model can
identify the speed bump

2 With the help of brightness and contrast
adjustments, the collected and enhanced
speed bump picture is accurately
forecasted

3 Orientation is changed by augmenting the
captured picture of the speed bump. Using
our algorithm, about 70% of the pixels may
be accurately classified as speed bumps

4 Showing an image of an unlabeled speed
bump. Even though there are no unlabeled
speed bumps in our training picture
dataset, our model still manages to
segment around 25% of the pixels
accurately

5 Accurate segmentation is not achieved
when the speed bump picture is shot from
a vertical perspective. Twenty percent or so
of the pixels are incorrectly labeled as
speed bumps even though they belong to a
different class
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Our advanced neural network utilizes a modest seven layers, which is less demanding on the processing
hardware than Inception V2, which has 12 levels. Our approach attains an accuracy of 99.13%, as indicated in
Table 2.

Unlike other works with the same approach, this study chooses not to use strides or combined techniques
to gather all the accessible information. In addition, BCNN-HAD includes a “BatchNormalization” layer by
layer to speed up the training process and reduce the impact of network initialization, a feature not present in
other systems. Furthermore, the proposed method uses a “SoftMax” layer that enables the interpretation of the
fully linked network’s output as probabilities.

The research evaluates machine learning models for identifying objects, specifically focused on YOLO
series detectors such as YOLOX, for jobs requiring real-time processing. BGV-YOLOv5, using CNNs, demon-
strates practicality and efficiency in detecting road irregularities, improving road safety in highway bridge
engineering, and contributing to intelligent transportation systems.

5 Conclusion

Overall, the suggested BCNN-HAD, based on BGV-YOLOv5, is an advanced option in highway bridge engi-
neering. The “BGV” program, designed for highway bridges, shows its effectiveness in automated image
processing for accurately detecting road irregularities like bumps and potholes. The model may be flexible
and accurate in real-life scenarios by using sophisticated image processing methods and combining data from
several sensors, especially in different environments. The inclusive method exemplified by BGV-YOLOv5 helps
to a more profound comprehension of the bridge environment, aiming to improve the identification of road
abnormalities and progress the field of bridge health monitoring. The expected results of this study comprise
creating a customized and effective system designed to identify road surface irregularities specific to highway
bridge situations. This method tackles highway bridge engineers’ difficulties in enhancing road safety and
infrastructure maintenance standards. In addition, by examining sensor fusion techniques and including
various data sources such as structural health monitoring systems, cameras, accelerometers, and GPS, the
project aims to provide a robust framework for intelligent transportation systems in the field of bridge
engineering. The primary purpose is to create a transportation network that is safer and longer-lasting, in
line with the broader goals of improving the resilience of infrastructure and assuring the longevity of highway
bridges. Further study could improve the model’s ability to adapt to changing climate conditions and expand
its usefulness to different bridge designs. Working with transportation authorities and industry stakeholders
could help incorporate the created system into the current infrastructure, leading to a broader influence and
better methods for maintaining highway bridges.

The experimental analysis uncovers restrictions in the study, such as the requirement for crowdsourced
data to improve system effectiveness. Possible enhancements may involve increasing the dataset used for
training models and dealing with datasets that have imbalances. These constraints might affect the practical
use by impacting the system’s overall effectiveness and adaptability in real-life situations.

Table 2: Study of various state-of-the-art proposals

Various proposals Datasets Anomaly detection

Edge detection [17] 8,905 Images Potholes
Bi-LSTM [13] 6,433 Images Road bump
DNN [10] 899 Images Potholes
CNN + IoS [15] 712 Images Potholes
Proposed BCNN-HAD 655 Images Both potholes + bump
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