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Abstract: A traceability and analysis method for measurement laboratory testing data based on the intelligent
Internet of Things (IoT) and deep belief network (DBN) is proposed to address the issue of low accuracy in
identifying anomalies in measurement testing data and difficulty in identifying the causes of anomalies. First,
a data analysis system for the metrology laboratory is designed based on an intelligent IoT architecture of
“cloud-management-edge-end.” Then, the Gaussian Bernoulli-Restricted Boltzmann machine is introduced to
improve the DBN model, which is deployed on the edge side for learning the ledger data sample library to
determine the anomaly detection data of the metrology device. Finally, a stacked denoising autoencoder model
is used in the cloud center to extract historical electricity consumption curve features, and the cause of
anomalies is determined by calculating the cosine similarity between it and the target device feature curve
to complete traceability analysis. Based on the selected dataset, the proposed method is experimentally
demonstrated, and the results show that its traceability accuracy and time consumption are 88.72% and
3.949 s, respectively, which can meet the detection requirements of the metrology laboratory.

Keywords: intelligent IoT, deep belief network, metrology laboratory, data traceability, abnormal analysis,
stacked denoising autoencoder model, cosine similarity, gaussian Bernoulli restricted Boltzmann machine,
cloud-management-edge-end

1 Introduction

The power system generates massive amounts of data during actual operation, and its efficient collection and
use is an important issue that urgently needs to be solved for smart grid big data [1]. State Grid Corporation of
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China’s smart meter and power consumption information collection have covered 99% of power users within
its business scope, and the time series data collected by the smart meter contain rich power consumption
behavior information and characteristics of power users, which can provide a scientific data basis and
guidance basis for the modeling and prediction of various works of the power system [2,3]. Therefore, the
accuracy and reliability of smart meters and other metering devices are crucial to the scientific operation of
power grid enterprises.

At present, the country is increasing the construction of power measurement laboratories, utilizing
laboratory platforms to carry out standard measurement transmission, quality inspection of measurement
devices, and on-site inspection to comprehensively improve the reliability of the devices. The existing profes-
sional laboratories at all levels carry out company inspection, testing, verification, calibration, and other
businesses, providing quality supervision services for the measurement center and society. However, with
the improvement of measurement capabilities and technology, some problems have gradually emerged in the
measurement laboratory [4,5]: (1) The equipment in the laboratory comes from multiple different manufac-
turers, and the interaction logic and operation methods of the testing software interfaces of different manu-
facturers are different. Moreover, due to the large number of imported equipment and the English interface of
the software, the learning cost is high, and the technical level of the testing personnel is high. (2) The auto-
mation level of the detection software varies, and the digitization level of the detection data varies, making it
difficult to upload to the management system and lacking the ability to automatically issue certificates. (3) In
high-precision measurement, quality traceability is difficult. Due to the lack of mastery of experimental
process data and the complexity and variability of influencing factors, finding and reproducing problems
when anomalies occur require significant time costs and difficulty. (4) The standard transmission laboratory
has been renovated to have the ability to monitor and collect environmental data, but these data cannot be
matched with the detection, making it difficult to utilize the data.

With the rapid development of new-generation information and communication technologies such as
cloud computing, Internet of Things (IoT), edge computing, mobile communication, and artificial intelligence,
more innovative ideas have been provided for the construction of measurement laboratories, and edge
computing technology and deep learning algorithms have been used to realize the intellectualization of
laboratories [6]. For the detection and traceability analysis of abnormal data, most methods are based on
models such as artificial neural networks and support vector machines. However, the objective function that
artificial neural networks need to optimize is complex, and there are efficiency issues in processing power grid
big data [7]. Traditional machine learning methods such as support vectors take a long time to train data, and
processing massive data samples also faces serious challenges, especially for high-dimensional feature data,
which can lead to dimensional disasters [8]. As an extension and extension of machine learning neural
network algorithms, deep learning can effectively handle high-dimensional scene problems in massive data
classification and regression processing [9].

Aiming at the problems of weak model detection ability and low efficiency in most existing anomaly
detection methods, as well as poor universality of most existing traceability methods, a measurement labora-
tory detection data traceability and analysis method based on intelligent IoT and deep belief networks (DBN) is
proposed, which utilizes intelligent IoT architecture and deep learning algorithms to achieve deep data
analysis. The innovation of the proposed method lies in the following:
1) Unlike traditional DBN models, which have difficulty handling continuous data, the proposed method

introduces the Gaussian Bernoulli-Restricted Boltzmann Machine (GBRBM) to improve the DBN model
and uses it for learning the ledger data sample library to achieve the judgment of normal and abnormal
operation status of measuring devices, thereby ensuring the accuracy of subsequent traceability results.

2) Compared to the problem of poor traceability performance in most methods, the proposed method uses a
stacked denoising autoencoder model to extract historical electricity consumption curve features of
metering devices in order to construct a sample library of electricity consumption curve fault features
and further analyze abnormal devices through this sample library to obtain more accurate tracing results
of metering device faults.

In addition, the formula variables used in the text are shown in Table 1.
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2 Related researches

At present, the commonly used methods for anomaly data detection and analysis mainly include statistical-
based detection algorithms, distance or density-based detection algorithms, as well as later developed neural
network detection methods, support vector methods, and clustering analysis methods. Wu et al. [10] proposed
a data anomaly detection method based on improved kernel density estimation. On the basis of the traditional
kernel density estimation theory, the adaptive diffusion equation theory was introduced, and the best window
width value was selected to achieve a high fitting of data distribution, ensuring the detection effect. However,
this method is based on density expansion detection and has significant limitations. Dai et al. [11] proposed a
density-based clustering algorithm DBSCAN for data anomaly detection. By mining the correlation between
datasets and combining it with the DBSCAN algorithm for detection, the model was updated in real-time using
a parameter self-selection mechanism. However, this model only detects anomalies in correlation, and its
analytical ability is not strong. Xu et al. [12] proposed a novel and robust data anomaly detection method using
learning active learning (LAL) and the AdaBoost algorithm. LAL solved the biased classification problem
caused by unbalanced data and extracted data features using wavelet packet transform. This method can
ensure good detection performance, but the LAL model has a strong greed for data and uncertainty. Mao et al.
[13] proposed a data anomaly detection method that combined generative adversarial networks with auto-
encoders, in which time series data were converted into Graeme angle domain images, and advanced com-
puter vision methods were incorporated into the network for analysis. Most existing anomaly detection
methods have problems such as weak model detection ability and low efficiency.

In addition, the traceability study of abnormal data points is beneficial for the operation and monitoring
center’s work and has engineering application value. Caiyun et al. [14] proposed a distributed traceability
model based on digital watermarking and blockchain in edge computing, which improved the security of the
traditional traceability model by dividing internal and external regions and electing master nodes. However,
the model focuses on security and has a poor ability to analyze anomalies. Fu et al. [15] proposed a traceability
and interaction mechanism for spatial image data to achieve traceability and traceability during data proces-
sing. It utilized grid code partitioning and indexing techniques to preprocess spatial image data to improve
data retrieval efficiency. The core algorithm of this mechanism is a fast and practical Byzantine fault-tolerant
algorithm based on an alliance chain. Li et al. [16] proposed a continuous commutation fault tracing method
for multi-infeed direct current systems, in which the influence of contact impedance on the probability of
continuous CF occurrence was quantitatively calculated, and the fault cause was analyzed by comparing
weight factors. However, this method only traces the source from a physical implementation perspective

Table 1: Annotations for full-text variables

Variable Definition

ai The biases of visible unit
bj

The biases of hidden unit

ωij The connection weight between visible and hidden units
σ Standard deviation of Gaussian noise for visible units
μ Mean value of Gaussian noise for visible units

( )G μ σ, i
Gaussian function

ε Learning rate
〈 〉⋅ E

The expected values of real data

〈 〉⋅ Y
The network output values

δ The activation function, ( ) ( ( ))= +δ x x1/ 1 exp

{ }γ λ,
1

1
Encoding parameters

{ }γ λ,
2

2
Decoding parameters

d The offset between the hidden layer and the input layer
φ The mapping function from the input layer to the hidden layer
ζ The noise reduction factor
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and lacks universality. Wang et al. [17] proposed a fault traceability model based on the fusion of historical
production cases and process data information. The model determined the defect cause tag through text
similarity calculation, used the L1 regularization method for feature selection, and used the XGBoost integra-
tion method to train the correlation model between process data and defected to determine the contribution of
each feature in the data source. Based on the D-S evidence theory, different rules were set to determine the
source of the fault. However, this method lacks an effective feature extraction model, which directly affects the
traceability effect. Li et al. [18] proposed a composite welding quality traceability model, which included a
quality early warning method based on a long short-term memory network (LSTM) and an optimization
algorithm for quality data backtracking query. Through training the early warning model and query optimi-
zation algorithm, quality traceability was achieved. The LSTM model can distinguish between good and bad
quality, but the query optimization algorithm lacks an effective analysis strategy, resulting in unsatisfactory
traceability results. At present, there is relatively little research on the traceability of data anomalies, and the
traceability of anomalies in metrology laboratories is still in its infancy. Most existing traceability methods
have poor universality.

3 Architecture of measurement laboratory based on intelligent IoT

The intelligent IoT system consists of a cloud platform, edge IoT agent with edge computing framework and edge
side application, perception layer terminal, and the thing model running through it, forming a four-level system
hierarchy of “cloud-management-edge-end” [19,20]. The Smart IoT has achieved significant results in the analysis
of remote sensing images. Based on this, a metrological experimental data analysis mechanism based on the
Smart IoT has been designed, as shown in Figure 1 [21]. In terms of overall architecture, it can be divided into an
on-site perception layer and edge autonomy layer, as well as a remote supervision layer for headquarters.

Cloud refers to the IoT management platform and various professional upper-level applications deployed
in the cloud, such as training and improving DBN models, abnormal data traceability analysis, etc.
Management refers to all kinds of remote communication networks connected to the edge side and cloud
side. Edge refers to the software and hardware systems deployed on the regional scene with edge computing
and cloud edge interaction capabilities, which process system data nearby, such as data anomaly analysis. End
refers to all kinds of terminals and sensors deployed inside or near the collection object.
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network, wireless public network, internet
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Figure 1: Architecture of measurement laboratory based on intelligent IoT.
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The perception layer mainly deploys various sensing devices for data collection, utilizing wired, wireless
fidelity, long-distance radio, radio frequency identification, Bluetooth, and other components to form the IoTs
for local communication. The edge autonomous layer mainly deploys various types of edge IoT agents
equipped with the edge computing framework and implements edge-in-place analysis, smart site manage-
ment, and cloud edge collaborative interaction in three functional forms, namely, edge-to-end separation,
edge-to-end integration, and edge nodes, facing different management needs on the site. The remote super-
vision layer mainly deploys platform application functions such as real-time alarm, comprehensive query,
advanced analysis, and interface service.

4 Data anomaly analysis method based on improved DBN

4.1 Constructing a sample library for measuring laboratory testing ledger

Before conducting an abnormal analysis of measurement laboratory testing data, it is necessary to analyze the
influencing factors of the normal operation of measurement devices and determine the dimensions of data
mining. Mainly considering five aspects: electricity consumption environment, meteorological factors, dif-
ferent types of metering devices, operating hours, engineering quality, and historical electricity consumption
curve data. The first four aspects belong to ledger data, and the historical electricity consumption curve data
belong to real-time data of the electricity consumption information collection system. In order to have
sufficient samples for the model to learn, the curve length is taken as 1 month, with 96 points per day.

The electrical environment and meteorological factors can have a significant impact on the reliability of
metering devices and even cause meter failures, such as abnormal energy meters caused by atmospheric
corrosion of chloride salts in the operating environment, external force damage during operation, lightning
strikes, etc. Due to the large number of suppliers of measuring devices and the differences in internal design
and components among different measuring devices, the failures of measuring devices often exhibit familial
defects. There is a high possibility of the same type of failure occurring in the same batch of measuring devices
from the same manufacturer. An increase in operating time will lead to a decrease in the operational
reliability of the metering device, which has a certain expected lifespan. As the operating time increases,
the aging of its components and battery loss will both make the meter more prone to failure. For example,
hardware damage include error tolerance, capacitor damage, battery damage, etc. Engineering quality issues
can also affect the operation status of electricity meters. Engineering quality issues can be divided into meter
quality and installation quality issues, including false soldering, foreign objects in the meter, short circuits of
solder joints, incorrect parameter settings, reverse connection of incoming and outgoing lines, or phase errors.

Based on the analysis of the influencing factors of metering device failures mentioned above, multiple
ledger attributes were selected as feature vectors, and the data consist of two categories: (1) Components of
electricity consumption environment and meteorological factors. Dimensions such as usage region and
industry category can be selected for electricity consumption environment and meteorological factors. (2)
Different types of measuring device components. Select three dimensions for the components of the measuring
device, namely category, manufacturer, and rated current. Select 8,000 pieces of measurement device data
from the marketing business system and electricity information collection system as samples, and after
screening, the remaining 6,498 pieces of data are used as samples to construct a sample library of measure-
ment laboratory testing accounts. The sample data include various attribute values of normal and faulty
devices, and data collection and organization of account attributes such as usage area, category, manufacturer,
industry category, and calibration current are carried out.

4.2 GBRBM

The restricted Boltzmann machine (RBM) is an undirected probability graph model with a bipartite graph
structure, including a visible layer v composed of m neurons and a hidden layer h composed of n neurons.
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Each node in the layer is not connected to each other and is independent of each other [22]. Due to the fact that
both the visible and hidden layers of traditional RBM are binary units, the values are both 0 and 1. The
vibration signal is a set of continuous time series data, and the binary unit model is not conducive to the
operation of continuous data. Therefore, the proposed method introduces continuous values of independent
Gaussian distribution in traditional RBMmodels to process continuous data, limiting the output value of RBM’s
structural units to continuous values between 0 and 1.

GBRBM is jointly proposed by Krizhevsky and Hinton and is used to model the Boltzmann machine model
of nonbinomial distribution data [23]. GBRBM assumes that the variable of the visible layer is the Gaussian
distribution and the variable of the hidden layer is the Bernoulli distribution. Its energy function is defined as
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4.3 Improved DBN model

In order to solve the problem of the poor fitting effect of traditional RBM for data reconstruction of non-
binomial distribution, a GBRBM-DBN model is proposed, which consists of a GBRBM, several RBMs, and a
Softmax classifier, as shown in Figure 2.
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Figure 2: Structure of an improved DBN.
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RBM, ensuring optimal feature vector mapping within the layer and maximizing the preservation of original
feature information. Finally, the characteristic signals obtained from the layer-by-layer pre-training are input
to the Softmax layer through a fully connected network. With cross entropy as the loss function, the Adam
optimization algorithm is used to carry out a top-down supervised reverse fine-tuning of the network para-
meters to complete the training of the entire GBRBM-DBN network. The training time of the GBRBM-DBN
network model is significantly reduced, and it is closer to the true value, which has a significant advantage in
the fast and accurate processing of massive data.

Among them, GBRBM, like traditional RBM, uses the CD algorithm for pre-training. The CD algorithm uses
the K-L distance between the estimated probability distribution and the true probability distribution as a
metric criterion and performs g-step Gibbs sampling on each batch of training samples to generate samples
with maximum probability.

The maximum value of the likelihood function is obtained by using the random gradient rise method, and
the network parameter update rules are as follows:
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4.4 Analysis process for abnormal detection data in metrology laboratory

Due to its ability to capture high-level abstract features in data, strong representation ability for complex data
structures, and more stable model training, the DBN model is used to analyze complex metrology device data.
Meanwhile, the DBN model utilizes RBM to generate distribution factors for training data, resulting in higher
learning efficiency. Additionally, the improved DBN model based on GBRBM can quickly and accurately process
massive amounts of data. Therefore, the GBRBM-DBNmodel is used for the analysis of massive detection data in
metrology laboratories. Specifically, the detection ledger sample library data are input into the improved DBN
model for learning to obtain abnormal detection data. The overall process is shown in Figure 3.
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Figure 3: Data anomaly analysis process based on improved DBN.
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First, divide 6,498 samples into a training set and a testing set in a 5:1 ratio. In the process of using the
training set for model training, the training data are input to the underlying nodes of GBRBM-DBN, and the
weightsω, visible node biases, and hidden layer node biases (a,b) between each layer are trained. The obtained
feature data are then input to the Softmax classifier for analysis. According to the network update rules and
iteration termination conditions, the optimal GBRBM-DBN model is obtained.

Then, during the model testing process, the test data are input into the trained GBRBM-DBNmodel, and the
Softmax classifier is used to output the abnormal analysis results of the detection data to determine whether
the measuring device is abnormal. Finally, trace and analyze the abnormal measuring devices to identify the
cause of the abnormality and improve maintenance efficiency.

5 A method for traceability of measurement laboratory testing
data based on stacked denoised autoencoder (SDAE)

5.1 SDAE

The autoencoder includes encoding and decoding processes, which can convert input data X to hidden layer
data Y and then decode it to Z [24]. The automatic encoder directly analyzes the complete input data, and once
the input dataset changes, the adaptability of the model will also be significantly reduced. Therefore, in order
to improve the adaptability of the model, a denoising automatic encoder (DAE) is proposed, which can set the
values of certain positions in the input data to 0 with a certain probability distribution, equivalent to involving
“bad” data X˜ in the iterative process of the network, in order to learn robust features [25,26]. The mathematical
expression of the DAE learning process is as follows:

( )

( )

⎧
⎨
⎩

= +
= +

Y δ γ X λ

Z δ γ X λ

˜

˜

.

1
1

2
2

(7)

Due to the limited ability of a single DAE to mine hidden data information, it is usually necessary to stack
multiple DAEs, resulting in an SDAE model composed of multiple DAE models. SDAE can learn deeper features
in input data than a single DAE, and its network structure is shown in Figure 4.

1x

2x

3x

nx

~
1x

~
2x

~
3x

~nx

Input 

layer

Randomly 

mapped 

data

First 

hidden 

layer 

The n-th 

hidden 

layer

Label 

layer

…

Figure 4: Structure of SDAE network.
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The training process of SDAE includes unsupervised layer-by-layer pre-training and supervised fine-
tuning. After randomly mapping the hidden layers of each individual DAE, set the data at certain positions
to 0 and then use it as input for the next DAE, and so on, to form a complete SDAE network.

5.2 Proposed traceability method for measurement laboratory testing data

The historical operation data of the metering device reflect the operating health of the electricity meter. For
the smart meter in normal operation, the metering and detection organization can normally collect its current,
voltage, active power, reactive power, meter reading electricity, and other data, which reflects the operating
status of the device. Devices with a high potential for failure often operate in a hidden and abnormal state, and
their operating data differ from the original normal operating data, but the difference is small and cannot
meet the fault diagnosis standards of measuring and testing institutions. Therefore, the extraction of abnormal
indicators from real-time operational data can be used as an evaluation of the health status of measuring
devices.

In order to provide sufficient samples for the model to learn, the curve length is taken as 1 month, with 96
points per day, and the curve categories are current, voltage, and power. Due to the large amount of current
and power data collected by measuring devices, directly using curve data as model attributes can lead to
excessive dimensionality, directly affecting the calculation time and traceability accuracy of the model [27–31].
Meanwhile, short-term curve data cannot reflect the operating status of the device over a longer period of time
and commonly used neural networks such as LSTM are difficult to handle long time series, and the model is
more complex. SDAE has good deep-level feature extraction and adaptive capabilities. In order to obtain the
overall situation of real-time electricity consumption curve data as much as possible and facilitate deep
feature extraction of the model, SDAE is used to extract features of current and power, and a fault feature
sample library of the electricity consumption curve is constructed.

The input curve fault feature sample library of the measuring device that is determined to have abnorm-
alities through the ledger sample library will be used to calculate the similarity between the operating curve
characteristics of the testing measuring device and the fault curve characteristics. Based on the results, it will
be determined whether the measuring device has malfunctioned, achieving abnormal traceability of the
measuring device. The abnormal traceability process of measuring devices based on SDAE is shown in
Figure 5.
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Figure 5: The abnormal traceability process of measuring devices based on SDAE.
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1) Set up 96 input nodes in the SDAE input layer and receive a current or power sequence of 1 96 point input.
Among them, the GBRBM-DBNmodel determines the existence of abnormal metering devices, and the input
current or power is the sequence from the day before the abnormality occurs.

2) The input layer maps abnormal data to the hidden layer through random mapping and learns key feature
information from the abnormal data X˜

m
. The features of X˜

m
are represented by f

( ) ( )= = +f φ X δ ϖX d˜
,

m m
(8)

where ϖ is the weight value.
3) Reconstruct abnormal data XΘ output without noise, i.e., a 96 point time series. In order to ensure that the

output time series is as consistent as possible with the initial time series while reducing noise and retaining
all key information of the initial series, it is necessary to minimize the reconstruction error function to
obtain optimal parameters. The reconstruction error function L is shown as follows:

∥ ∥ ∥ ( ) ∥= − + −L ζ

n

X X

n

φ X X

1

2

1

2

˜
.Θ Θm

2

m

2 (9)

After the training of the SDAE network is completed, the reconstruction error is small, and it is
considered that the extracted features at this time are typical. The features extracted from the hidden
layer, namely the historical current curve and power curve, are condensed into two 24 point feature
sequences. Classify the current characteristics and power characteristics of faulty meters into two cate-
gories and construct a fault feature sample library for electricity consumption curves.

4) Due to the time correlation of the data collected by the measuring device, its distribution will change over
time. Therefore, a sliding windowmodel is used to place the newly collected data and the latest time data in
the same window, and the output is compared and analyzed with the fault curve characteristics. In the
sliding window model, k represents the size of the sliding window, with windows 1 and 2 at time t − 1 and t,
respectively. When new data are collected at the next moment, the window slides to the right, sliding the
samples to be analyzed into the window, and sliding some of the analyzed samples out of the window.
Finally, output the sample data in the new window.

5) When comparing the power consumption curve features of the target metering device output through the
sliding window model with the fault features, cosine similarity is used to evaluate the similarity between
the two features. The cosine similarity D icos

reflects the similarity between the fault characteristic curve x
of the electricity consumption curve and the change trend of the electricity consumption curve character-
istic y of the target metering device. The closer the value is to 1, the more similar it is. D icos

is calculated as
follows:
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∑
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(10)

where Q is the length of the characteristic vector of the electricity consumption curve, with a value of 24; xq, y
q

represents the characteristic components of the q-th point on the power fault characteristic curve and the
target metering device’s power consumption characteristic curve, respectively. When D icos

approaches 1, it
indicates that the reason for the abnormality of the target metering device is the existence of this type of
electrical fault, and the tracing is completed. On the contrary, the target metering device is normal.

6 Experiments and analysis

The experiment was implemented on the MATLAB R2017a platform and ran on a dedicated server with a
1.9 GHz dual-core CPU and 32 GB of memory. The experimental environment configuration is shown in Table 2.
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At the same time, 2,000 electricity meters are randomly selected from the distribution area of a certain city
for testing. The model, operating time, and environment of the electricity meters are all inconsistent, with a
total of 98,416 testing points. Model parameter settings: The number of iterations is 500, the learning rate is
0.001, the batch size is 100, and ζ is 0.02.

6.1 Evaluation index

The experiment measures the performance of the algorithm from two aspects: accuracy and computational
time. The algorithm accuracy includes the accuracy, false positive rate (FPR), and recall rate (Recall) of
anomaly detection analysis, which are calculated as follows:

∣ ∣ ∣ ∣

∣ ∣ ∣ ∣

∣ ∣ ∣ ∣

=
=

=

A Y Y Y

F Y Y Y

R Y Y Y

ˆ
& /

ˆ

ˆ
& ¯ /

ˆ

ˆ
& / ,

cc

PR

ecall

(11)

where Y represents the true abnormal state in the original data, Yˆ is the abnormal state obtained through
abnormal analysis method analysis, and Ȳ is the average abnormal state.

In addition, the time indicator is chosen as the average execution time of different methods executing the
same number of times.

6.2 Determination of model structure

The number of hidden layers of the model has a certain impact on the experimental results. If the number of
layers is too large, it will not only increase the operation time, but also cause overfitting, affecting the accuracy
of analysis. The selection of layers is too small to deeply learn feature phasors and cannot extract abnormal
features well, resulting in insufficient accuracy. Therefore, 200 samples were selected for training and 50
samples for testing. The relationship between the number of hidden layers and analysis accuracy is shown in
Figure 6.

From Figure 6, it can be seen that when the hidden layer of the improved DBN model is three layers, the
analysis accuracy reaches the highest 95%. Increasing the number of hidden layers does not increase the
accuracy but may actually decrease it. When the number of hidden layers reaches the seventh layer, the
accuracy is even lower than 93%. Therefore, the hidden layer of the improved DBN model is set to three layers.
Similarly, when the hidden layer of the SDAE model is four layers, the analysis accuracy reaches the highest
94.6%. The increase in the number of hidden layers does not improve the analysis accuracy, but rather
decreases. When the hidden layer is eight layers, the accuracy of the SDAE model decreases to 92.5%, and
an increase in the number of hidden layers greatly increases the learning time of the model. Therefore,
considering all factors, the hidden layer of the SDAE model is set to four layers.

Table 2: Experimental environment settings

Experimental environment Configuration

Programming Language Python 3.8
Deep learning framework Pytorch 1.10
Operating system Ubuntu1.04
GPU NVIDIA Tesla A100 80GB
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6.3 Comparison of abnormal analysis results between different models

The improved DBN model processes continuous data by introducing an independent Gaussian distribution. In
order to demonstrate the performance difference between it and traditional DBN models, the two were
compared and trained, and the results are shown in Figure 7.

From Figure 7, it can be seen that after 350 iterations, the improved GBRBM-DBN model tends to stabilize
with an accuracy rate of over 95%. The DBN model tends to converge after 420 iterations, and the accuracy
decreases by 2% compared to the improved DBN model. This indicates that introducing the GBRBM layer into
the DBN model can improve the model’s anomaly analysis ability and accelerate convergence.

In order to verify the data anomaly analysis performance of the improved DBN model, it was compared
and analyzed by Wu et al. [10] and Xu et al. [12]. Among them, Wu et al. [10] use traditional detection models,
while Xu et al. [12] use deep learning models, which are comparable to the proposed improved DBN model.
Input the sample database of the ledger into four models, and the evaluation indicators (accuracy, FPR, and
recall rate) of the analysis results are shown in Table 3.

From Table 3, the proposed GBRBM-DBN model has the best performance, with accuracy, FPR, and recall
rate reaching 95.51, 4.49, and 93.08%, respectively. This is because the improved DBN model adopts a layer of
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Figure 6: The relationship between accuracy and the number of hidden layers: (a) improved DBN model and (b) SDAE model.
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Figure 7: Performance comparison of the DBN model before and after improvement.
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GBRBM, which can better handle continuous sample library data. At the same time, compared to other models,
the model has stronger deep learning ability, so the anomaly analysis effect is the most ideal. Wu et al. [10] use
the improved kernel density estimation method to detect data anomalies, but this method has greater limita-
tions, and the detection accuracy is 8.32% lower than the proposed method. The combination of LAL and
AdaBoost algorithms in Xu et al. [12] for data anomaly detection can ensure a good detection accuracy of
92.25%. However, the uncertainty of the LAL model leads to unstable analysis results of this method. Therefore,
overall, the proposed method has significant advantages in analyzing abnormal metering devices.

6.4 Analysis of traceability results

The accuracy of traceability analysis results is crucial. Compare the proposed SDAE + GBRBM-DBN method
with SDAE, SDAE + DBN, and select 200 electricity consumption curves as samples for training. The FPR under
different iteration times is shown in Figure 8.

From Figure 8, it can be seen that when the number of iterations reaches 150, the error detection rate of
the SDAE + GBRBM-DBN model reaches a stable state, approaching 8%. However, the SDAE + DBN model has
some fluctuations in the entire training process due to not considering the time continuity of the data, and the
error detection rate has improved. The learning and analysis ability of a single SDAE model is poor, resulting
in a false detection rate of nearly 20%. From this, it can be argued that the proposed SDAE + GBRBM-DBN
method has the best effect on the traceability analysis of anomalies in measuring devices.

Select 20 non-abnormal electricity meters and 20 abnormal electricity meter ledger data as the test set and
use the proposed method to test the electricity meters in this test set. Extract the electricity consumption curve
data judged as abnormal electricity meters and input it into the electricity consumption curve fault feature
sample library for anomaly tracing. The electricity consumption curve attributes are the current and power
sequences extracted through feature extraction. Using cosine similarity for similarity calculation, determine a

Table 3: Data anomaly analysis results for different models

Model Accuracy (%) FPR (%) Recall (%)

Ref. [10] 87.19 12.81 85.24
Ref. [12] 92.25 7.75 90.31
GBRBM-DBN 95.51 4.49 93.08
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Figure 8: Analysis error under different iterations.
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faulty meter as one that has a similarity of more than 0.8 between the electricity consumption characteristic
curve and the fault characteristic curve. The ID and fault tracing results of some test meters are shown in
Table 4.

According to the test results in Table 4, for the smart meter with abnormal points, the accuracy of the fault
traceability test is 86.7%. However, for the smart meter without abnormality, there is also some judgment
deviation in fault traceability. For example, for the normal meter with ID 1006581, the traceability result is
fault. Overall, the proposed method has a traceability accuracy of over 85% and has high detection accuracy.

6.5 Comparative analysis of different traceability methods

To demonstrate the performance of the proposed method, it was compared with the studies by Fu et al. [15]
and Wang et al. [17]. Select 120 measuring devices to be analyzed and divide them into six groups. Use four
methods to perform traceability analysis on the six groups of devices. The accuracy of the actual status and
judgment results calculated is shown in Figure 9.

From Figure 9, it can be seen that the proposed method has the highest overall traceability analysis
accuracy, and the data in each group has little fluctuation and good stability. The Byzantine fault-tolerant
algorithm for the alliance chain proposed by Fu et al. [15] has certain requirements for system settings,
resulting in poor analysis performance, low accuracy, and significant fluctuations. Both Wang et al. [17]
and Li et al. [18] involve reasonable traceability strategies, ensuring the reliability of traceability results
with an accuracy rate of approximately 80%. However, compared to the proposed method, its analysis results
are unstable, and accuracy still needs to be improved.

Based on the above analysis, the analysis accuracy and traceability time of different traceability methods
are shown in Table 5.

From Table 5, it can be seen that the accuracy and time consumption of the proposed method’s traceability
results are 88.72% and 3.949 s, respectively. Compared with other methods, the traceability accuracy has a
significant advantage. This is because it combines SDAE and GBRBM-DBN models, ensures the accuracy of the
measurement device’s detection of data anomalies through the GBRBM-DBN model, and extracts high-

Table 4: Electricity meter traceability test results

Meter ID Actual state Traceability judgment results

2649931 Faulted Fault
3029048 Faulted Fault
3073675 Faulted Fault
1466522 Faulted Fault
4105960 Faulted Normal
5685007 Faulted Fault
4115663 Faulted Fault
2745001 Faulted Fault
3029083 Faulted Fault
4105962 Faulted Normal
5685007 Faulted Fault
2445835 Faulted Fault
2553740 Faulted Fault
0405580 Faulted Fault
1110705 Faulted Fault
1006581 No failure Fault
3073653 No failure Normal
2573449 No failure Normal
8959276 No failure Normal
9315640 No failure Normal
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precision features in combination with SDAE to ensure the reliability of the traceability results at multiple
levels. However, this method combines two deep learning algorithms, which take a long learning time and
therefore increase the time consumption compared to some methods. Fu et al. [15] use the Byzantine fault-
tolerant algorithm based on the alliance chain for traceability, which is simple and easy to implement.
Therefore, the traceability time is short, only 2.196 s, but the accuracy is less than 70%. Wang et al. [17]
determined the defect cause tag through text similarity calculation, extracted defect features using L1 reg-
ularization and XGBoost integration methods, and determined the fault source based on D-S evidence theory.
Although this method improves the traceability accuracy compared to Fu et al. [15], the lack of defect identi-
fication methods directly affects the traceability effect, reducing the accuracy by 12.77% compared to the
proposed method. Li et al. [18] proposed the LSTM-based quality early warning method and the quality
data backtracking query optimization algorithm and identified defects through the LSTM model. However,
compared with the SDAE model of the proposed method, the query optimization algorithm has poor learning
performance, so the traceability accuracy is reduced by 6.05%. Due to the short time consumption of the query
optimization algorithm, the traceability time of this method is reduced to 2.571 s.

7 Conclusion

The construction of an intelligent measurement laboratory is crucial for the high-quality development of the
power grid. In order to improve the laboratory’s testing capabilities, a measurement laboratory testing data
traceability and analysis method based on intelligent IoT and DBNs has been proposed. Under the system
architecture of the Intelligent IoT, the edge side utilizes an improved DBN model to learn and analyze the
ledger data sample library and completes the identification of abnormal measurement device data. Deploy
SDAE in the cloud center to extract historical electricity consumption curve features and build a sample
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Figure 9: Traceability analysis results of different methods.

Table 5: Result indicator values for different traceability

Method Accuracy (%) Time (s)

Ref. [15] 64.13 2.196
Ref. [17] 75.95 4.207
Ref. [18] 82.67 2.571
Proposed method 88.72 3.949
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library, and send abnormal measurement devices to the sample library for traceability analysis to clarify the
cause of the abnormality. Based on the selected dataset, experimental verification was conducted on the
proposed method, and the results showed that
1) The GBRBM–DBN model can quickly analyze abnormal data and has the best learning performance, with

accuracy, FPR, and recall rate reaching 95.51, 4.49, and 93.08%, respectively.
2) The combination of SDAE and GBRBM–DBN models can quickly and accurately trace the source of

abnormal electricity meters. The accuracy and time consumption of the tracing results are 88.72% and
3.949 s, respectively. Moreover, the stability of the tracing analysis is good, and the overall effect is better
than other comparative methods.

At present, the application of blockchain technology in the field of traceability analysis is increasing. By
saving traceability information in the blockchain ledger, traceability information can be quickly traced and
not tampered with. In the following research, the focus will be on combining blockchain technology for
traceability analysis and improving this technology to improve traceability accuracy while ensuring data
security.
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