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Abstract: Identification and classification of bugs, e.g., security and performance are a preemptive and
fundamental practice which contributes to the development of secure and efficient software. Software
Quality Assurance (SQA) needs to classify bugs into relevant categories, e.g., security and performance bugs
since one type of bug may have a higher preference over another, thus facilitating software evolution and
maintenance. In addition to classification, it would be ideal for the SQA manager to prioritize security and
performance bugs based on the level of perseverance, severity, or impact to assign relevant developers whose
expertise is aligned with the identification of such bugs, thus facilitating triaging. The aim of this research is to
compare and analyze the prediction accuracy of machine learning algorithms, i.e., Artificial neural network
(ANN), Support vector machine (SVM), Naive Bayes (NB), Decision tree (DT), Logistic regression (LR), and
K-nearest neighbor (KNN) to identify security and performance bugs from the bug repository. We first label
the existing dataset from the Bugzilla repository with the help of a software security expert to train the
algorithms. Our research type is explanatory, and our research method is controlled experimentation, in
which the independent variable is prediction accuracy and the dependent variables are ANN, SVM, NB,
DT, LR, and KNN. First, we applied preprocessing, Term Frequency-Inverse Document Frequency feature
extraction methods, and then applied classification algorithms. The results were measured through accuracy,
precision, recall, and F-measure and then the results were compared and validated through the ten-fold cross-
validation technique. Comparative analysis reveals that two algorithms (SVM and LR) perform better in terms
of precision (0.99) for performance bugs and three algorithms (SVM, ANN, and LR) perform better in terms of
F1 score for security bugs as compared to other classification algorithms which are essentially due to the linear
dataset and extensive number of features in the dataset.

Keywords: bug classification, security bug, performance bug, text mining, bug prediction

1 Introduction

An error, defect, or fault in software is known as a bug. A bug is identified in the software after the testing
phase. The developer allows users to report bug by bug tracking systems such as Bugzilla, Eclipse, etc. [1].
Software bug management involves the identification, classification, prediction, storage, prevention, and
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reporting of bugs, these tasks are used to find and remove the bugs [2]. Software bug classification is the task of
categorizing the bug into various predefined categories. A software bug has several attributes like bug
summary, bug description, bug-id, bug type, assigned-to, product, component, etc. [3]. When we focus on
quality attributes and bugs at the same time, we categorize software bugs as security bugs, performance
bugs, reliability bugs, usability bugs, etc. [4]. This research focuses on the classification of security and
performance bugs that have a significant impact on the cost of system development [5].

The most crucial aspect of software quality is its security. The goal of security is to keep the system safe
from things like weak authentication, virus injection, buffer overflows, XSS vulnerabilities, unauthorized
access, encryption mistakes, and information loss. Performance defects are found during performance testing
and are related to the speed, stability, response time, and resource consumption of the software. When a
program malfunctions and is unable to use its allotted resources for specific tasks, it is considered a perfor-
mance bug [6]. Usability flaws make an application difficult to use, which reduces the user’s enjoyment of the
program. Test engineers and UX designers compare software to usability requirements in order to find
usability flaws. Bug classification improves the overall efficiency of the testing and development processes,
expedites the fixing of defects, and has an impact on the assessment of the effectiveness of the development
process based on defect severity and priority levels.

Text mining is the task of mining meaningful information from a large volume of text [7]. Text mining
includes preprocessing, feature extraction, feature selection, and classification steps [8,9]. Preprocessing
includes the following steps: Data cleaning, stop words removal, tokenization, stemming, lemmatization,
spelling correction, etc. [10,11]. Preprocessed data are given to machine learning (ML) algorithms as input
that uses statistical analysis to predict an output. We have various types of bug tracking tools available in
software testing that help to track the bug, which is related to the software. Bugzilla is an open-source bug-
tracking tool, which is most widely used by many software organizations to track bugs. Bugzilla supports
various operating systems such as Windows, Linux, and Mac. ML is broadly categorized into supervised
learning and unsupervised learning. Supervised learning is performed on labelled data. Unsupervised
learning performs on unlabeled data [12,13].

Developers enable users to report bugs through bug tracking programs like Eclipse, Bugzilla, and so forth.
When a software system is being maintained or developed, a triager frequently needs to speak with a bug report
type. The objective is to identify the areas of a project that require additional attention because they are not
functioning well. When a new bug is reported, a triager (such as the manager) tries to categorize it so that expertise
can be used to fix or resolve it. When there are not many bug reports, the task is small. But as time goes on, more
bug reports are filed, and triagers find it increasingly difficult to sift through such a large volume of reports [14].

1.1 Research contribution

The purpose of our experiment is the comparative analysis of supervised classification algorithms on security
and performance-related bugs. Improving the bug report prediction accuracy can be done by removing the
noise, selecting the important features, adding stop word and start word lists, and using Term Frequency-
Inverse Document Frequency (TF-IDF) and N-gram. In this research, we compare and analyze the prediction
accuracy of ML algorithms while predicting security and performance bugs through text mining/Natural
Language Processing (NLP). Our contribution includes:
1. Creation of a new dataset of 1,000 instances from the Bugzilla repository for identification and then
labelling security and performance keywords.
2. Preprocess labelled data by:
a. Removing start and stop words through TD-IDF and N-gram.
b. Standardizing the distribution gap between the source and target dataset.
c. Class balancing through CTGAN.
3. Extraction of significant features and identification of security and performance bugs through ML algo-
rithms by application of Support vector machine (SVM), Artificial neural network (ANN), Logistic regression
(LR), K-nearest neighbor (KNN), and Naive Bayes (NB).
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4. Compare and analyze classification accuracy of performance and security bugs through various classifica-
tion algorithms using standard metrics, i.e., accuracy, precision, recall, and F1.

This study is divided into four sections. Section 1 describes the Introduction, Section 2 gives the back-
ground knowledge, Section 3 presents the related work of bug report classification, and Section 4 introduces
the proposed approach. Section 5 explains the experiments and results of the proposed approach. The con-
clusion and future work are discussed in Section 6.

1.2 Background

The goal of our work is to classify security and performance bug(s). We therefore select supervised classifica-
tion algorithms, e.g., SVM, NB, ANN, Radial basis function (RBF), KNN, and LR. Each algorithm choice is justified
based upon its suitability for the dataset.

SVM is a supervised algorithm used for both classification and regression purposes. The main principle of
SVM is to determine separators in the search space that can separate the two classes. The SVM finds hyper-
plane using support vectors and margins [9,15]. SVM kernels are used for different classification tasks, some
well-known kernel functions are: linear, polynomial, radial basis, and sigmoid. The SVM classifier is useful in
large-scale scenarios in which a large amount of unlabeled data and a small amount of labelled data are
available. It enhances classification performance by eliminating unrelated features [16]. SVM is well suited to
deal with learning tasks where the number of features is large with the number of training instances. It takes
less computational time. The SVM method is widely used in many applications such as pattern recognition,
face detection, spam filtering, and text categorization [17,18].

Naive Bayes is a probability-based classifier that applies the Bayesian theorem [19]. In this algorithm, all
attributes are equally important and independent of each other. It assumes that the probability of an event is
based on previous knowledge and the history of events [3]. When the number of features is high, the prob-
ability calculation is difficult, so feature filtering is an effective way. There are two classes C = S (security bug
report, SBR) and C = B (performance bug report) in the bug report analysis [20].

(P(BIOP(C))

PCB) = 5B) « PBIOPC)”

Naive Bayes can either have the Bernoulli Model in which a document is represented by a vector of binary
features and the frequency of words is ignored. If the vocabulary size is low, Bernoulli performs outclass or
multinomial model to capture the word frequencies in a document by representing the document as a bag of
words. The multinomial model is always good for large vocabulary sizes [18,21]. The precision rate decreases if
the amount of dataset is less. Naive Bayes is mostly used for text classification applications [9].

A neural network is made up of connected artificial neurons which work like a human brain. The output
of each neuron is determined by using an activation function such as sigmoid, logistic, and Tan. In supervised
learning, neural networks (NN) are trained with a pattern of known classes [15]. The most frequently used
feed-forward neural networks of classification are multilayer perception and RBF [3]. In multi-layer percep-
tion (MLP), neurons are placed in different layers that are connected through certain weights. MLP contains
input, hidden, and output layers [18]. ANN performs more efficiently when the number of input data is large
[17]. ANN is mostly used in text classification and pattern recognition.

KNN is introduced by the nearest neighbor algorithm which is designed to find the nearest point of the
observed object. The main idea of KNN algorithms is to find the K-nearest points [22]. KNN is a lazy ML
algorithm. It works well with a small number of input variables and does not perform well on imbalanced
data. KNN inherently has no capability of dealing with a missing value. The performance of the algorithm
depends on the number of input sizes. It has wide applications in different fields such as pattern recognition,
text classification, analysis of image database clusters, etc.
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Logistic regression is among the oldest classification techniques. A linear classifier having a decision
boundary is called LR. Instead of predicting classes, it predicts probabilities. It is effective to use a logistic
regression classifier to predict categorical outcomes. Nevertheless, the prediction necessitates the indepen-
dence of every data point [23]. LR is simple to use, has low processing resource requirements, and no pre-
processing of input features are needed. Survey analysis, marketing, medicine, and credit scoring issues are
among the fields that use LR.

2 Literature review

Software defect classification plays an important role in improving the quality of software. It can be used to
reduce efforts and costs related to resolving the bugs. Software bug classification helps in effective team
management, cost-effectiveness, faster bug identification, and identifying the strengths and weaknesses of
software components. Bug classification can help in Triaging, i.e., assigning bugs to related developers, which
saves time and effort [24]. Classification and identification help software quality engineers and managers to
measure how software projects evolve.

Nagwani and Verma (2014) compared ten standard algorithms for classifying software bugs into two main
classes: bug and non-bug. They divided the process into three categories: (1) identify bug dataset, (2) pre-
processing, and (3) classification. Experiments were performed using Java and Weka API. They found that
classifier accuracy decreases when the number of classes increases. These algorithms are implemented on
four open sources: Android, JBoss-Seam, Mozilla, and MySQL. They concluded from the results that four
algorithms, namely, SVM, bagging, RBF, and regression perform better, their accuracy is 90.1% [3].

Behl et al. (2014, February) identified SBRs through NB and TF-IDF. They pre-processed the existing dataset
0f 10,000 security bug reports from the Bugzilla repository through text mining. They identified start and stop
word lists to use in classification algorithms for predicting. Their result shows that TF-IDF had a high success
rate of 93.989% [20].

Kukkar and Mohana (2018) used TF-IDF, bigram, and K-NN classifiers to identify bug reports as bug or non-
bug. They proposed four fields (reporter, severity, priority, and component) to be added to bug reports to
increase the performance of a classifier. They observed that the performance of the KNN classifier changed
according to the dataset and the bigram method improved the performance. They used five datasets of bug
repertories, that are JBoss, Firefox, Open FOAM, Mozilla, and Eclipse. The performance of the algorithm is 89%
for the bug report and 94% for the non-bug report [5].

Zou et al. (2018) identified bug reports as SBR and non-security bug report (NSBR) through NLP processing
and ML techniques on the Bugzilla dataset. For classification, meta features (time, severity, and priority) and
textual features (the text in summary fields) with the SVM classifier were used. The experimental results show
that SBR with imbalanced data processing can successfully identify SBRs with 99.4% higher accuracy and
79.9% recall compared to existing work. The experimental findings indicate that SBR with imbalanced data
processing can successfully identify the SBRs with a higher precision of 99.4% and recall of 79.9% [25].

Zhou et al. (2016) presented a hybrid approach of combining text mining and data mining techniques to
identify corrective defect reports by combining multinomial NB and Bayesian Net, for better textual classifiers.
Their work was evaluated on five bug datasets, Mozilla, Eclipse, JBoss, Firefox, and OpenFOAM by using
precision and recall rates. Comparative experiments were performed with previous studies and the results
were found to be better than the previous studies 73.8 to 81.7% for Mozilla. They used the WEKA toolset to
automate the frequency calculation and validate through ten-fold cross-validation [8].

Otoom et al. (2019, August) classified software bug reports as perfective and corrective using classification
algorithms NB, SVM, and random trees (RT). They evaluated the result on three different open-source projects:
Aspect], Tomcat, and SWT projects. They used the WEKA tool and carried out five-fold cross-validation that
achieved higher accuracy (93.1%) using the SVM classifier [26].

An extensive study on ML methods that have been effectively applied to predict software bugs — both bug
and non-bug — is presented by Khleel and Nehéz (2021). The supervised ML algorithms DT, NB, Random forest
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(RF), and LR are the foundation of the software bug prediction model they present. For this experiment, four
NASA datasets were used, and model performance was examined. According to the experimental results, DT
and RF classifiers outperform other classifiers with an accuracy of 99% in prediction [27].

Choudhary (2017) predicted bug priority using MLP and Naive Bayes classification algorithm and showed
results through receiver-operating characteristic curve (ROC) and F-measure. The four main processes per-
formed in experiments are dataset acquisition, pre-processing, feature selection, and classification. They pre-
process text by tokenization, stop word removal, and stemming. They performed on Eclipse bug reports of
three components (JDT, PDE, and Platform) with the precision of MLP and NB being 82%, which is better than
the previous values [1].

Gegick et al. (2010, May) predicted SBRs from Cisco software. They introduced an industrial text mining
tool that evaluated the natural-language models on a large Cisco software system called SAS Text Miner5. Their
approach is made up of three main steps. To begin with, a labelled dataset must be obtained. Creating three
text mining configuration files — a start list, a stop list, and a synonym list — is the second step. The training,
validation, and testing phase is the third. 78% of the SBRs were successfully classified by their model, which
also predicted that they would be classified as SBRs with a probability of 0.98% [28].

Zaman et al. (2012, June) used Mozilla and Chrome bug reports and classified the performance bug reports
by feature selection and found out that the “step to reproduce” is important for the performance of soft-
ware [29].

Goseva-Popstojanova and Tyo (2018, July) employed both supervised and unsupervised techniques to
automatically categorize software bug reports as security or non-security issues. Three different feature vector
types were used: Term Frequency (TF), Binary Bag-of-Words Frequency (BF), and TF-IDF. These were com-
bined with a variety of learning algorithms, including RF, NB, KNN, Bayesian network, and SVM. For this
experiment, they examined the performance of three NASA datasets. Compared to other classifiers, RF classi-
fiers have a prediction accuracy of 82%, according to the experimental results [30].

Zheng et al. (2021) conducted research on six real-world projects with more than 100,000 bug reports, varying
in size. They first examined how the class imbalance problem affects SBR prediction and verify that it has a
detrimental effect on prediction performance. After that, they compared six class rebalancing strategies with five
well-known classification algorithms for SBR prediction. They come to the conclusion that the best performing
model can be created by combining the ROSE and RF classification algorithms, which improves performance by
an average of 75% and, in the best case, 267% in terms of the F1 score [31].

Yadav and Pal (2015) integrated both technique classification and clustering for error detection based on
time and error, and they found the K-Means and Bayes Net are better than others (J48GRAFT, LAD TREE, and
BAYESNET) [32].

Odera and Odiaga (2023) classified spam and ham SMS using Recurrent neural network (RNN) and
compared their results with SVM. They used UCI SMS spam Dataset v.1 and preprocessing data including
case conversion, punctuation mark removal, abbreviation expansion, tokenization, stemming, and stop words
removal. They evaluated the results using area under the curve (AUC) (Accuracy loss). According to the results,
SVM’s false positive rate is somewhat lower than that of RNN, which has a slightly higher training and
validation accuracy of 0.98 compared to 0.94 [33].

Aljedaani et al. (2022, April) classified the bug reports into accessibility-related and non-accessibility-
related bugs. They used two popular issue-tracking systems Bugzilla and Monorail repositories, to clean up
data using preprocessing steps, i.e., tokenization, special character removal, and lemmatization. They evalu-
ated five different ML algorithms; DT, RF, decision jungle (D]), SVM, and NN to observe which one offers the
most successful outcomes for the classification of accessibility bug reports. They conclude that DT’s Fl-score of
93% outperforms all other classifiers in terms of evaluation parameters [34].

Alqahtani (2022) used ML classifiers FASTTEXT, RF, NB, KNN, MLP, and LR to classify SBR and NSBR. He
used datasets from five Java projects which include Chromium, Amabri, Camel, Derby, and Wicket. They
preprocessed a line of words using stop words, tokenization, and derive bag of words, to evaluate results
including recall (R), probability of false alarm (pf), precision (P), Fl-score (F1), and G-measure (G). They found
that the fasttext classifier can effectively improve the classification of SBRs with an average F1-score of 0.81. It
also achieved an average G-measure of 0.80 [13] (Table 1).
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2.1 Research gap

It is evident from the literature [1,3,5,8,20,25-28] that SVM, ANN, NB, RBF, KNN, LR, DT, FR, TF-IDF, and N-gram
have been used as classification techniques upon various bug repositories, e.g., Bugzilla, Android, Eclipse,
JBoss, Firefox, OpenFOAM, and NASA to classify bugs for functional requirements [30,34]. However, the
classification of bugs into performance and security is yet to be done. Besides a comparative analysis of
existing ML algorithms upon the Bugzilla repository, which will facilitate Software Quality Assurance man-
agers to choose relevant algorithms in future classification, is also missing in the literature. Such comparative
analysis of classification algorithms for the identification of security and performance bugs can not only help
in triaging but will also facilitate software evolution and maintenance.

3 Materials and methods

In this study, we employed the explanatory research design. The goal of explanatory research is to elucidate a
problem’s causes and effects. The optimal bug classification algorithm will be identified if the problem is well-
defined. In order to establish the cause-and-effect relationships between the variables for accurate identifica-
tion, this research paper will employ experimental research methods to manipulate and control the variables.
Our experiment is designed to identify defects earlier using developed, mature projects as a basis. By using
mature source projects to train the classifier, we will be able to identify defects earlier and classify them in the
target projects. Prediction accuracy (precision, recall, and F1) is the dependent variable in this research paper,
while the algorithms are the independent variables. The design of this study is 1 factor 1 treatment.
Furthermore, results are validated through cross-validation, e.g., K fold, etc., since it enables us to compare
different models and parameters, providing a consistent and fair way of evaluation. Our research question is:

RQ 1: What is the impact of classification algorithms, i.e., SVM, ANN, LR, KNN, and NB upon identification
accuracy of security and performance bugs?

Ho: There is a significant impact upon identification accuracy of security and performance bugs through
any classification algorithm, i.e., SVM, ANN, LR, KNN, and NB.

H1: There is no significant impact upon identification accuracy of security and performance bugs through
any classification algorithms, i.e., SVM, ANN, LR, KNN, and NB.

3.1 Proposed classification process

In this section, we proposed a classification process. We train our algorithms and predict the defect’s predic-
tion accuracy. By following this approach, we will detect/classify the defects earlier, and allocate bugs to
the related triager and debugger with efficient use of time and resources. We identified the bug reports
from the Bugzilla bug repository and manually labelled data into two classes using the keyword-matching
technique.

After labelling, we perform pre-processing steps including lower casing, tokenization, stop word removal,
TF-IDF, and n-gram and then apply classification steps and compare the results. Figure 1 shows the detailed
methodology of the proposed research.
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Bug Classification Process
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Figure 1: Blug classification process.

3.1.1 EDA

We performed Exploratory Data Analysis (EDA) on the Bugzilla repository. The purpose of EDA is to extract the
most important features, remove unnecessary features, and map and understand the structure of the data. We
used the Bugzilla repository, which has nine field attributes that show the bug information, i.e., bug Id, bug
summary, bug type, product, component, assignee, status, change, and description. We extract features from
the BUG SUMMARY field [21]. Bugzilla bug report contains the details of a software issue; the information is
organized into several fields as follows:

BUG ID: The number ID of a bug that is unique for the bug tracking system.

TYPE: Describe the type, whether it is a bug or new requirement.

SUMMARY: One line short description of a bug containing a few keywords which is defined as the bug also
known as the title of a bug report.

PRODUCT: This term describes which among all the products e.g., thunderbird, firefox, seamonkey etc has
a bug.

COMPONENT: This term describes which among all the components e.g., Security, Performance, general etc.
has a bug.

ASSIGNEE: The name of the person who assigns this bug.

STATUS: The current state of a reported bug. Two types of bugs are there: unconfirmed and confirmed; one is
an open bug and the other is a closed bug.

CHANGED: The date when the bug status changed.

DESCRIPTION: Detailed description of a bug. This comprises the reproduction steps: simplified, simple
instructions that will cause the bug. Make sure to include any special setup steps, if applicable. Real Results:
The actions taken by the application following the aforementioned procedures. Expected Outcomes: the user’s
expectations following the aforementioned action [2].
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This result was limited to 500 bugs. See all search results for this query.

ID Type Summary Product Comp Assignee A 'Status A | Resolution Changed
1411629 {8} Using DBUS_SESSION_BUS_ADDRESS does not work with sandboxing Core Security: ProcessSa ~ nobody ~ UNCO - 2018-06-14
1460250 @ provide asynchronous versions of some PKCS#11 APIs Core Security: PSM nobody  UNCO  --- 2018-05-09
366066 @ provide more insight if smart-card login fails Core Security: PSM nobody  UNCO  --- 2016-07-11
44779 {E} Certificate backups use RC2/40 encryption Core Security: PSM nobody  UNCO  --- 2017-09-15
s @ ﬁ:}::“foi Sl S o SOl GRS o Securit: PSM nobody  UNCO -~ 20160829
4771982 @ Prompt for SSL client certificates appears at erratic times Core Security: PSM nobody  UNCO  --- 2016-08-09
512437 provide better error message when client cert authentication fails  Core Security: PSM nobody  UNCO  --- 2016-08-31
519925 {8} Firefox hangs during first presentation of hardware client cert Core Security: PSM nobody  UNCO  --- 2016-06-27
s @ :2?;’;:;;::“;;’:{‘;;: Zi::h';‘i%‘he S S Security: PSM nobody  UNCO - 2019-02-08
741327 @ Certificate selection modal dialog appears on wrong window Core Security: PSM nobody  UNCO  --- 2016-09-06
882625 @ Blocked SmartCard Pop-up Core Security: PSM nobody  UNCO  --- 2016-09-07
1002453 G} StartSSL certificate has weird name le-8bbf0dat-ccce-44d9-...... Core Security: PSM nobody  UNCO  --- 2016-08-29
1008120 Iﬁiling dot in SNI HostName must be stripped according to RFC Core Security: PSM nobody  UNCO 2017-09-14

#herulhussnss mmasills menlan 1S Hienfoelennbel

Figure 2: Bugzilla bug repository from 2019.

Figure 2 shows a bug report of an open-source bug repository, i.e., Mozilla/Bugzilla. The vertical columns
describe the field that consists of nine attributes of the Bugzilla, and the horizontal rows describe the instance/
record of the bugs. After the EDA, we came to know Bugzilla repository has multiple attributes and most of
them are unnecessary and affect prediction accuracy. So, we removed the noise by removing the redundant
data, dropped all the unimportant columns such as the STATUS and PRODUCT, removed missing instances and
extracted important features like SUMMARY. That efficiently trained our models to classify bugs with higher
accuracy. We collected 1,000 instances of bug reports and labelled them manually into two classes; 550
securities and 450 performances (Table 2).

Table 2: Bugzilla dataset detail

Projects Bug reports Security Performance

Bugzilla 1,000 500 450

3.2 Pre-processing

Data preprocessing describes any type of processing performed on raw data to prepare it for another proces-
sing procedure [35]. Preprocessing includes the following steps. Data Cleaning: Tokenization, stop words
removal, n-gram, TF-IDF, steaming, lemmatization, and also include spelling correction [20]. Text preproces-
sing is a prerequisite step that prepares the data for further processing and analysis. Both these techniques are
important in NLP and are often used together in text-based applications.

3.2.1 Data cleaning

In data cleaning, we clean data from noise by removing redundant data and missing values and taking useful
attributes. We used only one column for feature extraction and we removed the other columns.
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3.2.2 Label dataset

First, we identified more than 200 security and 60 performance-related keywords with the help of security
experts and from literature. We made two lists: A (security) and B (performance), which are shown in Table 3.

Table 3: Keywords of security and performance

Type Keyword

Security Confidentiality, security, PKCS, virus, authorization, audit, biometric, validation, encryption, verify, key, password,
alarm, encryption, noise, certificates, verification, trust, sign, SHA, smartcard, decryption, SSL, fingerprint, smartcard,
decryption, OCSP, rights, TLS, blacklist, cryptography, Hash function, SIMME, auth, biometrics, rule, validation,
access control, scam, MD5, restrict, cookies, hijacking, proxy, SMPT, squid, token, permission, code, secure, defense,
Trojan, untrusted, 2f, warning, privacy, privileges, hookworm, authentication, and restrict.

Performance Execute storage, dynamic, throughput, peak, load, stress, volume, capacity, mean, space, time, response, memory
index, runtime, reduce, fixing, early, offset late, completeness, compress, uncompressed, and perform.

We match/find the keyword in the bug summary field. If any word matches with list A, we label bug
summary as security. If any word matches with list B, we label bug summary as performance (Figure 3).

A B C
sl BUG-ID SUMMARY CLASS

2 1288988|changed server not reflected in saved password list security

3 487269 allow selection of a bugzilla group with testopia's access control list security

4 530748|when selecting product dashboard in testopia - i get not authorised error - same in ff|security

s 559576|the test run assignee should be able to update test runs w/o requiring write perm to|security

6 580311|user can see all test runs and cases not only those for which products, he has access |security

7 = 593817 |secreview: make tab strip async security

8 769052 |feature request: a list of mail addresses to which smime signatures should not be ser|security

9 227405|request for a secure site tray/taskbar type notice/advisory screen and notification icqsecurity

10 296249|allow for advanced challenge/response authentication (optical flickering) performance
11 296598 |ns_error_dom_security_err for menulist.xml security

12 315494 |support time-stamp protocol (tsp) as per rfc3161 security

13 327493 |emails flagged as possible email scam should be rendered as simple html (similar to rsecurity

14 332550|restrict ajax/javascript scope to dom element. security

15 344945|startup reports "could not initialize the browser's security component’ security

Figure 3: Dataset after EDA.

3.2.3 Tokenization

The process of tokenization involves using lexical analysis to divide a sentence into a collection of tokens or
words based on delimiters like spaces and punctuation marks. In order to obtain a large corpus of tokens,
special characters should be eliminated and the tokens should be converted to lower case during the tokeniza-
tion process. We use the word2vec (Bag of words) tool, which is commonly used in text mining, to map these
tokens into vectors. For tokenizing, we also used TF-IDF and N-gram [4,11,18] (Table 4).
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Table 4: Tokenization

Firefox account sends an authorization code even if a password is incorrect Security
org.mozilla.jss.ssl.sslsocket leaks memory on instantiation Performance
After tokenization

“Firefox,” “account,” “send,” “authorization,” “ code,” “even,” “if,” “password,” “is,” “incorrect,” “Security”
“Org,” “Mozilla,” “jss,” “ssl,” “sslsocket,” “leaks,” “memory,” “on,” “instantiation” “Performance”
3.2.4 N-gram

N-gram is an alternative to the word tokenizer. N-gram uses more than one word as a token. These are n-word
word sequences that follow one another. Bigrams, e.g., are tokens made up of two words that are placed next
to each other; a unigram is a single word. An N-gram is an N-character of a longer string N would be (N =1) that
is called a unigram, (N = 2) is a bigram and (N = 3) is a trigram. We used this technique in tokenizing, to get
better and more meaningful results [18,23,36,37] (Table 5).

Table 5: N-gram

Firefox account sends authorization code even if password is incorrect Security
org.mozilla.jss.ssl.sslsocket leaks memory on instantiation Performance
After applying N-gram = 2

“Firefox account,” “send authorization,” “ code even,” “if password,” “is incorrect” “Security”
“Org Mozilla,” “jss ssl,” “ss| sslsocket,” “leaks memory,” “on instantiation” “Performance”

3.2.5 Stop words removal

The text uses a lot of words, many of which do not refer to any important information. Stop words include
conjunctions (e.g., and, but, then), pronouns (e.g., he, she, it), and articles (e.g., a, an, the). Because these stop
words affect the identification algorithm’s performance, they must be eliminated from the set of tokens
created in the preceding step [11] (Table 6).

Table 6: Stop word removal

Firefox account sends authorization code even if password is incorrect Security
org.mozilla.jss.ssl.sslsocket leaks memory on instantiation Performance
After removing stop word

“Firefox,” “account,” “send,” “authorization,” “ code,” “even,” “password,” “incorrect” “Security”
“Org,” “Mozilla,” “jss,” “ssl,” “sslsocket,” “leaks,” “memory,” “instantiation” “Performance”

3.2.6 TF-IDF/Doc2vec

The features play a major role in constructing a predictive model that significantly affects performance
overall. Therefore, before training the model, it is crucial to identify the best features that contribute to
high classification accuracy. TF-IDF is a helpful weighting scheme used in text mining and information
retrieval. To identify the best feature in the dataset, we apply the TF-IDF feature extraction technique. The
term’s significance in a document within a corpus is indicated by TF-IDF. It is a feature weighting scheme used
to represent the importance of words in documents, while text preprocessing involves tasks performed on raw
text data to clean and standardize it before analysis or modeling. TF-IDF can be considered as a part of the
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feature engineering process which can be used for training ML algorithms. bag of words (BoW) is a method for
preparing text for input (features) in classification algorithms. The advanced term of BoW is TF-IDF which
generates a word vocabulary and converts it into a vector, and calculates the term frequency of all words
[30,23]. It creates a vocabulary of all the unique words occurring in all the documents in the training set. The
use TF-IDF feature extraction method helps in finding the occurrence feature in the document. While toke-
nizing, tokens should also be changed to lowercase, and special characters should be removed. We get a large
vocabulary of all the distinctive words that occur in all the training data [5,20].

TF (w) = (Number of times term w appears in a document)/(Total number of terms in the document)

IDF (w) = log (Total numbers of documents/Number of documents with term w in it)

TF - IDF(w) = TF*IDF

To normalize data, noise is first removed from the dataset. The distribution gap between the source and
target datasets is then closed. Finally, we use CTGAN synthesizer to resolve the class imbalance issue. After all
of these processes, we have normalized the data, which we can use for more experiments. We will go into great
detail about each stage of the data preprocessing process. Compared to the Bugzilla repository (2020), which
has been the subject of prior research, the updated repository (2024) has different feature values [16].

3.3 Model tuning

We have generated our results after tuning algorithm values and parameters. We get better classification
accuracy after modifying training and testing size, by adjusting hidden layers, weights, epochs, and other
parameters.

3.4 Performance measurement

The commonly used measures are accuracy, precision, recall, F1 (F-measure), ROC, and AUC. The most used
performance metric is accuracy, which is closely followed by recall, precision, and Fl-score. These measures
are derived from the confusion matrix. We validate our result by applying ten-fold cross-validation with 70%
by 30% training and testing [15,16]. The confusion matrix has 4 values:

TP “stands for true positives, which indicates the positive values that the system has predicted as
positives.”

TN “is true negatives that are negative values the system identifies as negatives.”

FP “is false positives, negative values the system identifies as positives.”

FN “is false negatives, positive values that the system predicted as negative. By using their values we
measure Accuracy, Recall, F1, and Precision.”

Accuracy (correct classification rate) is defined as the correctly predicted number of bugs to the total
number of bugs [2].

True positive + True negatives
True positive + True negatives + False positives + False negatives

Accuracy =

Precision “is the percentage of the number of correctly classified bug reports that are predicted posi-
tive” [23].

True positive
True positive + False positives

Precision =

Recall “is the percentage of the number of correctly classified bugs that are Actual positive bugs” [23].

True positive

Recall = T —.
True positive + False negatives
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F1-measure/F-score “considers both precision and recall equally important by taking their harmonic
mean. The higher value of the F-measure indicates a higher quality of the classifiers.” F-measure is calculated
as follows [20]:

F measure = 2 (precision x recall)/(precision + recall).

3.5 The proposed algorithm

Input: CSV file of bug reports
Output: Classify bug report as security and performance bug report and the results are shown as accuracy,
precision, recall, and F1 measure.
Step 1: Input CSV file only with the bug summary part that is in text data
import pandas as pd
data = pd.read_csv(‘bugzilladataset.csv’);
Step 2: Spilt dataset 70 by 30, 70% for training and 30% for testing.
from sklearn.cross_validation import train_test_split
X_train_raw, X_test_raw, y_train, y_test = train_test_split (data[1],data[0],test_size = 0.30)
Step 3: Give text data for preprocessing {Tokenization — Stop word removal - TF_IDF — Ngram}
from nltk.corpus import stopwords
Step 4: Apply TF-IDF and N-gram and extract features. Also called bag of word vocabulary (V).
from sklearn.feature_extraction.text import TfidfVectorizer
vectorizer = TfidfVectorizer(stop_words = ‘english’)
Step 5: Apply classification algorithm (SVM, ANN, NB, KNN, LR)
from sklearn import svm
svm = sym.SVC(kernel = ‘linear’)
Step 6: Apply ten-fold cross validation
from sklearn.model_selection import cross_val_score
accuracy = cross_val_score(svm, X_train, y_train, cv = 10).mean()
Step 7: Apply classification confusion matrix
from sklearn.metrics import classification_report,confusion_matrix
print (classification_report(y_test,predictions))

4 Result

In this section, we will show the result of all algorithms that we apply in this study, which helps to answer the
research questions. Our process broadly falls in the explanatory research, explaining the causes and conse-
quences of a problem, i may be taken as an experiment first, we show algorithm results one by one and then
we compare the results.

41 NB

NB is mostly used for text classification that uses the Bayesian theorem that calculates the frequency of
attributes in an instance and gives the class a high probability weight. When the number of features is large
the calculation probability is difficult so filtering the feature is more efficient. The precision of algorithms
decreases if the number of datasets is less [22]. Because of its ease of use and efficiency, NB is widely employed
in text classification applications [31]. Bernoulli Naive Bayes (BNB), Multinomial Naive Bayes (MNB), and
Gaussian Naive Bayes (GNB) are the three models that NB offers. We used the function of BNB model and
performed classification tasks (Table 7).
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Table 7: Specified model tuning parameters of NB

Algorithm Alpha Binarize class_prior fit_prior random_state min_df test_size cv

BNB 1.9 0.0 None True 1 3 0.30 10

NB model is good at making true positives by reducing the number of false positives and yielding high
precision for performance bugs. It means that the classifier is good at correctly identifying bugs while mini-
mizing false alarms. This could be due to unique bug-related features, clean data, imbalanced classes, or
effective features.

4.2 ANN

NN is made up of connected artificial neurons. The neurons’ interconnection link spreads a certain weight. In
case NN are trained with training patterns of known classes, these are called supervised learning [15]. The
most frequently used feed-forward NNs for classification include multilayer perceptron and RBF network [3].
In the case of MLP, neurons are connected in a network. Mostly three layers of MLP are used which contain the
input, hidden, and output layers [18] (Table 8).

Table 8: Specified model tuning parameters of ANN

Algorithm Activation Batch size Hidden layer Random_state min_df Test_size v

MLP classifier Relu Auto (5,2) 1 3 0.25 10

After tunning various parameters, we achieved a high precision rate of 0.96% for performance bug data
which is higher than the security precision rate of 0.94%. ANN are capable of handling nonlinear data
relationships, performing automatic feature extraction, and have a large parameter space that allows them
to closely fit the training data. We also achieved a security bug’s F1 score of 0.95%, which is greater than the
performance bugs F-measure of 0.93%. Artificial neural network (ANN) are used when there are only a few
parameters to tune. Moreover, their learning efficiency improves as the volume of training data increases [17].
ANN has various techniques for classification, such as MLP, SLP, RBF, and deep learning; we use MLP. MLP has
several attributes that can be modified, including hidden layer, learning rate, and maximum iterations. Mostly
we use default values; by changing values, we get better results but it is a time taking work.

43 LR

One method of classification is LR. LR is a linear classifier with a decision boundary. LR is used in medicine,
advertising and survey analysis, credit scores, public health, and other apps. Where the data are noisy and
non-separable, LR converges far more quickly and reliably. We used default values of the attribute and
modified penalty = “12” and “liblinear” solver value that affects the accuracy result. LR achieves high precision
and F1 scores for performance bug data over the security bugs data because of class imbalance, data quality,
feature importance, threshold settings, and more predictable or clearer patterns (Table 9).
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Table 9: Specified LR model tuning of parameter

Algorithm Penalty C random_state test_size min_df cv
liblinear “2” 3 1 0.30 3 10
4.4 KNN

KNN algorithm is used to classify by finding the K (int) nearest matches in training data. Use similarity scores
among texts and identify the KNN. KNN works well with a small number of input variables. It is strong for
noisy training data. KNN does not perform well on imbalanced data. KNN does not deal with the missing value
problem. We modify the k value to find the neighbor values and then calculate the distance and similarity
score (Table 10).

Table 10: Specified model tuning parameters of KNN

Algorithm n_neighbors random_state test_size min_df n-gram_range v

KNN classifier 50 0 0.30 4 1,1 10

We used the default attribute and changed the value of k to achieve better results. We set the value of k 50
near the neighbor and got 92.4% accuracy. When we decrease the value of k, the accuracy decreases. We
achieve a high F1_measure of 0.94% for the security bug dataset and a high precision of 0.97% for performance
bug dataset as shown in Figure 4. KNN gets high precision for performance class. This can be due to the class’s
data points being well-separated, the K value is changed and features are highly relevant for that class.

NB Results

0.98

m Precisior
0.96

m Fl
0.94

0.92

Security Performance

Figure 4: Presents the result of KNNs for the identification of security and performance problems.

4.5 SVM

Support vector machine is a widely used supervised learning technique for classification. This innovative
method of learning is primarily applied to binary classification [7,27]. SVM uses kernels to solve classification
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problems. SVM kernels are employed in various classification applications. We employed the linear function,
but other well-known kernel functions include polynomial, RBF, sigmoid, and linear. It improves the perfor-
mance of classification by removing irrelevant features. When learning tasks involve a high number of
features in some training instances, SVM is a good fit. SVM contains numerous “linear,” “RBF,” and “poly”
kernels. After using them all, we discover that linear kernels work best with our dataset (Figure 5) (Table 11).

ANN Results
0.965

0.96

m Precision
0.955

0.945- 3 2

0.94

0.935

0.93

0.925

0.92 -

0.915
Security Performance

Figure 5: Displays the precision and F1 results of the NB model in classify security and performance bug reports. BNB classifier has a
higher precision rate for performance bugs (0.98) compared to security bugs (0.91). However, the F1 score is higher for security bugs
(0.95) than for performance bugs (0.91), with a difference of 0.4%.

Table 11: Specified model tuning parameters of SVM

Algorithm Kernel C Class_weight Verbose gamma Test_size Min_df Random_state cv

SVM.SVC linear 1 None False 6 0.30 4 2 10

We used F1 and precision for comparison that shows the predicted results of the algorithm. SVM is well-
suited for learning tasks involving a large number of features and a small number of training instances. SVM
gets high precision and recall values for the performance bug dataset because SVMs handle imbalanced
datasets by adjusting the class weights and C parameters. This flexibility enables them to prioritize precision
over recall. SVMs handle nonlinear relationships in the data using kernel functions (e.g., polynomial, RBF). It
also generalizes well with small sample sizes, making them applicable in situations where limited data are
available. It focuses on support vectors, which are data points near the decision boundary. This helps the
model to concentrate on the most challenging instances, contributing to better precision and recall.

5 Findings and comparative analysis of classification algorithms

In this section, the impact of classification algorithms, i.e., SVM, ANN, LR, KNN, and NB on identification
accuracy of security and performance bugs is analyzed. Five supervised ML algorithms are analyzed and
evaluated in this study, which are SVM, NB, ANN, KNN, and LR. These algorithms were chosen based on the LR
of previous studies. After applying the algorithms (NB, ANN, SVM, LR, and KNN) on the performance bug
repository, we measure the results through precision and F1 measure.



DE GRUYTER Comparative analysis of impact of classification algorithms on bug reports =—— 17

Figure 6 shows that the precision rate of algorithms is higher as compared to the F1 score for performance
bugs as we see two algorithms (SVM and LR) perform better in terms of precision (0.99%) as compared to other
algorithms (NB, KNN, and ANN). High precision means that the model is good at making positive predictions,
and when it classifies a data point as positive, it is often correct. This suggests that there are relatively few false
positives in the model’s predictions. Here the precision rate is high while the F1 score is low for the perfor-
mance dataset, which typically occurs when one of these metrics is significantly lower than the other. In this
case, the low F1 score is likely due to low recall. Several factors contribute to this low recall, including the
existence of an imbalanced dataset, potential biases in the model favoring the majority class, the use of harsh
decision thresholds demanding high confidence for positive predictions, and inherent difficulties in distin-
guishing between classes when they share significant similarities. After applying algorithms on the security
bug repository, we compare results through precision and F1 measure.

LR Results .
1 M Precision

mF1

0.98

0.96

0.94

0.92

0.9 -

0.88

0.86 -
Security Performance

Figure 6: Comparative analysis of security and performance bug through SVM.

Figure 7 shows that the F1 score of all algorithms is higher as compared to the precision score for security
bugs as we see three algorithms (SVM, ANN, and LR) perform better in terms of F1 score as compared to other
algorithms (NB and KNN). A high F1 score means high recall which indicates that the model is good at

0.98 KNN Results

B Precision
0.96

m F1

0.94

0.92

0.9 -

0.88 -

0.86 -

Security Performance

Figure 7: Algorithm result of SBR.
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identifying a large proportion of the actual positive instances in the dataset. This suggests that there are
relatively few false negatives (instances that are positive but predicted as negative). When precision is low but
the F1 score is high for a dataset, it typically signifies a situation where the classification model prioritizes
recall over precision. This commonly occurs in scenarios such as imbalanced datasets, where the model
classifies the minority class more generously, leading to higher recall but lower precision due to an increased
number of false positives.

Additionally, high sensitivity, threshold adjustments, the emphasis on reducing false negatives, and spe-
cific business requirements can contribute to this pattern. The balance between precision and recall depends
on the application’s goals, and in cases where minimizing false negatives is critical, a lower precision but
higher F1 score may be preferred. After applying NB, ANN, SVM, LR, and KNN algorithms on the security and
performance bug repository, we compare the results through accuracy, precision, and Fl-measure. Table 12
shows the average accuracy of performance and security bug classification. As seen in Figure 8, algorithms get
higher precision scores compared to F1 for performance bugs and Figure 9 shows that algorithms get higher F1
scores as compared to precision scores for security Bugs, but in Figure 10, we get an average of precision, F1,
and accuracy rate for both security and performance Bugs.

Table 12: Classification algorithm result of security and performance bugs

Evaluators SVM ANN NB LR KNN
F measure 0.961 0.954 0.956 0.947 0.934
Accuracy 0.957 0.950 0.951 0940 0.927
Precision 0.951 0.946 0.933 0.909 0.916
2 SVM Results
m Precision
0.98
m F1
0.96
0.94
0.92 +
0.9
0.88 -
Security Performance

Figure 8: Presents comparative analysis of security and performance bug through SVM. We achieved a performance precision score of
0.99, which is 0.7% greater than the security precision score (0.92). The F1 measure shows the average of precision and recall which is
0.95% for performance and 0.96% for SBRs.
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Classifier Comparision Results of Performance Bugs
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Figure 9: Presents the precision and F1 result of ANN for the identification of security and performance bug.

0.96 Classifier Comparision Results of Security Bugs
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Figure 10: Presents the results of LR for the classification of security and performance problems. LR performs better for performance
bugs. For performance, LR achieves a 0.99 precision score and 0.95 F1-measure score.

So, we can conclude that SVM performs better as compared to other algorithms for security and perfor-
mance bug datasets. SVM accuracy rate is 0.95%, the Fl-score is 0.96%, and the precision score is 0.95% on the
Bugzilla dataset. The addition of the TF-IDF method improves the performance of classifiers. Results are shown
in Figure 11.

Figure 11 shows the results of all classification algorithms which we applied to the dataset and found that
the SVM has the highest F1 measure of 95.7% among all classification algorithms.

SVM outperforms LR, KNN, NB, and ANN on security and performance datasets due to their ability to
handle both linear and nonlinear data effectively. SVMs are robust to outliers and noisy data; they can identify
the most critical instances (bugs) and create a well-defined decision boundary, minimizing the impact
of outliers on the model’s performance. SVM is a binary classifier by default, which is well-suited for security
and performance bug datasets. SVM aims to maximize the margin between classes, which leads to a
better separation of data points. This margin maximization can help distinguish between security bugs and
performance bugs more effectively. Further tuning hyper parameters such as selecting the right kernel
function and balancing values of other parameters have a significant impact on SVM’s performance. SVMs
can leverage well-engineered features to improve their ability to discriminate between security and perfor-
mance bugs. Imbalanced datasets can lead to biased classifiers, but SVMs can handle balanced datasets
effectively. The F1 score, which balances precision and recall, is a suitable evaluation metric for security
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Classifier Comparision Results
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m Precision

SVM ANN NB LR KNN

Figure 11: Comparison of the algorithms.

bug data, especially when both false positives and false negatives have significant implications. SVMs can
achieve a high F1 score by striking the right balance between identifying true security bugs (recall) and
minimizing false alarms (precision). Thus, it is evident from our research that there is a significant impact
on identification accuracy of security and performance bugs through any classification algorithms, i.e., SVM,
ANN, LR, KNN, and NB.

5.1 Result validation

Validating the results of a text classification algorithm involves assessing its performance to ensure that it
generalizes well to unseen data. Here are some common techniques for validating text classification algo-
rithms: Error analysis, evaluation metrics, stratified sampling, validation set, cross-domain validation, and
train-test split.

Instead of using a single train-test split, we employed cross-validation methods such as k-fold cross-
validation. To do this, the dataset is divided into k subsets. The model is then trained on various combinations
of k - 1 subsets k-times, and its performance is assessed on the remaining subset on each evaluation. As a
result, the model’s performance estimate is more reliable. Ten-fold cross-validation was employed [18]. The
dataset is divided into ten distinct subsections by the cross-validation test, with nine of them being used for
training and the tenth one for testing. After ten iterations of the algorithm, the average accuracy over all folds
is determined [3,4].

To ensure that classification models are neither under fitting nor over fitting generally used these stra-
tegies, including Train-validation-test split, cross-validation, learning curves, regularization, model com-
plexity, validation set performance and early stopping. We used train and test spilt, parameter tuning [18],
and cross-validation techniques, such as k-fold cross-validation, to train and evaluate the model on multiple
subsets of the data. Our models perform consistently well across different folds, it is less likely to be over-
fitting [1,21].

5.2 Threat to validity

There are certain risks associated with this research that could compromise the reliability of the findings and
inferences made. In an attempt to improve classification performance, we experimented with various model
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parameter combinations and algorithms. Experimenting with every classification algorithm and hyper para-
meter combination is not feasible, though.

Second, we meticulously adhered to the original papers in order to implement the baselines. We have not
worked on the source code of the dataset of the old paper [3] because these related comparison works do not
provide the source codes of their works. We have worked on a significant amount of source code and made
every effort to ensure that the implementation is accurate. Open-source software project data are also utilized
for validation, in addition to the Bugzilla datasets. Our suggested method may perform better or worse
depending on whether it is applied to different kinds of software projects created in various environments.
In addition, the fact that we only used 1,000 instances of the dataset for testing and training poses another risk,
potentially leading to variations in the current results.

6 Conclusion and future work

This research compared and analyzed the impact of classification algorithms, i.e., SVM, ANN, LR, KNN, and NB
on identification accuracy of security and performance bugs. We have applied SVM, ANN, NB, KNN, and LR on
the Bugzilla bug repository to classify security and performance bugs. We analyzed and found out the best
algorithm. The best algorithm in the proposed methodology is the SVM with 0.96% F1 measure. This research
indicates that SVM has higher prediction accuracy after applying the pre-processing step, TF-IDF. Two algo-
rithms SVM and LR perform better in terms of precision (0.99%) for performance bugs and three algorithms
SVM, ANN, and LR perform better in terms of F1 score for security bugs. The main contribution of this research
includes the creation of a new data set of 1,000 instances, identification and comparative analysis of the
classification of security and performance bugs from the Bugzilla repository. It was evident from our research
that there is a significant impact on the identification accuracy of security and performance bugs through any
classification algorithms, i.e., SVM, ANN, LR, KNN, and NB.

In future, we plan to extend our comparative analysis among deep neural networks by extending our
dataset of security and performance bugs. Besides, we may improve the “precision-recall trade-off”’ issue
where the precision rate is high while the F1 score is low, through resampling techniques, threshold adjust-
ment, etc.
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